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Function Space and Critical Points of Linear Convolutional Networks⇤
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Abstract. We study the geometry of linear networks with one-dimensional convolutional layers. The function

spaces of these networks can be identified with semialgebraic families of polynomials admitting

sparse factorizations. We analyze the impact of the network’s architecture on the function space’s

dimension, boundary, and singular points. We also describe the critical points of the network’s

parameterization map. Furthermore, we study the optimization problem of training a network with

the squared error loss. We prove that for architectures where all strides are larger than one and

generic data, the nonzero critical points of that optimization problem are smooth interior points

of the function space. This property is known to be false for dense linear networks and linear

convolutional networks with stride one.
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1. Introduction. Linear networks are artificial neural networks with linear activation
functions. Despite only representing linear functions, linear networks have been widely studied
as a simplified model for analyzing the behavior of deep neural architectures. Previous work
investigated various aspects of linear networks, including the optimization landscape and crit-
ical points of the loss function [Bal89, BH95, Kaw16, LK17, ZL18, LvB18, ZSEW20, TKB20,
MCTH22, BH23], the dynamics of training [SMG14], and the convergence of gradient flow
[BRTW21] and gradient descent [NRT21]. In particular, [TKB20] provided a detailed analy-
sis of “pure” and “spurious” critical points, which are critical points arising from the local
geometry of function space (i.e., the set of end-to-end linear functions) and the parameteriza-
tion. In this context we may also mention [KTB19], which studied the geometry of the set of
functions represented by networks with polynomial activation.

Linear convolutional networks (LCNs) are a type of linear network in which each linear
map is a convolution. This requirement imposes linear constraints on the entries of the weight
matrices—conditions sometimes known as “weight sharing” and “restricted connectivity.”
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334 KOHN, MONTÚFAR, SHAHVERDI, AND TRAGER

Although convolutional neural networks (CNNs) are widely used in computer vision applica-
tions, LCNs have not received as much attention as their fully connected counterparts. In
[GLSS18], LCNs were studied from the perspective of the implicit bias of local parameter
optimization. That work, however, considered only nonlocal convolutions with filters of max-
imal size. More recent works have studied the e↵ect on the function space of regularizing
the parameters of the network, obtaining results for stride-one LCNs with arbitrary filter
size fixed across layers [DKS21] and for certain two-layer multichannel LCNs [PE20, JRG22].
Most closely related to our present work is [KMMT22], which studied the geometry of the
function space represented by LCNs for varying filter size sequences. That work showed that
the function space of LCNs can be viewed as a semialgebraic set consisting of polynomials
admitting certain factorizations. Several theoretical results on the function space were pre-
sented, including a characterization of the boundary and its singularities for LCNs with stride
one. For convolutions of higher strides, it was shown that the function space is always con-
tained in a lower-dimensional algebraic set, although many questions remained open in that
case.

In this paper, we aim to fill this gap by studying the geometry of the set of functions
represented by LCNs with arbitrary strides. We consider networks with an arbitrary number
of layers of one-dimensional convolutions having arbitrary filter sizes. Our main results are
a characterization of the dimension, boundary, and singularities of the function spaces, as a
function of the network’s architecture (Theorems 2.4, 2.7, 2.9, and 2.10). We also describe the
critical points of the parameterization map (Theorem 2.11). Based on that description, we
prove the following for architectures where all strides are larger than one: For generic training
data, the nonzero critical points (in parameter space) of the squared error loss correspond to
smooth interior points of the function space that are critical points of the loss on that function
space (i.e., they are not induced by the network’s parameterization map) (Theorem 2.12).
Our results show that LCNs with arbitrary strides have a rich structure that is manifested
in the geometry of certain families of polynomials with structured roots. To the best of our
knowledge, these polynomial families have not been previously explored in detail and could
be of independent interest.

We interpret LCNs in terms of reduced LCN architectures (with stride larger than one)
composed with stride-one subarchitectures. The reduced architectures can be regarded as
defining an initial set of constraints and the stride-one subarchitectures as imposing additional
inequality constraints. This can be used in architecture design as it allows us to determine
which function spaces are contained in each other and control the inequality constraints by
choosing the stride-one subarchitectures.

Our analysis on LCNs provides insights into the complex geometric properties of neural
networks, some of which may transfer to networks with nonlinear activations. Unlike densely
connected feedforward linear networks, LCNs have a function space that is semialgebraic; i.e.,
it is a manifold with boundary (and singularities). Moreover, unlike the stride-one setting con-
sidered in [KMMT22], for arbitrary strides the function space is generally a low-dimensional
subset of its ambient space. We believe that both of these qualitative aspects are impor-
tant features of general neural architectures. Interestingly, increasing the stride size in LCNs
also leads to nonlinear behavior, since it requires associating filters with polynomials of vari-
ables in higher degrees. Geometrically, this means that increasing the stride can be seen as
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FUNCTION SPACE AND CRITICAL POINTS OF LCNS 335

Table 1.1
Table of symbols and notation.

Notation Description

k= (k1, . . . , kL) sequence of filter sizes for each layer l= 1, . . . ,L
s= (s1, . . . , sL�1,1) sequence of strides for each layer l= 1, . . . ,L with sL = 1

(k,s) LCN architecture with filters k and strides s
Sl shorthand for

Ql�1
i=1 si

Mk,s function space of an LCN architecture (k,s), as a subset of Rk
with

k=
PL

l=1(ki � 1)Sl + 1

⇡s polynomial coe�cient map Rk !R[xs, ys
]k�1; see (2.2)

µk,s LCN parameterization map
QL

i Rki !Rk
; see (2.4)

(k̃, s̃) reduced architecture associated with (k,s); see Definition 2.5

Mk,s Zariski closure of Mk,s

@Mk,s Euclidean relative boundary of Mk,s

“twisting” the function space. As we discuss, the geometry of the function space plays a cru-
cial role in optimization, since boundary points and singular points are typically more exposed
during training. In LCNs, these special points correspond to functions with “more structure,”
since they are functions that can be expressed by more restrictive architectures or that can be
obtained as compositions of repeated filters. This sort of stratification is also characteristic of
general neural networks. The algebraic nature of LCNs enables however a precise and quanti-
tative description of this structure, revealing, for example, unexpected di↵erences in behavior
between “reduced” (where all strides are larger than one) and “nonreduced” architectures.
In the future, our analysis could be further extended by considering convolutions of higher
dimensions or introducing algebraic activation functions as in [KTB19].

This paper is organized as follows. In section 2 we present our main results about LCNs
with arbitrary strides. We provide proofs of these results in subsequent sections. Specifically,
in section 3 we prove results on the Zariski closure of the function space; in section 4 we focus
on critical points of the parameterization map; in section 5 we analyze the singular points of
the function space, and in section 6 we describe its boundary; finally, in section 7 we discuss
the optimization of the squared loss. We keep track of the major notational concepts in
Table 1.1.

2. Main results. Linear convolutional networks are families of linear maps parameterized
as compositions of convolutions. In this work, we focus on single-channel convolutions for
one-dimensional signals but we allow arbitrary strides. In this setting, a convolution or con-
volutional layer is associated with a filter w 2 Rk, a stride s 2 N, and an output dimension
d0 2 N. The associated convolution is a linear map ↵w,s : Rd ! Rd0

with input dimension
d := s(d0 � 1) + k defined by

↵w,s(x)[i] =
k�1X

j=0

w[j] · x[is+ j] for x2Rd and i= 0,1, . . . , d0 � 1.(2.1)

Note that this relation ensures that is+ j ranges from 0 to d� 1. The map (2.1) can also be
represented as a generalized Toeplitz matrix Tw,s 2Rd0⇥d. However, for most of our analysis,
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336 KOHN, MONTÚFAR, SHAHVERDI, AND TRAGER

we will not be required to specify the input and output dimensions of convolutions, since
compositions of layers can be defined purely in terms of filter vectors and strides. This will
be clear from Proposition 2.2 below.

Definition 2.1. The function space Mk,s of a linear convolutional network (LCN) archi-

tecture with filter sizes k= (k1, . . . , kL) and strides s= (s1, . . . , sL) is the set of all linear maps

↵ that can be expressed as a composition ↵= ↵L � · · · � ↵1, where ↵l is a convolution of filter

size kl and stride sl. Here L is the number of layers of the LCN.

In the following, we assume that kl > 1 for all l= 1, . . . ,L (layers with filter size kl = 1 yield
only scalar multiplication and can be discarded without loss of generality; see Proposition 2.2
below). Each stride sl can be an arbitrary positive integer. The linear maps ↵ in an LCN
function space Mk,s are convolutions of filter size k := k1 +

PL
l=2(kl � 1)

Ql�1
i=1 si and stride

s := s1 · · ·sL [KMMT22, Proposition 2.2]. Since each such convolution is uniquely determined
by its filter w 2Rk, we can view Mk,s as a subset of Rk.

To study Mk,s, we use the fact that compositions of convolutions can be described using
polynomial multiplication. For any positive integer s and filter w = (w[0], . . . ,w[k� 1]) 2Rk,
we consider the polynomial

⇡s(w) :=w[0]xs(k�1) +w[1]xs(k�2)ys + · · ·+w[k� 2]xsys(k�2) +w[k� 1]ys(k�1) 2R[xs, ys]k�1.

(2.2)

The map ⇡s is an isomorphism between Rk and the vector space R[xs, ys]k�1 of all homoge-
neous polynomials of degree k� 1 in the variables (xs, ys).

Proposition 2.2 ([KMMT22]). The function space of the LCN architecture (k,s) can be

identified with the following subset of Rk
:

Mk,s =

(
w 2Rk : ⇡1(w) =

LY

l=1

⇡Sl
(wl), wl 2Rkl

)
, where Sl :=

l�1Y

i=1

si.(2.3)

Here, ⇡s is the map from (2.2). Equivalently, Mk,s is the image of the parameterization map

µk,s :Rk1 ⇥ · · ·⇥RkL !Rk, (w1, . . . ,wL) 7! ⇡�1
1

 
LY

l=1

⇡Sl
(wl)

!
.(2.4)

In light of this result, we often view Mk,s as a family of homogeneous polynomials ad-
mitting a sparse factorization as in (2.3). Note that the final stride sL has no e↵ect on the
function space; for this reason, we assume from now on that sL = 1. We say that an LCN
architecture is reduced if all strides other than sL are greater than one.

Example 2.3. Consider the architecture k= (3,2) and s= (2,1). Then we have that L= 2,
k = 5, S1 = 1, S2 = 2. Thus, µk,s : R3 ⇥ R2 ! R5; (w1,w2) 7! ⇡�1

1 (⇡2(w2)⇡1(w1)). Writing
w1 = (w1[0],w1[1],w1[2]) and w2 = (w2[0],w2[1]), we see that the function space Mk,s consists
of all w 2R5 with ⇡1(w) = ⇡2(w2)⇡1(w1) = (w2[0]x2+w2[1]y2)(w1[0]x2+w1[1]x1y1+w1[2]y2).
Multiplying out the latter expression and collecting the coe�cients of individual monomials,
we see that w = (w2[0]w1[0],w2[0]w1[1],w2[0]w1[2] +w2[1]w1[0],w2[1]w1[1],w2[1]w1[2]). These
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FUNCTION SPACE AND CRITICAL POINTS OF LCNS 337

Figure 2.1. Left: Slice of the semialgebraic set AD2
+B2E�BCD= 0, C2 � 4AE � 0, obtained by setting

A = 1 and C = �1. This set corresponds to the function space M(3,2),(2,1) ✓ R5
in Example 2.3. Right: The

same set intersected with B4 � 4AB(BC �AD)� 0, D4 � 4DE(CD�BE)� 0 and (AE  0 or AC  0). This

intersection corresponds to the function space M(2,2,2),(1,2,1) discussed in Example 2.6. The reduced boundary

points and the stride-one boundary points are depicted as a blue point and a black dashed curve, respectively;

see Theorem 2.10.

are precisely the filters of the end-to-end convolutions represented by products Tw2,s2Tw1,s1 of
two generalized Toeplitz matrices Tw1,s1 and Tw2,s2 with filter size and stride pairs k1 = 3, s1 = 2
and k2 = 2, s2 = 1, which in the concrete case of end-to-end functions R5 !R1 take the form
Tw1,s1 = [w1[0] w1[1] w1[2] 0 0

0 0 w1[0] w1[1] w1[2]
], Tw2,s2 =

⇥
w2[0] w2[1]

⇤
. According to [KMMT22, Example

4.12], the implicit description of the function space for this architecture is given by

Mk,s = {w=(A,B,C,D,E) :AD2 +B2E �BCD= 0 and C2 � 4AE � 0}⇢R5.

The Zariski closure Mk,s of this function space is visualized in Figure 2.1, which displays a
3-dimensional slice.

As the previous example suggests, LCN function spaces are semialgebraic sets; that is,
they are subsets of Rk that are finite unions of solutions sets of finitely many polynomial
equalities and inequalities.

Theorem 2.4. The LCN function space Mk,s is a semialgebraic Euclidean-closed subset of

Rk
. Its dimension does not depend on the strides and is equal to k1 + · · ·+ kL � (L� 1).

