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Abstract

We study invertibility and compactness of positive Toeplitz operators associated to
a continuous Parseval frame on a Hilbert space. As applications, we characterize
compactness of affine and Weyl-Heisenberg localization operators as well as give
uncertainty principles for the associated transforms.
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1 Introduction

The uncertainty principle in harmonic analysis is a fundamental principle roughly say-
ing that a function and its Fourier transform cannot be simultaneously “well localized”.
There are many non-equivalent ways to make this statement precise by imposing dif-
ferent types of “localization” conditions. One such form of the uncertainty principle
is Benedicks’ theorem [9] which says that a function f € LZ(R‘I) and its Fourier
transform f cannot be both supported on sets of finite Lebesgue measure. The fol-
lowing is the quantitative form of this result as obtained by Amrein and Berthier [1]:
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If E, F C R are sets of finite Lebesgue measure then there exists ¢ > 0 such that
cl fllizmy < I 2geey + 1F 2oy

for all f € L?(R). Using the Kohn-Nirenberg quantization one can restate this result
in the following form: Let P be the operator

Prw)i= [ Mo f @ de.

Then (Pf, f) > c|| f ||2. It was shown by the first author [22] that a similar result
continues to hold for all subsets of R?? with finite Lebesgue measure, including the
ones which are not of the form E x F. A natural analog of this result can be obtained
by replacing the Kohn-Nirenberg quantization with the anti-Wick quantization. In
this case we have the following statement for the short-time Fourier transform: Let
E C R? have finite Lebesgue measure. There exists ¢ > 0 such that

[ Wero.of dpdq = cig? M

for all f € L*(R%), where Vs f is the short-time Fourier transform defined by
Vof(p.g) = [ f (x)e?™iPX ¢ (x — g) dx. This result was proved independently and
almost simultaneously by Jaming [27], Janssen [29], and Wilczok [40]. Using simi-
lar reasoning Wilczok also showed the following analog for Wavelet transform: Let
E C (0, 00) x R with finite affine measure (fE a~Ydadb < 00). There exists ¢ > 0
such that

dadb
/EC Wy @b == = el f1? @

for all f € L?(R?) where the wavelet transform Wy, f is defined by Wy f(a, b) =
a 12 [ f)¥ (@ 'x — b) dx for some wavelet V.

In the classical cases, when the window function ¢ or the mother wavelet function
are specially chosen, V4 L*(R%) is a Fock space of analytic functions and Wy L*(R%)
is a Bergman space on the upper half space. In both cases, these inequalities hold for
the more general class of so called relatively dense sets, which is known to be the
optimal such class of sets. This has been known since the 80’s, and follows from the
work of Luecking [33, 34] on the Bergman space. For the Fock space, one can consult
the work of Janson—Peetre—Rochberg [30], Ortega-Cerda [37], and the recent work of
Ascensi [3]. However, it can be easily shown (see section 5 below as well as [3, 28])
that relative density is a too weak condition for these results to continue to hold for
general L? window and wavelet functions.

Still, it is natural to ask whether there exists a larger class of sets E (of infinite
measure) for which (1) and (2) continue to hold for a more general class of window
and wavelet functions. For the short-time Fourier transform some sufficient conditions
can be found in [3, 28] for windows with varying degrees of regularity. However, for
general window functions ¢ € L?(R?), Fernandez and Galbis [19] showed that (1)
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holds for all sets E satisfying a certain thinness condition. The main goal of this
paper is to show that (2) also continues to hold for the appropriate analog of thin sets.
Furthermore, we also extend the result of Fernandez and Galbis in the context of short-
time Fourier transforms on more general LCA groups. We actually prove an uncertainty
principle of Amrein-Berthier type for more general Berezin-type quantizations which
include both short-time Fourier and wavelet inequalities as special cases.

To state our result we now introduce the above mentioned Berezin-type quantiza-
tion. Let H be a Hilbert space and (X, d, i) be a metric measure space with a metric
d and a Borel measure 1. We assume that the metric d is proper, i.e., every ball with
respect to this metric is precompact. We will call the continuous map k : X — H the
Berezin quantization of X if ||k(x)|| = 1 for all x € X, and for each f € H

|If||2=/X|<f,k(x)>|2du(x)-

We will think of the image {k(x) : x € X} as a collection of unit vectors in H indexed
by X, and thus we will use the notation ky, = k(x). The map f — (f, k) defines an
isometric embedding of the Hilbert space H into L%(X, i), and allows us to think of
‘H as a closed subspace of L?*(X, u). Foreach a € L*(X, u) define fX a(x)kydu(x)
to be the unique vector h € H satisfying

(g.h) = /X a (o) (g, k) dp (o),

for all g € H. Itis easy to see that the map
a— f a(x)kydu(x)
X

is the orthogonal projection from L2(X, 1) onto . In particular, for f € H we have
the expansion formula

f=[X(f,kx>kxdu(X)- 3)

In other words, we have that {k, },<x is a normalized continuous Parseval frame in H.

Further we will assume that X is a homogeneous space in the sense that some
locally compact group G acts transitively on X in a way that both u and d are invariant
under this group action (w(gE) = n(E) and d(gx, gy) = d(x, y)). The group action
needs also to respect the inner product on H in the following way |(kgx, kgy)| =
|(kx, ky)| forall x, y € X, g € G. Under all these assumptions, we will call the tuple
(H, X, G, k, u, d) a Berezin quantization.

