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Abstract
We study invertibility and compactness of positive Toeplitz operators associated to
a continuous Parseval frame on a Hilbert space. As applications, we characterize
compactness of affine and Weyl-Heisenberg localization operators as well as give
uncertainty principles for the associated transforms.
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principle · Toeplitz operator · Invertibility
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1 Introduction

The uncertainty principle in harmonic analysis is a fundamental principle roughly say-
ing that a function and its Fourier transform cannot be simultaneously “well localized”.
There are many non-equivalent ways to make this statement precise by imposing dif-
ferent types of “localization” conditions. One such form of the uncertainty principle
is Benedicks’ theorem [9] which says that a function f ∈ L2(Rd) and its Fourier
transform f̂ cannot be both supported on sets of finite Lebesgue measure. The fol-
lowing is the quantitative form of this result as obtained by Amrein and Berthier [1]:
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If E, F ⊆ R
d are sets of finite Lebesgue measure then there exists c > 0 such that

c‖ f ‖L2(R) ≤ ‖ f ‖L2(Ec) + ‖ f̂ ‖L2(Fc),

for all f ∈ L2(R). Using the Kohn-Nirenberg quantization one can restate this result
in the following form: Let P be the operator

P f (x) :=
∫
Rd

1(E×F)c(x, ξ) f̂ (ξ)e2π i x ·ξ dξ.

Then 〈P f , f 〉 ≥ c‖ f ‖2. It was shown by the first author [22] that a similar result
continues to hold for all subsets of R2d with finite Lebesgue measure, including the
ones which are not of the form E × F . A natural analog of this result can be obtained
by replacing the Kohn-Nirenberg quantization with the anti-Wick quantization. In
this case we have the following statement for the short-time Fourier transform: Let
E ⊂ R

2d have finite Lebesgue measure. There exists c > 0 such that

∫
Ec

∣∣Vφ f (p, q)
∣∣2 dp dq ≥ c‖ f ‖2 (1)

for all f ∈ L2(Rd), where Vφ f is the short-time Fourier transform defined by
Vφ f (p, q) = ∫

f (x)e2π i pxφ(x − q) dx . This result was proved independently and
almost simultaneously by Jaming [27], Janssen [29], and Wilczok [40]. Using simi-
lar reasoning Wilczok also showed the following analog for Wavelet transform: Let
E ⊂ (0,∞) × R with finite affine measure (

∫
E a−1dadb < ∞). There exists c > 0

such that ∫
Ec

∣∣Wψ f (a, b)
∣∣2 dadb

a
≥ c‖ f ‖2 (2)

for all f ∈ L2(Rd) where the wavelet transform Wψ f is defined by Wψ f (a, b) =
a−1/2

∫
R
f (x)ψ(a−1x − b) dx for some wavelet ψ .

In the classical cases, when thewindow functionφ or themotherwavelet functionψ

are specially chosen, VφL2(Rd) is a Fock space of analytic functions and Wψ L2(Rd)

is a Bergman space on the upper half space. In both cases, these inequalities hold for
the more general class of so called relatively dense sets, which is known to be the
optimal such class of sets. This has been known since the 80’s, and follows from the
work of Luecking [33, 34] on the Bergman space. For the Fock space, one can consult
the work of Janson–Peetre–Rochberg [30], Ortega-Cerdà [37], and the recent work of
Ascensi [3]. However, it can be easily shown (see section 5 below as well as [3, 28])
that relative density is a too weak condition for these results to continue to hold for
general L2 window and wavelet functions.

Still, it is natural to ask whether there exists a larger class of sets E (of infinite
measure) for which (1) and (2) continue to hold for a more general class of window
and wavelet functions. For the short-time Fourier transform some sufficient conditions
can be found in [3, 28] for windows with varying degrees of regularity. However, for
general window functions φ ∈ L2(Rd), Fernández and Galbis [19] showed that (1)
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holds for all sets E satisfying a certain thinness condition. The main goal of this
paper is to show that (2) also continues to hold for the appropriate analog of thin sets.
Furthermore, we also extend the result of Fernández and Galbis in the context of short-
timeFourier transformsonmore general LCAgroups.Weactually prove anuncertainty
principle of Amrein-Berthier type for more general Berezin-type quantizations which
include both short-time Fourier and wavelet inequalities as special cases.

To state our result we now introduce the above mentioned Berezin-type quantiza-
tion. LetH be a Hilbert space and (X , d, μ) be a metric measure space with a metric
d and a Borel measure μ. We assume that the metric d is proper, i.e., every ball with
respect to this metric is precompact. We will call the continuous map k : X → H the
Berezin quantization of X if ‖k(x)‖ = 1 for all x ∈ X , and for each f ∈ H

‖ f ‖2 =
∫
X

|〈 f , k(x)〉|2 dμ(x).

We will think of the image {k(x) : x ∈ X} as a collection of unit vectors inH indexed
by X , and thus we will use the notation kx = k(x). The map f → 〈 f , kx 〉 defines an
isometric embedding of the Hilbert space H into L2(X , μ), and allows us to think of
H as a closed subspace of L2(X , μ). For each a ∈ L2(X , μ) define

∫
X a(x)kxdμ(x)

to be the unique vector h ∈ H satisfying

〈g, h〉 =
∫
X
a(x) 〈g, kx 〉 dμ(x),

for all g ∈ H. It is easy to see that the map

a →
∫
X
a(x)kxdμ(x)

is the orthogonal projection from L2(X , μ) ontoH. In particular, for f ∈ H we have
the expansion formula

f =
∫
X

〈 f , kx 〉 kx dμ(x). (3)

In other words, we have that {kx }x∈X is a normalized continuous Parseval frame inH.
Further we will assume that X is a homogeneous space in the sense that some

locally compact groupG acts transitively on X in a way that bothμ and d are invariant
under this group action (μ(gE) = μ(E) and d(gx, gy) = d(x, y)). The group action
needs also to respect the inner product on H in the following way

∣∣〈kgx , kgy〉∣∣ =∣∣〈kx , ky〉∣∣ for all x, y ∈ X , g ∈ G. Under all these assumptions, we will call the tuple
(H, X ,G, k, μ, d) a Berezin quantization.

