Investigating Data Reusability in Density Functional
Theory Studies

Rob Fleur!, Addy Ireland!, Xintong Zhao!, Scott McClellan', Eric Paltoo!, Tianyu Su?, Channyung Lee?,
Yuan An!, Xiaohua Hu!, Elif Ertekin?, and Jane Greenberg!
'Metadata Research Center, Drexel University, Philadelphia, USA
2Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, USA

I. OVERVIEW

Over the last decade, there has been a significant increase
in supporting reproducible computational research (RCR) [1].
The global adoption of the FAIR principles [2] stands as a key
indicator of this trend. Specifically, federal and global research
funding agencies have increasingly mandated scientific data
and related products, such as code and algorithms, be made
Findable, Accessible, Interoperable, and Reusable (FAIR) [2].

The Materials Genome Initiative (MGI) has motivated the
need for sharing data to support data-driven materials design
and served as a bridge for advancing FAIR in materials science
across the field of materials science. Density Functional The-
ory (DFT) presents an example of material science researchers
seeking to advance FAIR principles and supporting RCR, and
is the focus of this research.

Scholarly big data serves as the source for studying this
topic and is the focus of the research presented in this paper.
The work that follows provides background information on
DFT and FAIR, presents results of our analysis leveraging
scholarly big data to assess data sharing, and discusses next
steps.

II. BACKGROUND - DENSITY FUNCTIONAL THEORY AND
THE FAIR PRINCIPLES

DFT is a method used in several areas of materials science.
DFT is a powerful quantum mechanical computational method
to investigate the electronic structure of systems of atomic nu-
clei and electrons [5], [6]. It has become a standard technique
in many branches of chemistry, materials science, and physics.
Formally, DFT is based on the Hohenberg-Kohn theorems [3],
which help reformulate the many-body Schrodinger equation
into a system of equations to be solved for the ground state
electron density and total energy. Although many formulations
of DFT exist, the Kohn-Sham framework is most commonly
used [4]. Using DFT, it is possible to estimate physical
properties such as lattice constants, binding energies, stability,
and transition states. Approximate descriptions of optical,
electronic, vibrational, and other features are also possible.
Over the last 30 years, massive numbers of DFT calculations
have enabled property prediction at scale, some properties
for which experimental measurements are challenging. Today
DFT underlies almost all databases of properties of materials
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computed from first-principles. It is often used to guide the
search and discovery of new materials with target properties
that have never been explored before. While quite a few
experimental studies now routinely include DFT calculations
to explain findings in published works, there is also a large
number of dedicated DFT studies as well.

DFT plays a pivotal role in computational materials science,
enabling quantum mechanical descriptions of the electronic
properties of solids, molecules, and other diverse classes of
materials. Its success and widespread application arise largely
because DFT simulations provide reasonable accuracy at small
computational cost. Nowadays, a variety of software/codes
are available, making DFT simulations more accessible to a
wide range of scientists and engineers for predicting properties
and facilitating materials design and optimization. Although
detailed aspects of implementation vary amongst different
codes, most share a similar underlying structure, facilitat-
ing comparison of user-selected simulation parameters and
corresponding outputs. User choices such as the exchange-
correlation functional, basis set, convergence criteria, and other
numerical parameters can all introduce variability in DFT
results.

As the workhorse method of the first-principles modeling
community, DFT is increasingly automated, e.g., to build large
databases or as a component of a multi-scale modeling frame-
work. Consequently, reproducibility of DFT results underlies
scientific credibility for much of the first-principles modeling
community. Therefore assessment of DFT user community
practices with respect to FAIR principles is imperative for
DFT practitioners in adopting the FAIR principles. This is
achieved through a variety of mechanisms, including reporting
of simulation parameters in scholarly publications, providing
simulation parameters and/or input/output files as supplemen-
tal data, and by publishing workflows, simulation inputs, and
simulation outputs in online materials data repositories [7],

[8].
III. METHOD

We conducted an empirical study involving three main
steps: (1) corpus collection and processing, (2) target articles
filtering, and (3) supplemental data analysis.

Corpus Collection and Processing: We collected 172,000
research articles under materials science category along with
their supplemental materials from the American Chemical



Society (ACS). After processing the collected data into usable
forms, all research articles are in XML format; supplemental
materials are stored in various formats such as CIF, PDF,
dataset, and so forth.