Our main goal in this work is to investigate how the geometric properties of LCN function
spaces are a↵ected by the choice of architecture (the sequences of filter sizes and strides) and
to describe how changes in the geometry impact the optimization of a training loss. The
case of stride-one architectures was studied in detail in [KMMT22]. In this work, we see that
the situation for arbitrary strides is considerably more complex. We focus especially on the
following basic qualitative features:

• Thick versus thin: We say that a function space is thick if dim(Mk,s) = k, that is,
if Mk,s is a full-dimensional semialgebraic subset of its ambient space Rk or, equiva-
lently, if its Zariski closure Mk,s equals Rk. We say that the function space is thin if
dim(Mk,s)< k, that is, if it is contained in a proper algebraic subset of Rk.

• Zariski closed versus nonclosed: A function space is Zariski closed (equivalently, it is
an algebraic set) if it can be described using only polynomial equalities. It is Zariski

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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338 KOHN, MONTÚFAR, SHAHVERDI, AND TRAGER

nonclosed if its characterization as a semialgebraic set necessarily involves polynomial
inequalities.

• Smooth versus singular: We call a filter w in the function space Mk,s singular if it is
a singular point of the algebraic variety Mk,s. Otherwise, we say that w is smooth.

We say the function space Mk,s is smooth if every filter w 2 Mk,s is smooth. Note
that the Euclidean relative interior of Mk,s is a manifold. The singular points of that
manifold are contained in the singular locus of Mk,s. Hence, by describing all singular
points in the algebraic sense (in Theorem 2.9), we find a superset of all singular points
in the manifold sense.

These distinctions are relevant for the study of the optimization of training losses for
LCNs. The simplest cases are those where the function space is both thick and Zariski closed.
In this case, the LCN function space is equal to its ambient space Rk. Thus, minimizing a
smooth convex loss function on the function space is simply a convex optimization problem.

If the function space is not Zariski closed, it has a nontrivial Euclidean (relative) boundary.
That boundary might be more exposed during the optimization, in the sense that many critical
points of the optimization problem lie on the boundary. This happens, for instance, for stride-
one LCN architectures [KMMT22].

Similarly, if the function space is singular, its singular points might be more exposed as
well. This happens for dense linear networks [TKB20, NRT21].

As long as the function space is thick, its relevant boundary is the standard boundary in
the Euclidean topology on Rk. If the function space is thin, we need to consider its relative

boundary, i.e., the set of points in the function space that are limit points of sequences in
Mk,s \Mk,s.

All described geometric qualities can appear in LCN function spaces. We provide minimal
example architectures in Table 2.1.

To study these geometric properties, it is useful to decompose an LCN architecture into
a reduced architecture and several stride-one subarchitectures. Intuitively, we reduce an ar-
chitecture by merging all neighboring layers l and l + 1 where sl = 1 (i.e., Sl+1 = Sl) by
multiplying their polynomial factors in (2.3). Formally, we state the following definition.

Definition 2.5. Given an LCN architecture (k,s), we define its reduced architecture as

(k̃, s̃), where s̃ := (sl1 , . . . , slM�1
,1) is the subsequence of strides in s that are greater than

one (with a final stride equal to one) and k̃ := (k̃1, . . . , k̃M ) with k̃j+1 :=
Plj+1

i=lj+1(ki � 1) + 1

(and l0 := 0, lM := L). We define M associated stride-one architectures (k̃
j
,1), with k̃

j+1
=

(klj+1, . . . , klj+1
) for j = 0, . . . ,M � 1.

Table 2.1
Minimal examples of nontrivial LCN architectures (with at least two layers) of the di↵erent geometric types

classified in Theorems 2.7 and 2.9.

Zariski closed Zariski non-closed

Thick k= (3,2),s= (1,1) k= (2,2),s= (1,1)
Thin k= (3,3),s= (2,1) | k= (2,2),s= (2,1) k= (2,2,2),s= (1,2,1) | k= (3,2),s= (2,1)

| {z }
0 is the only singular point

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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FUNCTION SPACE AND CRITICAL POINTS OF LCNS 339

Note that if (k,s) was already reduced, then (k̃, s̃) = (k,s) and k̃
j
= (kj) for all 1 j L.

The parameterization map µk,s of the original architecture factorizes as

µk,s = µk̃,s̃ � (µk̃
1
,1
, . . . , µ

k̃
M
,1
).(2.5)

Here the di↵erent arguments w1, . . . ,wL of the parameterization map are assigned to their re-
spective stride-one subarchitectures, µ

k̃
j+1

,1
(wlj+1, . . . ,wlj+1

) for j = 0, . . . ,M�1, as illustrated
below.

(w1, . . . , wl1 , wl1+1, . . . , wl2 , . . . , wlM�1+1, . . . , wL )

( w̃1 , w̃2 , . . . , w̃M )

µk̃1,1 µk̃2,1 µk̃M ,1

w
µk,s

µk̃,s̃

Note that the function spaces Mk,s and Mk̃,s̃ of the initial LCN architecture (k,s) and

of its reduced architecture (k̃, s̃) live in the same ambient space Rk. We show that reducing
an architecture can enlarge the function space but does not a↵ect its Zariski closure:

Mk,s ✓Mk̃,s̃ and Mk,s =Mk̃,s̃.(2.6)

See Lemma 3.6. The intuition for this fact is that the function spaces of the associated stride-
one architectures, which are fed to the reduced architecture, may satisfy constraints in their
natural ambient spaces but are always full-dimensional. Conversely, we can interpret (2.6)
as follows: The function space of a reduced architecture with filter sizes (k̃1, . . . , k̃M ) and
strides (s̃1, . . . , s̃M�1, s̃M = 1) contains the function space of any architecture with filter sizes
(k11, . . . , k

1
m1

, . . . , kM1 , . . . , kMmM
) and strides (s11, . . . , s

1
m1

, . . . , sM1 , . . . , sMmM
) satisfying

Pmj

i=1(k
j
i �

1) + 1= k̃j and sjmj = s̃j for j = 1, . . . ,M and sji = 1 otherwise.

Example 2.6. Consider the architecture k = (2,2,2) and s = (1,2,1). Then M = 2 and
l1 = 2, l2 = 3. The associated reduced architecture is (k̃, s̃) = ((3,2), (2,1)), which we already
encountered in Example 2.3. Both architectures appear in Table 2.1. The associated stride-
one architectures are (k̃1,1) = ((2,2), (1,1)) and (k̃2,1) = ((2), (1)), which have output filters
of sizes 3 and 2, respectively, fitting to the domain of the parameterization map of the reduced
architecture. The function space Mk,s is described by the equality AD2 +B2E �BCD = 0
and inequalities (AE  0 or AC  0), B4 � 4AB(BC �AD)� 0, D4 � 4DE(CD �BE)� 0,
and C2 � 4AE � 0. Nonetheless, both architectures have the same Zariski closure. This is
because one function space is a subset of the other, and they are irreducible and have the
same dimension by Theorem 2.4.

We are now ready to describe the qualitative features of the LCN function space.

Theorem 2.7. Let (k,s) be an LCN architecture.

(a) The function space Mk,s is thick if and only if s= 1.
(b) The function space Mk,s is smooth if and only if it is thick.

(c) To determine whether Mk,s is Zariski closed:

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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340 KOHN, MONTÚFAR, SHAHVERDI, AND TRAGER

(c1) If (k,s) is reduced, the function space Mk,s is Zariski closed if and only if, for

all l= 1, . . . ,L, kl is odd or Sl >
Pl�1

i=1(ki � 1)Si.

(c2) If s= 1, then Mk,s is Zariski closed if and only if at most one of its filter sizes

is even.

(c3) In general, the function space Mk,s is Zariski closed if and only if the func-

tion spaces of its associated reduced architecture and of its associated stride-one

architectures are all Zariski closed.

In particular, an LCN is a universal approximator of functions in the natural ambient
space Rk if and only if s= 1 and at most one of its filter sizes is even.

Remark 2.8. The condition Sl >
Pl�1

i=1(ki�1)Si from the previous statement will reappear
in several other results throughout the paper, e.g., in Theorem 2.9 just below. This relation
has a simple interpretation: it means that the composition of the first l� 1 layers has stride
size (equal to Sl) at least as large as its filter size (equal to

Pl�1
i=1(ki � 1)Si +1). This in turn

implies that the “receptive fields” of the output coordinates of this convolution do not overlap;
that is, the sets of input coordinates that influence each output coordinate are disjoint. As
we will see, this condition also influences the geometry of the projectivized parameterization
map of the function space (Remark 3.1).

If the function space is not smooth (respectively, not Zariski closed), we aim to understand
its singular points (respectively, its Euclidean relative boundary). Because of (2.6), to describe
the singular locus of a function space’s Zariski closure, it is su�cient to consider reduced
architectures.

Theorem 2.9. Let (k,s) be a reduced LCN architecture with at least two layers. Then the

singular locus of the Zariski closure of the function space is comprised of the zero filter and

the union of all LCN function spaces with the same sequence of strides whose Zariski closures

are proper subsets of Mk,s:

Sing(Mk,s) = {0}[
[

k02K
Mk0,s = {0}[

[

k02K
Mk0,s, where

K :=Kk,s :=

⇢
k0 2ZL

>0 :
k0 6= k,

PL
i=1(k

0
i � 1)Si =

PL
i=1(ki � 1)Si,PL

i=l(k
0
i � 1)Si �

PL
i=l(ki � 1)Si for all l= 1, . . . ,L

�
.

The set K is empty (i.e., 0 is the only singular point) if and only if Sl >
Pl�1

i=1(ki � 1)Si for

every layer l.

The conditions for k0 signify that the truncation of the architecture (k0,s) to the first l�1
layers has at most the same end-to-end filter size as the corresponding truncation of (k,s)
and the same filter size when all layers are considered. The fact that these are precisely the
architectures which satisfy Mk0,s (Mk,s is shown in Corollary 5.3.

We denote the Euclidean relative boundary of the function space by @Mk,s. Since the
function space is Euclidean closed (see Theorem 2.4), we have @Mk,s ✓ Mk,s. Recall that
@Mk,s consists of all points in Mk,s that are limits of sequences of points in Mk,s\Mk,s. We
distinguish between two types of boundary points, using the fact that the reduced architecture
(k̃, s̃) of (k,s) satisfies Mk,s ✓Mk̃,s̃ ✓Mk,s =Mk̃,s̃ as in (2.6):
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FUNCTION SPACE AND CRITICAL POINTS OF LCNS 341

• Reduced boundary points @MR
k,s: limits in Mk,s of sequences of points in Mk,s\Mk̃,s̃.

• Stride-one boundary points @MS
k,s: limits in Mk,s of sequences of points in Mk̃,s̃ \

Mk,s.
The boundary of LCN function spaces Mk,1 with stride-one architectures has been fully

characterized in terms of the real-root structure of the polynomials in ⇡1(Mk,1) [KMMT22,
Proposition 4.4]. The relative boundary in the case of strides larger than one is signifi-
cantly more complicated. In particular, in contrast to the stride-one case, the reduced
boundary points form a semialgebraic set of unexpectedly low dimension (i.e., dim@MR

k,s <
dimMk,s � 1). This can be seen in Figure 2.1, for the architecture with k = (2,2,2) and
s= (1,2,1), where the reduced boundary has codimension two while the stride-one boundary
has codimension one.

Theorem 2.10. Let (k,s) be an LCN architecture with reduced architecture (k̃, s̃).
(a) Reduced boundary points are on the relative boundary of the reduced architecture; in

fact @MR
k,s = @Mk̃,s̃ \Mk,s.

(b) Reduced boundary points are contained in lower-dimensional LCN function spaces;

more precisely, we have @MR
k,s ✓

S
k̃

02K̃ Mk̃
0
,s̃ ✓ Sing(Mk,s), where K̃ := Kk̃,s̃ is as

defined in Theorem 2.9.
(c) The dimension of @MR

k,s is at most dimMk,s � min{si : si > 1}; in particular, its

relative co-dimension is strictly larger than 1.

Our discussion until this moment has focused on the implicit geometry of the function
space. In practice, we are also interested in the parameterization of this space by the network’s
parameterization map. Critical points of a loss function can in fact arise from degenerate
points of the parameterization (called “spurious critical points” in [TKB20]). We characterize
these points in the following result.

Theorem 2.11. Let L > 1. A filter tuple ✓ = (w1, . . . ,wL) is a critical point of the param-

eterization map µk,s if and only if there exists a layer l 2 {1, . . . ,L} such that wl = 0 or the

polynomials ⇡Sl
(wl) and ⇡Sl�1

(wl�1) · · ·⇡1(w1) have a nontrivial common factor of the form

Q(xSl , ySl). In particular, critical values w correspond to polynomials ⇡1(w) in the discrimi-

nant hypersurface, that is, the set of polynomials with a double root.

