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Building Thinking Classrooms (Liljedahl, 2021) provides teachers with a new method of 
designing and sequencing tasks called “thin slicing,” which emerged from variation theory. The 
results of the present study indicate that an analysis of the dimensions and ranges of variation 
within such a task offers insights into learning opportunities available. Specifically, identifying 
instances where variation has not been adequately positioned against a background of sameness 
can highlight potentially limited opportunities for students to notice the intended mathematics. 
The results of this analysis can inform design decisions and modifications to the task before 
implementation increasing the potential of the task to support student learning. 

Keywords: Instructional Activities and Practices, Curriculum, and Professional Development. 

Building Thinking Classrooms (Liljedahl, 2021) is rapidly growing in relevance and impact 
in mathematics education across North America. Experienced teachers and preservice teachers 
are studying the book, sharing implementation experiences at conferences, and participating in 
professional development to learn new strategies for increasing student thinking in the 
classroom. In the summer of 2022, we selected the text as a tool for professional development for 
a cohort of experienced teachers. In this paper, we focus on one pedagogical strategy presented 
in the book called thin slicing. Designing thin sliced tasks involves writing a carefully sequenced 
series of problems utilizing small, incremental changes to support students’ development of new 
mathematical knowledge building from their current ways of understanding. Liljedahl (2021) 
provides guidance for designing these task sequences grounded in variation theory (Marton et al., 
2004), but much is left for teachers to work out in their classrooms. We, as mathematics teacher 
educators, are interested in how teachers are taking up this practice. Specifically, we are 
interested in the variations teachers use when designing thin sliced tasks and the possible 
learning opportunities afforded by this task design. 

Literature Review and Framework 
The National Council of Teachers of Mathematics (NCTM) recommends the use of 

intentionally sequenced tasks to build procedural fluency from conceptual understanding by 
informally drawing on students’ prior knowledge, assessing students’ preconceived ideas that 
may serve as intellectual motivation for the concepts being learned, or transitioning students 
from simple, concrete representations to more complex and abstract representations (Boston et 
al., 2017). A practice that aligns with NCTM’s recommendation is the use of problem or number 
strings. Problem strings are carefully sequenced tasks for the purposes of facilitating students’ 
understanding of mathematical relationships to develop certain numeracy strategies (Carpenter et 
al., 2003; DiBrienza & Shevell, 1998; Fosnot & Dolk, 2002; Harris, 2011) and providing rich 
discussion opportunities in classrooms (Bofferding & Kemmerle, 2015).  
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While problem strings originated at the elementary level, the practice is extending to 
secondary classrooms (Harris, 2011; Liljedahl, 2021; Wieman et al., 2021). Liljedahl (2021) 
introduces thin slicing as a method of task design similar to problem strings that uses principles 
of variation theory (Marton et al., 2004) to foster student thinking around curricular content. 
Liljedahl distinguishes the sequencing of tasks as thin slicing, in which there are incrementally 
small increases in challenge from one task to the next as students’ abilities increase, from thick 
slicing, where the increase in challenge between tasks is much greater (see Liljedahl, 2021, 
p.151). Liljedahl suggests that teachers can design thin sliced tasks using their current curricular 
resources to move students from their current mathematical conceptions to deeper 
understandings while keeping students in the flow of learning, avoiding the disruptions of 
frustration and boredom.  
In mathematics education research, task design and sequencing are often informed by 

learning trajectories and learning progressions which describe ways students may develop new 
mathematical conceptions (Battista, 2011; Confrey, 2012). A hypothetical learning trajectory (as 
opposed to an actual learning trajectory) is a description of the learning goal, the learning 
activities and a prediction of how students' thinking will develop by engaging the activities 
(Simon, 1995). For some topics, there are collections of tasks for which the design and sequence 
have been shown to effectively support students as they develop more sophisticated 
mathematical reasoning and understanding in relation to a specific learning goal (e.g., Battista, 
2012). However, not all mathematics topics in the K-12 curriculum have been studied from the 
perspective of learning trajectories, and existing learning trajectories continue to be refined 
(Confrey, 2012). Furthermore, each learning trajectory must assume a starting point and offers 
one possibility among many (Rich et al., 2017).  
Teachers are in the classroom each day implementing tasks and determining what works for 

their students. The design principles of thin sliced tasks and problem strings offer teachers a way 
to create tasks based on a sequence they think will support students to advance their 
understanding of a particular mathematical idea, defining a hypothetical learning trajectory that 
is then tested in the classroom. Because thin slicing is a new method of task design for many 
teachers, additional resources to support the design, analysis, and implementation of such tasks 
are not readily available.   
Variation Theory 
In Building Thinking Classrooms (BTC), readers are introduced to two principles of variation 