Very often, the metric measure space X and its quantization £k : X — H of
this type arise naturally whenever we are given a locally compact, second countable
topological group G and some of its nontrivial irreducible, square-integrable, unitary
representations (if such exists), 7 : G — U(H) [13]. Then G itself can be equipped
with a left-invariant Haar measure u, and left-invariant metric d (inducing the topology
on G) which is proper, and for any unit vector k € H, the collection {k, }xcc defined
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by k(x) = m(x)k will form a normalized continuous Parseval frame for H such that
(kgx. kgy) = mkyky forall x, y, g € G. Actually we can obtain a quantization with
essentially the same properties using the same procedure even when we only have a
projective irreducible square-integrable unitary representation, ¥ : G — U(H)/C.

The following inequality is the obvious analog of (1) and (2) for Berezin
quantization.

/ k) 2 dpn() = el fIP @)
X\E

for all f € H. By choosing the group G appropriately (see Sect. 5 for more details on
this) one obtains both (1) and (2) as special cases.

The inequality (4) can be viewed as a statement about invertibility of a certain
Toeplitz operator. For a non-negative, bounded, measurable function o : X — R, the
Toeplitz operator T, : H — H with symbol o is defined by

Taf:/XU(x)<kax>kx dp(x).

It is easy to see that each such operator is bounded, self-adjoint, and positive. We can
easily recast (4) in the following way:

(Tig e fo ) =l FI% )

This is a statement about boundedness from below, and hence invertibility, of the
Toeplitz operator T, with an indicator symbol. It is clear that each Toeplitz operator
whose symbol is bounded away from zero must be bounded from below (and hence
invertible). However, to study (5), we must broaden this trivial result since an indicator
function is only non-negative. So we would like to characterize the degree to which a
non-negative symbol o : X — R can vanish and still generate an invertible Toeplitz
operator 7y .

The organization of the paper closely follows the main steps in the proof. The proof
outline that we use goes back at least to Havin and Joricke [24]. Namely, to prove (5)
it suffices to show that the operator 77, is compact with a trivial eigenspace. The
later is proved by showing that from each nontrivial element of this eigenspace, using
small translates, one can construct an infinite dimensional eigenspace of a slightly
“bigger” compact self-adjoint operator of the same form. In Sect.2 we address the
compactness problem for positive Toeplitz operators. We show that compactness can
be characterized in terms of the vanishing property of its Berezin transform, a condition
which in turn is closely connected to the thinness condition of Ferndndez and Galbis.
In Sect.3 we examine the linear independence problem for translations. We provide a
fairly general condition (usually easy to check) on the group which guarantees linear
independence of the translations. In Sect.4 we combine the previous conclusions and
state and prove our main result (Theorem 2). Finally, we show how our main result
translates to more familiar settings, proving in particular (2) for thin sets and a fairly
wide class of mother wavelet functions.
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2 Compactness of Positive Toeplitz Operators

In this section we deal with the following question: Which non-negative symbols
o : X — R generate compact Toeplitz operators T, ? We show that, under suitable
assumptions on the continuous Parseval frame {k,},cx, a necessary and sufficient
condition for T;, to be compact is its “diagonal” (T k,, ki) to vanish at infinity. We
now make this precise.

For a given bounded operator T : ‘H — H we define its Berezin transform T :
X — Cby T (x) = (Tky, ky). In the case when T is a Toeplitz operator with symbol
o we denote its Berezin transform by &, i.e., 6 (x) = (T ky, ky). In what follows, by
y — 00, we will mean that d(z, y) — oo for some (equivalently, all) z € X.

Definition 1 A measurable function o : X — C is said to be thin if its Berezin
transform vanishes at infinity, i.e.,

5(y) :=/Xa(x)|(kx,ky)|2du(x)—>0 asy — 00 (©)

We will also say that a set E C X is thin if the indicator function of E satisfies (6).

The connection between compactness of a Toeplitz operator and the Berezin trans-
form vanishing at infinity (called thinness here) is another quite old question [11,
36, 42]. The breakthrough results in the area of analytic function spaces were due to
Axler and Zheng [4] for the Bergman space on the disk, A” (D), and to Sudrez [39] for
AP (B),). Subsequently, these results were generalized to many different settings [7, 15,
38]. However, going beyond the realm of analytic function spaces, extra assumptions
are made either on the Berezin transform or the decay rate of the symbol o [5, 6, 8, 10,
12, 18, 41]. Herein, by restricting our study to nonnegative symbols, and assuming a
Schur-type estimate on {k, }, we obtain a complete equivalence in Theorem 1 below.

The following proposition gives a somewhat more explicit alternative characteri-
zation of thinness.

Proposition1 Let o : X — [0, 1]. The following are equivalent
(1) o is thin.

(i) lim / o(x)du(x) = 0 for some R > 0.
Y= JB(y.R)

(iii) lim / o(x)du(x) =0forall R > 0.
Y7 JB(.R)

Proof Fix an element ¢ € X which is arbitrary, but will be treated as the origin. Since
X is homogeneous, for each x € X, there exists gx € G (not necessarily unique) such
that g.e = x. For each x we pick one such g, and fix it throughout the proof. By the
invariance of u and d,

[ omanm=[  a@mndu.
B(y,R) B(e,R)
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Using our initial assumption, the metric d is proper, i.e., every ball is precompact.
So, the ball B(e, R) can be covered by finitely many balls of a fixed radius. Therefore,
we have (ii) implies (iii).

Next, consider the function h(x) = (ke, ky). h(e) = ||ke||2 = 1 and A is continuous
so there exists § > 0 such that |2(x)| > % for x € B(e, §). Thus,

1
] emanw = [ oo due
B(e,$) B(e,8)

2
s/}(o(x)\h(g;lx)\ du(x)=/Xa(x>|<ky,kx>|2du<x>.