Finally, we investigate the minimization of the squared error on LCNs. Given some training
data D= {(x(i),y(i))2Rd0 ⇥RdL : i= 1, . . . ,N}, the squared error loss on the function space is

`D(w) :=
NX

i=1

ky(i) � Tw,sx
(i)k2,

where Tw,s 2 RdL⇥d0 is the generalized Toeplitz matrix associated with a filter w 2 Rk and
with stride s (note that d0 = s(dL�1)+k). When training an LCN with data D, we minimize
the squared error loss LD

k,s := `D � µk,s on the parameter space. Commonly we use gradient
descent to minimize this objective function, and thus we are interested in its critical points.

Theorem 2.12. Let N � k. For almost all
1
data D 2 (Rd0 ⇥RdL)N , every critical point ✓

of LD
k,s satisfies one of the following:

1
For all points except those contained in some proper algebraic subset of (Rd0 ⇥RdL)

N
.
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342 KOHN, MONTÚFAR, SHAHVERDI, AND TRAGER

1. ✓ is a regular point of µk,s and µk,s(✓) is a smooth, relative interior point of Mk,s

(i.e., µk,s(✓) /2 Sing(Mk,s) and µk,s(✓) /2 @Mk,s), or

2. µk,s(✓) = 0, or
3. ✓ is a critical point of (µ

k̃
1
,1
, . . . , µ

k̃
M
,1
).

Note that the last condition is not possible for reduced architectures. Hence, for reduced
architectures, every critical point maps either to zero in the function space Mk,s or to a
smooth interior point of Mk,s that is a critical point of `D|Mk,s

. In the language of [TKB20],
these critical points are “pure,” in the sense that they are critical points in function space,
rather than being degenerate points of the parameterization map. We remark that in the case
of stride-one LCN architectures critical points frequently correspond to functions located on
the boundary of the function space or even to functions situated in the interior of the function
space as spurious (i.e., nonpure) critical points that are induced by the parameterization map;
see [KMMT22, Example 5.10]. This illustrates the surprising qualitative di↵erences between
reduced and stride-one architectures.

3. The function space and its Zariski closure. From now on, to simplify notation, we
omit the index of the function space M=Mk,s and its parameterization map µ= µk,s when
the LCN architecture (k,s) is clear from the context. As the function space M is always
closed under multiplication by scalars (in other words, it forms a cone in Rk), it is natural
to consider its projectivization, denoted by P(M). This means that end-to-end filters that
di↵er only by scalar multiplication are treated as equivalent. Similarly, we can projectivize
the ambient space of the filters in each layer and replace the parameterization map µ with a
morphism ⌫ that composes filters up to scaling:

⌫ = ⌫k,s : Pk1�1
R ⇥ · · ·⇥ PkL�1

R ! P(Mk,s)✓ Pk�1
R .

Remark 3.1. The map ⌫ is the composition of a Segre embedding of Pk1�1
R ⇥ · · ·⇥ PkL�1

R
followed by a linear projection. Moreover, ⌫ itself is a Segre embedding of Pk1�1

R ⇥ · · ·⇥PkL�1
R

(i.e., the linear projection is not required) if and only if Sl >
Pl�1

i=1(ki � 1)Si for every layer l.
Note that the latter condition appears in the last statement of Theorem 2.9. That statement
can now be reinterpreted as follows: The projectivization of the function space is smooth if
and only if it is a Segre variety (and not a proper linear projection from a Segre variety).

The projective setting has several technical advantages, including the fact that the image
of a projective morphism is Zariski closed over the complex numbers [Har13b, II, section 4,
Theorem 4.9]. Moreover, the morphism ⌫ has finite fibers (see Remark 3.3), which enables us
to use techniques from birational geometry.

In order to leverage these advantages, we introduce the complex function space MC =
MC

k,s, consisting of complex filters that can be factorized according to the network architecture
with complex filters in each layer. We also define the complex version of the projective
morphism ⌫:

⌫C = ⌫Ck,s : Pk1�1
C ⇥ · · ·⇥ PkL�1

C ! P(MC
k,s)✓ Pk�1

C .

It now follows from basic real algebraic geometry that the real Zariski closure M of the real
function space M is the set of real points in MC. We provide a formal proof of this fact and
summarize these observations using the identification of filters with polynomials.
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FUNCTION SPACE AND CRITICAL POINTS OF LCNS 343

Proposition 3.2. If ⇡1 is the map defined in (2.2) and ⇡C
1 is its complex counterpart, then

⇡1(Mk,s) =
�
P 2R[x, y]k�1 : P = PL · · ·P1, Pi 2R[xSi , ySi ]ki�1

 
,

⇡1(Mk,s) =
�
P 2R[x, y]k�1 : P = PL · · ·P1, Pi 2C[xSi , ySi ]ki�1

 
,

⇡C
1 (MC

k,s) = ⇡C
1 (M

C
k,s) =

�
P 2C[x, y]k�1 : P = PL · · ·P1, Pi 2C[xSi , ySi ]ki�1

 
.

Proof. It was already observed in [KMMT22, Remark 2.8] that an end-to-end filter w =
µ(w1, . . . ,wL) of an LCN with strides s= (s1, . . . , sL) is the coe�cient vector of a polynomial
with a sparse factorization as follows:

⇡1(w) = ⇡SL
(wL) · ⇡SL�1

(wL�1) · · ·⇡S2
(w2) · ⇡S1

(w1),

where Si = si�1 · · ·s1 for i > 1 and S1 = 1. That observation immediately implies the first
equality of this proposition, which was already stated as Proposition 2.2 in section 2.

The equalities in the last row of the statement are the analogue over the complex numbers
of the first row, using that the image P(MC) of the map ⌫C is Zariski closed. Finally, the last
equality implies the claim in the middle row. This follows from the fact that for any subset
X ✓Rn, its Zariski closures X

R
inside Rn and X

C
inside Cn satisfy X

R
=X

C \Rn.
That fact can be been seen as follows. The inclusion of vanishing ideals IR(X) ✓ IC(X)

implies the reverse inclusion of zero loci X
R ◆ X

C \ Rn. Moreover, for any polynomial
g 2 IC(X) that vanishes on X, the real polynomials Real(g) = g+g

2 and Imag(g) = g�g
2i also

vanish on X, meaning that they also vanish on X
R
and so does g = Real(g) + i Imag(g). In

other words, we have IC(X)✓ IC(X
R
), which yields X

R ✓X
C
.

Now, if X :=M, then X
R
=M and X

C
=MC. To see the latter equality, note that MC

contains X and since it is Zariski closed, we have X
C ✓MC. To show the other inclusion, we

consider a polynomial f 2 IC(X) in the complex vanishing ideal of X. Then, f � µC vanishes

on all real inputs; thus f � µC = 0. This implies f 2 IC(MC) and, therefore, I(X
C
)✓ I(MC).

The inclusion of ideals yields the reverse inclusion of varieties, MC ✓X
C
, which finishes the

proof.

Remark 3.3. One direct consequence of Proposition 3.2 is that each fiber ⌫�1(w) or
(⌫C)�1(w) is finite, based on the di↵erent arrangements of the roots of the polynomial P =
⇡C
1 (w) into factors P = PL · · ·P1 according to the LCN architecture.

Hence, using the projective morphism ⌫, we can easily compute the dimension of LCN
function spaces and show that they are closed in the Euclidean topology.

Proof of Theorem 2.4. Since the function space M has a polynomial parameterization, it
is semialgebraic by Tarski–Seidenberg. To see that M is Euclidean closed, we consider the
projective spaces appearing in the map ⌫ endowed with the quotient topology of the Euclidean
topology on their underlying real vector spaces. Then these spaces are Hausdor↵ (unlike in
the Zariski topology) and compact. Hence, since ⌫ is continuous, its image is closed. Since
the function space M is the a�ne cone over the image of ⌫, it is closed in the Euclidean
topology. To find the dimension of the function space, we use again the projective morphism
⌫. By Remark 3.3, every fiber is zero-dimensional, and hence its domain and image have the
same dimension by [Har13b, II, section 3, Exercise 3.22]. We conclude that

dimMk,s � 1 = dim(P(Mk,s)) = dim(Pk1�1 ⇥ · · ·⇥ PkL�1) = k1 + · · ·+ kL �L.
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344 KOHN, MONTÚFAR, SHAHVERDI, AND TRAGER

Our next goal is to prove Theorem 2.7. For that, we study the root structure of the
polynomial factors in Proposition 3.2.

Definition 3.4. Given a positive integer s, an s-hyper-root is any binomial of the form

axs + bys with a, b 2 C, (a, b) 6= (0,0). We say that the s-hyper-root is real if a, b 2 R. An

s-hyper-root R is nonreal if ↵R is not real for any ↵2C \ {0}.
Lemma 3.5. If a nonreal s-hyper-root R divides a real polynomial P 2 R[x, y], then its

complex conjugate R divides
P
R .

Proof. The statement is clear for s = 1. For s > 1, we write R = L1 · · ·Ls, where Li 2
C[x, y]1. Since the linear factors Li correspond to the roots of R, which was assumed to be
nonreal, each Li is nonreal and its complex conjugate Li does not divide R. However, Li must
divide the real polynomial P . Hence, R=L1 · · ·Ls divides P

R .

With the notion of hyper-roots, we now prove (2.6).

Lemma 3.6. Let (k,s) be an LCN architecture and let (k̃, s̃) be its associated reduced

architecture. Then, Mk,s ✓Mk̃,s̃ and Mk,s =Mk̃,s̃.

Proof. We start by showing the inclusion Mk,s ✓Mk̃,s̃. By Proposition 3.2, every filter in
the function space Mk,s corresponds to a polynomial that can be factorized as P = PL · · ·P1,
where Pi 2R[xSi , ySi ]ki�1. Using the notation in Definition 2.5, setting P̃j+1 := Plj+1

· · ·Plj+1

yields a factorization P = P̃M · · · P̃1 according to the reduced architecture, i.e., ⇡�1
1 (P )2Mk̃,s̃.

To prove the equality of Zariski closures, it su�ces to show that Mk̃,s̃ is a subset of Mk,s. By

Proposition 3.2, every filter in Mk̃,s̃ corresponds to a real polynomial P with a factorization

P = P̃M · · · P̃1, where P̃i 2 C[xS̃i , yS̃i ]k̃i+1. Since every complex factor P̃i can be written as a

product of S̃i-hyper-roots, we can find a complex factorization of P̃i according to the stride-one
architecture (k̃

i
,1). This yields a complex factorization of the real polynomial P according

to the original architecture (k,s), so ⇡�1
1 (P )2Mk,s by Proposition 3.2.

The final ingredient for our proof of Theorem 2.7 is to show that the zero filter is a singular
point for all non-stride-one architectures.

Lemma 3.7. If not all strides are equal to one, then the algebraic degree of M is larger

than one. In particular, the zero filter is a singular point of the a�ne cone M.

Proof. It is su�cient to show that there are two filters w,w0 2 M such that their
sum is not contained in M. We do this by constructing their corresponding polynomi-
als P = ⇡1(w) and P 0 = ⇡1(w0). Let l be the minimal layer such that sl > 1. Note
that this implies that Sl+1 = sl and Sj = 1 for all j  l. We pick polynomials Pi 2
R[xSi , ySi ]ki�1 for i > l + 1 arbitrarily. We choose an arbitrary Ql+1 2 R[xsl , ysl ]kl+1�2

and set Pl+1 := xslQl+1. Finally, we pick Ql 2 R[x, y]kl�2, set Pl := yQl, and choose
Pj 2 R[x, y]ki�1 for i < l such that the product Pl · · ·P1 is not divisible by any
sl-hyper-root. Then, P := PL · · ·P1 2 ⇡1(M). The second polynomial P 0 := P 0

L · · ·P 0
1 2 ⇡1(M)

is constructed by setting P 0
i := Pi for i > l+1, P 0

l+1 := yslQl+1, P 0
l := xQl, and P 0

j := Pj for j < l.
Now we have that P +P 0 = PL · · ·Pl+2Ql+1QlPl�1 · · ·P1(xsly+ xysl). Since xsly+ xysl is not
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divisible by any sl-hyper-root, the sum P + P 0 does not contain enough sl-hyper-roots to
admit a factorization according to the architecture (k,s), i.e., P + P 0 /2 ⇡1(Mk,s) by
Proposition 3.2.

Proof of Theorem 2.7. By Theorem 2.4, the function space Mk,s is thick if and only if

k1 +
LX

l=2

(kl � 1) = dim(Mk,s) = k= k1 +
LX

l=2

(kl � 1)Sl.(3.1)

Since Sl � 1 and we always assume that kl > 1, the equality in (3.1) holds if and only if
S2 = · · ·= SL = 1. The latter is equivalent to s1 = · · ·= sl�1 = 1. Since we always assume the
last stride sL to be one, we have proven assertion (a).

For assertion (b), we observe that for thick LCN function spaces, their Zariski closures
are vector spaces and thus smooth. Thin LCN function spaces have at least one stride larger
than one by assertion (a) and are thus singular by Lemma 3.7.