Very often, the metric measure space X and its quantization k : X → H of
this type arise naturally whenever we are given a locally compact, second countable
topological group G and some of its nontrivial irreducible, square-integrable, unitary
representations (if such exists), π : G → U(H) [13]. Then G itself can be equipped
with a left-invariantHaarmeasureμ, and left-invariantmetric d (inducing the topology
on G) which is proper, and for any unit vector k ∈ H, the collection {kx }x∈G defined
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by k(x) = π(x)k will form a normalized continuous Parseval frame for H such that〈
kgx , kgy

〉 = πkxky for all x, y, g ∈ G. Actually we can obtain a quantization with
essentially the same properties using the same procedure even when we only have a
projective irreducible square-integrable unitary representation, π : G → U(H)/C.

The following inequality is the obvious analog of (1) and (2) for Berezin
quantization. ∫

X\E
|〈 f , kx 〉|2 dμ(x) ≥ c‖ f ‖2 (4)

for all f ∈ H. By choosing the group G appropriately (see Sect. 5 for more details on
this) one obtains both (1) and (2) as special cases.

The inequality (4) can be viewed as a statement about invertibility of a certain
Toeplitz operator. For a non-negative, bounded, measurable function σ : X → R, the
Toeplitz operator Tσ : H → H with symbol σ is defined by

Tσ f =
∫
X

σ(x)〈 f , kx 〉kx dμ(x).

It is easy to see that each such operator is bounded, self-adjoint, and positive. We can
easily recast (4) in the following way:

〈T1X\E f , f 〉 ≥ c‖ f ‖2. (5)

This is a statement about boundedness from below, and hence invertibility, of the
Toeplitz operator Tσ with an indicator symbol. It is clear that each Toeplitz operator
whose symbol is bounded away from zero must be bounded from below (and hence
invertible). However, to study (5), wemust broaden this trivial result since an indicator
function is only non-negative. So we would like to characterize the degree to which a
non-negative symbol σ : X → R can vanish and still generate an invertible Toeplitz
operator Tσ .

The organization of the paper closely follows the main steps in the proof. The proof
outline that we use goes back at least to Havin and Joricke [24]. Namely, to prove (5)
it suffices to show that the operator T1E is compact with a trivial eigenspace. The
later is proved by showing that from each nontrivial element of this eigenspace, using
small translates, one can construct an infinite dimensional eigenspace of a slightly
“bigger” compact self-adjoint operator of the same form. In Sect. 2 we address the
compactness problem for positive Toeplitz operators. We show that compactness can
be characterized in terms of the vanishing property of its Berezin transform, a condition
which in turn is closely connected to the thinness condition of Fernández and Galbis.
In Sect. 3 we examine the linear independence problem for translations. We provide a
fairly general condition (usually easy to check) on the group which guarantees linear
independence of the translations. In Sect. 4 we combine the previous conclusions and
state and prove our main result (Theorem 2). Finally, we show how our main result
translates to more familiar settings, proving in particular (2) for thin sets and a fairly
wide class of mother wavelet functions.
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2 Compactness of Positive Toeplitz Operators

In this section we deal with the following question: Which non-negative symbols
σ : X → R generate compact Toeplitz operators Tσ ? We show that, under suitable
assumptions on the continuous Parseval frame {kx }x∈X , a necessary and sufficient
condition for Tσ to be compact is its “diagonal" 〈Tσ kx , kx 〉 to vanish at infinity. We
now make this precise.

For a given bounded operator T : H → H we define its Berezin transform T̃ :
X → C by T̃ (x) = 〈T kx , kx 〉. In the case when T is a Toeplitz operator with symbol
σ we denote its Berezin transform by σ̃ , i.e., σ̃ (x) = 〈Tσ kx , kx 〉. In what follows, by
y → ∞, we will mean that d(z, y) → ∞ for some (equivalently, all) z ∈ X .

Definition 1 A measurable function σ : X → C is said to be thin if its Berezin
transform vanishes at infinity, i.e.,

σ̃ (y) :=
∫
X

σ(x)
∣∣〈kx , ky〉∣∣2 dμ(x) → 0 as y → ∞ (6)

We will also say that a set E ⊂ X is thin if the indicator function of E satisfies (6).

The connection between compactness of a Toeplitz operator and the Berezin trans-
form vanishing at infinity (called thinness here) is another quite old question [11,
36, 42]. The breakthrough results in the area of analytic function spaces were due to
Axler and Zheng [4] for the Bergman space on the disk, Ap(D), and to Suárez [39] for
Ap(Bn). Subsequently, these results were generalized tomany different settings [7, 15,
38]. However, going beyond the realm of analytic function spaces, extra assumptions
are made either on the Berezin transform or the decay rate of the symbol σ [5, 6, 8, 10,
12, 18, 41]. Herein, by restricting our study to nonnegative symbols, and assuming a
Schur-type estimate on {kx }, we obtain a complete equivalence in Theorem 1 below.

The following proposition gives a somewhat more explicit alternative characteri-
zation of thinness.

Proposition 1 Let σ : X → [0, 1]. The following are equivalent

(i) σ is thin.

(ii) lim
y→∞

∫
B(y,R)

σ (x) dμ(x) = 0 for some R > 0.

(iii) lim
y→∞

∫
B(y,R)

σ (x) dμ(x) = 0 for all R > 0.