Therefore (i) implies (ii). To show (iii) implies (i), let ¢ > 0. We can find R > 0 such
that fB(e R) |h()c)|2 du(x) < ¢/2. For this R, by (iii), there exists N > 0 such that

ford(e, y) > N, fB(e ) 0 (8yX) dpu(x) < /2. Therefore,

/a<x>|<ky,kx>|2 du(y)=/ +/ o (g,0) (O dpux) < e,
X B(e.R) JB(e.R)

forall y € X with d(e, y) > N. Here we used the fact that |h(x)| < ||kl - lkx]| = 1.
O

We are now ready to characterize compactness of Toeplitz operators when the
Parseval frame satisfies some additional decay conditions.

Theorem 1 Let (H, X, G, k, i, d) be a Berezin quantization. Suppose that the con-
tinuous Parseval frame {ky }cx satisfies the following: there exists a weight w : X —
(0, 00) and M > 0 such that

i wy ™! /X (k. ky)| wx) dp(x) < M forall y € X.

(i) lim sup w(y)_lf |{kx. ky)| w(x) dp(x) = 0.
R—o0 yex B(y,R)¢

(iii) |(kx, ky)| = Oasd(x, y) - oo.

Then o € L*°(X) is thin if and only if T, is compact.

Remark 1 In the case X = G, it is often easier to check that x — (kq, ky)w(x) is in
L' (X) for some submultiplicative weight w (w(xy) < Cw(x)w(y)). Then, (i) and (ii)
follow from the group invariance of | (ky, ky) | In this way, these conditions are related
to the so-called analyzing vectors for the coorbit spaces of Grochenig and Feichtinger
[17].

Proof To prove necessity we only need to use (iii). First, we show that (iii) implies

kyﬂ>0 asy — oo. We have (ky, k) — Oforeachx € X asd(e, y) — oo. Moreover,
since {k,}rex is a continuous Parseval frame we have ||f||2 = fX [{f, ko) 2 dp(x),
and hence span{k,} = H. Let f € H and ¢ > 0. There exists f; € span{k,} such
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that || f — f:ll < &/2. Moreover, there exists M such that if d(e,y) > M then
|(ky, fe)} < ¢/2. Thus,

[(ky, /Y] < lkyll - I1Lf = fell + [(ky, fe)| < &

whenever d(e, y) > M. Thus, if T; is compact we have T5k, — 0 as y — 00, and
hence 6 (y) = (Tsky, ky) - O as y — oo,
We now prove sufficiency. For this we use (i) and (ii). Let ¢ > 0. There exists
R > 0 such that
wo) " [ k| w@ dut) <
B(y,R)*

for all y € X. First we estimate the “tails” using the Schur property of {k,}. For any

feH,
J

snanio/ (/ |<f,ky>|2|<ky,kx>|w<y>—1du(y>>
X B(x,R)¢
x (/ |[(ky, k)| w(y) du(y)) dp(x)
B(x,R)¢

senon%,ofx |<f,ky>|2/Xw<x) [(ky k)| w(3) ™ dpa () di(y)
< MlollZell fII*.

2
du(x)

/ oI+ ky k. ko) da(y)
B(x,R)¢

Now, since o is thin and bounded, by Proposition 1, there exists S > 0 such that
ford(e,y) = S, [y lo|> d < e. Thus,

/B(e,S)C

ses/X/XI(f,ky>|2|(kx,ky>|2 du(y) du(x) = el fI

2
f o[ ky){ky, kx) die(y)| dpn(x)
B(x,R)

Now, let fni;O be arbitrary. Then, || f;, || is uniformly bounded.

||1n,fn||2=/X|<'L,fn,kx>|2 dp(x)

=/ / +/ o () (fu. ky) Thyky diu(y)
x |JB,R)  JB@,R)

< f + / 2
B(e,S) B(e,S)°

< 2/ / o () {fa ky) (ky. kx) di(y)
B(e,S) |JBx,R)

2
du(x)

2
du(x) + Ce

/ o () {fs by} (ky, ki) du(y)
B(x,R)

2
du(x) + Ce.
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Since the integrand goes to zero pointwise, applying the dominated convergence
theorem we obtain

limsup || T, flI> < Ce.

n—o0o

But ¢ is arbitrary so lim 7 f,, = 0. Therefore 7, is compact. O
n—oo

3 Independence of Translations

The action of G on X naturally induces the following translation action on L>(X, d ).
For a given i € G, the translation operator 7y, : L*(X,dp) — L*(X,dp) is defined
by i, F(x) = F (h~'x) for F € L*(X,dup). We denote the translated function by
Fy = 1, F. We can view H as a subspace of L?(X) by identifying f € H with
x = (f,ky) € L2(X, dw). In this way, 15, induces the following shift operator
Sp : ' H — 'H defined by

Shfzfx(f,kh_1x)kxdu(x)Z/X(f,kx>khxdﬂ(x)~

It is easy to check that S} = ;-1 and Sj, is bounded. While it is not true in general
that Spky = kjy, this does hold if (kj., kny) = (kx, ky), and then Sy, is unitary so that
STy Sy = Ty, . For this reason, we introduce the subgroup of G,

Gy ={h €G: (k. kny) = (ky, ky) forall x, y € X}. 7)

In this way, & > S}, is a homomorphism from G; — U(H).

We are interested in conditions on the action under which different shifts of any
given non-zero f € H form a linearly independent set. Observe first that this problem
can be reduced to the more studied problem of linear independence of translations.
Indeed, for any nonzero f € H define F(x) = (f,ky). Then F € L?*(X) and
(Snf ky) = F(h’lx) for h € G. The last relation clearly implies that the linear
independence of {Sy,, f, Sn, f, ..., Sn, f} is equivalent to the linear independence of
the corresponding translations of F, {Fy,, Fn,, ..., Fn,}.