We now prove assertion (c). Part (c2) was shown in [KMMT22, Theorem 4.1]. For parts
(c1) and (c3), we observe that the function space Mk,s is Zariski closed if and only if every
real polynomial P with a complex factorization P = PL · · ·P1, Pi 2C[xSi , ySi ]ki�1 admits such
a factorization with real factors (this follows from Proposition 3.2).

We start by proving one direction of part (c1) and assume that every layer l 2 {2, . . . ,L}
satisfies that the filter size kl is odd or Sl >

Pl�1
i=1(ki � 1)Si. We show by induction on L

that every real polynomial P = PL · · ·P1 with Pi 2 C[xSi , ySi ]ki�1 admits the analogous real
factorization. The base case of the induction with L = 1 is trivial. For L > 1, we consider
the SL-hyper-roots dividing P . We observe that all roots of the factor PL correspond to SL-
hyper-roots of P , but that P might also have other SL-hyper-roots. By Lemma 3.5, all its
nonreal SL-hyper-roots appear in complex conjugated pairs. We now distinguish two cases.
First, if kL is odd, i.e., the degree of PL is even, then we can rearrange the SL-hyper-roots
of P into a new factorization P = P̃L · · · P̃1 of the same format such that the new factor P̃L

becomes real. Second, the inequality SL >
PL�1

i=1 (ki � 1)Si means that no SL-hyper-root fits
into the polynomial PL�1 · · ·P1 since deg(PL�1 · · ·P1) =

PL�1
i=1 (ki � 1)Si is too small. Hence,

PL is the product of all SL-hyper-roots of P and thus must be real. In either case, we have
found a factorization of P = P̃L · · · P̃1 according to the LCN architecture with P̃L real. So
P̃L�1 · · · P̃1 is real and we can apply the induction hypothesis to the (L� 1)-layer LCN that
omits the last layer.

For the converse direction of (c1), we assume that the architecture (k,s) is reduced and
that there exists a layer l 2 {2, . . . ,L} with even filter size kl and stride relation Sl 

Pl
i=1(ki�

1)Si. We fix Pl := (xSl +2iySl)(xSl � 2iySl) · (xSl +4iySl)(xSl � 4iySl) · · · (xSl + kliySl) of odd
degree kl � 1 and R := xSl � kliySl . Note that Pl · R has no S-hyper-root for any S > Sl.
As Sl 

Pl
i=1(ki � 1)Si, we can choose Pi 2 C[xSi , ySi ]ki�1 for 1  i < l such that R divides

Pl�1 · · ·P1. Moreover, we may choose the Pi such that the quotient Pl�1···P1

R is real and has no
Sl-hyper-root (since Sl > Sl�1). Now, we choose the factors Pj 2R[xSj , ySj ]kj�1 for l < j  L
arbitrarily. The resulting polynomial P := PL · · ·P1 is real and hence ⇡�1

1 (P ) 2 Mk,s. If
P = QL · · ·Q1 is any other complex factorization of P according to the reduced architecture,
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346 KOHN, MONTÚFAR, SHAHVERDI, AND TRAGER

then PL · · ·Pl+1 = QL · · ·Ql+1 (up to scaling). Thus, Ql is the product of Sl-hyper-roots of
P

PL···Pl+1
, i.e., Ql divides Pl ·R. In particular, the odd-degree factor Ql cannot be real and so

⇡�1
1 (P ) /2Mk,s.

Finally, we prove (c3). We use the notation in Definition 2.5, and start by assuming
that the function spaces Mk̃,s̃ of the associated reduced architecture and M

k̃
j
,1

(for 1 
j  M) of the associated stride-one architectures are Zariski closed. Let P = PL · · ·P1 be
a real polynomial with Pi 2 C[xSi , ySi ]ki�1. Then P̃j+1 := Plj+1

· · ·Plj+1 yields a complex
factorization P = P̃M · · · P̃1 according to the reduced architecture. Since Mk̃,s̃ is Zariski

closed, we can find a real factorization P = Q̃M · · · Q̃1 of the same format. Moreover, since
M

k̃
j+1

,1
is Zariski closed, every real polynomial of degree k̃j+1 � 1 can be factorized into

real factors according to the stride-one architecture (k̃
j+1

,1). In particular, we can factorize
Q̃j+1 =Qlj+1

· · ·Qlj+1 such that Qi 2R[xSi , ySi ]ki�1.
For the converse direction of (c3), we assume that the function spaceMk,s is Zariski closed.

We see directly from Lemma 3.6 that the function space of the associated reduced architecture
must be Zariski closed as well. We assume for contradiction that the function space M

k̃
j
,1

of
one of the associated stride-one architectures is not Zariski closed. By (c2), this means that
at least two of its filter sizes are even. In particular, any polynomial P̃j 2 R[x, y]k̃j�1 with
one or zero real roots (depending on the parity of its degree) cannot be factorized according

to the stride-one architecture (k̃
j
,1). We now fix such a polynomial P̃j such that it has no

s-hyper-root for any s > 1. We further pick P̃i 2 R[x, y]k̃i�1 for j < iM arbitrarily and for

1 i < j such that P̃i has no s-hyper-root for any s > 1. Then P := P̃M (xS̃M , yS̃M ) · · · P̃1(x, y)
is a factorization of the real polynomial P according to the reduced architecture (k̃, s̃). Since
Mk,s and Mk̃,s̃ are Zariski closed, there is a factorization P = Q̃M · · · Q̃1 into real factors Q̃i

according to the reduced architecture such that each Q̃i factorizes according to its associated
stride-one architecture. However, by our construction, Q̃j must be equal to P̃j (up to scaling),

which contradicts that P̃j cannot be factorized according to (k̃
j
,1).

4. Critical points of the parameterization. When determining the critical points of the
LCN parameterization map µ, it is once again easier to work with the projective morphism
⌫. This is because the kernel of the di↵erential of ⌫ at a regular point is zero (due to the
finiteness of the fibers of ⌫). Writing x̄ for the equivalence class of x 2 Rn+1 \ {0} in Pn

R, the
tangent space Tx̄Pn

R is canonically isomorphic to HomR(hxi,Rn+1/hxi) [Sha13, Example 6.24].
In our calculations below, we view that tangent space as Rn+1/hxi (⇠=HomR(hxi,Rn+1/hxi))
for simpler notation. This still captures the relevant geometry by modding out the trivial
kernel vectors of the di↵erentials of the a�ne parameterization map µ, as we see below in
Lemma 4.1 and its proof. The underlying reason is that for the map f :Rn+1 \ {0}! Pn

R that
sends x to x̄, the di↵erential dxf : Rn+1 ! Tx̄Pn

R is surjective and its kernel is the line hxi
spanned by x.

Lemma 4.1. A filter tuple ✓ = (w1, . . . ,wL) 2 Rk1 ⇥ · · ·⇥ RkL with wi 6= 0 (for all i) is a

critical point of µ if and only if its corresponding projective point in Pk1�1 ⇥ · · ·⇥ PkL�1
is a

critical point of ⌫.
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FUNCTION SPACE AND CRITICAL POINTS OF LCNS 347

Proof. The maps µ and ⌫ and their di↵erentials form the following commutative diagrams:

QL
i=1(Rki \ {0}) Rk \ {0}

QL
i=1 Pki�1 Pk�1

µ

⌫

QL
i=1Rki Rk

QL
i=1(Rki/hwii) Rk/hµ(✓)i

d✓µ

d✓̄⌫

In particular, we have that imd✓̄⌫
⇠= (imd✓µ)/hµ(✓)i, which implies the assertion.

Lemma 4.2. Let L > 1. Every filter tuple ✓ = (w1, . . . ,wL) 2 Rk1 ⇥ · · ·⇥RkL where one of

the filters wi equals zero is a critical point of µ.

Proof. Using our identification ⇡1 of filters with polynomials, the map µ becomes

µ :R[xS1 , yS1 ]k1�1 ⇥ · · ·⇥R[xSL , ySL ]kL�1 !R[x, y]k�1, (P1, . . . , PL) 7! PL · · ·P1,(4.1)

and we can write the di↵erential at ✓= (P1, . . . , PL) as

d✓µ :R[xS1 , yS1 ]k1�1 ⇥ · · ·⇥R[xSL , ySL ]kL�1 !R[x, y]k�1,

(Ṗ1, . . . , ṖL) 7! ṖL · PL�1 · · ·P1 + · · ·+ PL · · ·P2 · Ṗ1.

If one of the polynomials, say P1, is zero, the di↵erential simplifies to d✓µ : (Ṗ1, . . . , ṖL) 7!
PL · · ·P2 · Ṗ1, and so we obtain rank(d✓µ)  k1. Since we assume all filter sizes to be larger
than one and L� 2, we conclude rank(d✓µ) k1 < k1 + (k2 � 1) + · · ·+ (kL � 1) = dimM.

Remark 4.3. Lemma 4.2 does not apply to single-layer LCN architectures. If L = 1, the
parameterization map µ is the identity map and thus smooth.

We now compute all critical points of µ for two-layer architectures.

Proposition 4.4. Consider a two-layer LCN architecture. A filter pair (w1,w2) is a critical

point of µ if and only if one of the filters is zero or the polynomials ⇡s1(w2) and ⇡1(w1) have
a common s1-hyper-root.

Proof. By Lemma 4.2, we can assume that neither w1 nor w2 are zero. Then, by Lemma
4.1, we can use the projective map ⌫ to determine whether (w1,w2) is a critical point. Using our
identification with polynomials P1 = ⇡1(w1) and P2 = ⇡s1(w2), we can write ⌫ : P(R[x, y]k1�1)⇥
P(R[xs1 , ys1 ]k2�1)! P(R[x, y]k�1), (P1, P2) 7! P2 · P1 and

d(P1,P2)⌫ :R[x, y]k1�1/hP1i ⇥R[xs1 , ys1 ]k2�1/hP2i!R[x, y]k�1/hP1P2i,
([Ṗ1], [Ṗ2]) 7! [Ṗ2P1 + P2Ṗ1].

Since ⌫ has finite fibers (see Remark 3.3), the kernel of its di↵erential at a regular point is
trivial (i.e., zero-dimensional). At a critical point (P1, P2), there is a nontrivial kernel element.
We start by showing that each critical point (P1, P2) satisfies that the polynomials P1 and P2

have a common s1-hyper-root. A nontrivial kernel element of the di↵erential means that there
is ([Ṗ1], [Ṗ2]) 6= ([P1], [P2]) with [Ṗ2P1 + P2Ṗ1] = [P1P2]. In particular, P2 divides Ṗ2P1. Any
factor of P2 that is linear in x, y is part of an s1-hyper-root of P2. Moreover, if such a linear
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348 KOHN, MONTÚFAR, SHAHVERDI, AND TRAGER

factor divides Ṗ2, its whole s1-hyper-root must divide Ṗ2. Hence, every s1-hyper-root of P2

must divide either Ṗ2 or P1. If such an s1-hyper-root divides P1, we are done. Otherwise, P2

and Ṗ2 are equal up to scaling, and [P1P2] = [Ṗ2P1+P2Ṗ1] = [P2Ṗ1] implies that P1 and Ṗ1 are
equal up to scaling as well, which contradicts that we started from a nontrivial kernel element.
For the other direction, if P1 and P2 have a common s1-hyper-root r 2 R[xs1 , ys1 ]1, then we
can write P2 = rQ2 and P1 = rQ1. We now pick f 2 R[xs1 , ys1 ]1 such that gcd(P1P2, f) = 1.
Then, ([fQ1], [�fQ2]) is a nontrivial kernel element of the di↵erential d(P1,P2)⌫, which shows
that (P1, P2) is a critical point of ⌫.

To determine the critical points of the parameterization map µ for arbitrarily many layers,
we start by proving a technical lemma, which provides a partial understanding of the image
of the di↵erential of µ.

Lemma 4.5. Let ✓ = (w1, . . . ,wL) 2 Rk1 ⇥ · · ·⇥RkL be such that wi 6= 0 for all i, the poly-

nomials ⇡S1
(w1), . . . ,⇡SL

(wL) are pairwise coprime, and their product ⇡1(µ(✓))2R[x, y]k�1 is

a polynomial in xs, ys (i.e., ⇡1(µ(✓)) 2 R[xs, ys]k0�1, where s = s1 · · ·sL is the product of the

strides and (k0 � 1)s= k� 1). Then we have that R[xs, ys]k0�1 ✓ ⇡1(im(d✓µ)).

