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Abstract. We study the geometry of linear networks with one-dimensional convolutional layers. The function
spaces of these networks can be identified with semialgebraic families of polynomials admitting
sparse factorizations. We analyze the impact of the network’s architecture on the function space’s
dimension, boundary, and singular points. We also describe the critical points of the network’s
parameterization map. Furthermore, we study the optimization problem of training a network with
the squared error loss. We prove that for architectures where all strides are larger than one and
generic data, the nonzero critical points of that optimization problem are smooth interior points
of the function space. This property is known to be false for dense linear networks and linear
convolutional networks with stride one.
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1. Introduction. Linear networks are artificial neural networks with linear activation
functions. Despite only representing linear functions, linear networks have been widely studied
as a simplified model for analyzing the behavior of deep neural architectures. Previous work
investigated various aspects of linear networks, including the optimization landscape and crit-
ical points of the loss function [Bal89, BH95, Kaw16, LK17, ZL18, LvB18, ZSEW20, TKB20,
MCTH22, BH23], the dynamics of training [SMG14], and the convergence of gradient flow
[BRTW21] and gradient descent [NRT21]. In particular, [TKB20] provided a detailed analy-
sis of “pure” and “spurious” critical points, which are critical points arising from the local
geometry of function space (i.e., the set of end-to-end linear functions) and the parameteriza-
tion. In this context we may also mention [KTB19], which studied the geometry of the set of
functions represented by networks with polynomial activation.

Linear convolutional networks (LCNs) are a type of linear network in which each linear
map is a convolution. This requirement imposes linear constraints on the entries of the weight
matrices—conditions sometimes known as “weight sharing” and “restricted connectivity.”
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Although convolutional neural networks (CNNs) are widely used in computer vision applica-
tions, LCNs have not received as much attention as their fully connected counterparts. In
[GLSS18], LCNs were studied from the perspective of the implicit bias of local parameter
optimization. That work, however, considered only nonlocal convolutions with filters of max-
imal size. More recent works have studied the effect on the function space of regularizing
the parameters of the network, obtaining results for stride-one LCNs with arbitrary filter
size fixed across layers [DKS21] and for certain two-layer multichannel LCNs [PE20, JRG22].
Most closely related to our present work is [KMMT22], which studied the geometry of the
function space represented by LCNs for varying filter size sequences. That work showed that
the function space of LCNs can be viewed as a semialgebraic set consisting of polynomials
admitting certain factorizations. Several theoretical results on the function space were pre-
sented, including a characterization of the boundary and its singularities for LCNs with stride
one. For convolutions of higher strides, it was shown that the function space is always con-
tained in a lower-dimensional algebraic set, although many questions remained open in that
case.

In this paper, we aim to fill this gap by studying the geometry of the set of functions
represented by LCNs with arbitrary strides. We consider networks with an arbitrary number
of layers of one-dimensional convolutions having arbitrary filter sizes. Our main results are
a characterization of the dimension, boundary, and singularities of the function spaces, as a
function of the network’s architecture (Theorems 2.4, 2.7, 2.9, and 2.10). We also describe the
critical points of the parameterization map (Theorem 2.11). Based on that description, we
prove the following for architectures where all strides are larger than one: For generic training
data, the nonzero critical points (in parameter space) of the squared error loss correspond to
smooth interior points of the function space that are critical points of the loss on that function
space (i.e., they are not induced by the network’s parameterization map) (Theorem 2.12).
Our results show that LCNs with arbitrary strides have a rich structure that is manifested
in the geometry of certain families of polynomials with structured roots. To the best of our
knowledge, these polynomial families have not been previously explored in detail and could
be of independent interest.

We interpret LCNs in terms of reduced LCN architectures (with stride larger than one)
composed with stride-one subarchitectures. The reduced architectures can be regarded as
defining an initial set of constraints and the stride-one subarchitectures as imposing additional
inequality constraints. This can be used in architecture design as it allows us to determine
which function spaces are contained in each other and control the inequality constraints by
choosing the stride-one subarchitectures.

Our analysis on LCNs provides insights into the complex geometric properties of neural
networks, some of which may transfer to networks with nonlinear activations. Unlike densely
connected feedforward linear networks, LCNs have a function space that is semialgebraic; i.e.,
it is a manifold with boundary (and singularities). Moreover, unlike the stride-one setting con-
sidered in [KMMT22], for arbitrary strides the function space is generally a low-dimensional
subset of its ambient space. We believe that both of these qualitative aspects are impor-
tant features of general neural architectures. Interestingly, increasing the stride size in LCNs
also leads to nonlinear behavior, since it requires associating filters with polynomials of vari-
ables in higher degrees. Geometrically, this means that increasing the stride can be seen as
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Table 1.1
Table of symbols and notation.

Notation Description

k=(ki,...,kr) sequence of filter sizes for each layer [=1,...,L

s=(s1,...,80-1,1) sequence of strides for each layer [ =1,..., L with s, =1

(k,s) LCN architecture with filters k and strides s

S shorthand for Hi;i Si

My, s function space of an LCN architecture (k, s), as a subset of R¥ with
k=3, (ki —1)Si +1

Ts polynomial coefficient map R* — R[z*,y°]x_1; see (2.2)

Uke,s LCN parameterization map [[- R¥: — R¥; see (2.4)

(k, 3) reduced architecture associated with (k, s); see Definition 2.5

M, Zariski closure of My s

OMy,s Euclidean relative boundary of My s

“twisting” the function space. As we discuss, the geometry of the function space plays a cru-
cial role in optimization, since boundary points and singular points are typically more exposed
during training. In LCNs, these special points correspond to functions with “more structure,”
since they are functions that can be expressed by more restrictive architectures or that can be
obtained as compositions of repeated filters. This sort of stratification is also characteristic of
general neural networks. The algebraic nature of LCNs enables however a precise and quanti-
tative description of this structure, revealing, for example, unexpected differences in behavior
between “reduced” (where all strides are larger than one) and “nonreduced” architectures.
In the future, our analysis could be further extended by considering convolutions of higher
dimensions or introducing algebraic activation functions as in [KTB19].

This paper is organized as follows. In section 2 we present our main results about LCNs
with arbitrary strides. We provide proofs of these results in subsequent sections. Specifically,
in section 3 we prove results on the Zariski closure of the function space; in section 4 we focus
on critical points of the parameterization map; in section 5 we analyze the singular points of
the function space, and in section 6 we describe its boundary; finally, in section 7 we discuss
the optimization of the squared loss. We keep track of the major notational concepts in
Table 1.1.

2. Main results. Linear convolutional networks are families of linear maps parameterized
as compositions of convolutions. In this work, we focus on single-channel convolutions for
one-dimensional signals but we allow arbitrary strides. In this setting, a convolution or con-
volutional layer is associated with a filter w € R¥, a stride s € N, and an output dimension
d" € N. The associated convolution is a linear map s : R? — R? with input dimension
d:=s(d' — 1) + k defined by

k—1
(2.1) (X)) =Y _wlj] xlis+j] forxeR? and i=0,1,....d — 1.
j=0

Note that this relation ensures that s + j ranges from 0 to d — 1. The map (2.1) can also be
represented as a generalized Toeplitz matrix T, s € R¥*4 However, for most of our analysis,
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we will not be required to specify the input and output dimensions of convolutions, since
compositions of layers can be defined purely in terms of filter vectors and strides. This will
be clear from Proposition 2.2 below.

Definition 2.1. The function space My s of a linear convolutional network (LCN) archi-
tecture with filter sizes k= (ki,...,kr) and strides s = (s1,...,sr) is the set of all linear maps
« that can be expressed as a composition o =, o --- 0, where op s a convolution of filter
size k; and stride s;. Here L is the number of layers of the LCN.

In the following, we assume that k; > 1 for all i =1,..., L (layers with filter size k; = 1 yield
only scalar multiplication and can be discarded without loss of generality; see Proposition 2.2
below). Each stride s; can be an arbitrary positive integer. The linear maps a in an LCN
function space My, s are convolutions of filter size k := ki + Zfzg(kl -1) Hi;ﬁ s; and stride
s:=s1---sp [KMMT22, Proposition 2.2]. Since each such convolution is uniquely determined
by its filter w € R*, we can view My s as a subset of RF.

To study My, s, we use the fact that compositions of convolutions can be described using
polynomial multiplication. For any positive integer s and filter w = (w[0],...,w[k — 1]) € R¥,

we consider the polynomial

(2.2)
mo(w) :=w0]a"* Y + w1l F 2y oo wlk — 20ty ¢ wlk — 1y* ¢ e R[2®,yl 1.

The map 7, is an isomorphism between R* and the vector space R[z*,*];_1 of all homoge-
neous polynomials of degree k — 1 in the variables (z*,y®).

Proposition 2.2 ([KMMT22]). The function space of the LCN architecture (k,s) can be
identified with the following subset of RF:

L -1
(2.3) Mp s = {wERk:m(w):Hﬂ'Sl(wl), wy E]Rkl} ,  where S Z:HSZ'.
=1 i=1

Here, w4 is the map from (2.2). Equivalently, My, s is the image of the parameterization map

L
(2.4) figs : RF x oo x RFE 5 RE (wy,...,wp) 7! (Hﬂgl (wl)> .
1=1

In light of this result, we often view My, s as a family of homogeneous polynomials ad-
mitting a sparse factorization as in (2.3). Note that the final stride sy has no effect on the
function space; for this reason, we assume from now on that s; = 1. We say that an LCN
architecture is reduced if all strides other than sj, are greater than one.

Ezample 2.3. Consider the architecture k = (3,2) and s = (2,1). Then we have that L =2,
k=58 =1, S =2 Thus, igs: R? x R? = R (wy,ws) + 7 *(m2(wa)m1(wy)). Writing
wi = (w1 [0], w1 [1],w1[2]) and wy = (w2[0], w2 [1]), we see that the function space My, s consists
of all w € R® with 7 (w) = m2(w2) 71 (w1) = (w2[0]z% + w2 [1]y?) (w1 [0]2% + w1 [1]xty! + w1 [2]y?).
Multiplying out the latter expression and collecting the coefficients of individual monomials,
we see that w = (w2[0]w[0], wa[0]w: [1], wa[0]w: [2] + we[1]w; [0], we[1]w1[1], we[l]w1[2]). These
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Figure 2.1. Left: Slice of the semialgebraic set AD* + B°E — BCD =0, C? —4AE >0, obtained by setting
A=1 and C = —1. This set corresponds to the function space M3 2y 2,1) C R® in Ezample 2.3. Right: The
same set intersected with B* —4AB(BC — AD) >0, D* —4DE(CD — BE) >0 and (AE <0 or AC <0). This
intersection corresponds to the function space M2 2.2 (1,2,1) discussed in Example 2.6. The reduced boundary
points and the stride-one boundary points are depicted as a blue point and a black dashed curve, respectively;
see Theorem 2.10.

are precisely the filters of the end-to-end convolutions represented by products T, s, 7w, s, Of

two generalized Toeplitz matrices Ty, s, and T, s, with filter size and stride pairs k; = 3,51 =2

and ko =2,80=1 f which in the concrete case of end-to-end functions R® — R! take the form
(0] wi[t] wa2) 0 0 : N

T, 5, = [wo[ ) wo[ 51{0% wi[1] w1[2]]’ Ts,so = [w2[0]  wa[1]]. According to [KMMT22, Example

4.12], the implicit description of the function space for this architecture is given by

My s ={w=(A,B,C,D,E): AD* + B’E — BCD =0 and C? —4AE >0} C R’.