Note, however, that the linear independence problem for translations is in general
a very difficult problem. Even for some fairly simple group actions, translations may
be not linear independent. Specifically, in the case of the Affine group, x[0,11(x) =
Xx10.11(2x) 4+ xp0,17(2x — 1) is a simple example. Moreover, for the Heisenberg
Group, the linear independence problem for time-frequency shifts (known as the HRT
conjecture [25]) is still open and is widely considered to be very difficult.

However, in the case of Abelian groups G, a theorem of Edgar and Rosenblatt [14]
says that the translations of any non-zero F € L?(G) are linearly independent as long
as G has no nontrivial compact subgroups. Our main goal will be to extend this result
to the case of homogeneous spaces X.
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LetI' C G. Denote
Cr = {chhn ch,el,c, € (C}.

The elements 6 € CI" act on F € L?(X) by

OF = cuFn,.

Thus, a collection of translations I' F = {Fj, : h € I'} is linearly independent if and
only if 6 F # 0 for all 0 # 6 € CTI'. This leads to the following definition.

Definition 2 We say that L?(X) has linearly independent I'-translations if for all F €
L*(X),0 € CT,

OF = 0implies F =0or6 = 0.

We want to study the independence of I'-translates of L2(X) by reducing it to
the case L2(I") where we can use the result of Edgar and Rosenblatt. The following
proposition establishes this reduction. It can be viewed as a generalization of a result
from [32] to non-discrete I'.

Proposition 2 Let (X, ) be a measure space. Let T" be a unimodular locally compact
group T acting on X under which w is invariant. Then L*(X) has linearly independent
[-translations if L*(T") has linearly independent T -translations.

In proving this, we will make crucial use of the following identity.

Lemma 1 Let " and (X, i) be as above. Then there exists a measure v on X/ T" such
that

f f F(yx) di(y) dv(Tx) = / Fr) dp(x) ®)
x/TJr X

holds forall0 < F € LI(X, ), where A is the Haar measure on T.

We are not aware of such a fact in the literature. However, in the case where X is a
group and I' < X, it is well-known [20, 35], so we show in the Appendix that a slight
modification of these proofs yields (8) in our setting.

Proof of Proposition 2 Let F € L2(X) be nonzero. Let E denote the set of T'x € X /T
with f |F()/x)|2 dr(y) € {0, 00}. By formula (8), replacing F with |F|2, it must
be that v(E€) > 0. So, there exists ['x € E€ such that g(y) := F(yx) satisfies
g € L*(I') and g # 0. Thus, for each ® € CT',if 0 F = 0, then 0 g = 0 which implies
6 =0. O

Applying the known result for translations on Abelian groups from [14], we obtain
the following corollary.

Corollary 1 Let " be an Abelian subgroup of G ; with no nontrivial compact subgroups.
Forany {h,} C T, and f € H, {Sp, Sh,_, - -~ Sn, f},2, is linearly independent.
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Proof Let f € H. Define F(x) = (f, k). F € L*(X) and (S}, f, ky) = F(h™'x).
Therefore since L>(I") has linearly independent I translations by the result of Edgar
and Rosenblatt [14], L2(X) has linearly independent I" translations by Proposition 2.

4 Thin Toeplitz Operators

In this section, we show that from one compact Toeplitz operator T,, one can create
T, with p > sup, o3, for some infinite, but small, sequence of translates {#,}, while
T, remains compact.

The set of positive linear operators B(H)™ on a Hilbert space H possesses a partial
ordering. We say A > B if A — B is a positive operator, i.e ((A — B) f, f) > 0 for
all f € H. Letting (o V p)(x) = max{o (x), p(x)}, we have

(1) TUs Tp S TUVp'
(ii) If 75 and T, are compact, 50 is Ty p.
(i) [ Tovpll < max{flo|loo, lIolloo}

Since (T, f, f) = f ox) |{f, kx)l2 du(x), ordering of the Toeplitz operators follows
from the ordering of their symbols. (ii) follows from the fact that 7,y , < T;; + T.
(iii) is a consequence of the trivial estimate that || 7, || < [|0]|co-

Lemma 2 Let o be thin and {hy} C G such that hy — 1. Then, there exists {my} such
that

lo(x) = Sl]’(]’p Ghmk hmk—l ”'hml ('x)
is thin.
|2

Proof Let K (x) = |(ky, ky)|” € L'(X). Then,

5(y)=/ o (x)Ky(x)dup(x).
X
Therefore, by the boundedness of ¢ and the continuity of the translations on L' (X),
50) =50 = [ GO = K, ()] dpex) — 0
X

as h — 1 for each y. Since h,, — 1 we can pick a subsequence such that
{]_[fl-m-,e h,} C By. From this subsequence, we pick another one. Set pg = o. Then,
since o is thin, there exists Ry such that o < 1 outside Bg,. Then, pick mq such that

<1

‘ﬁo = 00,
on Bg,+1. Then,

<3.

‘ﬁo = D0,
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Now, having p; (thin) and hmj for j < k, pick my in the same manner as above
(finding Ry, since p; are all thin) so that

<3.27*

)/51 = P,

for all j < k. then set py = max{px_1, Pk—1,hym, }.
Now we are ready to prove that p = lim py is thin. Let ¢ > 0 and pick j such
that 3 Z,fij 27k < % Let R > 0 such that 6(y) < =25 for d(1, y) > R. Then, for

2Jj+l1 )
d(l,y) > R+1,6,(y) < 2]‘% forall i € By. Then, by the fact that |P;| = 2/ (P; is
the power set of {0, 1,2, ..., j}), and noticing that oy = max;cp, OTLics i, »

B = Y ] h ) 2/ GE) = 5
IeP;

By construction of i, , [0k — Pr+11 < 2=*_ Therefore,

o o
PO BN+ D 1A — A < 5+3) 27F <.
k=j k=j

4.1 Main Results

We now assemble the pieces from the previous sections, specifically Theorem 1 and
Corollary 1 to prove our main results.