Proof Fix an element e ∈ X which is arbitrary, but will be treated as the origin. Since
X is homogeneous, for each x ∈ X , there exists gx ∈ G (not necessarily unique) such
that gxe = x . For each x we pick one such gx and fix it throughout the proof. By the
invariance of μ and d,

∫
B(y,R)

σ (x) dμ(x) =
∫
B(e,R)

σ (gyx) dμ(x).
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Using our initial assumption, the metric d is proper, i.e., every ball is precompact.
So, the ball B(e, R) can be covered by finitely many balls of a fixed radius. Therefore,
we have (ii) implies (iii).

Next, consider the function h(x) = 〈ke, kx 〉. h(e) = ‖ke‖2 = 1 and h is continuous
so there exists δ > 0 such that |h(x)| ≥ 1

2 for x ∈ B(e, δ). Thus,

1

4

∫
B(e,δ)

σ (gyx) dμ(x) ≤
∫
B(e,δ)

σ (gyx)|h(x)|2 dμ(x)

≤
∫
X

σ(x)
∣∣∣h(g−1

y x)
∣∣∣2 dμ(x) =

∫
X

σ(x)
∣∣〈ky, kx 〉∣∣2 dμ(x).

Therefore (i) implies (ii). To show (iii) implies (i), let ε > 0. We can find R > 0 such
that

∫
B(e,R)c

|h(x)|2 dμ(x) < ε/2. For this R, by (iii), there exists N > 0 such that
for d(e, y) ≥ N ,

∫
B(e,R)

σ (gyx) dμ(x) ≤ ε/2. Therefore,

∫
X

σ(x)
∣∣〈ky, kx 〉∣∣2 dμ(y) =

∫
B(e,R)

+
∫
B(e,R)c

σ(gyx) |h(x)|2 dμ(x) ≤ ε,

for all y ∈ X with d(e, y) ≥ N . Here we used the fact that |h(x)| ≤ ‖ke‖ · ‖kx‖ = 1.
�


We are now ready to characterize compactness of Toeplitz operators when the
Parseval frame satisfies some additional decay conditions.

Theorem 1 Let (H, X ,G, k, μ, d) be a Berezin quantization. Suppose that the con-
tinuous Parseval frame {kx }x∈X satisfies the following: there exists a weightw : X →
(0,∞) and M > 0 such that

(i) w(y)−1
∫
X

∣∣〈kx , ky 〉∣∣ w(x) dμ(x) ≤ M for all y ∈ X.

(ii) lim
R→∞ sup

y∈X
w(y)−1

∫
B(y,R)c

∣∣〈kx , ky 〉∣∣w(x) dμ(x) = 0.

(iii)
∣∣〈kx , ky 〉∣∣ → 0 as d(x, y) → ∞.

Then σ ∈ L∞(X) is thin if and only if Tσ is compact.

Remark 1 In the case X = G, it is often easier to check that x �→ 〈k1, kx 〉w(x) is in
L1(X) for some submultiplicative weightw (w(xy) ≤ Cw(x)w(y)). Then, (i) and (ii)
follow from the group invariance of

∣∣〈kx , ky〉∣∣. In this way, these conditions are related
to the so-called analyzing vectors for the coorbit spaces of Gröchenig and Feichtinger
[17].

Proof To prove necessity we only need to use (iii). First, we show that (iii) implies
ky

w→0 as y → ∞. We have 〈ky, kx 〉 → 0 for each x ∈ X as d(e, y) → ∞. Moreover,
since {kx }x∈X is a continuous Parseval frame we have ‖ f ‖2 = ∫

X |〈 f , kx 〉|2 dμ(x),
and hence span{kx } = H. Let f ∈ H and ε > 0. There exists fε ∈ span{kx } such
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that ‖ f − fε‖ ≤ ε/2. Moreover, there exists M such that if d(e, y) > M then∣∣〈ky, fε〉
∣∣ ≤ ε/2. Thus,

∣∣〈ky, f 〉∣∣ ≤ ‖ky‖ · ‖ f − fε‖ + ∣∣〈ky, fε〉
∣∣ ≤ ε

whenever d(e, y) > M . Thus, if Tσ is compact we have Tσ ky → 0 as y → ∞, and
hence σ̃ (y) = 〈

Tσ ky, ky
〉 → 0 as y → ∞.

We now prove sufficiency. For this we use (i) and (ii). Let ε > 0. There exists
R > 0 such that

w(y)−1
∫
B(y,R)c

∣∣〈ky, kz〉∣∣w(z) dμ(z) ≤ ε

for all y ∈ X . First we estimate the “tails” using the Schur property of {kx }. For any
f ∈ H,

∫
X

∣∣∣∣
∫
B(x,R)c

σ(y)〈 f , ky〉〈ky, kx 〉 dμ(y)

∣∣∣∣
2

dμ(x)

≤ ‖σ‖2∞
∫
X

(∫
B(x,R)c

∣∣〈 f , ky〉∣∣2 ∣∣〈ky, kx 〉∣∣ w(y)−1 dμ(y)

)

×
(∫

B(x,R)c

∣∣〈ky, kx 〉∣∣w(y) dμ(y)

)
dμ(x)

≤ ε‖σ‖2∞
∫
X

∣∣〈 f , ky〉∣∣2
∫
X

w(x)
∣∣〈ky, kx 〉∣∣w(y)−1 dμ(x) dμ(y)

≤ M‖σ‖2∞ε‖ f ‖2.
Now, since σ is thin and bounded, by Proposition 1, there exists S > 0 such that

for d(e, y) ≥ S,
∫
B(y,R)

|σ |2 dμ ≤ ε. Thus,

∫
B(e,S)c

∣∣∣∣
∫
B(x,R)

σ (y)
〈
f , ky

〉 〈
ky, kx

〉
dμ(y)

∣∣∣∣
2

dμ(x)

≤ ε

∫
X

∫
X

∣∣〈 f , ky 〉∣∣2 ∣∣〈kx , ky 〉∣∣2 dμ(y) dμ(x) = ε‖ f ‖2.