The Zariski closure ﬂh s of this function space is visualized in Figure 2.1, which displays a
3-dimensional slice.

As the previous example suggests, LCN function spaces are semialgebraic sets; that is,
they are subsets of R that are finite unions of solutions sets of finitely many polynomial
equalities and inequalities.

Theorem 2.4. The LCN function space My s is a semialgebraic Euclidean-closed subset of
RF. Its dimension does not depend on the strides and is equal to ky + - +k — (L —1).

Our main goal in this work is to investigate how the geometric properties of LCN function
spaces are affected by the choice of architecture (the sequences of filter sizes and strides) and
to describe how changes in the geometry impact the optimization of a training loss. The
case of stride-one architectures was studied in detail in [KMMT22]. In this work, we see that
the situation for arbitrary strides is considerably more complex. We focus especially on the
following basic qualitative features:

o Thick versus thin: We say that a function space is thick if dim(Mpy ) = k, that is,
if My s is a full-dimensional semialgebraic subset of its ambient space R* or, equiva-
lently, if its Zariski closure ﬂhs equals R*. We say that the function space is thin if
dim(My s) < k, that is, if it is contained in a proper algebraic subset of RE.

o Zariski closed versus nonclosed: A function space is Zariski closed (equivalently, it is
an algebraic set) if it can be described using only polynomial equalities. It is Zariski
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nonclosed if its characterization as a semialgebraic set necessarily involves polynomial
inequalities.

e Smooth versus singular: We call a filter w in the function space My, s singular if it is
a singular point of the algebraic variety ﬂk’s. Otherwise, we say that w is smooth.
We say the function space My, s is smooth if every filter w € My, 5 is smooth. Note
that the Euclidean relative interior of My, 5 is a manifold. The singular points of that
manifold are contained in the singular locus of My, 5. Hence, by describing all singular
points in the algebraic sense (in Theorem 2.9), we find a superset of all singular points
in the manifold sense.

These distinctions are relevant for the study of the optimization of training losses for
LCNs. The simplest cases are those where the function space is both thick and Zariski closed.
In this case, the LCN function space is equal to its ambient space R¥. Thus, minimizing a
smooth convex loss function on the function space is simply a convex optimization problem.

If the function space is not Zariski closed, it has a nontrivial Euclidean (relative) boundary.
That boundary might be more exposed during the optimization, in the sense that many critical
points of the optimization problem lie on the boundary. This happens, for instance, for stride-
one LCN architectures [KMMT22].

Similarly, if the function space is singular, its singular points might be more exposed as
well. This happens for dense linear networks [TKB20, NRT21].

As long as the function space is thick, its relevant boundary is the standard boundary in
the Euclidean topology on R¥. If the function space is thin, we need to consider its relative
boundary, i.e., the set of points in the function space that are limit points of sequences in
Mk,s \ Mkz,s-

All described geometric qualities can appear in LCN function spaces. We provide minimal
example architectures in Table 2.1.

To study these geometric properties, it is useful to decompose an LCN architecture into
a reduced architecture and several stride-one subarchitectures. Intuitively, we reduce an ar-
chitecture by merging all neighboring layers [ and [ + 1 where s; = 1 (i.e., Siy1 = S;) by
multiplying their polynomial factors in (2.3). Formally, we state the following definition.

Definition 2.5. Given an LCN architecture (k,s), we define its reduced architecture as

(l;:,.é), where § 1= (S1,,...,81,,_,,1) is the subsequence of strides in s that are greater than
one (with a final stride equal to one) and k := (k1,..., k) with kjpq = Zi’:*ltﬂ(kz -1)+1

(and ly:=0, lpy := L). We define M associated stride-one architectures (l;:], 1), with B =
(k41 ki,y,) for j=0,..., M —1.

Table 2.1
Minimal examples of nontrivial LCN architectures (with at least two layers) of the different geometric types
classified in Theorems 2.7 and 2.9.

‘ Zariski closed ‘ Zariski non-closed
Thick k=(3,2),s=(1,1) k=(2,2),s=(1,1)
Thin k=(3,3),s=(2,1) | k=(2,2),s=(2,1) k=(2,2,2),s=(1,2,1) | k=(3,2),s=(2,1)

0 is the only singular point
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Note that if (k, s) was already reduced, then (k,3) = (k,s) and K = (kj) forall 1<j<L.
The parameterization map jux s of the original architecture factorizes as

(25) Mkvszufc,éo<ME;1,1""’M]~CM71)'
Here the different arguments wq, ..., wy, of the parameterization map are assigned to their re-
spective stride-one subarchitectures, pz+1 | (wi,41,...,wy,,,) for j=0,..., M —1, as illustrated
below. 7
M s
(Wiy oWy, Wigds ooy Wiy y o vey Wiy y4lye -, WL ) —————> W
Mfc%l{ ﬂ]::Q,lJ ,U,;MJJ /
M = _ [
( ar , we ey Wy ) ks

Note that the function spaces My, and M;, . of the initial LCN architecture (k,s) and

of its reduced architecture (l;:, 3) live in the same ambient space R¥. We show that reducing
an architecture can enlarge the function space but does not affect its Zariski closure:

(2.6) My,s © My, 5 and My, s = M, ..

See Lemma 3.6. The intuition for this fact is that the function spaces of the associated stride-
one architectures, which are fed to the reduced architecture, may satisfy constraints in their
natural ambient spaces but are always full-dimensional. Conversely, we can interpret (2.6)

as follows: The function space of a reduced architecture with filter sizes (ki,...,kas) and
strides (51,...,5y-1,50 = 1) contains the function space of any architecture with filter sizes
(k‘%,...,k}zl,...,ky,...,k%M) and strides (s%,.:.,s}nl,...,s{\/[,...,sf\n/[M) satisfying > (kI —

1)+ 1=k and s, =§; for j=1,...,M and s] = 1 otherwise.

Ezample 2.6. Consider the architecture k = (2,2,2) and s = (1,2,1). Then M =2 and
I} =2, Iy = 3. The associated reduced architecture is (k,3) = ((3,2),(2,1)), which we already
encountered in Example 2.3. Both architectures appear in Table 2.1. The associated stride-
one architectures are (k',1) =((2,2),(1,1)) and (k?,1) = ((2), (1)), which have output filters
of sizes 3 and 2, respectively, fitting to the domain of the parameterization map of the reduced
architecture. The function space My ¢ is described by the equality AD? + B?E — BCD =0
and inequalities (AE <0 or AC <0), B —4AB(BC — AD) >0, D* —4DE(CD — BE) >0,
and C? — 4AF > 0. Nonetheless, both architectures have the same Zariski closure. This is
because one function space is a subset of the other, and they are irreducible and have the
same dimension by Theorem 2.4.

We are now ready to describe the qualitative features of the LCN function space.

Theorem 2.7. Let (k,s) be an LCN architecture.

(a) The function space My s is thick if and only if s =1.

(b) The function space My, s is smooth if and only if it is thick.
(c) To determine whether My, s is Zariski closed:
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(c1) If (k,s) is reduced, the function space My s is Zariski closed if and only if, for
all 1=1,...,L, ky is odd or S;> S\ (k; — 1)S;.

(c2) If s=1, then My, s is Zariski closed if and only if at most one of its filter sizes
1S even.

(c3) In general, the function space My, s is Zariski closed if and only if the func-
tion spaces of its associated reduced architecture and of its associated stride-one
architectures are all Zariski closed.

In particular, an LCN is a universal approximator of functions in the natural ambient
space R¥ if and only if s =1 and at most one of its filter sizes is even.

Remark 2.8. The condition S; > Zi;}(kzl —1)S; from the previous statement will reappear
in several other results throughout the paper, e.g., in Theorem 2.9 just below. This relation
has a simple interpretation: it means that the composition of the first [ — 1 layers has stride
size (equal to Sj) at least as large as its filter size (equal to Zi;}(kzl —1)S; +1). This in turn
implies that the “receptive fields” of the output coordinates of this convolution do not overlap;
that is, the sets of input coordinates that influence each output coordinate are disjoint. As
we will see, this condition also influences the geometry of the projectivized parameterization

map of the function space (Remark 3.1).

If the function space is not smooth (respectively, not Zariski closed), we aim to understand
its singular points (respectively, its Euclidean relative boundary). Because of (2.6), to describe
the singular locus of a function space’s Zariski closure, it is sufficient to consider reduced
architectures.

Theorem 2.9. Let (k,s) be a reduced LCN architecture with at least two layers. Then the
singular locus of the Zariski closure of the function space is comprised of the zero filter and
the union of all LCN function spaces with the same sequence of strides whose Zariski closures
are proper subsets of My s:

Sing(Mps) = {0} U U My s ={0}U U My s, where

k' eK k'eK
K #k, i (K —1)Si= Y0 (ki — 1)S;
K = K s = kl ZL : ) 1=1\"v¢ 1 i=1\"v7 ) ]
" { =T SE LK =18 > (ki —1)S; foralll=1,...,L

The set K is empty (i.e., 0 is the only singular point) if and only if S; > Zi;}(kz —1)S; for
every layer .

The conditions for k' signify that the truncation of the architecture (k’,s) to the first [ —1
layers has at most the same end-to-end filter size as the corresponding truncation of (k,s)
and the same filter size when all layers are considered. The fact that these are precisely the
architectures which satisfy ﬂk/’s - ﬂk,s is shown in Corollary 5.3.

We denote the Euclidean relative boundary of the function space by My s. Since the
function space is Euclidean closed (see Theorem 2.4), we have OMy s € My, 5. Recall that
OMy, s consists of all points in My, ¢ that are limits of sequences of points in Mhs \Myp,s. We
distinguish between two types of boundary points, using the fact that the reduced architecture
(k,3) of (k,s) satisfies My, s C M. 5 C Mps Zﬂfc,g as in (2.6):
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e Reduced boundary points 8Mﬁs: limits in My, 5 of sequences of points in ﬂk,S\Mic,g-
o Stride-one boundary points BME,S: limits in My, s of sequences of points in ./\/l,j:’g \
My s.

The boundary of LCN function spaces My 1 with stride-one architectures has been fully
characterized in terms of the real-root structure of the polynomials in m;(Mp 1) [KMMT22,
Proposition 4.4]. The relative boundary in the case of strides larger than one is signifi-
cantly more complicated. In particular, in contrast to the stride-one case, the reduced
boundary points form a semialgebraic set of unexpectedly low dimension (i.e., dim 8/\/15 s <
dim My s —1). This can be seen in Figure 2.1, for the architecture with k = (2,2,2) and
s=(1,2,1), where the reduced boundary has codimension two while the stride-one boundary
has codimension one.

Theorem 2.10. Let (k,s) be an LCN architecture with reduced architecture (k,3).

(a) Reduced boundary points are on the relative boundary of the reduced architecture; in
fact 8/\428 =0OMj N Mps.