Theorem2 Let (H, X, G, k, u,d) be a Berezin quantization. Suppose there exists
w: X — (0,00) and M > 0 such that

i) w(y)™! /X (ks ky) | w(x) dpu(x) < M forall y € X.

(i) lim supw(y)*‘f |[(ky, ky)| w(x) dpa(x) = 0.
R—o00yex B(y,R)*

Suppose also that G contains a non-discrete Abelian subgroup which has no non-
trivial compact subgroups. Then, if o : X — [0, 1] is thin, there exists ¢ > 0 such
that

(Ti—o f, ) = cll fII?
forall f € H.

Proof Suppose there exists f # 0 such that T, f = f. By Lemma 2, there exists
a sequence {hk}}zi1 C T such that p(x) = sup; op,..n; (x) is thin. Define f; =
Sy -+ - Swy f - Then,

1> ATy fus fi) = (S -+ Sy To (Shy == Su)* fier fi) = (To f, f) = 1.
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This implies 7, fy = fi. However, the collection {f} is linearly independent by
Corollary 1 since I' is Abelian, has no nontrivial compact subgroups, and is contained
in G . Therefore the dimension of the eigenspace corresponding to the eigenvalue 1
is infinite. However, T}, is compact by Theorem 1 which is a contradiction.

Properties (i) and (ii) often follow from the integrability of (k,, k.), see Remark 1.
In case the decay of (k,, ky) is not sufficient for (i) and (ii), we can obtain something
weaker.

Theorem3 Let (H, X, G, k, i, d) be a Berezin quantiztion and suppose G, contains
a non-discrete Abelian subgroup which has no nontrivial compact subgroups. If o :
X — [0,1]isin LI(X), then there exists ¢ > 0 such that

(Ti—o f, f) = cll fII?
forall f € H.

Proof First, let us see that ¢ € L'(X) implies T is compact. Indeed, if fnﬁ>O, then
(fn, kx) — 0 for each x € X. Then, by dominated convergence,

(T for fu) = /a(x) (s k)2 dpa(x) = .

Secondly, since the translations are continuous on LY(X), one can find & such that
llon, — oll,r < 27% which implies p(x) = supy op,..., (x) is still in L'. Then we
follow the same proof as Theorem 2.

5 Applications
5.1 Short-Time Fourier Transform on LCA Groups

Theorem 3 is similar to Benedicks Theorem (also called the Amrein-Berthier Theorem
or Qualitative Uncertainty Principle) for the Plancherel groups, proved in [2], which
states that if f € L2(G, ) and f € Lz(é, 1) are each supported on sets of finite
w and 1 measure respectively, then f = 0. This uncertainty principle limits the joint
time-frequency distribution of these functions. Namely, it states that the joint time-
frequency support (a set in G x G) cannot be contained in a set of finite o pu
measure.

However, looking at other joint time-frequency distributions, such as the Wigner
distribution, Ambiguity function, or Short-Time Fourier transform (STFT) yields a
stronger result. We will only focus on the STFT, which is defined, for f, ¢ € L2(G),

Ve f(p.q) =/Gf(t)p(q‘lt)mq‘lt)du(t)

for (p,q) € G x G. We will only deal with locally compact groups G which are
Abelian and second countable. The second countability is used to ensure that the
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invariant metric d is proper. In this way, by the Plancherel theorem for G, one has
Moyal’s formula [23, Theorem 3.2.1]

which shows that ¢, ,(x) = (g~ ' x)¢ (g~ 'x) is a Parseval frame for L>(G) if ||¢|| =
1. This implies ||@]| - || fIl = ||V fl. In order to apply Theorem 2, we take GxG
to be the homogeneous space with the measure i ® u acted on by the “Heisenberg”
group H(G) := G x G x T with the operation

.4 .2 p.q.2) = (pp'.qq’. 2z'p(@")).

H(G) acts on G x G by (p,q,2)(p',q") = (pp',qq"). It can also be checked (cf.
[23, Lemma 3.1.3]) that

|<¢(P,q,z)(p’,q’)’ ¢’(p,q,2)(P”,q”))| = |<¢p’,q“ bprq")

and moreover (P(1.4.1)(p'.q")» P(1.q.1)(p".q") = (Dp'.q's Pp.q7) SO that {lé} x G x
{1} < H(G)..1f we had used the more conventional definition of Vy, f (p, ¢) (replacing

p(g~'1) with p(1)), then G x {1} x {1} < H(G), instead.

Theorem 4 Let G be anon-compact second countable LCA group. Forany ¢ € L%*(G),
o :G x G — [0, 1] is thin if and only if

T, f = /G T By G 1P )

is compact.