Now, let fn
w→0 be arbitrary. Then, ‖ fn‖ is uniformly bounded.

‖Tσ fn‖2 =
∫
X

|〈Tσ fn, kx 〉|2 dμ(x)

=
∫
X

∣∣∣∣
∫
B(x,R)

+
∫
B(x,R)c

σ(y)
〈
fn, ky

〉
πkykx dμ(y)

∣∣∣∣
2

dμ(x)

≤
∫
B(e,S)

+
∫
B(e,S)c

2

∣∣∣∣
∫
B(x,R)

σ (y)
〈
fn, ky

〉 〈
ky, kx

〉
dμ(y)

∣∣∣∣
2

dμ(x) + Cε

≤ 2
∫
B(e,S)

∣∣∣∣
∫
B(x,R)

σ (y)
〈
fn, ky

〉 〈
ky, kx

〉
dμ(y)

∣∣∣∣
2

dμ(x) + Cε.
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Since the integrand goes to zero pointwise, applying the dominated convergence
theorem we obtain

lim sup
n→∞

‖Tσ fn‖2 ≤ Cε.

But ε is arbitrary so lim
n→∞ Tσ fn = 0. Therefore Tσ is compact. �


3 Independence of Translations

The action ofG on X naturally induces the following translation action on L2(X , dμ).
For a given h ∈ G, the translation operator τh : L2(X , dμ) → L2(X , dμ) is defined
by τh F(x) = F(h−1x) for F ∈ L2(X , dμ). We denote the translated function by
Fh := τh F . We can view H as a subspace of L2(X) by identifying f ∈ H with
x �→ 〈 f , kx 〉 ∈ L2(X , dμ). In this way, τh induces the following shift operator
Sh : H → H defined by

Sh f =
∫
X
〈 f , kh−1x 〉kx dμ(x) =

∫
X
〈 f , kx 〉khx dμ(x).

It is easy to check that S∗
h = Sh−1 and Sh is bounded. While it is not true in general

that Shkx = khx , this does hold if 〈khx , khy〉 = 〈kx , ky〉, and then Sh is unitary so that
ShTσ S∗

h = Tσh . For this reason, we introduce the subgroup of G,

Gτ = {h ∈ G : 〈khx , khy〉 = 〈kx , ky〉 for all x, y ∈ X}. (7)

In this way, h �→ Sh is a homomorphism from Gτ → U(H).
We are interested in conditions on the action under which different shifts of any

given non-zero f ∈ H form a linearly independent set. Observe first that this problem
can be reduced to the more studied problem of linear independence of translations.
Indeed, for any nonzero f ∈ H define F(x) = 〈 f , kx 〉. Then F ∈ L2(X) and
〈Sh f , kx 〉 = F(h−1x) for h ∈ Gτ . The last relation clearly implies that the linear
independence of {Sh1 f , Sh2 f , . . . , Shn f } is equivalent to the linear independence of
the corresponding translations of F , {Fh1, Fh2 , . . . , Fhn }.

Note, however, that the linear independence problem for translations is in general
a very difficult problem. Even for some fairly simple group actions, translations may
be not linear independent. Specifically, in the case of the Affine group, χ[0,1](x) =
χ[0,1](2x) + χ[0,1](2x − 1) is a simple example. Moreover, for the Heisenberg
Group, the linear independence problem for time-frequency shifts (known as the HRT
conjecture [25]) is still open and is widely considered to be very difficult.

However, in the case of Abelian groups G, a theorem of Edgar and Rosenblatt [14]
says that the translations of any non-zero F ∈ L2(G) are linearly independent as long
as G has no nontrivial compact subgroups. Our main goal will be to extend this result
to the case of homogeneous spaces X .
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Let � ⊂ G. Denote

C� =
{∑

cnhn : hn ∈ �, cn ∈ C

}
.

The elements θ ∈ C� act on F ∈ L2(X) by

θF =
∑

cn Fhn .

Thus, a collection of translations �F = {Fh : h ∈ �} is linearly independent if and
only if θF �= 0 for all 0 �= θ ∈ C�. This leads to the following definition.

Definition 2 We say that L2(X) has linearly independent �-translations if for all F ∈
L2(X), θ ∈ C�,

θF = 0 implies F = 0 or θ = 0.

We want to study the independence of �-translates of L2(X) by reducing it to
the case L2(�) where we can use the result of Edgar and Rosenblatt. The following
proposition establishes this reduction. It can be viewed as a generalization of a result
from [32] to non-discrete �.

Proposition 2 Let (X , μ) be a measure space. Let � be a unimodular locally compact
group� acting on X under whichμ is invariant. Then L2(X) has linearly independent
�-translations if L2(�) has linearly independent �-translations.

In proving this, we will make crucial use of the following identity.

Lemma 1 Let � and (X , μ) be as above. Then there exists a measure ν on X/� such
that ∫

X/�

∫
�

F(γ x) dλ(γ ) dν(�x) =
∫
X
F(x) dμ(x) (8)

holds for all 0 ≤ F ∈ L1(X , μ), where λ is the Haar measure on �.

We are not aware of such a fact in the literature. However, in the case where X is a
group and � ≤ X , it is well-known [20, 35], so we show in the Appendix that a slight
modification of these proofs yields (8) in our setting.