(b) Reduced boundary boints are contained in lower-dimensional LCN function spaces;
more precisely, we have 8Mﬁ8 CUiei Mj 5 C Sing(Mps), where K := K, 5 is as
defined in Theorem 2.9.

(c) The dimension of OME , is at most dim My s — min{s; : s; > 1}; in particular, its
relative co-dimension is 75tm’ctly larger than 1.

Our discussion until this moment has focused on the implicit geometry of the function
space. In practice, we are also interested in the parameterization of this space by the network’s
parameterization map. Critical points of a loss function can in fact arise from degenerate
points of the parameterization (called “spurious critical points” in [TKB20]). We characterize
these points in the following result.

Theorem 2.11. Let L > 1. A filter tuple 0 = (wy,...,wr) is a critical point of the param-
eterization map g s if and only if there exists a layer l € {1,..., L} such that w; =0 or the
polynomials g, (w;) and g, _, (w;—1)---m(w1) have a nontrivial common factor of the form
Q(z°,y™). In particular, critical values w correspond to polynomials m (w) in the discrimi-
nant hypersurface, that is, the set of polynomials with a double root.

Finally, we investigate the minimization of the squared error on LCNs. Given some training
data D= {(x,y)) e R% xR :4=1,..., N}, the squared error loss on the function space is

N
to(w):=)_ [ly" = Tusx|?,
i=1

where T, s € R %do i5 the generalized Toeplitz matrix associated with a filter w € R¥ and
with stride s (note that dy = s(dr, —1)+k). When training an LCN with data D, we minimize
the squared error loss Ek? s = {po s on the parameter space. Commonly we use gradient
descent to minimize this objective function, and thus we are interested in its critical points.

Theorem 2.12. Let N > k. For almost all' data D € (R% x RN every critical point 0
of EES satisfies one of the following:

LFor all points except those contained in some proper algebraic subset of (Rd" X RdL)N.
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1. 0 is a regular pointifuk,s and pg s(0) is a smooth, relative interior point of My o
(i.€., pi,s(0) ¢ Sing(My s) and pg s(0) € OMy.s), or

2. iuk,s(e) =0, or

3. 0 is a critical point of (ug 1. pgr ).

Note that the last condition is not possible for reduced architectures. Hence, for reduced
architectures, every critical point maps either to zero in the function space My s or to a
smooth interior point of My, s that is a critical point of £p| a4, ,. In the language of [TKB20],
these critical points are “pure,” in the sense that they are critical points in function space,
rather than being degenerate points of the parameterization map. We remark that in the case
of stride-one LCN architectures critical points frequently correspond to functions located on
the boundary of the function space or even to functions situated in the interior of the function
space as spurious (i.e., nonpure) critical points that are induced by the parameterization map;
see [KMMT?22, Example 5.10]. This illustrates the surprising qualitative differences between
reduced and stride-one architectures.

3. The function space and its Zariski closure. From now on, to simplify notation, we
omit the index of the function space M = My, ; and its parameterization map p = g s when
the LCN architecture (k,s) is clear from the context. As the function space M is always
closed under multiplication by scalars (in other words, it forms a cone in R¥), it is natural
to consider its projectivization, denoted by P(M). This means that end-to-end filters that
differ only by scalar multiplication are treated as equivalent. Similarly, we can projectivize
the ambient space of the filters in each layer and replace the parameterization map p with a
morphism v that composes filters up to scaling:

V=g PR X X PR S P(My, ) CPETL

Remark 3.1. The map v is the composition of a Segre embedding of P%;_l X wee X ]P’%L_1
followed by a linear projection. Moreover, v itself is a Segre embedding of IP’lel X oo X ]P’RL*1
(i.e., the linear projection is not required) if and only if S; > Zi;}[(kz —1)S; for every layer [.
Note that the latter condition appears in the last statement of Theorem 2.9. That statement
can now be reinterpreted as follows: The projectivization of the function space is smooth if
and only if it is a Segre variety (and not a proper linear projection from a Segre variety).

The projective setting has several technical advantages, including the fact that the image
of a projective morphism is Zariski closed over the complex numbers [Har13b, II, section 4,
Theorem 4.9]. Moreover, the morphism v has finite fibers (see Remark 3.3), which enables us
to use techniques from birational geometry.

In order to leverage these advantages, we introduce the complez function space M® =
./\/l(,i » consisting of complex filters that can be factorized according to the network architecture
with complex filters in each layer. We also define the complex version of the projective
morphism v:

VO =uf BT e x PR s P(ME ) CPEL

It now follows from basic real algebraic geometry that the real Zariski closure M of the real
function space M is the set of real points in MC. We provide a formal proof of this fact and
summarize these observations using the identification of filters with polynomials.
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Proposition 3.2. If my is the map defined in (2.2) and 7 is its complex counterpart then

T (Mis)={P€eR[z,yly-1 : P=P,---P, PeR[x Thi1}

T (Mps)={PER[z,yls-1 : P=P,---Pi, PeClx™ y¥]_1},

(MG ) =S (My,) = {PeClz,ylsn : P=Pp---P, PBeCl%y% ] 1},
Proof. 1t was already observed in [KMMT22, Remark 2.8] that an end-to-end filter w =
p(wi,...,wr) of an LCN with strides s = (s1,...,s1) is the coefficient vector of a polynomial

with a sparse factorization as follows:

mi(w) =ms, (wr) - 7s, , (wp—1) - 78, (w2) - 75, (w1),

where S; = s;_1---s1 for ¢ > 1 and S; = 1. That observation immediately implies the first
equality of this proposition, which was already stated as Proposition 2.2 in section 2.

The equalities in the last row of the statement are the analogue over the complex numbers
of the first row, using that the image P(M®) of the map v* is Zariski closed. Finally, the last
equality implies the claim in the middle row. ThlS follows from the fact that for any subset
X CR", its Zariski closures X" inside R” and X inside C" satisfy X =X"nRr"

That fact can be been seen as follows. The inclusion of vanishing ideals Ir(X) C Ic(X)
implies the reverse inclusion of zero loci X D X° R Moreover, for any polynomial
g € Ic(X) that vanishes on X, the real polynomials Real(g) = &2? and Imag(g) = g—i also
vanish on X, meaning that they also vanish on X" and so does g = Real(g) + iImag(g). In
other words, we have Ic(X) C I¢ (YR) which yields X X"

Now, if X := M, then X]R M and X© = M(C To see the latter equality, note that MC
contains X and since it is Zariski closed, we have xX© C MC. To show the other 1nclu81on we
consider a polynomial f € Ic(X) in the complex vanishing ideal of X. Then, f o u® vanishes
on all real inputs; thus f o u®=0. This implies f € Ic(M®) and, therefore, I(Y(C) C I(ME).
The inclusion of ideals yields the reverse inclusion of varieties, M® C X, which finishes the
proof. |

Remark 3.3. One direct consequence of Proposition 3.2 is that each fiber v~!(w) or
(v©)~Y(w) is finite, based on the different arrangements of the roots of the polynomial P =
7% (w) into factors P = Py, --- Py according to the LCN architecture.

Hence, using the projective morphism v, we can easily compute the dimension of LCN
function spaces and show that they are closed in the Euclidean topology.

Proof of Theorem 2.4. Since the function space M has a polynomial parameterization, it
is semialgebraic by Tarski-Seidenberg. To see that M is Euclidean closed, we consider the
projective spaces appearing in the map v endowed with the quotient topology of the Euclidean
topology on their underlying real vector spaces. Then these spaces are Hausdorff (unlike in
the Zariski topology) and compact. Hence, since v is continuous, its image is closed. Since
the function space M is the affine cone over the image of v, it is closed in the Kuclidean
topology. To find the dimension of the function space, we use again the projective morphism
v. By Remark 3.3, every fiber is zero-dimensional, and hence its domain and image have the
same dimension by [Harl3b, II, section 3, Exercise 3.22]. We conclude that

dim My, s — 1 =dim(P(My ) = dim(P* =1 x - x PPe=) =y 4+ 4k — L. |
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Our next goal is to prove Theorem 2.7. For that, we study the root structure of the
polynomial factors in Proposition 3.2.

Definition 3.4. Given a positive integer s, an s-hyper-root is any binomial of the form
azr® + by* with a,b € C, (a,b) # (0,0). We say that the s-hyper-root is real if a,b € R. An
s-hyper-root R is nonreal if aR is not real for any o € C\ {0}.

Lemma 3.5. If a nonreal s-hyper-root R divides a real polynomial P € R[x,y], then its
complex conjugate R divides %.

Proof. The statement is clear for s = 1. For s > 1, we write R = Li---Ls, where L; €
Clz,y]1. Since the linear factors L; correspond to the roots of R, which was assumed to be
nonreal, each L; is nonreal and its complex conjugate L; does not divide R. However, L; must
divide the real polynomial P. Hence, R= L; - -- L, divides %. |

With the notion of hyper-roots, we now prove (2.6).

Lemma 3.6. Let (k,s) be an LCN architecture and let (k,8) be its associated reduced
architecture. Then, My, ¢ C Mfc,:e and Mk’s = M}%,é'

Proof. We start by showing the inclusion My, s C Mfc,g- By Proposition 3.2, every filter in
the function space My, ¢ corresponds to a polynomial that can be factorized as P = Py, --- P,
where P; € R[z%,y%];,_1. Using the notation in Definition 2.5, setting PjH =PF,., P,
yields a factorization P = Py - - - P| according to the reduced architecture, i.e., m Y(P)eM e
To prove the equality of Zariski closures, it suffices to show that Mfc,é is a subset of ﬂk, s- By
Proposition 3.2, every filter in ﬂfclé corresponds to a real polynomial P with a factorization
P =Py --- Py, where P, € (C[xsi,ysi]kiﬂ.
product of S’i—hyper—roots, we can find a complex factorization of P; according to the stride-one

Since every complex factor P; can be written as a

architecture (I;:l, 1). This yields a complex factorization of the real polynomial P according
to the original architecture (k, s), so 7, ' (P) € My, s by Proposition 3.2. [ |

The final ingredient for our proof of Theorem 2.7 is to show that the zero filter is a singular
point for all non-stride-one architectures.

Lemma 3.7. If not all strides are equal to one, then the algebraic degree of M is larger
than one. In particular, the zero filter is a singular point of the affine cone M.

Proof. Tt is sufficient to show that there are two filters w,w’ € M such that their
sum is not contained in M. We do this by constructing their corresponding polynomi-
als P = m(w) and P’ = m(w’). Let [ be the minimal layer such that s; > 1. Note
that this implies that S;;1 = s; and S; = 1 for all j < [. We pick polynomials P; €
Rz, y% ], 1 for i > | + 1 arbitrarily. We choose an arbitrary Q11 € R[z*,y"]k, 2
and set Py = 2%Qy1. Finally, we pick Q; € Rlz,y|g,—2, set P, := yQ;, and choose
P; € Rlz,ylg,—1 for ¢ < [ such that the product F,---P; is not divisible by any
si-hyper-root. Then, P:= Py, --- Py € m;(M). The second polynomial P’ := P} --- P| € m; (M)
is constructed by setting P; := P; fori > I+1, P, :=y* Qu41, P} :=2Qy, and P} := P; for j <.
Now we have that P+ P' = Py -+ Py oQii1QiP—1 -+ Pi(x®y + zy®). Since %y + xy® is not
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divisible by any s;-hyper-root, the sum P + P’ does not contain enough s;-hyper-roots to
admit a factorization according to the architecture (k,s), ie., P+ P’ ¢ m(Mpgs) by
Proposition 3.2. |

Proof of Theorem 2.7. By Theorem 2.4, the function space My, ¢ is thick if and only if
L L
(3.1) k1 4+ Z(kl —-1)= dim(Mhs) =k=k + Z(kl —1)5

Since S; > 1 and we always assume that k; > 1, the equality in (3.1) holds if and only if
So9=---= 51 =1. The latter is equivalent to s; =---=s,_1 = 1. Since we always assume the
last stride sy, to be one, we have proven assertion (a).