Target Article Filtering: We used a basic dictionary related
to DFT research, which was generated by domain scientists,
to identify relevant articles. The dictionary contained the fol-
lowing keywords: density functional theory (DFT), exchange
correlation, Quantum Espresso, VASP, plane wave basis set,
effective core potential (ECP), and pseudopotential. Articles
that contained at least one keyword were retained as our
target articles set. We obtained 10,034 articles after keyword
matching.

Supplemental Data Analysis: We assessed the supple-
mental data based on the FAIR principles, which includes
article metadata, type of materials, and in-text data citations.
Supplemental materials were also assorted according to their
presence in either the ACS, Figshare repository, and other
external repositories.

IV. INITIAL FINDINGS
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Fig. 2. Distribution of Supplemental Data Type by Year

The proportion of articles publishing their data is shown
in figure 1. The proportion of articles that do not publish
their data steadily decreases over time and there was 5% of
articles without supplemental data in 2022. A detailed data
type distribution is demonstrated in figure 2.

However, there are challenges to re-use published data:
Within our filtered DFT corpus, 81% of articles contain at least
one supplemental document. PDFs may be great for easily
putting together a single document containing descriptions,

charts, and tables, but when it comes time to interoperate on
that data is where the perks of a PDF start degrading.

V. CONCLUSION AND FUTURE WORK

The research presented here confirms that DFT researchers
are taking important steps to publish data underlying their
research. The trends shown in the figures confirm researchers
publishing their data. Furthermore, figure 2 shows the broad-
ening diversity of supplemental data sources as well as shifts
in how data is referenced.

Our future work involves pursue two key goals. First, we
will systematically classify papers focusing on DFT based
on an expanded set of subject matter specific terms and to
evaluate the extent of DFT simulation reporting. Focusing
on understanding an expanded set of subject matter specific
terms which should increase accuracy of the model. The
initial dictionary of terms and phrases provided by the the
collaborator allowed us to discern broad contours regarding
DFT-related articles. Our second key goal is to analyze the
availability of DFT-related files or additional supplementary
files from the publications. This is important because the
papers which discuss DFT fall into several categories. The
first type of papers make passing mention of DFT calculations
which often occur in the discussion section and are considered
to have low relevance because they do not offer in depth
engagement of the process. The second type of paper, which
is often of greater relevance, employs DFT terminology in the
methods section of a paper. A third type of paper broadly
develops or refines DFT as a method without application to
a specific experiment. Finally, future work may lead to the
construction of a repository for DFT data including input
parameters and outputs, facilitating data citation and ensuring
the reproducibility of DFT simulations.

REFERENCES

[1] J. Leipzig, D. Niist, C. T. Hoyt, S. Soiland-Reyes, K. Ram, and
J. Greenberg, “The role of metadata in reproducible computational
research.” arXiv, 2020. doi: 10.48550/ARXIV.2006.08589.

[2] M. D. Wilkinson et al., “The FAIR Guiding Principles for scientific data
management and stewardship,” 2016, doi: 10.1038/sdata.2016.18.

[3] P. Hohenberg and W. Kohn, “Inhomogeneous Electron Gas,” Physical
Review, vol. 136, no. 3B. American Physical Society (APS), pp.
B864-B871, Nov. 09, 1964. doi: 10.1103/physrev.136.b864.

[4] W. Kohn and L. J. Sham, “Self-Consistent Equations Including Ex-
change and Correlation Effects,” Physical Review, vol. 140, no. 4A.
American Physical Society (APS), pp. A1133-A1138, Nov. 15, 1965.
doi: 10.1103/physrev.140.a1133.

[5] R. O. Jones, “Density functional theory: Its origins, rise to prominence,
and future,” Reviews of Modern Physics, vol. 87, no. 3. American Phys-
ical Society (APS), pp. 897-923, Aug. 25, 2015. doi: 10.1103/revmod-
phys.87.897.

[6] K. Burke, “Perspective on density functional theory,” The Journal of
Chemical Physics, vol. 136, no. 15. AIP Publishing, Apr. 17, 2012. doi:
10.1063/1.4704546.

[7]1 C. Draxl and M. Scheffler, “The NOMAD laboratory: from data sharing
to artificial intelligence,” JPhys materials, vol. 2, no. 3, pp. 36001-, 2019,
doi: 10.1088/2515-7639/ab13bb.

[8] B. Blaiszik, K. Chard, J. Pruyne, R. Ananthakrishnan, S. Tuecke, and L.
Foster, “The Materials Data Facility: Data Services to Advance Materials
Science Research,” JOM (1989), vol. 68, no. 8, pp. 2045-2052, 2016,
doi: 10.1007/s11837-016-2001-3.