Proof To apply our compactness characterization, Theorem 1, let us first show
that for ¢ € L%(G), (¢p.q.dp.q) — 0as d((p,q), (p'.q')) — oo. By invari-
ance of the frame, it enough to check (¢, ¢p4) — 0 as (p,q) — oo. First, if
p — oo and ¢ remains bounded, then for each ¢, by the Riemann-Lebesgue Lemma
lim,_, 0o {(¢, ¢p,4) = 0. Therefore since g remains in a compact set, (¢, ¢ 4) — 0.
Otherwise, we consider ¢ — oo. Let ¢ > 0. Since ¢ € L?(G), there exists R such
that

f 612 dp <.
B(1g,R)¢

Then, there exists M such that for d(g, 1) > M, B(¢g~', R) C B(lg, R)¢. Then,

(b, bip.0))] Sf

[ ol du = 20
B(1G,R) B(lg,R)*
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Applying Theorem 1 gives the necessity. To show sufficiency, consider the Feichtinger
algebra [16]

So(G) :={¢p € L}(G) : V4o € L' (G x G)).
It is known that So(G) is dense in L?(G), see [26, Lemma 4.19]. First note that T}, is

compact for any ¢ € Sp(G) by Theorem 1. Then,

T2V f.g) = / (D Df $p.g)(Vp.g: 8)
= ||0||oo||f||L2(G)||g||L2(G)||W||L2(G) ||¢||L2(G)-

Therefore, we have |75l < [lollall¢ll 26y IVl 2(Gy- Then, T8¢ — 127 =

Tf ey Tf “*=%" This concludes the proof since compact operators are closed in

the operator norm topology. O

Putting this together with Theorem 2, we obtain the following uncertainty principle
(see [19] for the case G = R? and o an indicator function).

Theorem 5 Let G be a second countable LCA group containing a non-discrete sub-
group T such that I has no nontrivial compact subgroups. Let |pll;2cy = 1. If

6:6GxG — [0, 1] is thin, then there exists ¢ > 0 such that

(Tieo f2 ) = fG =) Vs [ dw = el i

X
forall f € L*(G).

Proof The subgroup {14} x I' x {1} < H(G) gives the independence of translations
and the tautology that o is thin if and only if 7 is compact concludes the proof using

the argument of Theorem 2. O

Corollary 2 Under the assumptions of Theorem 5, if E C G x G is thin, then there
exists ¢ > 0 such that

2 A~
f Vo f|” di®p =l fI?
GxG\E

forall f € L*(G).
In particular, supp Vy f cannot be thin unless f = 0.

Remark 2 1f ¢ and f are both supported on compact sets K1 and K, then supp Vg f C

G x K2 K L !, This shows the thinness condition cannot be relaxed from vanishing at
infinity to some smallness at infinity condition.
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5.2 Wavelet Transform

Next, we apply these results to wavelets, which are a special case of the affine group
acting on L2(R%). For ¢ € L?(R?), define the following unitary representation of the
wavelet group G = (0, oo) x R? on L*(R?) by

bap(x) =a""Ppax —b) ©)

fora € (0,00) and b € RY. The group operation is then (ai, b1)(a2, by) =
(ar1a, az_lbl + b») and the Haar measure is dA(a, b) = a dadb.
We say that a wavelet ¢ € L2(R?) is admissible if

~ [pes|
/0 pds= (10)

for a.e. x € RY. Due to the invariance of the measure a~! da, it is enough to check
this for almost every x € SY~!. We define the set A to be the set of all admissible ¢.

If ¢ is admissible, then {¢¢},ec does form a generalized Parseval frame with the
measure A. To see this, define the wavelet transform Wy, f (a, b) := (f, ¢4,p). Then,
since [ e Y6 W, f(a, b) db = a='/* f(a='&)p(£), by the Plancherel theorem on RY,

2 o NN .
[ 1warl ar= [ [ |f@ 6@ ot dsa ' da
G o Jrd
2. 2 )
=/ ’f(n)‘f ’qb(an)‘ a 'dadn = |f]".
R4 0

We want to check the Schur condition (i) and (ii) in Theorem 2 so we study the
decay properties of Wy¢. Define

Bl = (¢ € L*R?) : Wyop € LY (wdir)}

for a weight w. We can show that a very large class of functions is contained in B,ﬂ}.
Define the translation operator 7, f(x) = f(x + h). For 0 < o < 1, denote by A,
the class of L! functions such that ||z, f — f]|| 11t < Ch%. A contains the Schwarz
functions as well as less smooth functions like indicator functions (thus including the
Haar wavelet).

Lemma3 Let0 < ¢ <« < 1 and we(a, b) = a®/>t¢. Then,
Ao NLY(Ix|") C B,

where L)(1x|*) = {f e L'\R?): [ f =0and [|f(x)| |x|* dx < co}.

In particular, this weight is multiplicative, so by Remark 1, ¢, 5, satisfies the Schur
conditions (i) and (ii) in Theorem 2 for any ¢ € Ay N L(1)(|x|°‘).
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Proof We split (0, co) = (0, 1) U (1, 00). On (0, 1),

[k

! d
2 d/2+s _ 44
s||¢||L1/O aIE e <0

d
aid/zw(a) 44 db
a

/as(x)qs(a”x —b)dx

On the other hand, using the mean zero property of ¢, we estimate

db

/|W¢¢(a,b)| db =a““2f '[fﬁ(x) (0@ x =) —g(-0)| dx
<aii / BCO 71,6 — bll1 dx. < Ca4/2 / SCOl - [x[* dx

Therefore,

o ®  w(a) N
] Wedlwar=C | g dalld 61 ..

Taking ¢ < o ensures that the a integral is finite.

This lemma gives us plenty of information about the space B}H. It can be verified that
the admissibility condition (10) holds for any radial, normalized mean zero function
in L' N LY(Jx]) N L2. From this discussion and the previous lemma, we have

L' N Ly(xD) N L N (Upa<iAg) N { radial }
C (U0<£<IB}US) NA=: .Al.
Therefore, by Theorem 1, the following compactness result holds for many wavelets

¢. In particular, all Schwarz functions and the Haar function.