Proof of Proposition 2 Let F ∈ L2(X) be nonzero. Let E denote the set of �x ∈ X/�

with
∫ |F(γ x)|2 dλ(γ ) ∈ {0,∞}. By formula (8), replacing F with |F |2, it must

be that ν(Ec) > 0. So, there exists �x ∈ Ec such that g(γ ) := F(γ x) satisfies
g ∈ L2(�) and g �= 0. Thus, for each θ ∈ C�, if θF = 0, then θg = 0 which implies
θ = 0. �


Applying the known result for translations on Abelian groups from [14], we obtain
the following corollary.

Corollary 1 Let� be anAbelian subgroupof Gτ with no nontrivial compact subgroups.
For any {hn} ⊂ �, and f ∈ H, {Shn Shn−1 · · · Sh1 f }∞n=1 is linearly independent.
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Proof Let f ∈ H. Define F(x) = 〈 f , kx 〉. F ∈ L2(X) and 〈Sh f , kx 〉 = F(h−1x).
Therefore since L2(�) has linearly independent � translations by the result of Edgar
and Rosenblatt [14], L2(X) has linearly independent � translations by Proposition 2.

4 Thin Toeplitz Operators

In this section, we show that from one compact Toeplitz operator Tσ , one can create
Tρ with ρ ≥ supn σhn for some infinite, but small, sequence of translates {hn}, while
Tρ remains compact.

The set of positive linear operators B(H)+ on a Hilbert spaceH possesses a partial
ordering. We say A ≥ B if A − B is a positive operator, i.e 〈(A − B) f , f 〉 ≥ 0 for
all f ∈ H. Letting (σ ∨ ρ)(x) = max{σ(x), ρ(x)}, we have
(i) Tσ , Tρ ≤ Tσ∨ρ .
(ii) If Tσ and Tρ are compact, so is Tσ∨ρ .
(iii) ‖Tσ∨ρ‖ ≤ max{‖σ‖∞, ‖ρ‖∞}
Since 〈Tσ f , f 〉 = ∫

σ(x) |〈 f , kx 〉|2 dμ(x), ordering of the Toeplitz operators follows
from the ordering of their symbols. (ii) follows from the fact that Tσ∨ρ ≤ Tσ + Tρ .
(iii) is a consequence of the trivial estimate that ‖Tσ ‖ ≤ ‖σ‖∞.

Lemma 2 Let σ be thin and {hk} ⊂ G such that hk → 1. Then, there exists {mk} such
that

ρ(x) = sup
k

σhmk hmk−1 ···hm1
(x)

is thin.

Proof Let Ky(x) = ∣∣〈kx , ky〉∣∣2 ∈ L1(X). Then,

σ̃ (y) =
∫
X

σ(x)Ky(x) dμ(x).

Therefore, by the boundedness of σ and the continuity of the translations on L1(X),

|σ̃ (y) − σ̃h(y)| =
∫
X

σ(x)[Ky(x) − Ky(hx)] dμ(x) → 0

as h → 1 for each y. Since hm → 1 we can pick a subsequence such that
{∏ f ini te hm} ⊂ B1. From this subsequence, we pick another one. Set ρ0 = σ . Then,
since σ is thin, there exists R0 such that ρ̃0 ≤ 1 outside BR0 . Then, pick m0 such that

∣∣∣ρ̃0 − ρ̃0,hm0

∣∣∣ ≤ 1

on BR0+1. Then,

∣∣∣ρ̃0 − ρ̃0,hm0

∣∣∣ ≤ 3.
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Now, having ρ j (thin) and hm j for j < k, pick mk in the same manner as above
(finding Rk since ρ j are all thin) so that

∣∣∣ρ̃ j − ρ̃ j,hmk

∣∣∣ ≤ 3 · 2−k

for all j < k. then set ρk = max{ρk−1, ρk−1,hmk
}.

Now we are ready to prove that ρ = lim ρk is thin. Let ε > 0 and pick j such
that 3

∑∞
k= j 2

−k ≤ ε
2 . Let R > 0 such that σ̃ (y) ≤ ε

2 j+1 for d(1, y) ≥ R. Then, for

d(1, y) ≥ R + 1, σ̃h(y) ≤ ε
2 j+1 for all h ∈ B1. Then, by the fact that |Pj | = 2 j (Pj is

the power set of {0, 1, 2, . . . , j}), and noticing that ρk = maxI∈Pk σ∏
i∈I hmi

,

ρ̃ j (y) ≤
∑
I∈Pj

σ̃∏
i∈I hmi

(y) ≤ 2 j ( ε
2 j+1 ) = ε

2 .

By construction of hmk , |ρ̃k − ρ̃k+1| ≤ 2−k . Therefore,

ρ̃(y) ≤ ρ̃ j (y) +
∞∑
k= j

|ρ̃k(y) − ρ̃k+1(y)| ≤ ε
2 + 3

∞∑
k= j

2−k ≤ ε.

4.1 Main Results

We now assemble the pieces from the previous sections, specifically Theorem 1 and
Corollary 1 to prove our main results.

Theorem 2 Let (H, X ,G, k, μ, d) be a Berezin quantization. Suppose there exists
w : X → (0,∞) and M > 0 such that

(i) w(y)−1
∫
X

∣∣〈kx , ky〉∣∣ w(x) dμ(x) ≤ M for all y ∈ X.

(ii) lim
R→∞ sup

y∈X
w(y)−1

∫
B(y,R)c

∣∣〈kx , ky〉∣∣w(x) dμ(x) = 0.

Suppose also that Gτ contains a non-discrete Abelian subgroup which has no non-
trivial compact subgroups. Then, if σ : X → [0, 1] is thin, there exists c > 0 such
that

〈T1−σ f , f 〉 ≥ c‖ f ‖2

for all f ∈ H.