Proof. We omit writing ⇡1. Instead, we directly view µ as the polynomial multiplication
map in (4.1) and work with the polynomials Pi := ⇡Si

(wi). We prove the assertion by induction
on L. For a single layer (i.e., L = 1), the map µ is the identity and the assertion is trivial.
For the induction step, we consider the (L � 1)-layer LCN architecture that omits the Lth
layer and denote its parameterization map by µ̃. Now the tuple ✓̃ = (P1, . . . , PL�1) satisfies
the assumptions in Lemma 4.5 since µ̃(✓̃) = µ(✓)

PL
is a polynomial in xSL , ySL . Writing k̃ � 1

for the degree of µ̃(✓̃) and (k̃0 � 1)SL = k̃ � 1, we have µ̃(✓̃) 2 R[xSL , ySL ]k̃0�1. Applying the
induction hypothesis yields that

R[xSL , ySL ]k̃0�1 ✓ im(d✓̃µ̃).(4.2)

We now perform a change of variables x̃ = xSL , ỹ = ySL and consider the map ' :
R[x̃, ỹ]kL�1 ⇥ R[x̃, ỹ]k̃0�1 ! R[x̃, ỹ]kL+k̃0�2 that multiplies two polynomials. The assumptions

of this lemma in particular yield that PL and µ̃(✓̃) are coprime. Hence, by Proposition 4.4,
the pair (PL, µ̃(✓̃)) is a regular point of the map '. This means that the di↵erential d(PL,µ̃(✓̃))

'
is surjective. Thus, for any P 2R[xs, ys]k0�1 =R[x̃, ỹ](k0�1)sL =R[x̃, ỹ]kL+k̃0�2, there are poly-

nomials ṖL 2R[x̃, ỹ]kL�1 and Q̇2R[x̃, ỹ]k̃0�1 such that P = ṖL · µ̃(✓̃) + PL · Q̇. Moreover, due

to (4.2), there are Ṗi 2 R[xSi , ySi ]ki�1 (for 1  i  L � 1) such that Q̇ = d✓̃µ̃(Ṗ1, . . . , ṖL�1).
Therefore, P = ṖL · µ̃(✓̃) + PL · d✓̃µ̃(Ṗ1, . . . , ṖL�1) = d✓µ(Ṗ1, . . . , ṖL)2 im(d✓µ).

This lemma enables us to show that the critical points of the parameterization map µ can
be understood from the critical points of subnetworks with fewer layers. For a projective LCN
parameterization map ⌫ : Pk1�1⇥ . . .⇥PkL�1 ! Pk�1, we denote by ⌫̃ : Pk1�1⇥ . . .⇥PkL�1�1 !
Pk̃�1 the parameterization map that is obtained by omitting the last layer. Moreover, we
write ' : Pk̃�1 ⇥ PkL�1 ! Pk�1 for the two-layer LCN parameterization map that recovers ⌫
from ⌫̃, i.e., ⌫ =' � (⌫̃ ⇥ idPkL�1).

Proposition 4.6. Let L > 1 and let ✓ = (w1, . . . ,wL) 2 Pk1�1 ⇥ . . . ⇥ PkL�1
. Then ✓ is a

critical point of ⌫ if and only if one of the following holds:
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FUNCTION SPACE AND CRITICAL POINTS OF LCNS 349

(a) ✓̃= (w1, . . . ,wL�1) is a critical point of ⌫̃ or

(b) (⌫̃(✓̃),wL) is a critical point of '.

Proof. We start by assuming that neither condition (a) nor (b) are satisfied, and we
show that ✓ is a regular point of ⌫. The converse of condition (a) means that the vector
space V := imd✓(⌫̃ ⇥ idPkL�1) has the expected dimension

PL
i=1(ki � 1) = dimP(M). Since

' has finite fibers (see Remark 3.3), the converse of condition (b) is that the di↵erential
d(⌫̃(✓̃),wL)

' is injective. Together with the chain rule, the converses of (a) and (b) imply that
dim imd✓⌫ = dimim((d(⌫̃(✓̃),wL)

') |V ) = dimV = dimP(M), which shows that ✓ is a regular
point of ⌫. Next, we assume that condition (a) holds, i.e., dimV < dimP(M). Then the
chain rule yields dim imd✓⌫ = dimim((d(⌫̃(✓̃),wL)

') |V ) dimV < dimP(M), so ✓ is a critical
point of µ. Finally, we show that condition (b) implies that ✓ is a critical point of ⌫. This is
the technical part of the proof. As in Proposition 4.4, we work directly with the polynomials
Pi := ⇡Si

(wi) and view the maps ⌫, ⌫̃, and ' as multiplying polynomials. By Proposition 4.4,
condition (b) means that the polynomials P̃ := ⌫̃(✓̃) = P1 . . . PL�1 and PL have a common SL-
hyper-root r 2 P(R[xSL , ySL ]1). Now we distinguish two cases. First, if r /2 {xSL , ySL}, then
the hyper-root factorizes as r = r1 · · · rL�1 such that each factor ri 2 P(R[xSi , ySi ]) divides
Pi and the factors ri are pairwise coprime (as polynomials in P(R[x, y])). Hence, we can
apply Lemma 4.5 to the map that multiplies the polynomials r1, . . . , rL�1: This yields that
for every f 2 R[xSL , ySL ]1 there are f1, . . . , fL�1 with fi 2 R[xSi , ySi ] and deg(fi) = deg(ri)
such that f1r2 · · · rL�1 + · · · + r1 · · · rL�2fL�1 = f . Thus, writing PL = rQL and Pi = riQi

for all i < L, we see that ([f1Q1], . . . , [fL�1QL�1], [�fQL]) is in the kernel of the di↵erential
d(P1,...,PL)⌫. Choosing f 2R[xSL , ySL ]1 such that gcd(P̃PL, f) = 1 ensures that kernel element
is nontrivial. Since ⌫ has finite fibers, the existence of a nontrivial kernel element shows that
✓ = (P1, . . . , PL) is a critical point of ⌫. Second, if r = xSL or r = ySL , we may assume the
former without loss of generality. Since each Si divides Si+1, there are two layers i and j
with 1  i < j  L such that Pi and Pj have xSj as a common factor. Writing Pi = xSjQi

and Pj = xSjQj , we construct a nontrivial kernel element ([Ṗ1], . . . , [ṖL]) of d✓⌫ by choosing
Ṗi := ySjQi, Ṗj :=�ySjQj , and Ṗm := 0 for all other layers.

Proof of Theorem 2.11. By Lemma 4.2, we can assume that no filter wi is zero. Then, by
Lemma 4.1, we can use the projective map ⌫ to determine whether the given filter tuple is a
critical point. Now Theorem 2.11 follows by induction on L from Propositions 4.4 and 4.6.

Remark 4.7. The description of critical points in Theorem 2.11 is the same when working
over the complex numbers instead of the reals.

5. Singular points. The goal of this section is to prove Theorem 2.9. Hence, throughout
this section, we consider a reduced LCN architecture (k,s). The main idea of the proof is (1)
observe that the projective parameterization map ⌫C is birational for reduced architectures;
(2) compute the singular points of its image (which is the projectivized complex function
space) using the following method.

Fact 5.1 ([KNT17, Lemma 3.2]). Let f :X ! Y be a birational finite surjective morphism

between irreducible complex projective varieties and let y 2 Y . The variety Y is smooth at

the point y if and only if the fiber f�1(y) contains exactly one point x 2X, the variety X is

smooth at the point x, and the di↵erential dxf : TxX ! TyY is an injection.
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350 KOHN, MONTÚFAR, SHAHVERDI, AND TRAGER

We begin by investigating the fibers of ⌫C. For that, given the reduced sequence of strides
s, we define an s-factorization of a homogeneous polynomial P 2C[x, y] to be a factorization
of the form

P (x, y) =QL(x
SL , ySL) · · ·Q2(x

S2 , yS2)Q1(x
S1 , yS1)(5.1)

such that, for all l 2 {L, . . . ,2}, the factor Ql�1(xSl�1 , ySl�1) · · ·Q1(xS1 , yS1) is not divisible by
any Sl-hyper-root. Note that every homogeneous polynomial P 2C[x, y] has an s-factorization
and that it is unique (up to scaling of the factors Ql). In particular, the degrees dl of the factors
Ql in (5.1) are uniquely determined by P and s. We refer to the sequence d= (dL, . . . , d1) as
the s-factor degrees of P . Those degrees give us a new perspective on LCN function spaces (see
Lemma 5.2) and the smaller function spaces they contain (see Corollary 5.3), which provides
us with information on the fibers of ⌫C (see Corollary 5.4).

Lemma 5.2. Let (k,s) be a reduced LCN architecture. Then

⇡1(MC
k,s) =

⇢
P 2C[x, y]k�1 :

the s-factor degrees d of P satisfyPL
i=l diSi �

PL
i=l(ki � 1)Si for all l=L, . . . ,1

�
.

Proof. By Proposition 3.2, the set ⇡1(MC
k,s) consists of polynomials P 2 C[x, y]k�1 of

the form P = PL · · ·P1 with Pi 2 C[xSi , ySi ]ki�1. If P = QL · · ·Q1 is the s-factorization
of any such polynomial, then for any l = L, . . . ,1 we have that PL · · ·Pl divides QL . . .Ql.
This implies

PL
i=l diSi = deg(QL · · ·Ql) � deg(PL · · ·Pl) =

PL
i=l(ki � 1)Si. Conversely, if the

s-factor degrees of a polynomial P satisfy these inequalities, then there exists at least one
factorization of P of the desired form.

Corollary 5.3. Let s be a reduced sequence of strides, and let k,k0 2 ZL
>0 be such thatPL

i=1(ki � 1)Si =
PL

i=1(k
0
i � 1)Si. Then MC

k0,s (MC
k,s if and only if

8l=L, . . . ,2 :
LX

i=l

(k0i � 1)Si �
LX

i=l

(ki � 1)Si, and at least one inequality is strict.(5.2)

Proof. We start by assuming (5.2) and show the strict inclusion of function spaces. Let
P 2 ⇡1(MC

k0,s). By Lemma 5.2, the s-factor degrees d of P satisfy
PL

i=l diSi �
PL

i=l(k
0
i�1)Si

for every layer l. Due to (5.2), this implies
PL

i=l diSi �
PL

i=l(ki�1)Si for every l, which means
P 2 ⇡1(MC

k,s) (again by Lemma 5.2). Hence, we have shown that MC
k0,s ✓MC

k,s. We can see
that the inclusion is strict by considering a polynomial P whose s-factor degrees are exactly
(kL � 1, . . . , k1 � 1). Then, P 2 ⇡1(MC

k,s). However, since one of the inequalities in (5.2) is
assumed to be strict, P cannot be contained in ⇡1(MC

k0,s) due to Lemma 5.2.
Now we assume MC

k0,s ( MC
k,s. This time, we consider a polynomial P whose s-factor

degrees are exactly (k0L � 1, . . . , k01 � 1). Then P 2 ⇡1(MC
k0,s)✓ ⇡1(MC

k,s), and so Lemma 5.2
implies that the inequalities in (5.2) hold. Moreover, one of the inequalities has to be strict,
because otherwise k0 would be equal to k, which would contradict that the inclusion MC

k0,s (
MC

k,s is strict.
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FUNCTION SPACE AND CRITICAL POINTS OF LCNS 351

Corollary 5.4. Let (k,s) be a reduced LCN architecture. If the fiber of a filter w 2 P(MC
k,s)

under ⌫Ck,s has cardinality larger than one, then w is contained in a strictly smaller function

space P(MC
k0,s)( P(MC

k,s). In particular, the map ⌫Ck,s is birational.

Proof. Let w 2 P(MC
k,s) be a filter that is not contained in any P(MC

k0,s) with P(MC
k0,s)(

P(MC
k,s). By Lemma 5.2 and Corollary 5.3, the s-factor degrees of the polynomial P = ⇡1(w)

are (kL � 1, . . . , k1 � 1). Hence, its s-factorization in (5.1) is the unique (up to scaling)
factorization of P according to the reduced architecture (k,s). Therefore, the fiber of the
corresponding filter w under ⌫C is a singleton. This proves the first assertion.

Since complex LCN function spaces are irreducible varieties (as they are parameterized),
the strict inclusion MC

k0,s (MC
k,s is equivalent to that dimMC

k0,s < dimMC
k,s. Thus, the first

assertion of this corollary implies that the generic fiber of ⌫C is a singleton. Therefore, ⌫C is
birational (see [Har13a, Exercise 7.8]).

Proposition 5.5. Let (k,s) be a reduced LCN architecture with at least two layers. Then,

we have that Sing(MC
k,s) = {0}[

S
k02K MC

k0,s, where K is the index set from Theorem 2.9.

Proof. By Remark 3.3, every fiber of ⌫C has a finite number of elements. Since ⌫C is
a morphism between projective varieties, this means that it is a finite morphism [Har13b,

III, section 11, Exercise 11.2]. Moreover, ⌫C is surjective (since MC
= MC) and birational

(by Corollary 5.4). Hence, we can apply Fact 5.1 to determine the singular points of P(MC).
Since the domain of ⌫C is smooth, we conclude that a filter w is singular in P(MC) if and
only if w is a critical value of ⌫C or the fiber (⌫C)�1(w) contains more than one element. Each
singular point of the latter type is contained in some P(MC

k0,s) ( P(MC
k,s) by Corollary 5.4.