For assertion (b), we observe that for thick LCN function spaces, their Zariski closures
are vector spaces and thus smooth. Thin LCN function spaces have at least one stride larger
than one by assertion (a) and are thus singular by Lemma 3.7.

We now prove assertion (c). Part (c¢2) was shown in [KMMT22, Theorem 4.1]. For parts
(c1) and (c3), we observe that the function space My, s is Zariski closed if and only if every
real polynomial P with a complex factorization P = Py --- P;, P; € C[z®, y];,_1 admits such
a factorization with real factors (this follows from Proposition 3.2).

We start by proving one direction of part (c1) and assume that every layer [ € {2,..., L}
satisfies that the filter size k; is odd or S; > Zi;}(kl —1)S;. We show by induction on L
that every real polynomial P = Pf--- P, with P, € C[z",y"];,_1 admits the analogous real
factorization. The base case of the induction with L = 1 is trivial. For L > 1, we consider
the Sp-hyper-roots dividing P. We observe that all roots of the factor P correspond to Sp-
hyper-roots of P, but that P might also have other Si-hyper-roots. By Lemma 3.5, all its
nonreal Sp-hyper-roots appear in complex conjugated pairs. We now distinguish two cases.
First, if k7, is odd, i.e., the degree of Py, is even, then we can rearrange the Si-hyper-roots
of P into a new factorlzatlon P= PL P1 of the same format such that the new factor PL
becomes real. Second, the inequality S, > Zi:l (k; — 1)S; means that no Sp-hyper-root fits
into the polynomial P;_--- P, since deg(Pr—1--- Pl) = ZZL:_ll(k:Z —1)S; is too small. Hence,
Py, is the product of all Sp-hyper-roots of P and thus must be real. In either case, we have
found a factorization of P = PL P according to the LCN architecture with 15L real. So
Pj_1--- Py is real and we can apply the induction hypothesis to the (L — 1)-layer LCN that
omits the last layer.

For the converse direction of (c1), we assume that the architecture (k,s) is reduced and
that there exists a layer [ € {2,..., L} with even filter size k; and stride relation S; < Zﬁzl(ki -

1)S;. We fix P := (2% + Qinl)( — 2iy) - (25 4 4iy™) (2% — 4iy>) - - (2% + kyiyt) of odd
degree k; — 1 and R := 2% — kjiy®. Note that P, - R has no S-hyper-root for any S > S;.
As §; < Zi:l( ; — 1)S;, we can choose P; € Clz% y%];, 1 for 1 <i <[ such that R divides
P_qi---P. Moreover, we may choose the P; such that the quotient Fior P g real and has no
Si-hyper-root (since S; > S;—1). Now, we choose the factors P; € R[z55, y% ] k,—1 for [ <j<L
arbitrarily. The resulting polynomial P := Py ---P; is real and hence 7 ( ) € Mps. If
P=Q - Q1 is any other complex factorization of P according to the reduced architecture,
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then Pp--- Py = Q- Q11 (up to scaling). Thus, Q; is the product of S;-hyper-roots of
PL+}%+1’ i.e., @ divides P;- R. In particular, the odd-degree factor J; cannot be real and so
LU(P) ¢ My

Finally, we prove (c3). We use the notation in Definition 2.5, and start by assuming
that the function spaces Mj o of the associated reduced architecture and ./\/l,;j’l (for 1 <
j < M) of the associated stride-one architectures are Zariski closed. Let P = Pr---P; be
a real polynomial with P; € (C[xsl,ysi]ki_l. Then 15j+1 = P, - P41 yields a complex
factorization P = Py --- P, according to the reduced architecture. Since M,;é is Zariski
closed, we can find a real factorization P = Qs ---Qq of the same format. Moreover, since

M1 is Zariski closed, every real polynomial of degree l;:j+1 — 1 can be factorized into

K
1
real factors according to the stride-one archltecture (k:JJr

Q]-i—l Qu,., - Q41 such that Q; € R[5,y g, 1.

For the converse direction of (c3), we assume that the function space My,  is Zariski closed.
We see directly from Lemma 3.6 that the function space of the associated reduced architecture
must be Zariski closed as well. We assume for contradiction that the function space Mg, iy of
one of the associated stride-one architectures is not Zariski closed. By (c2), this means that
at least two of its filter sizes are even. In particular, any polynomial P; € R[z,y|; _, with

one or zero real roots (depending on the parity of its degree) cannot be factorlzed accordlng

1). In particular, we can factorize

to the stride-one architecture (l;:J, 1). We now fix such a polynomial ]5] such that it has no
s-hyper-root for any s > 1. We further pick P; € R[z, ] f,_1 for j <i< M arbitrarily and for
1 <i<j such that P; has no s-hyper-root for any s > 1. Then P := Py (2v, y5v) ... P (z,y)
is a factorization of the real polynomial P according to the reduced architecture (I~c §). Since
M s and Mg ks are Zariski closed, there is a factorization P = Qs --- Q1 into real factors Q;
according to the reduced architecture such that each QZ factorizes according to its associated
stride-one architecture. However, by our construction, Q] must be equal to P (up to scaling),

which contradicts that P; cannot be factorized according to (K',1). [ ]

4. Critical points of the parameterization. When determining the critical points of the
LCN parameterization map p, it is once again easier to work with the projective morphism
v. This is because the kernel of the differential of v at a regular point is zero (due to the
finiteness of the fibers of v). Writing # for the equivalence class of x € R"*1\ {0} in PZ, the
tangent space TzPR is canonically isomorphic to Homg({z), R"*1/(z)) [Shal3, Example 6.24].
In our calculations below, we view that tangent space as R"*!/(z) (2 Homg ({z),R"T!/(x)))
for simpler notation. This still captures the relevant geometry by modding out the trivial
kernel vectors of the differentials of the affine parameterization map u, as we see below in
Lemma 4.1 and its proof. The underlying reason is that for the map f:R"*1\ {0} — PZ that
sends x to Z, the differential d, f : R*™! — T;PR is surjective and its kernel is the line ()
spanned by x.

Lemma 4.1. A filter tuple 0 = (w1,...,wr) € R¥ x .. x R¥ with w; # 0 (for all i) is a
critical point of w if and only if its corresponding projective point in PF1—1 x ... x PFr=1 j5 g
critical point of v.
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Proof. The maps p and v and their differentials form the following commutative diagrams:

[T B\ {0) "= A\ {0} [T, RN " B
[T, PFt —— P! [Ty (RS /(wi)) —— RF/(u(6)
In particular, we have that imdgr = (imdpp)/(1(6)), which implies the assertion. [ ]

Lemma 4.2. Let L > 1. Every filter tuple § = (wy, ..., wr) € RF x ... x R¥: where one of
the filters w; equals zero is a critical point of p.

Proof. Using our identification m; of filters with polynomials, the map p becomes
(4.1)  p:RES Y% g1 X - x Rz, 5, _1 = Rz, gk, (Pi,...,Pp)— Pp--- Py,
and we can write the differential at 6 = (Py,..., Pr) as

dG/'L : R[x517y51]k1—1 XX R[xSLaySL]kL—l %R[mvy]k—la
(Pi,...,P)~Pp-P,_y--- P4+ PPy Py

If one of the polynomials, say P, is zero, the differential simplifies to dgp : (Pl, .. .,PL) —
Pp--- Py - P;, and so we obtain rank(dgu) < k1. Since we assume all filter sizes to be larger
than one and L > 2, we conclude rank(dpp) <k; <ki+ (ke —1)+---+ (kr —1)=dim M. W

Remark 4.3. Lemma 4.2 does not apply to single-layer LCN architectures. If L =1, the
parameterization map g is the identity map and thus smooth.

We now compute all critical points of u for two-layer architectures.

Proposition 4.4. Consider a two-layer LCN architecture. A filter pair (wi,w2) is a critical
point of p if and only if one of the filters is zero or the polynomials 7s, (w2) and m (w1) have
a common s1-hyper-root.

Proof. By Lemma 4.2, we can assume that neither wj nor wo are zero. Then, by Lemma
4.1, we can use the projective map v to determine whether (wy, w9) is a critical point. Using our
identification with polynomials P; = 71 (w1) and Py = 7y, (w2), we can write v : P(R[x, y]g, —1) ¥
PRz, y*'|g,—1) = P(R[z, y]k—1), (P1, P2) — P> - P} and

dipy,pyV Rz, ylk, —1/(Pr) x Rz y™ g, -1/ (P2) = Rz, ylk—1/(P1P2),
([PlL [P2]) — [P2P1 + PZPI]-

Since v has finite fibers (see Remark 3.3), the kernel of its differential at a regular point is
trivial (i.e., zero-dimensional). At a critical point (Pj, P;), there is a nontrivial kernel element.
We start by showing that each critical point (Py, P») satisfies that the polynomials P; and P»
have a common s1-hyper-root. A nontrivial kernel element of the differential means that there
is ([Pl], [Pg]) # ([P1], [P2]) with [ngl + PgPl] = [P P]. In particular, P» divides P,P,. Any
factor of P, that is linear in x,y is part of an si-hyper-root of P,. Moreover, if such a linear
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factor divides Pg, its whole s;-hyper-root must divide Pg Hence, every si-hyper-root of P
must divide either P2 or P;. If such an si- hyper root divides Pl, we are done. Otherwise, P
and P, are equal up to scaling, and [P Ps] = [P2P1 —|—P2P1] [ngl] implies that P, and P are
equal up to scaling as well, which contradicts that we started from a nontrivial kernel element.
For the other direction, if P; and P, have a common sj-hyper-root r € R[z®*,y*'];, then we
can write Py =rQ9 and P; = r@Q;. We now pick f € R[z®',y°']; such that ged(PPo, f) = 1.
Then, ([fQ1],[—fQ2]) is a nontrivial kernel element of the differential dp, p,)v, which shows
that (P, ) is a critical point of v. [ ]

To determine the critical points of the parameterization map p for arbitrarily many layers,
we start by proving a technical lemma, which provides a partial understanding of the image
of the differential of pu.

Lemma 4.5. Let = (w1,...,wr) € R¥ x .. x RFr be such that w; # 0 for all i, the poly-
nomials wg, (w1),...,ms, (wr) are pairwise coprime, and their product w1 (1(0)) € Rlx, y]x—1 is
a polynomial in z°,y* (i.e., m1(u(0)) € Rx®, y®|p—1, where s = s1---sy, is the product of the
strides and (k' —1)s=k —1). Then we have that R[x®,y*|x—1 C w1 (im(dgp)).