Proof Suppose there exists f �= 0 such that Tσ f = f . By Lemma 2, there exists
a sequence {hk}∞k=1 ⊂ � such that ρ(x) = supk σhk ···h1(x) is thin. Define fk =
Shk · · · Sh1 f . Then,

1 ≥ 〈Tρ fk, fk〉 ≥ 〈Shk · · · Sh1Tσ (Shk · · · Sh1)∗ fk, fk〉 = 〈Tσ f , f 〉 = 1.
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This implies Tρ fk = fk . However, the collection { fk} is linearly independent by
Corollary 1 since � is Abelian, has no nontrivial compact subgroups, and is contained
in Gτ . Therefore the dimension of the eigenspace corresponding to the eigenvalue 1
is infinite. However, Tρ is compact by Theorem 1 which is a contradiction.

Properties (i) and (ii) often follow from the integrability of 〈kx , ke〉, see Remark 1.
In case the decay of 〈kx , ky〉 is not sufficient for (i) and (ii), we can obtain something
weaker.

Theorem 3 Let (H, X ,G, k, μ, d) be a Berezin quantiztion and suppose Gτ contains
a non-discrete Abelian subgroup which has no nontrivial compact subgroups. If σ :
X → [0, 1] is in L1(X), then there exists c > 0 such that

〈T1−σ f , f 〉 ≥ c‖ f ‖2

for all f ∈ H.

Proof First, let us see that σ ∈ L1(X) implies T is compact. Indeed, if fn
w→0, then

〈 fn, kx 〉 → 0 for each x ∈ X . Then, by dominated convergence,

〈Tσ fn, fn〉 =
∫

σ(x) |〈 fn, kx 〉|2 dμ(x) → 0.

Secondly, since the translations are continuous on L1(X), one can find hk such that
‖σhk − σ‖L1 ≤ 2−k which implies ρ(x) = supk σhk ···h1(x) is still in L1. Then we
follow the same proof as Theorem 2.

5 Applications

5.1 Short-Time Fourier Transform on LCA Groups

Theorem 3 is similar to Benedicks Theorem (also called the Amrein-Berthier Theorem
or Qualitative Uncertainty Principle) for the Plancherel groups, proved in [2], which
states that if f ∈ L2(G, μ) and f̂ ∈ L2(Ĝ, μ̂) are each supported on sets of finite
μ and μ̂ measure respectively, then f = 0. This uncertainty principle limits the joint
time-frequency distribution of these functions. Namely, it states that the joint time-
frequency support (a set in Ĝ × G) cannot be contained in a set of finite μ̂ ⊗ μ

measure.
However, looking at other joint time-frequency distributions, such as the Wigner

distribution, Ambiguity function, or Short-Time Fourier transform (STFT) yields a
stronger result. We will only focus on the STFT, which is defined, for f , φ ∈ L2(G),

Vφ f (p, q) =
∫
G

f (t)p(q−1t)φ(q−1t) dμ(t)

for (p, q) ∈ Ĝ × G. We will only deal with locally compact groups G which are
Abelian and second countable. The second countability is used to ensure that the
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invariant metric d is proper. In this way, by the Plancherel theorem for G, one has
Moyal’s formula [23, Theorem 3.2.1]

〈Vφ f , Vψg〉 = 〈 f , g〉 · 〈ψ, φ〉,

which shows that φp,q(x) = p(q−1x)φ(q−1x) is a Parseval frame for L2(G) if ‖φ‖ =
1. This implies ‖φ‖ · ‖ f ‖ = ‖Vφ f ‖. In order to apply Theorem 2, we take Ĝ × G
to be the homogeneous space with the measure μ̂ ⊗ μ acted on by the “Heisenberg”
group H(G) := Ĝ × G × T with the operation

(p′, q ′, z′)(p, q, z) := (pp′, qq ′, zz′ p(q ′)).

H(G) acts on Ĝ × G by (p, q, z)(p′, q ′) = (pp′, qq ′). It can also be checked (cf.
[23, Lemma 3.1.3]) that

∣∣〈φ(p,q,z)(p′,q ′), φ(p,q,z)(p′′,q ′′)〉
∣∣ = ∣∣〈φp′,q ′ , φp′′,q ′′ 〉∣∣

and moreover 〈φ(1,q,1)(p′,q ′), φ(1,q,1)(p′′,q ′′)〉 = 〈φp′,q ′ , φp′′,q ′′ 〉 so that {1Ĝ} × G ×
{1} ≤ H(G)τ . Ifwehadused themore conventional definition ofVφ f (p, q) (replacing
p(q−1t) with p(t)), then Ĝ × {1G} × {1} ≤ H(G)τ instead.

Theorem 4 LetG beanon-compact second countableLCAgroup.For anyφ ∈ L2(G),
σ : Ĝ × G → [0, 1] is thin if and only if

Tσ f =
∫
Ĝ×G

σ(p, q)〈 f , φp,q〉φp,q d(μ̂ ⊗ μ)(p, q)

is compact.

Proof To apply our compactness characterization, Theorem 1, let us first show
that for φ ∈ L2(G), 〈φp,q , φp′,q ′ 〉 → 0 as d((p, q), (p′, q ′)) → ∞. By invari-
ance of the frame, it enough to check 〈φ, φp,q〉 → 0 as (p, q) → ∞. First, if
p → ∞ and q remains bounded, then for each q, by the Riemann-Lebesgue Lemma
limp→∞〈φ, φp,q〉 = 0. Therefore since q remains in a compact set, 〈φ, φp,q〉 → 0.
Otherwise, we consider q → ∞. Let ε > 0. Since φ ∈ L2(G), there exists R such
that

∫
B(1G ,R)c

|φ|2 dμ ≤ ε.