For every critical value w of ⌫C, Theorem 2.11 (and Remark 4.7) state that the s-factor degrees
d of the polynomial ⇡1(w) satisfy at least one of the inequalities

PL
i=l diSi �

PL
i=l(ki � 1)Si

(for l = 2, . . . ,L) strictly, which shows that w is also contained in some P(MC
k0,s) ( P(MC

k,s)
by Corollary 5.3. Hence, so far we have shown that Sing(P(MC

k,s))✓
S

k02K P(MC
k0,s), where

K is the index set from Theorem 2.9.
For the reverse inclusion, let us consider a filter w 2 P(MC

k0,s) ( P(MC
k,s). Then, the s-

factor degrees d of the polynomial P = ⇡1(w) satisfy at least one of the inequalities
PL

i=l diSi �PL
i=l(ki � 1)Si (for l = 2, . . . ,L) strictly. We fix the maximal such l and consider the s-

factorization P =QL · · ·Q1 in (5.1). Any factorization P = PL · · ·P1 according to the reduced
architecture (k,s) satisfies that Pi =Qi (up to scaling) for all i > l, that Pl divides Ql, and that
Ql

Pl
divides Pl�1 · · ·P1. If the factor Ql is a power of an Sl-hyper-root, then Pl and Pl�1 · · ·P1

have such a hyper-root in common, and so w is a critical value of ⌫C by Theorem 2.11 and thus
a singular point of P(MC

k,s) by Fact 5.1. Otherwise, if Ql has at least two distinct Sl-hyper-
roots, then there are at least two distinct factorizations of P according to the architecture
(k,s) (depending on which hyper-root is dividing Pl and which Pl�1 · · ·P1). The latter means
that the fiber of w under ⌫Ck,s has cardinality larger than one, and so w is a singular point of
P(MC

k,s) by Fact 5.1.
Now we have shown that Sing(P(MC

k,s)) =
S

k02K P(MC
k0,s). Since the architecture (k,s)

is reduced and has at least two layers, the zero filter is a singular point of the a�ne cone MC
k,s

by Lemma 3.7. This proves the assertion.
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352 KOHN, MONTÚFAR, SHAHVERDI, AND TRAGER

To prove Theorem 2.9, it remains to transfer Proposition 5.5 to the real numbers and to
understand when the index set K is empty. For the first, we investigate the s-factorizations
of real polynomials (see Lemma 5.6); for the latter, we make use of a technical statement on
integers (see Lemma 5.8).

Lemma 5.6. All factors in the s-factorization of a real homogeneous polynomial P 2R[x, y]
are real.

Proof. The factor QL in (5.1) is the product of all SL-hyper-roots of P . Those hyper-roots
either are real or appear in complex conjugated pairs by Lemma 3.5. Hence, their product
QL is real. Since QL�1 · · ·Q1 is the s-factorization of P

QL
, we see inductively that all factors

Qi are real.

Corollary 5.7. Let (k,s) be a reduced LCN architecture. Then

Mk,s =
[

k02K[{k}

Mk0,s,

where K is the index set from Theorem 2.9. In particular, Mk,s \Mk,s ✓
S

k02K Mk0,s.

Proof. Since Mk,s is the real part of MC
k,s, it corresponds to the set of real homogeneous

polynomials whose s-factor degrees d satisfy
PL

i=l diSi �
PL

i=l(ki � 1)Si for all layers l.
Thus, for all k0 2 K, we conclude that Mk0,s ✓ Mk,s. This shows the inclusion “◆” in the
assertion. For the other inclusion “✓”, let us consider a polynomial P in the complement
⇡1(Mk,s \ Mk,s). That means that P does not have a real factorization according to the
architecture (k,s), but since its s-factorization is real due to Lemma 5.6, its s-factor degrees
d need to satisfy one of the inequalities

PL
i=l diSi �

PL
i=l(ki � 1)Si strictly. Hence, k0 :=

(d1 + 1, . . . , dL + 1) 2K. Moreover, the s-factorization of P is a real factorization according
to the architecture (k0,s), i.e., and P 2 ⇡1(Mk0,s).

Lemma 5.8. Let k1, . . . , kl�1 and S1, . . . , Sl be positive integers such that Si divides Si+1

for all i 2 {1, . . . , l � 1}. If Sl 
Pl�1

i=1(ki � 1)Si, then there are integers 0  ei < ki for

i2 {1, . . . , l� 1} such that Sl =
Pl�1

i=1 eiSi.

Proof. We prove the statement by induction on l. For l = 2, we simply put e1 :=
S2

S1
. For

l > 2, we distinguish two cases. If Sl  (kl�1 � 1)Sl�1, then we similarly set el�1 :=
Sl

Sl�1
and

ei := 0 for all i < l � 1. Otherwise, we have 0 < Sl � (kl�1 � 1)Sl�1 
Pl�2

i=1(ki � 1)Si and
we can apply the induction hypothesis to find integers 0  ei < ki for i < l � 1 such that
Sl � (kl�1 � 1)Sl�1 =

Pl�2
i=1 eiSi. Setting el�1 := kl�1 � 1 concludes the proof.

Proof of Theorem 2.9. Since M is the real part of MC, transferring Proposition 5.5 to the
real numbers yields Sing(Mk,s) = {0} [

S
k02K Mk0,s. Clearly, we have that

S
k02K Mk0,s ✓S

k02K Mk0,s. The reverse inclusion follows from Corollary 5.7. It is left to show that the
index set K is empty if and only if every layer l satisfies Sl >

Pl�1
i=1(ki � 1)Si. We start

by assuming that Sl >
Pl�1

i=1(ki � 1)Si holds for every l. We assume for contradiction that
there is some k0 2 K. That means that one of the inequalities in (5.2) is strict. Let l be
the maximal layer such that

PL
i=l(k

0
i � 1)Si >

PL
i=l(ki � 1)Si. Then we have that k0i = ki

for all i > l and that k0l > kl. Since
PL

i=1(k
0
i � 1)Si =

PL
i=1(ki � 1)Si, we obtain that
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FUNCTION SPACE AND CRITICAL POINTS OF LCNS 353

Pl�1
i=1(ki � 1)Si �

Pl�1
i=1(k

0
i � 1)Si = Sl(k0l � kl)>Sl >

Pl�1
i=1(ki � 1)Si, which would imply that

0>
Pl�1

i=1(k
0
i�1)Si, a contradiction. Hence, the set K is empty. Finally, we assume that some

layer l satisfies that Sl 
Pl�1

i=1(ki � 1)Si. We now set k0i := ki for all i > l, k0l := kl + 1, and
k0j := kj � ej for all j < l, where the ej are the integers found in Lemma 5.8. Then k0 2 ZL

>0

satisfies for every j < l that
PL

i=j(k
0
i�1)Si�

PL
i=j(ki�1)Si = Sl�

Pl�1
i=j eiSi �, with equality

if j = 1. This shows that k0 2K, so the set K is not empty.

6. The boundary of the function space. The boundary points of the stride-one LCN
function spaces have been described in terms of the multiplicities of the real roots of poly-
nomials in [KMMT22]. More specifically, if P 2 R[x, y]k�1 is a homogenous polynomial with
n distinct real roots with multiplicities ↵1, . . . ,↵n, then Lemma 4.2 and Proposition 4.4 in
[KMMT22] state that

P 2 ⇡1(Mk,1),
nX

i=1

↵i � e;

P 2 ⇡1(@Mk,1),
nX

i=1

↵i � e and |{↵i : ↵i is odd}| e� 2,

where e := |{ki : ki is even}|. Here, we provide a first extension of that result to LCN ar-
chitectures with larger strides. For that, we observe that, for every positive integer s, every
nonzero homogeneous polynomial P 2 R[x, y] can be uniquely factorized, up to scaling, into
real homogeneous polynomials P (x, y) = Q(xs, ys) ·R(x, y) such that R /2 R[xs, ys]. Now the
factorization of Q into real irreducible factors yields

P = `1(x
s, ys)⇢1 · · · `r(xs, ys)⇢r · q1(x

s, ys)�1 · · · qc(xs, ys)�c · R,

where the linear `i and the quadratic qj correspond to the real and complex roots of Q. We
call the exponents (⇢1, . . . ,⇢r,�1, . . . ,�c) the real s-hyper-root multiplicities of P .

Theorem 6.1. Let (k,s) be a two-layer reduced LCN architecture whose function space Mk,s

is not Zariski closed. A nonzero filter w 2Rk
is in the relative boundary @Mk,s if and only if

the real s1-hyper-root multiplicities of the polynomial ⇡1(w) satisfy
Pc

i=1 �i +
Pr

j=1b
⇢j

2 c �
k2

2
and

Pr
j=1 ⇢j � 1.

Proof. By Theorem 2.7, the function space being non–Zariski closed is equivalent to the
condition that k2 is even and s1  k1 � 1. Consider a sequence w(j) of filters from the set
M\M. By Proposition 3.2, each w(j) is associated with a polynomial P (j) 2R[x, y]k�1 that
can be factored as P (j)

2 P (j)
1 , where P (j)

1 2C[x, y]k1�1 and P (j)
2 2C[xs1 , ys1 ]k2�1. Note that this

sequence is taken from outside of the function space, so no permutation of roots can make
P (j)
1 and P (j)

2 real polynomials. This condition is equivalent to P (j) containing at least k2
s1-hyper-roots that all are non-real (this is because deg(P (j)

2 ) = k2 � 1 is odd and the nonreal
hyper-roots appear in complex conjugated pairs by Lemma 3.5).

Now, suppose that the sequence P (j) converges to a polynomial P that corresponds to
a filter w in the function space M. Then P should have a factorization P2P1 with P1 2
R[x, y]k1�1 and P2 2 R[xs1 , ys1 ]k2�1. Observe that for a polynomial in M, the existence of
such a real factorization is equivalent to the existence of a real s1-hyper-root. In the limit, the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

06
/1

5/
24

 to
 1

41
.5

.2
6.

3 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



354 KOHN, MONTÚFAR, SHAHVERDI, AND TRAGER

number of s1-hyper-roots (counted with multiplicity) cannot decrease, but real s1-hyper-roots
can appear in two ways:

(1) A factor in P (j)
1 that is not an s1-hyper-root converges to a real s1-hyper-root, which

means ⇢j � 1 for at least one j. Then P satisfies the relations
Pr

j=1 ⇢j � 1 andPc
i=1 �i �

k2

2 .
(2) A complex pair of s1-hyper-roots becomes real; i.e., ⇢j � 2 for at least one j. In this

case,
Pr

j=1 ⇢j � 2 and
Pc

i=1 �i +
Pr

j=1b
⇢j

2 c �
k2

2 .
This shows that relative boundary points correspond to polynomials satisfying

Pr
j=1 ⇢j � 1

and
Pc

i=1 �i +
Pr

j=1b
⇢j

2 c �
k2

2 . Conversely, if a polynomial P satisfies these inequalities, we
can construct a sequence in ⇡1(M\M) that converges to P by replacing double real s1-hyper-
roots with pairs of complex conjugated ones and the remaining real s1-hyper-roots R with
R+ ✏(j)xy such that ✏(j) ! 0.

We can use the description of the boundary points for two layers in Theorem 6.1 to prove
Theorem 2.10(c) for arbitrarily many layers. First, however, we show parts (a) and (b) of
that theorem, and observe that the zero filter is on the relative boundary whenever the latter
is nonempty.

Lemma 6.2. Let (k,s) be an LCN architecture whose function space Mk,s is not Zariski

closed. Then 02Rk
is contained in @Mk,s.

Proof. If a polynomial P belongs to the complement of the function space in its Zariski
closure, we can generate a converging sequence 1

nP , which also belongs to the complement
and approaches zero in the limit.

Proof of Theorem 2.10(a)–(b). We start with assertion (a) that compares the reduced
boundary points @MR

k,s ✓ @Mk,s with the relative boundary @Mk̃,s̃ of the reduced ar-

chitecture (k̃, s̃). Both types of boundary points are limits of sequences in Mk,s \ Mk̃,s̃,
with the di↵erence that the limits land in Mk,s or Mk̃,s̃, respectively. This implies that

@MR
k,s = @Mk̃,s̃ \Mk,s.

For assertion (b), we recall from Corollary 5.7 that Mk,s \Mk̃,s̃ ✓
S

k̃
02K̃ Mk̃

0
,s̃, where

K̃ :=Kk̃,s̃ is the index set from Theorem 2.9. Since LCN function spaces are Euclidean closed,

limits of sequences in Mk,s \Mk̃,s̃ are also contained in the finite union of the Mk̃
0
,s̃. In

particular, this shows @MR
k,s ✓

S
k̃

02K̃ Mk̃
0
,s̃. The latter union (which is empty in case the

reduced architecture (k̃, s̃) has just one layer) is contained in Sing(Mk,s) by Theorem 2.9.

To estimate the dimension of the reduced boundary of an LCN function space, we use the
two-layer description in Theorem 6.1 to deduce the necessary algebraic conditions the reduced
boundary points have to satisfy.