Proof. We omit writing 7. Instead, we directly view p as the polynomial multiplication
map in (4.1) and work with the polynomials P; := g, (w;). We prove the assertion by induction
on L. For a single layer (i.e., L = 1), the map p is the identity and the assertion is trivial.
For the induction step, we consider the (L — 1)-layer LCN architecture that omits the Lth
layer and denote its parameterization map by . Now the tuple 6= (Py,...,Pr_1) satisfies
the assumptions in Lemma 4.5 since ﬂ(é) = %f) is a polynomial in 5%, y%r. Writing k — 1
for the degree of ji(f) and (k' —1)S; =k — 1, we have ji(f) € R[wsL,ysL],},_l. Applying the
induction hypothesis yields that

(4.2) R[z5%, y5);,_, C im(dgfi).

We now perform a change of variables # = 2°¢,§ = 3¢ and consider the map ¢ :
R[Z, 9]k, -1 x R[Z,9]z,_, — Rz, 7] Ky +f_o that mu~lt1phes two polynomials. The assumptions
of this lemma in particular yield that Pp and fi(f) are coprime. Hence, by Proposition 4.4,
the pair (Pr, fi(0)) is a regular point of the map ¢. This means that the differential dip, n@)®
is surjective Thus, for any P € R[z*,y*|p—1 =R[Z, §] (1 —1)s, = R[, y]k Hi—2 there are poly-
nomlals P e R[Z, y]kL_l and Q € R[z,7];,_, such that P = Py - [i(0) + Pr, - Q. Moreover, due

o0 (4.2), there are P € Riz%, y%g, 1 (for 1 <i< L — 1) such that Q= de,u(Pl, Py
Therefore, P=Pr-p(0)+ Py, - dau(Pl, P 1) = dgM(Pl, .. PL) € im(dpp). [ |

This lemma enables us to show that the critical points of the parameterization map u can
be understood from the critical points of subnetworks with fewer layers. For a projective LCN
parameterization map v : Pkl x PRl 5 PF=1 we denote by 7: PP =1 x . x Phe1—1
PF=1 the parameterization map that is obtained by omitting the last layer. Moreover, we
write ¢ : PPl x Pke—1  PF=1 for the two-layer LCN parameterization map that recovers v
from v, i.e., v =@ o (U X idpr,-1).

Proposition 4.6. Let L > 1 and let 6 = (wy,...,wg) € PPt x ... x P*2=1 Then 0 is a
critical point of v if and only if one of the following holds:
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(a) 0= (wy,...,wr_1) is a critical point of U or

(b) (#(0),wr) is a critical point of .

Proof. We start by assuming that neither condition (a) nor (b) are satisfied, and we
show that 6 is a regular point of v. The converse of condition (a) means that the vector
space V := imdy( x idps, 1) has the expected dimension S5 (k; — 1) = dimP(M). Since
¢ has finite fibers (see Remark 3.3), the converse of condition (b) is that the differential
d(3(5) 1, 18 njective. Together with the chain rule, the converses of (a) and (b) imply that
dimimdyr = dim im((d(ﬁ(§)7wL)<p) ly) = dimV = dimP(M), which shows that 6 is a regular
point of v. Next, we assume that condition (a) holds, i.e., dimV < dimP(M). Then the
chain rule yields dimimdgr = dimim ((d; ) ,,,1%) [v) < dimV < dimP(M), so 0 is a critical
point of p. Finally, we show that condition (b) implies that 6 is a critical point of v. This is
the technical part of the proof. As in Proposition 4.4, we work directly with the polynomials
P, :=7g,(w;) and view the maps v, , and ¢ as multiplying polynomials. By Proposition 4.4,
condition (b) means that the polynomials P:=(f) = Py ... P;_; and Py, have a common S-
hyper-root r € P(R[z5*,y%:];). Now we distinguish two cases. First, if ¢ {z%, 4%}, then
the hyper-root factorizes as r = r1---r_1 such that each factor r; € P(R[z%,y%]) divides
P; and the factors r; are pairwise coprime (as polynomials in P(R[z,y])). Hence, we can
apply Lemma 4.5 to the map that multiplies the polynomials rq,...,rr_1: This yields that
for every f € R[z%% y%r]; there are fi,..., fr_1 with f; € R[z%, 4] and deg(f;) = deg(r;)
such that firo---rp_ 14+ -+ 4+r1---rp_ofr—1 = f. Thus, writing P, = rQr and P; = r;Q;
for all © < L, we see that ([f1Q1],...,[fr—1QrL-1],[—fQL]) is in the kernel of the differential
dp,,..p,)v- Choosing f € R[z5:, 4], such that ged(PPp, f) =1 ensures that kernel element
is nontrivial. Since v has finite fibers, the existence of a nontrivial kernel element shows that
9 = (Py,...,Pp) is a critical point of v. Second, if 7 = 2% or r = ¥, we may assume the
former without loss of generality. Since each S; divides S;11, there are two layers ¢ and j
with 1 <4 < j < L such that P; and P; have 2% as a common factor. Writing P; = % Q;
and P; = 2% Q;, we construct a nontrivial kernel element ([P1],...,[Pr]) of dgv by choosing
P =45 Q;, Pj = —y Q;, and P, :=0 for all other layers. |

Proof of Theorem 2.11. By Lemma 4.2, we can assume that no filter w; is zero. Then, by
Lemma 4.1, we can use the projective map v to determine whether the given filter tuple is a
critical point. Now Theorem 2.11 follows by induction on L from Propositions 4.4 and 4.6. B

Remark 4.7. The description of critical points in Theorem 2.11 is the same when working
over the complex numbers instead of the reals.

5. Singular points. The goal of this section is to prove Theorem 2.9. Hence, throughout
this section, we consider a reduced LCN architecture (k,s). The main idea of the proof is (1)
observe that the projective parameterization map v is birational for reduced architectures;
(2) compute the singular points of its image (which is the projectivized complex function
space) using the following method.

Fact 5.1 ([KNT17, Lemma 3.2]). Let f: X — Y be a birational finite surjective morphism
between irreducible complex projective varieties and let y € Y. The variety Y is smooth at
the point y if and only if the fiber f=1(y) contains exactly one point x € X, the variety X is
smooth at the point x, and the differential d, f : T, X — T,)Y 1is an injection.
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We begin by investigating the fibers of ©C. For that, given the reduced sequence of strides
s, we define an s-factorization of a homogeneous polynomial P € C[z,y] to be a factorization
of the form

(5.1) P(z,y) = Qr(z™,y°") - Qa2(2,y*)Q1(z™,y™)

such that, for all I € {L,...,2}, the factor Q;_1 (2>, y%-1)---Q1 (2, ) is not divisible by
any Sj-hyper-root. Note that every homogeneous polynomial P € C[z, y] has an s-factorization
and that it is unique (up to scaling of the factors @;). In particular, the degrees d; of the factors
@ in (5.1) are uniquely determined by P and s. We refer to the sequence d = (dy,...,d;) as
the s-factor degrees of P. Those degrees give us a new perspective on LCN function spaces (see
Lemma 5.2) and the smaller function spaces they contain (see Corollary 5.3), which provides
us with mformatlon on the fibers of v* (see Corollary 5.4).

Lemma 5.2. Let (k,s) be a reduced LCN architecture. Then

the s-factor degreesd of P satis
m(./\/lg’s):{Pe(C[x,y]k_ f g / Ty 1 }

YOSk 48> (ki —1)S; for alll=L, ...

Proof. By Proposition 3.2, the set 7r1 (M(C ) consists of polynomials P € C[z,y]x—1 of
the form P = Pp---P, with P; € C[2° ]ki—l- If P=Qr Q1 is the s-factorization
of any such polynomial, then for any [ = L,...,l we have that Py --- P, divides Qy,...Q;.
This implies ZiL:l d;S; = deg(Qr--- Q) > deg(Pp---P) = EiL:l(k‘i —1)S;. Conversely, if the
s-factor degrees of a polynomial P satisfy these inequalities, then there exists at least one
factorization of P of the desired form. |

Corollary 5.3. Let s be a reduced sequence of strides, and let k, k' € ZQO be such that
Zle(ki —-1)S;= Ele(k; —1)S;. Then M§, , C M(,is if and only if

L L
(5.2) Vi=L,...,2: Z(k‘g —-1)S;> Z(kl —1)S;i, and at least one inequality is strict.

i=l i=l

Proof. We start by assuming (5.2) and show the strict inclusion of function spaces Let
Pe 7r1(./\/l(cl, ). By Lemma 5.2, the s-factor degrees d of P satisfy S22, d;S; > S°% (k! —1)S;
for every layer I. Due to (5.2), this implies Zi:l d;S; > Zi:l( ;—1).S; for every [, which means
Pe WI(M%’S) (again by Lemma 5.2). Hence, we have shown that MC/,S - ./\/l%’s. We can see
that the inclusion is strict by considering a polynomial P whose s-factor degrees are exactly
(kp —1,...,k1 —1). Then, P € Wl(Mg’s). However, since one of the inequalities in (5.2) is
assumed to be strict, P cannot be contained in 7y (Mg,ﬁ) due to Lemma 5.2.

Now we assume MC,’ s & M(,S’ o~ This time, we consider a polynomial P whose s-factor
degrees are exactly (k7 —1,...,k} —1). Then P em (./\/l(c/ﬁ) Cm (M%)s), and so Lemma 5.2
implies that the inequalities in (5.2) hold. Moreover, one of the inequalities has to be strict
because otherwise k' would be equal to k, which would contradict that the inclusion M$ ks &
ME s I strict. [ ]
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Corollary 5.4. Let (k,s) be a reduced LCN architecture. If the fiber of a filter w € IP(M%?S)
under I/ES has cardinality larger than one, then w is contained in a strictly smaller function
space P(M, ) CP(M§ ). In particular, the map v, , is birational.

Proof. Let w € IP’(M%S) be a filter that is not contained in any ]P’(MC,,S) with ]P’(MC/”,;) -
P(M§ ). By Lemma 5.2 and Corollary 5.3, the s-factor degrees of the polynomial P = (w)
are (k; — 1,...,k; — 1). Hence, its s-factorization in (5.1) is the unique (up to scaling)
factorization of P according to the reduced architecture (k,s). Therefore, the fiber of the
corresponding filter w under * is a singleton. This proves the first assertion.

Since complex LCN function spaces are irreducible varieties (as they are parameterized),
the strict inclusion M(,S,7 « & /\/l(,i ¢ is equivalent to that dim MC,7 o < dim ME} o Thus, the first
assertion of this corollary implies that the generic fiber of v is a singleton. Therefore, vC is

birational (see [Harl3a, Exercise 7.8]). [ ]

Proposition 5.5. Let (k,s) be a reduced LCN architecture with at least two layers. Then,
we have that Sing(/\/l(,is) ={0} UUpex My ., where K is the index set from Theorem 2.9.