Theorem 6 Let ¢ € A; and o € L®((0, 00) x RY) be thin. Then,

d
T, f(x) = / o (a, D)Wy f (@, b)a p(x) fdb

is compact.

The converse also holds if ¢ is admissible and Schwartz since (¢, p, ) — O as
d((a, b), (1,0)) — oo, see for example [21, Appendix, Lemmas 2 and 4]. This yields
the following positivity result, by taking I" in Theorem 2 to be the subgroup {1} x R<.

Theorem7 Let ¢ € Ay and o : (0, 0) X R — [0, 1] be thin. Then there exists
¢ > 0 such that

(Th—o [+ ) =/

2
o~ Wo [ drz el f I
,00) X

forall f € L*>(RY).
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As an immediate consequence, we obtain the following uncertainty principle.
Corollary 3 Let¢ € Ay. IfE C R? x (0, 00) is thin, then there exists ¢ > 0 such that

s dadb
/ |Wy f(a, b)| > cl| £II?
(0,00) xR\ E a

forall f € L>(R?).

As in the STFT case, this implies supp Wy f can only be thin if f = 0, and this
is sharp in the sense that we cannot improve from vanishing sets to small ones for
general ¢. If f and ¢ are both supported in a ball B, then Wy, f is supported the region
{(a,b) : b € a”'B - B} which contains the strip (0, co) x B.

We also mention that these results continue to hold for higher dimensional wavelet
transforms such as the shearlet [31], but describing the classes B}ﬂ and A is more diffi-
cult. However, we mention that Schwarz functions with Fourier support in a bounded
set away from the y-axis are included in B! without any weight as shown in [31].

Acknowledgements The authors would like to thank Karlheinz Grochenig for his comments.

Appendix: Proof of Lemma 1

Let A be the Haar measure for I". Since I" is unimodular, the Haar measure is both
right and left invariant and dA(y) = di(y~1). Define P : Co(X) — C.(X/T) by

Pf(FX)=/Ff(VX)dK(V)-

This is well-defined since if I'y = I'x, then ypy = x so Pf(I'y) = Pf(I'x) by the
invariance of A.

We claim that Pf = 0 implies fX fdp = 0. Indeed, take ¢ € C.(X) such that
P¢ = 1 on I'supp f (this can be done by surjectivity of P which we will prove
below). Then,

0=f ¢(x)/ flyx)dr(y)du(x) =/ f¢(V_IX)d/\(V)f(x)dM(X)
X r X Jr
=/XP¢>(FX)f(X)dM(X)=/Xf(X)dM(X).

Now we are ready to define the measure v. Define the functional on C.(X/TI") by
Pf — [ x fdu. This is a well-defined positive linear functional by the previous
claim and Lemma 4 below. By the Riesz Representation Theorem, there exists v such
that

/X/FPfdv=/;(fd/JL
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which is the desired identity (8). It only remains to prove the surjectivity of P.

Lemma4 Let¢p € C.(X/ ). Thereexists f € Co(X) suchthat Pf = ¢, U'(supp f) =
supp ¢, and f > 0if ¢ > 0.

Proof Denote by E = supp ¢. Since E is compact, there exists {gk},](v=1 C G such that

E
U

v

- U,]cV:1 I"gx V where V is acompact neighborhood of e. V has an open neighborhood
with compact closure. Then, consider the function ¥ (x) = max{d (gk_lx, U}
€ Ce(X), ¥ > 0onUY_ gV, andforTx € E,

PW(Fx)zfrw(yx)duy) > 0.

Now, setting

¢(T'x)

T = by

v (x),

we see that f € C.(X), I"'supp f = supp¢, and f > 0 if ¢ > 0. We only need to
check

¢ (Tyx)
r Py (Tyx)
¢(T'x)

= oy PYED = o).

Pf(I'x) = Y (yx)di(y)

References

10.

11.

. Amrein, W., Berthier, A.-M.: On support properties of L?-functions and their Fourier transforms. J.

Funct. Anal. 24(3), 258-267 (1977)

. Arnal, D., Ludwig, J.: QUP and Paley-Wiener properties of unimodular, especially nilpotent. Lie

groups. Proc. Am. Math. Soc. 125(4), 1071-1080 (1997)

. Ascensi, G.: Sampling measures for the Gabor transform. J. Approx. Theory 200, 40-67 (2015)
. Axler, S., Zheng, D.: Compact operators via the Berezin transform. Indiana Univ. Math. J. 47(2),

387-400 (1998)

. Balazs, P, Bayer, D., Rahimi, A.: Multipliers for continuous frames in Hilbert spaces. J. Phys. A

45(24), 244023 (2012)

. Batayneh, F., Mitkovski, M.: Localized frames and compactness. J. Fourier Anal. Appl. 22(3), 568-590

(2016)

. Bauer, W., Coburn, L.A., Isralowitz, J.: Heat flow, BMO, and the compactness of Toeplitz operators.

J. Funct. Anal. 259(1), 57-78 (2010)

. Bayer, D., Grochenig, K.: Time-frequency localization operators and a Berezin transform. Integral

Equ. Oper. Theory 82(1), 95-117 (2015)

. Benedicks, M.: On Fourier transforms of functions supported on sets of finite lebesgue measure. J.

Math. Anal. Appl. 106(1), 180-183 (1985)

Boggiatto, P., Cordero, E.: Anti-Wick quantization with symbols in L? spaces. Proc. Am. Math. Soc.
130(9), 2679-2685 (2002)

Cima, J.A., Wogen, W.R.: A Carleson measure theorem for the Bergman space on the ball. J. Oper.
Theory 7(1), 157-165 (1982)

Birkhduser



Journal of Fourier Analysis and Applications (2023) 29:34 Page 190f20 34

12.