Proposition 6.3. Let (k,s) be a reduced LCN architecture. For every nonzero relative

boundary point w 2 @Mk,s, the associated polynomial P = ⇡1(w) satisfies one of the following:

1. P has a real double Sl-hyper-root for some l 2 {2, . . . ,L},
2. the s-factor degrees d of P satisfy at least two of the inequalities

PL
i=l diSi �

PL
i=l(ki�

1)Si for l 2 {2, . . . ,L} strictly, or

3.
PL

i=l diSi �
PL

i=l(ki � 1)Si + 2Sl for some l 2 {2, . . . ,L}.
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FUNCTION SPACE AND CRITICAL POINTS OF LCNS 355

Proof. By Theorem 2.10(b), the s-factor degrees d of P satisfy at least one of the inequal-
ities

PL
i=l diSi �

PL
i=l(ki � 1)Si strictly. We now assume for contradiction the contrary of

the assertion. That means that exactly one of these inequalities is strict, say for the layer
l 2 {2, . . . ,L}, and that

PL
i=l diSi =

PL
i=l(ki � 1)Si + Sl, as well as that Pl has no real double

Si-hyper-root for any i2 {2, . . . ,L}.
Since P is taken from the relative boundary of the function space, there is a convergent

sequence of polynomials P (j) 2 ⇡1(Mk,s\Mk,s) with limit P . Each real polynomial P (j) can be

factored as P (j)
L · · ·P (j)

1 , where P (j)
i 2C[xSi , ySi ]ki�1, and it does not admit an analogous real

factorization due to Proposition 3.2. However, the limit polynomial P has a real factorization
PL · · ·P1 with Pi 2R[xSi , ySi ]ki�1.

For any layer i, the number of Si-hyper-roots cannot decrease in the limit. Hence, the
s-factor degrees d(j) of P (j) satisfy

PL
i=m diSi �

PL
i=m d(j)i Si �

PL
i=m(ki�1)Si for every layer

m. Since we assumed that
PL

i=m diSi =
PL

i=m(ki � 1)Si holds for all m 6= l, we have

dm = d(j)m = km � 1 for m2 {L, . . . , l+ 1},(6.1)

dl = kl � d(j)l � kl � 1,(6.2)

dl�1 = kl�1 � 1� sl�1 and d(j)l�1 + d(j)l sl�1 = dl�1 + dlsl�1,(6.3)

di = d(j)i = ki � 1 for i2 {l� 2, . . . ,1}.(6.4)

In particular, if L > l, we see from dL = d(j)L that every SL-hyper-root of P is the limit

of a sequence of SL-hyper-roots in P (j). Moreover, dL = kL � 1 implies that PL and P (j)
L are

the products of the SL-hyper-roots in P and P (j), respectively. Hence, P (j)
L converges to PL

and P (j)
L is real by Lemma 5.6. Applying the same argument successively for m=L, . . . , l+1

shows that P (j)
m is real and converges to Pm for all m > l. Analogously, we obtain from

d(j)l�1+d(j)l sl�1 = dl�1+dlsl�1 = (kl�1�1)+(kl�1)sl�1 that P (j)
l P (j)

l�1 is real and converges to

PlPl�1. Finally, we conclude from (6.4) that P (j)
i is real and converges to Pi for all i < l� 1.

Therefore, the factors P (j)
l and P (j)

l�1 are nonreal and their product P (j)
l P (j)

l�1 does not admit

a real factorization of the same format. This means that the sequence P (j)
l P (j)

l�1 comes from
the complement Mk0,s0 \ Mk0,s0 of the two-layer architecture (k0,s0) = ((kl�1, kl), (sl�1,1))
(after a change of variables (x0, y0) := (xSl�1 , ySl�1)). Moreover, it converges to PlPl�1, which
corresponds to a filter inside the function space Mk0,s0 . By Theorem 6.1, the real sl�1-hyper-
root multiplicities of PlPl�1 satisfy

Pc
i=1 �i +

Pr
j=1b

⇢j

2 c � kl

2 and
Pr

j=1 ⇢j � 1. Since we
assumed that P does not have any real double Sl-hyper-root, we obtain that PlPl�1 has at
least kl

2 pairs of complex conjugated sl�1-hyper-roots plus a real one, meaning that it has at
least kl + 1 many sl�1-hyper-roots in total. In terms of the s-factor degrees of P , this means
that dl � kl + 1. This is a contradiction to (6.2).

The final ingredient for the proof of Theorem 2.10 is the following technical statement on
integers that we later use to estimate the dimension di↵erence of LCN function spaces.

Lemma 6.4. Let s 2 ZL�1
>0 , Sl :=

Ql�1
i=1 si for all l = 1, . . . ,L, and let k,k0 2 ZL

be distinct

integer tuples such that
PL

i=1(k
0
i� 1)Si =

PL
i=1(ki� 1)Si and

PL
i=l(k

0
i� 1)Si �

PL
i=l(ki� 1)Si

holds for all l= 2, . . . ,L. Then,
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356 KOHN, MONTÚFAR, SHAHVERDI, AND TRAGER

LX

i=1

(ki � k0i)�min{s1, . . . , sL�1}� 1.(6.5)

Moreover, in the case that si > 1 for all i, the inequality (6.5) is strict if one of the following

conditions holds:

1. at least two of the inequalities
PL

i=l(k
0
i � 1)Si �

PL
i=l(ki � 1)Si for l 2 {2, . . . ,L} are

strict, or

2. exactly one of the inequalities is strict and k0l > kl + 1 for some l 2 {2, . . . ,L}.
Proof. We prove the assertion by induction on L. Since k and k0 are assumed to be

distinct, L cannot be equal to one. Thus, the base case of the induction is for L = 2. In
that situation, we have (k02 � 1)s1 + (k01 � 1) = (k2 � 1)s1 + (k1 � 1) and k02 > k2. Hence,
k2 � k02 + k1 � k01 = (k02 � k2)(s1 � 1) � s1 � 1. Moreover, in the case that s1 > 1, the
latter inequality is strict if and only if k02 > k2 + 1. Now we consider the case L > 2. If
the inequalities

PL
i=l(k

0
i � 1)Si �

PL
i=l(ki � 1)Si are equalities for all i � 3, then k0i = ki for

i � 3 and k02 > k2, which means that we can argue exactly as in the induction beginning.
If one of those inequalities for i � 3 is strict, we can apply the induction hypothesis to
s := (s2, . . . , sL�1), k := (k2, . . . , kL), and k

0
:= (k02 � ↵, k03, . . . , k

0
L), where we define ↵ :=PL

i=2(k
0
i � 1)Si

s1
�
PL

i=2(ki � 1)Si

s1
� 0. This yields

LX

i=2

(ki � k0i) + ↵�min{s2, . . . , sL�1}� 1�min{s1, . . . , sL�1}� 1.(6.6)

Note that ↵s1 = k1 � k01 due to
PL

i=1(k
0
i � 1)Si =

PL
i=1(ki � 1)Si. Therefore, we have that

LX

i=1

(ki � k0i) =
LX

i=2

(ki � k0i) + ↵+ ↵(s1 � 1)�
LX

i=2

(ki � k0i) + ↵,(6.7)

and (6.5) follows from (6.6). Finally, we assume that si > 1 for all i. If one of the two
conditions in Lemma 6.4 holds, then either ↵ = 0 and we see from applying the induction
hypothesis that the first inequality in (6.6) is strict, or ↵ > 0 and the inequality in (6.7) is
strict. In either case, (6.5) is strict.

Proof of Theorem 2.10(c). Since @MR
k,s ✓ @Mk̃,s̃ by Theorem 2.10(a), it is enough to

show that

dim@Mk̃,s̃  dimMk,s �min{si : si > 1}=dimMk̃,s̃ �min{s̃1, . . . , s̃M�1}.(6.8)

We first consider the case that min{s̃1, . . . , s̃M�1}> dimMk̃,s̃. This implies for every layerm>

1 in the reduced architecture that S̃m = Sm�1sm�1 >Sm�1
Pm�1

i=1 (k̃i � 1)�
Pm�1

i=1 Si(k̃i � 1).
Thus, the relative boundary of Mk̃,s̃ is empty by Theorem 2.7(c1).

Hence, we assume in the following that min{s̃1, . . . , s̃M�1}  dimMk̃,s̃. We know that

@Mk̃,s̃ ✓
S

k̃
02K̃ Mk̃

0
,s̃ by Theorem 2.10(b). The dimension di↵erence

dimMk̃,s̃ � dimMk̃
0
,s̃ =

MX

i=1

(k̃i � k̃0i)�min{s̃1, . . . , s̃M�1}� 1(6.9)

is estimated for all k̃
0 2 K̃ in Lemma 6.4.
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FUNCTION SPACE AND CRITICAL POINTS OF LCNS 357

We now distinguish between the three di↵erent types of boundary points described in
Proposition 6.3. The points in @Mk̃,s̃ of the second type are contained in the union of Mk̃

0
,s̃

whose dimension di↵erence in (6.9) is strict (due to the first condition in the second part
of Lemma 6.4). The points in @Mk̃,s̃ that are not of the second type but of the third type

in Proposition 6.3 are also contained in the union of Mk̃
0
,s̃ whose dimension di↵erence in

(6.9) is strict (due to the second condition in Lemma 6.4). Thus, denoting the set of points
in @Mk̃,s̃ that are of the second or third type by @MS

k̃,s̃
, we conclude that dim(@MS

k̃,s̃
) 

dimMk̃,s̃ �min{s̃1, . . . , s̃M�1}.
Finally, we consider the set of points in @Mk̃,s̃ whose associated polynomials have a real

double Sl-hyper-root for some Sl > 1. We write �k̃,s̃ for the Zariski closure of that set in

Rk. Since �k̃,s̃ ✓
S

k̃
02K̃ Mk̃

0
,s̃, we have that �k̃,s̃ =

S
k̃

02K̃(�k̃,s̃ \ Mk̃
0
,s̃). By definition,

�k̃,s̃ is contained in the discriminant hypersurface that describes polynomials with double

roots. However, not every filter in Mk̃
0
,s̃ corresponds to a polynomial with a double root, and

so Mk̃
0
,s̃ is not contained in the discriminant hypersurface. Hence, �k̃,s̃ \Mk̃

0
,s̃ ( Mk̃

0
,s̃.

Since the latter is an irreducible variety, this shows that dim(�k̃,s̃ \Mk̃
0
,s̃) < dim(Mk̃

0
,s̃).

Therefore, we conclude that dim�k̃,s̃ = maxk̃02K̃ dim(�k̃,s̃ \ Mk̃
0
,s̃)  dim(Mk̃

0
,s̃) � 1 

dimMk̃,s̃ �min{s̃1, . . . , s̃M�1}, where the latter inequality comes from (6.9).

Since @Mk̃,s̃ ✓ {0}[ @MS
k̃,s̃

[�k̃,s̃, we have proven (6.8).

7. Optimization. In this section, we prove Theorem 2.12. We start by expressing the
squared error loss `D(w) =

PN
i=1 ky(i) � Tw,sx

(i)k2 directly in terms of the filters w in-
stead of first passing to Toeplitz matrices Tw,s. For that, we collect the training data D =
{(x(1),y(1)), . . . , (x(N),y(N))}✓Rd0 ⇥RdL into two matrices X 2Rd0⇥N and Y 2RdL⇥N whose
columns are x(1), . . . ,x(N) and y(1), . . . ,y(N), respectively, and write `D(w) = kY � Tw,sXk2F ,
where k · kF is the Frobenius norm. We next consider the linear map

�X,s :Rk !RdL⇥N , w 7! Tw,sX.

We let Ȳ denote the orthogonal projection of Y onto the image of �X,s and choose a filter
uY 2Rk such that �X,s(uY ) = Ȳ . With this, we can write the squared error loss as

`D(w) = kY � Ȳ k2F + kȲ � Tw,sXk2F = kY � Ȳ k2F + k�X,s(uY �w)k2F .(7.1)

In this expression, Ȳ and thus kY � Ȳ k2F only depend on the data D and (k, s), but not on the
filter w. Hence, minimizing `D(w) is equivalent to minimizing k�X,s(uY �w)k2F . We observe
that k · kX,s := k�X,s(·)kF is a seminorm on Rk that is induced by the (possibly degenerate)
inner product hw1,w2iX,s := h�X,s(w1),�X,s(w2)iF = tr((Tw1,sX)>Tw2,sX).

Lemma 7.1. The inner product h·, ·iX,s is nondegenerate (i.e., k · kX,s is a norm on Rk
)

if and only if the linear map �X,s is injective. Moreover, if N � k, then �X,s is injective for

almost all X 2Rd0⇥N
.

Proof. By definition of the inner product h·, ·iX,s, we see that hw,wiX,s = 0 if and only
if �X,s(w) = 0, which shows the first part of the assertion. For the second part, we write
x̄(i) 2Rk for the first k entries of the ith column of X. The condition �X,s(w) = 0 implies in
particular that w 2 Rk is orthogonal (with respect to the standard Euclidean inner product)
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358 KOHN, MONTÚFAR, SHAHVERDI, AND TRAGER

to each of the vectors x̄(1), . . . , x̄(N). Hence, if N � k, almost all choices of x̄(1), . . . , x̄(N) force
w to be zero.

Corollary 7.2. Let N � k. For almost all X 2Rd0⇥N
, minimizing the squared loss `D(w) is

equivalent to minimizing the squared inner product norm kuY �wk2X,s, where uY is the unique

filter such that �X,s(uY ) is the orthogonal projection (with respect to the Frobenius norm) of

Y onto the image of �X,s.