Proof. By Remark 3.3, every fiber of v has a finite number of elements. Since v* is

a morphism between projective varieties, this means that it is a finite morphism [Harl3b,
III, section 11, Exercise 11.2]. Moreover, v is surjective (since ﬂc = M°C) and birational
(by Corollary 5.4). Hence, we can apply Fact 5.1 to determine the singular points of P(M®).
Since the domain of v* is smooth, we conclude that a filter w is singular in P(M®) if and
only if w is a critical value of v© or the fiber (¢*)~!(w) contains more than one element. Each
singular point of the latter type is contained in some P(MS, ) C IP’(M(,(; s) by Corollary 5.4.
For every critical value w of ¢, Theorem 2.11 (and Remark 47) state that the s-factor degrees
d of the polynomial 7 (w) satisfy at least one of the inequalities Y7, d;S; > S°% (ki — 1)8;
(for I =2,...,L) strictly, which shows that w is also contained in some ]P’(MC,73) - IP’(M%S)
by Corollary 5.3. Hence, so far we have shown that Sing(P(M%s)) CUrer P(M£,7s), where
K is the index set from Theorem 2.9.

For the reverse inclusion, let us consider a filter w € IP’(MC,7 s) C IP’(M%} s)- Then, the s-

factor degrees d of the polynomial P = 71 (w) satisfy at least one of the inequalities Zf:l d;S; >
Zf:l(ki —1)S; (for I = 2,...,L) strictly. We fix the maximal such [ and consider the s-
factorization P=Qp---Q1 in (5.1). Any factorization P = Py, --- P} according to the reduced
architecture (k, s) satisfies that P, = Q; (up to scaling) for all i > [, that P, divides @), and that
% divides P,_q --- P;. If the factor (); is a power of an S;-hyper-root, then P, and P,_1--- P;
have such a hyper-root in common, and so w is a critical value of ¥© by Theorem 2.11 and thus
a singular point of ]P’(M(,S s) by Fact 5.1. Otherwise, if @; has at least two distinct S;-hyper-
roots, then there are at least two distinct factorizations of P according to the architecture
(k,s) (depending on which hyper-root is dividing P, and which P,_;--- P;). The latter means
that the fiber of w under Vﬁ ¢ has cardinality larger than one, and so w is a singular point of
]P’(/\/lg’s) by Fact 5.1.

Now we have shown that Sing(]P’(Mgs)) =Urrex ]P’(MC,,S). Since the architecture (k, s)
is reduced and has at least two layers, the zero filter is a singular point of the affine cone M(,S s
by Lemma 3.7. This proves the assertion. m
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To prove Theorem 2.9, it remains to transfer Proposition 5.5 to the real numbers and to
understand when the index set K is empty. For the first, we investigate the s-factorizations
of real polynomials (see Lemma 5.6); for the latter, we make use of a technical statement on
integers (see Lemma 5.8).

Lemma 5.6. All factors in the s-factorization of a real homogeneous polynomial P € R[z,y]
are real.

Proof. The factor Qp, in (5.1) is the product of all Sz-hyper-roots of P. Those hyper-roots
either are real or appear in complex conjugated pairs by Lemma 3.5. Hence, their product
Q@ is real. Since QQp_1--- Q1 is the s-factorization of &, we see inductively that all factors
Q; are real. |

Corollary 5.7. Let (k,s) be a reduced LCN architecture. Then

My s = U My s,
kK eKU{k}

where K is the index set from Theorem 2.9. In particular, Mg s\ Mg C Ur'ex Mk .s-

Proof. Since My, s is the real part of M% ¢+ it corresponds to the set of real homogeneous
polynomials whose s-factor degrees d satisfy ZiL:l d;S; > Zf:l(/ci —1)S; for all layers I.
Thus, for all k' € K, we conclude that ﬂk',s C My s. This shows the inclusion “2” in the
assertion. For the other inclusion “C”, let us consider a polynomial P in the complement
T (ﬂhs \ Mp,s). That means that P does not have a real factorization according to the
architecture (k, s), but since its s-factorization is real due to Lemma 5.6, its s-factor degrees
d need to satisfy one of the inequalities S5, d;S; > L (ki — 1)S; strictly. Hence, k' :=
(di+1,...,dr +1) € K. Moreover, the s-factorization of P is a real factorization according
to the architecture (K, s), i.e., and P € 11 (My s). [ |

Lemma 5.8. Let ki,...,ki_1 and S1,...,S; be positive integers such that S; divides S;+1
foralli e {1,....,1—1}. If §; < Zi;%(k‘l — 1)S;, then there are integers 0 < e; < k; for
ie{l,...,l =1} such that S;= Zi;i €iS;.

Proof. We prove the statement by induction on [. For [ =2, we simply put e; := g—f For
[ > 2, we distinguish two cases. If S; < (k;—1 — 1)S5;_1, then we similarly set ¢;_1 := S;g,ll and
e; =0 for all i <l — 1. Otherwise, we have 0 < S} — (kj_1 — 1)S;_1 < Zﬁj(kzl —1)S; and
we can apply the induction hypothesis to find integers 0 < e; < k; for ¢ < [ — 1 such that
S;— (k-1 —1)S1 = Ziﬁ e;S;. Setting e;_1 := k;_1 — 1 concludes the proof. [ |

Proof of Theorem 2.9. Since M is the real part of M, transferring Proposition 5.5 to the
real numbers yields Sing(My ) = {0} U Upc g Mi's- Clearly, we have that (U cx My s C
Uk ex Mr.s- The reverse inclusion follows from Corollary 5.7. It is left to show that the
index set K is empty if and only if every layer [ satisfies S; > Zﬁ;%(kl —1)S;. We start
by assuming that S; > Zi;i(kz —1)S; holds for every I. We assume for contradiction that
there is some k' € K. That means that one of the inequalities in (5.2) is strict. Let [ be
the maximal layer such that Zle(k; -1)S; > Zle(ki —1)S;. Then we have that &k} = k;
for all ¢ > [ and that k] > k;. Since SE (k=18 = S (ki — 1)S;, we obtain that

1=
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S ey — 1) S — S (K = 1)8; = Sy (k) — ki) > S > 3L (ki — 1)S;, which would imply that
0> Zi;i(k; —1)S;, a contradiction. Hence, the set K is empty. Finally, we assume that some
layer [ satisfies that S; < Ei;i(kz —1)S;. We now set k] :=k; for all i > [, k) :=k; + 1, and
k:; :=kj —e; for all j <, where the e; are the integers found in Lemma 5.8. Then k' € Z’;O
satisfies for every j <[ that Zfzj(k; -1)S;— Ef:](kl —-1)S;=5—- Zi;; €;S; >, with equality
if j =1. This shows that k' € K, so the set K is not empty. |

6. The boundary of the function space. The boundary points of the stride-one LCN
function spaces have been described in terms of the multiplicities of the real roots of poly-
nomials in [KMMT22]. More specifically, if P € R[z,y]x—1 is a homogenous polynomial with
n distinct real roots with multiplicities aq,...,a,, then Lemma 4.2 and Proposition 4.4 in
[KMMT?22] state that

n
Pem(Mgi) <= Zai >e;

i=1

n
Pem(OMri) & Zai >eand |[{a;:; is odd}| <e—2,

i=1
where e := |{k; : k; is even}|. Here, we provide a first extension of that result to LCN ar-
chitectures with larger strides. For that, we observe that, for every positive integer s, every
nonzero homogeneous polynomial P € R[z,y] can be uniquely factorized, up to scaling, into
real homogeneous polynomials P(x,y) = Q(x%,y°) - R(x,y) such that R ¢ R[z®,y*]. Now the
factorization of @) into real irreducible factors yields

PZEl(xsays)pl."eT(‘TsuyS)pr : Q1(x87ys)’h"'QC('rsayS)’yc : R7

where the linear ¢; and the quadratic g; correspond to the real and complex roots of (). We
call the exponents (p1,...,pr,V1,--.,7) the real s-hyper-root multiplicities of P.

Theorem 6.1. Let (k,s) be a two-layer reduced LCN architecture whose function space My, s
is not Zariski closed. A nonzero filter w € R* is in the relative boundary OMy s if and only if
the real s1-hyper-root multiplicities of the polynomial mi(w) satisfy D25y v+ > 74 I
and Y %_y pj > 1.

Proof. By Theorem 2.7, the function space being non—Zariski closed is equivalent to the
condition that ko is even and s; < k1 — 1. Consider a sequence w9 of filters from the set
M\ M. By Proposition 3.2, each w(j‘) is associated with a polynomial PU) € R[z,y]p_1 that
can be factored as PQ(J)PI(]), where Pl(]) € Clz,y]k,—1 and PQ(J) € Clz®',y*'|k,—1. Note that this
sequence is taken from outside of the function space, so no permutation of roots can make
Pl(] ) and P2(] ) real polynomials. This condition is equivalent to PU) containing at least ko
s1-hyper-roots that all are non-real (this is because deg(PQ(] )) =ko — 1 is odd and the nonreal
hyper-roots appear in complex conjugated pairs by Lemma 3.5).

Now, suppose that the sequence PU) converges to a polynomial P that corresponds to
a filter w in the function space M. Then P should have a factorization P,P; with P, €
R[z,y]k, 1 and Py € R[z*',y*!];, 1. Observe that for a polynomial in M, the existence of
such a real factorization is equivalent to the existence of a real sj-hyper-root. In the limit, the
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number of s1-hyper-roots (counted with multiplicity) cannot decrease, but real sj-hyper-roots
can appear in two ways:
(1) A factor in Plj) that is not an si-hyper-root converges to a real si-hyper-root, which
means p; > 1 for at least one j. Then P satisfies the relations Z;Zl p;j = 1 and
25:1 Vi 2 %
(2) A complex pair of si-hyper-roots becomes real; i.e., p; > 2 for at least one j. In this
case, 22:1 pj=2and 337 v+ 22:1 5] > %2
This shows that relative boundary points correspond to polynomials satisfying Z;Zl p; =1
and > 7 v+ Z§:1 %] > k—; Eonversely, if a polynomial P satisfies these inequalities, we
can construct a sequence in 71 (M \ M) that converges to P by replacing double real s;-hyper-
roots with pairs of complex conjugated ones and the remaining real si-hyper-roots R with
R+ eWzy such that €U) — 0. |

We can use the description of the boundary points for two layers in Theorem 6.1 to prove
Theorem 2.10(c) for arbitrarily many layers. First, however, we show parts (a) and (b) of
that theorem, and observe that the zero filter is on the relative boundary whenever the latter
is nonempty.

Lemma 6.2. Let (k,s) be an LCN architecture whose function space My, s is not Zariski
closed. Then 0 € RF is contained in OMp.s.

Proof. If a polynomial P belongs to the complement of the function space in its Zariski
closure, we can generate a converging sequence %P, which also belongs to the complement
and approaches zero in the limit. |

Proof of Theorem 2.10(a)—(b). We start with assertion (a) that compares the reduced
boundary points 8Mﬁ s © OMy s with the relative boundary 8./\/1,;’g of the reduced ar-
chitecture (Izz,é) Both types of boundary points are limits of sequences in My s \ Mi s
with the difference that the limits land in My s or My ., respectively. This implies that
OME = OMj ;N Ms. ’

i For assertion (b), we recall from Corollary 5.7 that My s \ M s € Up'cg My 5 where
K := Kj, ; is the index set from Theorem 2.9. Since LCN function spaces are Euclidean closed,
limits of7 sequences in Mk,s \ /\/lfc,'§ are also contained in the finite union of the M W a In
particular, this shows 8./\/157 s © U,;/ ciM e The latter union (which is empty in case the
reduced architecture (k,3) has just one layer) is contained in Sing(Mjp, s) by Theorem 2.9. B

To estimate the dimension of the reduced boundary of an LCN function space, we use the
two-layer description in Theorem 6.1 to deduce the necessary algebraic conditions the reduced
boundary points have to satisfy.