15.

16.
17.

19.

20.
21.

22.
23.
24.
25.
26.
27.
28.
29.
30.
31.

32.

33.
34.

35.
36.

37.
38.

39.

40.

41.

42.

Cordero, E., Grochenig, K.: Symbolic calculus and Fredholm property for localization operators. J.
Fourier Anal. Appl. 12(4), 371-392 (2006)

. Duflo, M., Moore, C.C.: On the regular representation of a nonunimodular locally compact group. J.

Funct. Anal. 21, 209-243 (1976)

. Edgar, G., Rosenblatt, J.: Difference equations over locally compact Abelian groups. Trans. Am. Math.

Soc. 253, 273-289 (1979)

Englis, M.: Compact Toeplitz operators via the Berezin transform on bounded symmetric domains.
Integral Equ. Oper. Theory 33(4), 426455 (1999)

Feichtinger, H.G.: On a new Segal algebra. Montasch. Math. 92, 269-289 (1981)

Feichtinger, H.G., Grochenig, K.: Banach spaces related to integrable group representations and their
atomic decompositions. I. J. Funct. Anal. 86(2), 307-340 (1989)

. Ferndndez, C., Galbis, A.: Compactness of time-frequency localization operators on Lz(Rd). J. Funct.

Anal. 233(2), 335-350 (2006)

Fernandez, C., Galbis, A.: Annihilating sets for the short time Fourier transform. Adv. Math. 224(5),
1904-1926 (2010)

Folland, G.B.: A Course in Abstract Harmonic Analysis, vol. 29. CRC Press, Boca Raton (2016)
Frazier, M., Jawerth, B., Weiss, G.: Littlewood-Paley Theory and the Study of Function Spaces, vol.
79. American Mathematical Society, Providence (1991)

Green, A.W.: The Uncertainty Principle in Control Theory for Partial Differential Equations. PhD
thesis, Clemson University (2020)

Grochenig, K.: Foundations of Time-Frequency Analysis. Springer, Cham (2001)

Havin, V., Joricke, B.: The Uncertainty Principle in Harmonic Analysis, vol. 28. Springer, Cham (2012)
Heil, C.: Linear independence of finite Gabor systems. In: Benedetto, J.J. (ed.) Harmonic Analysis and
Applications, pp. 171-206. Springer, New York (2006)

Jakobsen, M.S.: On a (no longer) new Segal algebra: a review of the Feichtinger algebra. J. Fourier
Anal. Appl. 24(6), 1579-1660 (2018)

Jaming, P.: Principe d’incertitude qualitatif et reconstruction de phase pour la transformée de Wigner.
C.R. Math. Acad. Sci. 327(3), 249-254 (1998)

Jaming, P., Speckbacher, M.: Planar sampling sets for the short-time Fourier transform. Constr. Approx.
53(3), 479-502 (2021)

Janssen, A.: Proof of a conjecture on the supports of Wigner distributions. J. Fourier Anal. Appl. 4(6),
723-726 (1998)

Janson, S., Peetre, J., Rochberg, R.: Hankel forms and the Fock space. Rev. Mat. Iberoam. 3(1), 61-138
(1987)

Kutyniok, G., Labate, D.: Resolution of the wavefront set using continuous shearlets. Trans. Am. Math.
Soc. 361(5), 2719-2754 (2009)

Linnell, P.A., Puls, M.J., Roman, A.: Linear dependency of translations and square-integrable
representations. Banach J. Math. Anal. 11(4), 945-962 (2017)

Luecking, D.H.: Inequalities on Bergman spaces. IIl. J. Math. 25(1), 1-11 (1981)

Luecking, D.H.: Forward and reverse Carleson inequalities for functions in Bergman spaces and their
derivatives. Am. J. Math. 107(1), 85-111 (1985)

Mackey, G.W.: Induced representations of locally compact groups I. Ann. Math. 2(55), 101-139 (1952)
McDonald, G., Sundberg, C.: Toeplitz operators on the disc. Indiana Univ. Math. J. 28(4), 595-611
(1979)

Ortega-Cerda, J.: Sampling measures. Publ. Math. 42(2), 559-566 (1998)

Smith, M.: The reproducing kernel thesis for Toeplitz operators on the Paley-Wiener space. Integral
Equ. Oper. Theory 49(1), 111-122 (2004)

Sudrez, D.: The essential norm of operators in the Toeplitz algebra on A” (B,,) Indiana Univ. Math. J.
56(5), 2185-2232 (2007)

Wilczok, E.: New uncertainty principles for the continuous Gabor transform and the continuous wavelet
transform. Doc. Math. 5, 201-226 (2000)

Wong, M.W.: Wavelet Transforms and Localization Operators, Operator Theory: Advances and
Applications, vol. 136. Birkhduser Verlag, Basel (2002)

Zhu, K.H.: Positive Toeplitz operators on weighted Bergman spaces of bounded symmetric domains.
J. Oper. Theory 20(2), 329-357 (1988)

Birkhauser



34 Page200f20 Journal of Fourier Analysis and Applications (2023) 29:34

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

Birkhduser



	Invertibility of Positive Toeplitz Operators and Associated Uncertainty Principle
	Abstract
	1 Introduction
	2 Compactness of Positive Toeplitz Operators
	3 Independence of Translations
	4 Thin Toeplitz Operators
	4.1 Main Results

	5 Applications
	5.1 Short-Time Fourier Transform on LCA Groups
	5.2 Wavelet Transform

	Acknowledgements
	Appendix: Proof of Lemma 1
	References