Then, there exists M such that for d(q, 1) > M , B(q−1, R) ⊂ B(1G , R)c. Then,

∣∣〈φ, φ(p,q)〉
∣∣ ≤

∫
B(1G ,R)

+
∫
B(1G ,R)c

|φ|
∣∣∣φ(q−1·)

∣∣∣ dμ ≤ 2‖φ‖ε.
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Applying Theorem 1 gives the necessity. To show sufficiency, consider the Feichtinger
algebra [16]

S0(G) := {φ ∈ L2(G) : Vφφ ∈ L1(Ĝ × G)}.

It is known that S0(G) is dense in L2(G), see [26, Lemma 4.19]. First note that Tσ is
compact for any φ ∈ S0(G) by Theorem 1. Then,

〈T φ,ψ
σ f , g〉 =

∫
σ(p, q)〈 f , φp,q〉〈ψp,q , g〉

≤ ‖σ‖∞‖ f ‖L2(G)‖g‖L2(G)‖ψ‖L2(G)‖φ‖L2(G).

Therefore, we have ‖T φ,ψ
σ ‖ ≤ ‖σ‖∞‖φ‖L2(G)‖ψ‖L2(G). Then, T

φ,φ
σ − T φ′,φ′

σ =
T φ−φ′,φ

σ + T φ,φ−φ′
σ . This concludes the proof since compact operators are closed in

the operator norm topology. �

Putting this together with Theorem 2, we obtain the following uncertainty principle

(see [19] for the case G = R
d and σ an indicator function).

Theorem 5 Let G be a second countable LCA group containing a non-discrete sub-
group � such that � has no nontrivial compact subgroups. Let ‖φ‖L2(G) = 1. If

σ : Ĝ × G → [0, 1] is thin, then there exists c > 0 such that

〈T1−σ f , f 〉 =
∫
Ĝ×G

(1 − σ)
∣∣Vφ f

∣∣2 d(μ̂ ⊗ μ) ≥ c‖ f ‖2

for all f ∈ L2(G).

Proof The subgroup {1Ĝ} × � × {1} ≤ H(G) gives the independence of translations
and the tautology that σ is thin if and only if Tσ is compact concludes the proof using
the argument of Theorem 2. �

Corollary 2 Under the assumptions of Theorem 5, if E ⊂ Ĝ × G is thin, then there
exists c > 0 such that

∫
Ĝ×G\E

∣∣Vφ f
∣∣2 dμ̂ ⊗ μ ≥ c‖ f ‖2

for all f ∈ L2(G).

In particular, supp Vφ f cannot be thin unless f = 0.

Remark 2 If φ and f are both supported on compact sets K1 and K2, then supp Vφ f ⊂
Ĝ × K2K

−1
1 . This shows the thinness condition cannot be relaxed from vanishing at

infinity to some smallness at infinity condition.
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5.2 Wavelet Transform

Next, we apply these results to wavelets, which are a special case of the affine group
acting on L2(Rd). For φ ∈ L2(Rd), define the following unitary representation of the
wavelet group G = (0,∞) × R

d on L2(Rd) by

φa,b(x) = a−1/2φ(a−1x − b) (9)

for a ∈ (0,∞) and b ∈ R
d . The group operation is then (a1, b1)(a2, b2) =

(a1a2, a
−1
2 b1 + b2) and the Haar measure is dλ(a, b) = a−1 da db.

We say that a wavelet φ ∈ L2(Rd) is admissible if

∫ ∞

0

∣∣∣φ̂(xξ)

∣∣∣2
ξ

dξ = 1 (10)

for a.e. x ∈ R
d . Due to the invariance of the measure a−1 da, it is enough to check

this for almost every x ∈ S
d−1. We define the set A to be the set of all admissible φ.

If φ is admissible, then {φg}g∈G does form a generalized Parseval frame with the
measure λ. To see this, define the wavelet transform Wφ f (a, b) := 〈 f , φa,b〉. Then,
since

∫
e−ibξWφ f (a, b) db = a−1/2 f̂ (a−1ξ)φ̂(ξ), by the Plancherel theorem onRd ,

∫
G

∣∣Wφ f
∣∣2 dλ =

∫ ∞

0

∫
Rd

∣∣∣ f̂ (a−1ξ)φ̂(ξ)

∣∣∣2 a−1 dξa−1 da

=
∫
Rd

∣∣∣ f̂ (η)

∣∣∣2
∫ ∞

0

∣∣∣φ̂(aη)

∣∣∣2 a−1da dη = ‖ f ‖2.

We want to check the Schur condition (i) and (ii) in Theorem 2 so we study the
decay properties of Wφφ. Define

B1
w = {φ ∈ L2(Rd) : Wφφ ∈ L1(w dλ)}

for a weight w. We can show that a very large class of functions is contained in B1
w.

Define the translation operator τh f (x) = f (x + h). For 0 < α ≤ 1, denote by �α

the class of L1 functions such that ‖τh f − f ‖L1 ≤ Chα . �1 contains the Schwarz
functions as well as less smooth functions like indicator functions (thus including the
Haar wavelet).

Lemma 3 Let 0 < ε < α ≤ 1 and wε(a, b) = ad/2+ε. Then,

�α ∩ L1
0(|x |α) ⊂ B1

wε

where L1
0(|x |α) = { f ∈ L1(Rd) : ∫

f = 0 and
∫ | f (x)| |x |α dx < ∞}.