Proposition 6.3. Let (k,s) be a reduced LCN architecture. For every nonzero relative
boundary point w € OMy, s, the associated polynomial P =1 (w) satisfies one of the following:
1. P has a real double Si-hyper-root for somel€{2,...,L},
2. the s-factor degrees d of P satisfy at least two of the inequalities Zz’L:l d;S; > Zf:l(ki—
1)S; forle{2,...,L} strictly, or
3.8 48 >k (ki —1)S; + 28 for some 1€ {2,...,L}.
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Proof. By Theorem 2.10(b), the s-factor degrees d of P satisfy at least one of the inequal-
ities ZiL:l d;S; > Zle(lﬁ — 1)S; strictly. We now assume for contradiction the contrary of
the assertion. That means that exactly one of these inequalities is strict, say for the layer
le{2,...,L}, and that Y5 d;8; = S2F  (k; — 1)S; + S}, as well as that P, has no real double
S;-hyper-root for any i € {2,...,L}.

Since P is taken from the relative boundary of the function space, there is a convergent
sequence of polynomials P9 € 7, (Mg, s\ My s) with limit P. Each real polynomial PU) can be
factored as Pg ). Pl(] ), where Pi(] ) e Clz%,y%], 1, and it does not admit an analogous real
factorization due to Proposition 3.2. However, the limit polynomial P has a real factorization
Pp--- P, with P; € R[z%, 455, _1.

For any layer 4, the number of S;-hyper-roots cannot decrease in the limit. Hence, the
s-factor degrees dV) of PUY) satisfy Zf:m d;S; > ZiL:m ng)Si > ZZL:m(k:Z —1)S; for every layer
m. Since we assumed that >°%  d;S; = 3" (k; —1)S; holds for all m # [, we have

1) A =d¥) =k, —1 for me{L,...,1+1},
2) di=k>d) >k -1,
3) di-1=Fkj—1 —1—s-1 and dl(];)l + dl(j)qu =di_1 +disi—q,
4) di=d? =k —1forie{l—2,.. 1}

In particular, if L > [, we see from dj, = dg) that every Sp-hyper-root of P is the limit
of a sequence of Sy-hyper-roots in PU). Moreover, dj, = kr, — 1 implies that Py, and P]gj ) are
the products of the Sy-hyper-roots in P and PU), respectively. Hence, Péj ) converges to Pr,
and Péj ) is real by Lemma 5.6. Applying the same argument successively for m=1L,...,[+1
shows that P7(nj) is real and converges to P, for all m > [. Analogously, we obtain from
d;i)l +dl(j)sl,1 =dj_1+disi—1 = (ki1 — 1)+ (k;— 1)s;—1 that Pl(j)Pl(f)1 is real and converges to
P,P,_;. Finally, we conclude from (6.4) that Pi(j ) is real and converges to P; for all i <[ — 1.

Therefore, the factors Pl(j ) and Pl(ﬁ)l are nonreal and their product Pl(j )Pl(i)l does not admit

a real factorization of the same format. This means that the sequence PZ(J )Pl(ﬁ)l comes from
the complement My o \ My o of the two-layer architecture (k',s") = ((ki—1, k1), (si—1,1))
(after a change of variables (2/,7/) := (%-*,5%-1)). Moreover, it converges to P,P_;, which
corresponds to a filter inside the function space My o. By Theorem 6.1, the real s;_1-hyper-
root multiplicities of PPy satisfy > 7% + > %] > % and >27_; pj > 1. Since we
assumed that P does not have any real double S;-hyper-root, we obtain that P,F,_; has at
least % pairs of complex conjugated s;_1-hyper-roots plus a real one, meaning that it has at
least k; + 1 many s;_1-hyper-roots in total. In terms of the s-factor degrees of P, this means

that d; > k; + 1. This is a contradiction to (6.2). [ ]

The final ingredient for the proof of Theorem 2.10 is the following technical statement on
integers that we later use to estimate the dimension difference of LCN function spaces.

Lemma 6.4. Let s € Zigl, S = Hi; s; for alll=1,...,L, and let k, k' € Z" be distinct

integer tuples such that Zle (ki —1)S; = Z{;l(ki —1)S; and Zf:l(k; —-1)8; > Zf:l(ki —-1)S;
holds for alll=2,...,L. Then,
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L
(6.5) Z(k:i—k;)zmin{sl,...,sL,l}—l.
i=1
Moreover, in the case that s; > 1 for all i, the inequality (6.5) is strict if one of the following
conditions holds:
1. at least two of the inequalities Zf:l(k; -1)S; > Zf:l(ki —1)S; forle{2,...,L} are
strict, or
2. ezactly one of the inequalities is strict and k; > k;+ 1 for some l€{2,...,L}.

Proof. We prove the assertion by induction on L. Since k and k' are assumed to be
distinct, L cannot be equal to one. Thus, the base case of the induction is for L = 2. In
that situation, we have (k} — 1)s; + (k] — 1) = (k2 — 1)s1 + (k1 — 1) and k) > ko. Hence,
ke — kb + k1 — k] = (kb — ka)(s1 — 1) > s; — 1. Moreover, in the case that s; > 1, the
latter inequality is strict if and only if k) > ko + 1. Now we consider the case L > 2. If
the inequalities Y% (K, — 1)8; > S°F (ki — 1)S; are equalities for all i > 3, then k] = k; for
i > 3 and kb > ko, which means that we can argue exactly as in the induction beginning.
If one of those inequalities for ¢ > 3 is strict, we can apply the induction hypothesis to
5 := (s2,...,50_1), k := (ka,...,kr), and E = (kY — o, kb, ... k7)), where we define o :=
Sor (K —1)2 — 31 (ki — 1)2: > 0. This yields

S1

L
(6.6) Z(kZ — k) 4+a>min{sy,...,sp 1} —1>min{sy,...,s_1} — 1.
=2
Note that asy = k1 — k) due to Zszl(k:; —-1)S;= ZiL:l(ki —1)S;. Therefore, we have that
L L

L
(6.7) D hi—k)=> (ki—k)+atalss—1)>> (ki—k)+a,

i=1 i=2 i=2
and (6.5) follows from (6.6). Finally, we assume that s; > 1 for all i. If one of the two
conditions in Lemma 6.4 holds, then either &« = 0 and we see from applying the induction
hypothesis that the first inequality in (6.6) is strict, or a > 0 and the inequality in (6.7) is
strict. In either case, (6.5) is strict. [ |

Proof of Theorem 2.10(c). Since 8/\/1}33 C OMj, ; by Theorem 2.10(a), it is enough to
show that

(6.8) dimOMj, ; <dim Mg s — min{s; : s; > 1} = dim M, s —min{dy,..., 5y 1}

We first consider the case that min{s,...,8y/—1} > dim ﬂ;ﬁ - This implies for every layer m >
1 in the reduced architecture that Sy, = Sy—_18m—1 > Sm_1 ZZ@II(%Z -1)> Z:l;l SZ(EZ -1).
Thus, the relative boundary of M, . is empty by Theorem 2.7(c1).

Hence, we assume in the follovx;ing that min{sy,...,5p-1} < dimﬂké. We know that

OM; s €Uk e Mi 5 by Theorem 2.10(b). The dimension difference

M

(6.9) dim M, ; — dim My ;= (k= kj) > min{31,..., 51} — 1
=1

is estimated for all l;:l € K in Lemma 6.4.
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We now distinguish between the three different types of boundary points described in
Proposition 6.3. The points in OM i3 of the second type are contained in the union of ﬂfc’,g
whose dimension difference in (6.9) is strict (due to the first condition in the second part
of Lemma 6.4). The points in 0/\/1,;3 that are not of the second type but of the third type
in Proposition 6.3 are also contained in the union of ﬂk/,g whose dimension difference in
(6.9) is strict (due to the second condition in Lemma 6.4). Thus, denoting the set of points
in 8/\/1,;75 that are of the second or third type by angg, we conclude that dim(angg) <
dim M, 5 —min{31,..., 81}

Finally, we consider the set of points in OM ks whose associated polynomials have a real
double Sj;-hyper-root for some S; > 1. We write Ak7§ for the Zariski closure of that set in
R*. Since Aps C Uic’ef(ﬂl}/,y we have that Ag o = Uy cg(Dgs ﬂﬂly,g). By definition,
AE,E is contained in the discriminant hypersurface that describes polynomials with double
roots. However, not every filter in ﬂfc/,é corresponds to a polynomial with a double root, and
SO ﬂk/& is not contained in the discriminant hypersurface. Hence, A,;qé N ﬂ]}’,g - ﬂfc'

E
Since the latter is an irreducible variety, this shows that dim(Ag ; N M o) < dim(Mj )
% dim(Aké N Mic/ 5) < dim(mly 5) -1 <

k'3
Theﬁore, we conclude that dim Afc,é = maxj/ i
dim Mg, ; —min{31,...,5p 1}, where the latter inequality comes from (6.9).
Since OMy, ; C {0} U OMig U Ay, 5, we have proven (6.8). |

7. Optimization. In this section, we prove Theorem 2.12. We start by expressing the
squared error loss fp(w) = SN ||y — T, x| directly in terms of the filters w in-
stead of first passing to Toeplitz matrices T, s. For that, we collect the training data D =
{(xD,yM), . x™M) 3y} C R x R into two matrices X € R%*N and Y € R%*N whose
(M) respectively, and write £p(w) = ||Y — Ty s X || %,
where || - || is the Frobenius norm. We next consider the linear map

columns are X(l),...,x(N) and y(l), ce,y

Xxs: RFE 5 RNy T, X

We let Y denote the orthogonal projection of Y onto the image of Xx,s and choose a filter
uy € RF such that y x,s(uy) =Y. With this, we can write the squared error loss as

(7.1) tp(w) = [IY =Y |7 +1IY = TwsXIE= 1Y = YI[E + s (uy —w)lff

In this expression, ¥ and thus ||Y —Y[|% only depend on the data D and (k, s), but not on the
filter w. Hence, minimizing ¢p(w) is equivalent to minimizing ||xx s(uy — w)|/%. We observe
that || - ||x.s := [[xx.s(-)||F is a seminorm on R* that is induced by the (possibly degenerate)
inner prOdUCt <w1aw2>X,s = <XX,s(w1)a XX,s(w2)>F = tr((Twl,sX)TTwz,sX)'

Lemma 7.1. The inner product {-,-)x.s is nondegenerate (i.e., || - ||x.s is a norm on R¥)
if and only if the linear map xx s is injective. Moreover, if N >k, then xx s is injective for
almost all X € R0oxN,

Proof. By definition of the inner product (-,-)x, s, we see that (w,w)x s =0 if and only
if xx,s(w) = 0, which shows the first part of the assertion. For the second part, we write
%) € R¥ for the first k entries of the ith column of X. The condition xx ¢(w) = 0 implies in
particular that w € R¥ is orthogonal (with respect to the standard Euclidean inner product)
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to each of the vectors ¥V, ....x(N). Hence, if N > k, almost all choices of g, ... ) force
w to be zero. |

Corollary 7.2. Let N > k. For almost all X € R®*N - minimizing the squared loss {p(w) is
equivalent to minimizing the squared inner product norm |[uy —wl||% ,, where uy is the unique
filter such that xxs(uy) is the orthogonal projection (with respect to the Frobenius norm) of
Y onto the image of xx.s.