Proof. This follows immediately from (7.1) and Lemma 7.1.

In the following, we fix an LCN architecture (k,s) and write µ = µk,s and h·, ·iX :=
h·, ·iX,s. In light of Corollary 7.2, we assume from now on that N � k and that X 2Rd0⇥N is
such that minimizing `D is equivalent to minimizing the squared norm kuY � ·k2X . To prove
Theorem 2.12, it is now su�cient to show that, for a fixed X and for almost every data filter
u 2 Rk, every critical point of Lu,X(✓) := ku� µ(✓)k2X satisfies one of the three conditions in
Theorem 2.12.

A filter tuple ✓ is a critical point of Lu,X if and only if the data filter u is contained in the
normal space

NX(✓) := im(d✓µ)
?X + µ(✓)✓Rk,(7.2)

where ?X denotes the orthogonal complement with respect to the inner product h·, ·iX . Hence,
to prove that a fixed set ⇥ of filter tuples does not contain any critical point of Lu,X for almost
all data filters u, our proof strategy is to show that the union of the normal spaces NX(✓)
over all ✓ 2⇥ is contained in a proper algebraic subset of Rk.

Definition 7.3. We say that a semialgebraic subset ⇥ ✓ Rk1 ⇥ · · · ⇥ RkL is exposed with

respect to h·, ·iX if

dim

 
[

✓2⇥
NX(✓)

!
= k.

Example 7.4. If L� 2, then µ�1(0) is exposed. Indeed, for any filter tuple ✓ with at least
two zero filters, d✓µ= 0 and thus dim(NX(✓)) = k.

Lemma 7.5. Let ⇥ ✓ (Rk1 \ {0}) ⇥ · · · ⇥ (RkL \ {0}) be a semialgebraic subset that is an

a�ne cone; i.e., for every ✓ 2⇥ and � 2 (R \ {0})L we have that (�1✓1, . . . ,�L✓L) 2⇥. Then

dim
�S

✓2⇥NX(✓)
�
 dim⇥�L+ 1+ k�min✓2⇥ rank(d✓µ).

Proof. Let us start by fixing a filter tuple ✓ 2 ⇥. For � 2 (R \ {0})L, we write � · ✓ :=
(�1✓1, . . . ,�L✓L). Since for every such � we have µ(� · ✓) = �1 · · ·�Lµ(✓) and im(d�·✓µ) =
im(d✓µ), we see that dim(

S
�2(R\{0})L NX(� · ✓)) dimNX(✓) + 1. Hence,

dim

 
[

✓2⇥
NX(✓)

!
=dim

0

@
[

✓̄2P(⇥)

[

�2(R\{0})L
NX(� · ✓̄)

1

A

 dimP(⇥) + max
✓̄2P(⇥)

dim

0

@
[

�2(R\{0})L
NX(� · ✓̄)

1

A dim⇥�L+max
✓2⇥

(dimNX(✓) + 1).

Since the dimension of the normal space NX(✓) is k� rank(d✓µ), the assertion follows.
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FUNCTION SPACE AND CRITICAL POINTS OF LCNS 359

To estimate the rank of the di↵erential of µ, we investigate the Sl-hyper-roots that the
filters in a tuple ✓ have in common.

Definition 7.6. Let ✓= (w1, . . . ,wL)2Rk1⇥ · · ·⇥RkL with wl 6= 0 and Pl := ⇡Sl
(wl) for all l.

Set Gl(✓) := gcd(Pl, Pl�1 · · ·P1) 2 R[xSl , ySl ] for l 2 {2, . . . ,L}, and G1(✓) := 1. The common
hyper-root degree of ✓ is chd(✓) :=

PL
l=2 deg(Gl(✓)).

Recall that Theorem 2.11 states that ✓ with µ(✓) 6= 0 is a critical point of µ if and only if
chd(✓)� 1.

Proposition 7.7. For ✓ 2 (Rk1 \{0})⇥ · · ·⇥(RkL \{0}), we have that rank(d✓µ)� dim(M)�
chd(✓).

Proof. Using our identification ⇡1 of filters with polynomials, we consider ✓= (P1, . . . , PL)
as a tuple of polynomials as in (4.1). For every layer l, we define P 0

l :=
Pl

Gl(✓)
. Then P 0

l and
the product P 0

l�1 · · ·P 0
1 are coprime. Hence, ✓0 := (P 0

1, . . . , P
0
L) is a regular point of µ0 := µk0,s

where k0l := degP 0
l +1 (this follows from Theorem 2.11 after omitting all layers l with k0l = 1).

We can see d✓0µ0 as a restriction of d✓µ via the following commutative diagram:

QL
i=1R[xSi , ySi ]ki�1 R[x, y]k�1

QL
i=1R[xSi , ySi ]k0i�1 R[x, y]k0�1

d✓µ

d✓0µ
0

'  

where ' : (Ṗ 0
1, . . . , Ṗ

0
L) 7! (Ṗ 0

1G1(✓), . . . , Ṗ 0
LGL(✓)) and  : Ṗ 0 7! Ṗ 0G1(✓) · · ·GL(✓). Therefore,

we conclude that rank(d✓µ) � rank(d✓0µ0) = dim(Mk0,s) =
PL

i=1(k
0
i � 1) + 1 =

PL
i=1(ki � 1�

degGi(✓)) + 1= dim(Mk,s)� chd(✓).

We now aim to show that the critical points of µ (except those in µ�1(0)) are not exposed.
For that, we stratify that set of critical points as the disjoint union (over all � 2 Z>0) of
C� := {✓ 2 (Rk1 \ {0})⇥ · · ·⇥ (RkL \ {0}) | chd(✓) = �}.

Proposition 7.8. Let the architecture (k,s) be reduced. If � > 0 and C� 6= ;, then we have

that codim(C�)> �.

Proof. We prove the assertion by induction on the number L of layers and, as above,
identify filters with polynomials. For single-layer architectures, chd(✓) = 0 for every nonzero
✓, and thus there is nothing to show. Hence, the induction beginning is L= 2. In that case,

C� =

(
(RQ1,RQ2)

�����
R 2R[xs1 , ys1 ]�,Q2 2R[xs1 , ys1 ]k2�1��,Q1 2R[x, y]k1�1��s1

R 6= 0,Q2 6= 0,Q1 6= 0,gcd(Q2,Q1) = 1

)

has dimension k2 + (k1 � �s1). Therefore, the codimension of C� is �s1, which is larger than
� due to s1 > 1 and �> 0.

For the induction step, we assume L > 2. For any partition �̄ = (�2, . . . , �L) 2 ZL�1
�0 of �,

we define C�̄ := {✓ 2 C� | 8l = 2, . . . ,L : degGl(✓) = �l}. Then C� =
S

�̄C�̄, where the union
runs over all nonnegative partitions of � into L � 1 parts. Hence, it is enough to show for
every such partition �̄ that either codim(C�̄)> � or C�̄ = ;. We fix a partition �̄ with C�̄ 6= ;
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360 KOHN, MONTÚFAR, SHAHVERDI, AND TRAGER

and distinguish two cases. First, if �L = 0, then for every ✓0 2C(�2,...,�L�1) we have that almost
every PL 2 R[xSL , ySL ]kL�1 gives a point (✓0, PL) 2 C�̄. Thus, the induction hypothesis yields
dimC�̄ =dimC(�2,...,�L�1) + kL < (k1 + · · ·+ kL�1 � �) + kL.

Second, if �L > 0, we start by observing that

dimC�̄ < dimC(�2,...,�L�1).(7.3)

Indeed, for every (P1, . . . , PL�1,RQL) 2 C(�2,...,�L�1) with R 2 R[xSL , ySL ]�L�1 dividing the
product P1 · · ·PL�1, almost every Q0

L 2 R[xSL , ySL ]kL��L yields a new point (P1, . . . , PL�1,
RQ0

L) 2 C(�2,...,�L�1). Hence, every irreducible component of the Zariski closure C(�2,...,�L�1)

is of the form ⌃⇥ RkL��L . However, no such component is contained in the Zariski closure
C �̄, because the latter imposes an algebraic condition on Q0

L. Since C �̄ ✓ C(�2,...,�L�1) and
no irreducible component of C(�2,...,�L�1) is equal to C �̄, we have shown (7.3). Applying that
inequality �L times, we obtain dimC�̄  dimC(�2,...,�L�1,0) � �L. Now, invoking the first case

(where �L was assumed to be zero), we get dimC(�2,...,�L�1,0) <
PL

i=1 ki �
PL�1

j=1 �j . Putting

the last two inequalities together, we conclude that dimC�̄ <
PL

i=1 ki �
PL

j=1 �j .

Theorem 7.9. If the architecture (k,s) is reduced, Crit�(µ) := {✓ 2 Crit(µ) | µ(✓) 6= 0} is

not exposed.

Proof. Since Crit�(µ) is the disjoint union over all C� with �� 1, we have that

dim

0

@
[

✓2Crit�(µ)

NX(✓)

1

A=dim

0

@
[

��1

[

✓2C�

NX(✓)

1

A=max
��1

dim

 
[

✓2C�

NX(✓)

!
.(7.4)

Applying Lemma 7.5 to each nonempty C� in the union, we obtain dim
�S

✓2C�
NX(✓)

�


dimC� � L + 1 + k � min✓2C�
rank(d✓µ). Therefore, Propositions 7.7 and 7.8 yield that

dim
�S

✓2C�
NX(✓)

�
< (

PL
i=1 ki� �)�L+1+ k� (dimM� �) = k. Since C� is nonempty only

for finitely many choices of �, the latter inequality shows that (7.4) is less than k.

Corollary 7.10. Let Z ✓M be a semialgebraic subset that is an a�ne cone with dim(Z)<
dim(M). If the architecture (k,s) is reduced, then µ�1(Z \{0}) is not exposed. In particular,

this statement holds for Z = @M or Z =M\ Sing(M).

Proof. ⇥ := µ�1(Z \ {0}) is the disjoint union of ⇥C := ⇥ \ Crit(µ) = ⇥ \ Crit�(µ)
and ⇥R := {✓ 2 ⇥ | ✓ /2 Crit(µ)}. By Theorem 7.9, ⇥C is not exposed. Hence, it is left
to show that ⇥R is not exposed either. Since every ✓ 2 ⇥R is a regular point of µ, the
rank of the di↵erential d✓µ is equal to dimM. Thus, applying Lemma 7.5 to ⇥R yields
dim

�S
✓2⇥R

NX(✓)
�
 dim⇥�L+ 1+ k� dimM=dimZ + k� dimM< k.

Theorem 7.9 and Corollary 7.10 imply Theorem 2.12 for reduced LCN architectures. The
general version follows from the following observation.

Lemma 7.11. Let ✓ be a regular point of (µ
k̃

1
,1
, . . . , µ

k̃
M
,1
). Then NX(✓) = NX(✓̃), where

✓̃ := (µ
k̃

1
,1
, . . . , µ

k̃
M
,1
)(✓).

Proof. Since each µ
k̃

i
,1

is the parameterization map of a stride-one LCN, its function
space is thick. Hence, at a regular point ✓ of (µ

k̃
1
,1
, . . . , µ

k̃
M
,1
), the image of the di↵erential
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FUNCTION SPACE AND CRITICAL POINTS OF LCNS 361

of (µ
k̃

1
,1
, . . . , µ

k̃
M
,1
) is equal to the domain of the di↵erential of µk̃,s̃ at ✓̃. Therefore, (2.5)

implies im(d✓µk,s) = im(d✓̃µk̃,s̃), and the assertion follows.

Proof of Theorem 2.12. We consider the set of filter tuples ✓ that do not satisfy any of
the three conditions in Theorem 2.12. More concretely, writing

⇥ := {✓ 2Rk1 ⇥ · · ·⇥RkL : µk,s(✓) 6= 0,✓ /2Crit((µ
k̃

1
,1
, . . . , µ

k̃
M
,1
))},

that set is the union of

⇥C :=⇥\Crit(µk,s), ⇥S :=⇥\ µ�1
k,s(Sing(Mk,s)), and⇥B :=⇥\ µ�1

k,s(@Mk,s).

It is su�cient to show that ⇥C [ ⇥S [ ⇥B is not exposed with respect to any h·, ·iX that
is an inner product. For } 2 {C,S,B}, we set ⇥̃} := (µ

k̃
1
,1
, . . . , µ

k̃
M
,1
)(⇥}). Lemma 7.11

shows that
S

✓2⇥}
NX(✓) =

S
✓̃2⇥̃}

NX(✓̃). Hence, it is enough to show that none of the ⇥̃}
is exposed with respect to h·, ·iX . Since ⇥̃C ✓Crit�(µk̃,s̃), we have that ⇥̃C is not exposed by

Theorem 7.9. Moreover, ⇥̃S [ ⇥̃B ✓ µ�1
k̃,s̃

(Z \{0}), where Z := (Mk,s \ Sing(Mk,s))[ @Mk,s.

Thus, applying Corollary 7.10 to Z ✓Mk̃,s̃, we conclude that ⇥̃S [ ⇥̃B is not exposed.
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