In particular, this weight is multiplicative, so by Remark 1, φa,b satisfies the Schur
conditions (i) and (ii) in Theorem 2 for any φ ∈ �α ∩ L1

0(|x |α).
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Proof We split (0,∞) = (0, 1) ∪ (1,∞). On (0, 1),

∫
Rd

∫ 1

0

∣∣∣∣
∫

φ(x)φ(a−1x − b) dx

∣∣∣∣ a−d/2w(a)
da

a
db

≤ ‖φ‖2L1

∫ 1

0
ad/2+ε da

ad/2+1 < ∞

On the other hand, using the mean zero property of φ, we estimate

∫ ∣∣Wφφ(a, b)
∣∣ db = a−d/2

∫ ∣∣∣∣
∫

φ(x)
[
φ(a−1x − b) − φ(−b)

]
dx

∣∣∣∣ db
≤ a−d/2

∫
|φ(x)| ‖τa−1xφ − φ‖L1 dx . ≤ Ca−d/2−α

∫
|φ(x)| · |x |α dx

Therefore,

∫
Rd

∫ ∞

1

∣∣Wφφ
∣∣w dλ ≤ C

∫ ∞

1

w(a)

ad/2+1+α
da‖φ |x |α ‖L1 .

Taking ε < α ensures that the a integral is finite.

This lemma gives us plenty of information about the spaceB1
w. It can be verified that

the admissibility condition (10) holds for any radial, normalized mean zero function
in L1 ∩ L1(|x |) ∩ L2. From this discussion and the previous lemma, we have

L1 ∩ L1
0(|x |) ∩ L2 ∩ (∪0<α≤1�α) ∩ {φ radial }

⊂ (∪0<ε<1B1
wε

) ∩ A =: A1.

Therefore, by Theorem 1, the following compactness result holds for many wavelets
φ. In particular, all Schwarz functions and the Haar function.

Theorem 6 Let φ ∈ A1 and σ ∈ L∞((0,∞) × R
d) be thin. Then,

Tσ f (x) =
∫

σ(a, b)Wφ f (a, b)φa,b(x)
da

a
db

is compact.

The converse also holds if φ is admissible and Schwartz since 〈φa,b, φ〉 → 0 as
d((a, b), (1, 0)) → ∞, see for example [21, Appendix, Lemmas 2 and 4]. This yields
the following positivity result, by taking � in Theorem 2 to be the subgroup {1}×R

d .

Theorem 7 Let φ ∈ A1 and σ : (0,∞) × R
d → [0, 1] be thin. Then there exists

c > 0 such that

〈T1−σ f , f 〉 =
∫

(0,∞)×Rd
(1 − σ)

∣∣Wφ f
∣∣2 dλ ≥ c‖ f ‖2

for all f ∈ L2(Rd).



Journal of Fourier Analysis and Applications (2023) 29 :34 Page 17 of 20 34

As an immediate consequence, we obtain the following uncertainty principle.

Corollary 3 Let φ ∈ A1. If E ⊂ R
d × (0,∞) is thin, then there exists c > 0 such that

∫
(0,∞)×Rd\E

∣∣Wφ f (a, b)
∣∣2 da db

a
≥ c‖ f ‖2

for all f ∈ L2(Rd).

As in the STFT case, this implies suppWφ f can only be thin if f = 0, and this
is sharp in the sense that we cannot improve from vanishing sets to small ones for
general φ. If f and φ are both supported in a ball B, thenWφ f is supported the region
{(a, b) : b ∈ a−1B − B} which contains the strip (0,∞) × B.

We also mention that these results continue to hold for higher dimensional wavelet
transforms such as the shearlet [31], but describing the classes B1

w andA is more diffi-
cult. However, we mention that Schwarz functions with Fourier support in a bounded
set away from the y-axis are included in B1 without any weight as shown in [31].
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Appendix: Proof of Lemma 1

Let λ be the Haar measure for �. Since � is unimodular, the Haar measure is both
right and left invariant and dλ(γ ) = dλ(γ −1). Define P : Cc(X) → Cc(X/�) by

P f (�x) =
∫

�

f (γ x) dλ(γ ).

This is well-defined since if �y = �x , then γ0y = x so P f (�y) = P f (�x) by the
invariance of λ.

We claim that P f = 0 implies
∫
X f dμ = 0. Indeed, take φ ∈ Cc(X) such that

Pφ = 1 on � supp f (this can be done by surjectivity of P which we will prove
below). Then,

0 =
∫
X

φ(x)
∫

�

f (γ x) dλ(γ ) dμ(x) =
∫
X

∫
�

φ(γ −1x) dλ(γ ) f (x) dμ(x)

=
∫
X
Pφ(�x) f (x) dμ(x) =

∫
X
f (x) dμ(x).

Now we are ready to define the measure ν. Define the functional on Cc(X/�) by
P f → ∫

X f dμ. This is a well-defined positive linear functional by the previous
claim and Lemma 4 below. By the Riesz Representation Theorem, there exists ν such
that

∫
X/�

P f dν =
∫
X
f dμ
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which is the desired identity (8). It only remains to prove the surjectivity of P .

Lemma 4 Letφ ∈ Cc(X/�). There exists f ∈ Cc(X) such that P f = φ,�(supp f ) =
suppφ, and f ≥ 0 if φ ≥ 0.

Proof Denote by E = suppφ. Since E is compact, there exists {gk}Nk=1 ⊂ G such that
E ⊂ ∪N

k=1�gkV whereV is a compact neighborhoodof e.V has anopenneighborhood
U with compact closure. Then, consider the function ψ(x) = maxk{d(g−1

k x,Uc)}.
ψ ∈ Cc(X), ψ > 0 on ∪N

k=1gkV , and for �x ∈ E ,

Pψ(�x) =
∫

�

ψ(γ x) dλ(γ ) > 0.

Now, setting

f (x) = φ(�x)

Pψ(�x)
ψ(x),

we see that f ∈ Cc(X), � supp f = suppφ, and f ≥ 0 if φ ≥ 0. We only need to
check

P f (�x) =
∫

�

φ(�γ x)

Pψ(�γ x)
ψ(γ x) dλ(γ )

= φ(�x)

Pψ(�x)
)Pψ(�x) = φ(�x).
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