Proof. This follows immediately from (7.1) and Lemma 7.1. [ |

In the following, we fix an LCN architecture (k,s) and write g = pg s and (-,-)x =
(-,-)x,s- In light of Corollary 7.2, we assume from now on that N >k and that X € RAxN g
such that minimizing ¢p is equivalent to minimizing the squared norm ||uy — -||%. To prove
Theorem 2.12, it is now sufficient to show that, for a fixed X and for almost every data filter
u € R¥, every critical point of £, x(6) := ||u — pu(0)||% satisfies one of the three conditions in
Theorem 2.12.

A filter tuple 0 is a critical point of £, x if and only if the data filter u is contained in the
normal space

(7.2) Nx(0) :=im(dgp) > + u(0) C R¥,

where | x denotes the orthogonal complement with respect to the inner product (-, -) x. Hence,
to prove that a fixed set © of filter tuples does not contain any critical point of £, x for almost
all data filters u, our proof strategy is to show that the union of the normal spaces Nx(6)
over all § € © is contained in a proper algebraic subset of R¥.

Definition 7.3. We say that a semialgebraic subset © C R¥ x ... x RF: s exposed with
respect to (-,-)x if

dim (U NX(9)> = k.
0cO

Ezample 7.4. If L >2, then p~1(0) is exposed. Indeed, for any filter tuple 6 with at least
two zero filters, dgu =0 and thus dim(Nx (0)) = k.

Lemma 7.5. Let © C (R¥*\ {0}) x --- x (R¥2 \ {0}) be a semialgebraic subset that is an
affine cone; i.e., for every 0 € © and A € (R\ {0})* we have that (\61,...,\101) €O. Then
dim (Ueee NX(G)) <dim® — L+ 1+ k — mingee rank(dgp).

Proof. Let us start by fixing a filter tuple § € ©. For A € (R\ {0}, we write \- 0 :=
(A161,...,AL0L). Since for every such A we have p(A-0) = A;--- App(0) and im(dy.op) =
im(dop), we see that dim(Uye g o3y Nx(A-0)) < dim Nx(¢) + 1. Hence,

dim (U NX(H)) =dim | U  Nx(r-0)

6€O 0cP(©) Ae(R\{0})™

< dimP(0) + max dim U  Nx(A-60) ] <dim® — L + max(dim Nx () + 1).
0eP(©) AE(R\{0})E 0O

Since the dimension of the normal space Nx(f) is k — rank(dgu), the assertion follows. |
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To estimate the rank of the differential of u, we investigate the S;-hyper-roots that the
filters in a tuple 6 have in common.

Definition 7.6. Let 6 = (wy, ..., wr) € R¥ x .- x R* with w; #0 and P, := g, (w;) for all 1.
Set Gy(0) := ged(Py, Py --- Py) € Rz 45 for 1€ {2,...,L}, and G1() := 1. The common
hyper-root degree of 6 is chd(f) := ZZLZQ deg(Gi(0)).

Recall that Theorem 2.11 states that 6 with p(60) # 0 is a critical point of u if and only if
chd(6) > 1.

Proposition 7.7. For 6 € (RF*\ {0}) x - -- x (R¥2\ {0}), we have that rank(dgp) > dim(M) —
chd(9).

Proof. Using our identification 71 of filters with polynomials, we consider § = (P, ..., Pr)
as a tuple of polynomials as in (4.1). For every layer [, we define P/ := %&0). Then P/ and
the product P/, --- P| are coprime. Hence, §' := (P{,...,P}) is a regular point of p' := ju

where kj :=deg P/ +1 (this follows from Theorem 2.11 after omitting all layers [ with k] =1).
We can see dg i’ as a restriction of dgu via the following commutative diagram:

. v d
Hle R[JJSZ ) ysl]kifl R, Rlz, y]k—1

o w]

. . dgr
Hz'L:IR[xSlaySZ]k;—l 0*> R[$7y]k’—1

where ¢ : (P],...,P}) — (P|G1(0),...,PLGL(0)) and ¢ : P'+> P'G1(0)---GL(0). Therefore,
we conclude that rank(dgu) > rank(dg ') = dim(Myy o) = S0 (K = 1) +1=30 (ki —1—
deg G;(0)) + 1 = dim(My s) — chd(6). |

We now aim to show that the critical points of i (except those in 1 ~1(0)) are not exposed.
For that, we stratify that set of critical points as the disjoint union (over all § € Z~q) of
Cs:={0 € (R¥\ {0}) x --- x (R*=\ {0}) | chd(f) = §}.

Proposition 7.8. Let the architecture (k,s) be reduced. If 6 >0 and Cs # 0, then we have
that codim(Cys) > 4.

Proof. We prove the assertion by induction on the number L of layers and, as above,
identify filters with polynomials. For single-layer architectures, chd(§) = 0 for every nonzero
0, and thus there is nothing to show. Hence, the induction beginning is L = 2. In that case,

Cs= {(RQhRQ2) R#0,Q2#0,Q1 #0,gcd(Q2,Q1) =1

ReR[z™,y%]5,Q2 € Rz, 4", —1-5, Q1 € R[z, y]r, —1-5s, }

has dimension kg + (k1 — ds1). Therefore, the codimension of Cjy is ds1, which is larger than
6 due to sy >1 and 0 > 0.

For the induction step, we assume L > 2. For any partition 6 = (Ja,...,07) € Z’;al of ¢,
we define C5:= {0 € C5 | V] =2,...,L : degG,(#) = &}. Then C5 = |J5C5, where the union
runs over all nonnegative partitions of § into L — 1 parts. Hence, it is enough to show for
every such partition & that either codim(Cj) > 6 or C5 = 0. We fix a partition & with C5 # ()
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and distinguish two cases. First, if 7, =0, then for every ' € Cs, 5, ) we have that almost
every P € Rzt y%];, 1 gives a point (¢, Pr) € C5. Thus, the induction hypothesis yields
dim C5 = dimC(527._.75L71) +kp<(kr+--4kp1—9)+kg.

Second, if 47, > 0, we start by observing that

(73) dlng < dimC((;z’w(;L,l).

Indeed, for every (Py,...,Pr1,RQL) € Cs,,.5,—1) With R € R[z°%,y5t]s5, _1 dividing the
product P;---Pp_1, almost every Q) € R[z5t,yt];, 5, vyields a new point (Py,..., P 1,
RQ}) € Ci,,...5,—1)- Hence, every irreducible component of the Zariski closure C's, . s, 1)
is of the form ¥ x R¥2=9  However, no such component is contained in the Zariski closure
C'5, because the latter imposes an algebraic condition on Q' . Since C5 C 6(527”,,&_1) and
no irreducible component of C';, 5, 1) is equal to C, we have shown (7.3). Applying that
inequality dy, times, we obtain dim Cy < dimCl, . 5, ,0) —0r. Now, invoking the first case
(where 7, was assumed to be zero), we get dimCs, 5, , 0) < ZiLzl ki — Z]L;f ;. Putting
the last two inequalities together, we conclude that dim C5 < Zle ki — ZJL:1 J;. [ ]

Theorem 7.9. If the architecture (k,s) is reduced, Crit®(u) := {60 € Crit(u) | u(0) # 0} is
not exposed.

Proof. Since Crit°(u) is the disjoint union over all Cs with 6 > 1, we have that

(7.4) dim | | J Nx(0) |=dm (] |J Nx(®) = max dim<U NX(0)>.

0eCrit° (u) §>10€Cs5 0eCs

Applying Lemma 7.5 to each nonempty Cs in the union, we obtain dim (Ueea; N X(Q)) <
dimCs — L + 1 + k — mingec, rank(dppu). Therefore, Propositions 7.7 and 7.8 yield that
dim (Uge, Nx(0)) < (Xiiq ki — 0) — L+1+k — (dim M — §) = k. Since Cj is nonempty only
for finitely many choices of d, the latter inequality shows that (7.4) is less than k. [ |

Corollary 7.10. Let Z C M be a semialgebraic subset that is an affine cone with dim(Z) <
dim(M). If the architecture (k, s) is reduced, then p=1(Z\ {0}) is not exposed. In particular,

this statement holds for Z=0M or Z =M N Sing(M).

Proof. © := p~Y(Z\ {0}) is the disjoint union of O¢ := © N Crit(u) = © N Crit®(u)
and Op := {0 € © | § ¢ Crit(u)}. By Theorem 7.9, ©¢ is not exposed. Hence, it is left
to show that ©p is not exposed either. Since every 6 € Op is a regular point of u, the
rank of the differential dgu is equal to dim M. Thus, applying Lemma 7.5 to O yields
dim (Ugeo, Nx(0)) <dim® — L+ 1+ k — dim M =dim Z + k — dim M < k. |

Theorem 7.9 and Corollary 7.10 imply Theorem 2.12 for reduced LCN architectures. The
general version follows from the following observation.

Lemma 7.11. Let 0 be a regular point of (g 4. pzm ;). Then Nx(6) = Nx(0), where

0 := (“121,1""’“%”’,1)(0)'
Proof. Since each pzi, is the parameterization map of a stride-one LCN, its function
space is thick. Hence, at a regular point 6 of ('“fcl 1o Mg 1), the image of the differential
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of (Mk1717...,ukkf 1) is equal to the domain of the differential of j ; at 0. Therefore, (2.5)

2

implies im(dgpuk,s) =im(dgpy, 5), and the assertion follows. [ ]
Proof of Theorem 2.12. We consider the set of filter tuples 6 that do not satisfy any of

the three conditions in Theorem 2.12. More concretely, writing

O:={0cRF x ... x R* : 1y, () #£0,0 ¢ Crit((,uicl’l, e "ufcM,l))}’
that set is the union of
B¢ :=O N Crit(pg,s), O5 1= O N iy, 4 (Sing(Mas)), and O := O N p1ye  (OMp ).

It is sufficient to show that ©c U©Og U Op is not exposed with respect to any (,-)x that
is an inner product. For { € {C,S, B}, we set O¢ = (pgr ...,y 1)(O¢). Lemma 7.11
shows that Jycq, Nx(0) = Ujeo,, Nx(6). Hence, it is enough to show that none of the O
is exposed with respect to (-,-)x. Since O¢ C Crit®(ug, 5), we have that O¢ is not exposed by
Theorem 7.9. Moreover, ©5UOp C ,LL;;(Z \ {0}), where Z := (M, s N Sing(Mpgs)) UMy .
Thus, applying Corollary 7.10 to Z C My, ., we conclude that O©5U®Op is not exposed. |
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