theory to guide the development of thinly sliced curricular tasks: learners see variation against 
the backdrop of sameness, and a required condition for learning is that only one thing is varied at 
a time (Liljedahl, 2021). Variation theory describes the necessary conditions for learning, with 
the aim of enabling the learner to engage in novel situations in powerful ways (Marton et al., 
2004). Learning “implies seeing or experiencing critical aspects of an object of learning,” where 
the object of learning defines the content and the objective to be learned (Kullberg et al., 2017, p. 
560). The teacher’s goal is to provide learning opportunities that offer students different ways to 
see or experience the critical features of the object. What the learner sees or notices during the 
learning process is impacted by past experiences and social, cultural, environmental, and 
mathematical dispositions and practices (Watson & Mason, 2006). If a learner does not learn the 
intended objective, it is because they were not able to discern the critical features of the object of 
learning which can only occur when learners have experienced variation against a background of 
sameness.  
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In mathematics education, Gu et al. (2004) propose two forms of variation, conceptual 
variation and procedural variation, to provide a deliberate and reasoned way to utilize variance 
and invariance in mathematics teaching. Conceptual variation is the use of examples of a concept 
to discern its features and non-examples of the concept to distinguish it from others. Procedural 
variation is dynamic and engages students in a sequence to see connections among concepts and 
processes and to facilitate problem solving strategies and solutions. Procedural variation includes 
varying a problem to provide scaffolding for higher level concepts or extensions resulting in 
generalizations; developing multiple methods for solving a problem; and applying the same 
solution method to a group of similar problems. 
Variation Theory and Task Analysis. Variation theory can be used to analyze mathematical 

tasks or chosen examples to determine opportunities for learning (e.g., Kullberg et al., 2017; 
Watson & Mason, 2006). Aligning with procedural variation (Gu et al., 2004), Watson and 
Mason (2006) advocate for the use of variation to design exercises that foreground mathematical 
structure leading to generalizations. Students enact a procedure on intentionally varied problems 
as part of a mathematical exercise and then reflect on the results to generalize a new 
mathematical relationship. Before implementation, the exercises can be analyzed for the 
potential dimensions of variation, which are aspects of the task that may be varied. Identifying 
what is available for the learner to notice through variation exposes the underlying mathematical 
structure and learning opportunities present in a task. For a given task or exercise, the analysis of 
what is varied (dimensions of variation) and how it is varied (range of permissible variation) 
helps the teacher predict opportunities for student learning, a helpful tool for lesson planning. 
The predicted learning outcomes from task analysis sometimes align with what is learned by the 
student, but it is possible that the task designer’s choices of variation do not always produce the 
desired student learning (Watson & Mason, 2006). While discrepancies between the intended 
object of learning and what is actually learned can be caused by the learning environment or the 
learner’s prior knowledge and experience, the task itself can also impact the learner’s ability to 
discern the critical aspects of the object of learning. If there is no variation with respect to a 
particular object of learning, then it is guaranteed that students will not have an opportunity to 
learn it (Gu et al., 2004; Kullberg et al., 2017). As teachers experiment with the principles of 
variation theory to design thin sliced tasks, the potential discrepancies between the intended 
learning objective and actual learning may result in frustration or discouragement for both 
teachers and students, possibly leading to time-consuming cycles of task implementation and 
refinement or abandonment of the task design method completely.  
To support teachers in this type of design work, we examined a set of initial thin sliced 

designs from a group of experienced secondary math teachers. Following Watson and Mason’s 
(2006) example of analyzing tasks before implementation, we conducted a similar analysis to 
better understand the features of the initial task designs by the group of teachers. The results of 
our analysis support the design of thin sliced tasks. The purpose of this paper is to illustrate how 
the tools of variation theory can be used to analyze thin sliced tasks to answer the following 
questions: what variations are present and what opportunities for learning are available to 
students in thin sliced tasks designed by teachers using the BTC framework?  

Methodology 
Participants & Data Collection 
The teachers in the present study are part of a larger, five-year teacher development program 

that advances mathematics teacher leadership. All teachers have at least five years of experience 
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teaching secondary mathematics and were nominated by their district for the program. For this 
report, we draw on 19 teachers’ submissions from the first summer of professional development 
coursework. The course assignment we analyzed involved teachers working in groups of two or 
three to design thin sliced mathematics tasks for topics of their choice using variation theory and 
the BTC framework as a guide. Teachers were directed to select topics in their current 
curriculum for which they wished to consider alternative teaching methods. While the tasks were 
designed in groups, each teacher wrote their own analysis of one of the group’s tasks. Both the 
tasks and teacher reflections were analyzed. Consistent with Liljedahl’s (2021) description of 
how teachers can design thin sliced task sequences, the assignment asked teachers to reflect on 
how to ensure the goal of the task sequence was clear, how they could “slice” the mathematical 
content to incrementally increase the challenge for students as their abilities increase, and how to 
extend student learning by varying only one thing at a time. 
Data Analysis 
The research team analyzed a total of eight tasks and the corresponding teacher reflections. 

Analyses involved iterative stages of qualitative coding by the four authors of this paper 
(Saldaña, 2015). In the first stages of coding, the team utilized open coding with teachers as the 
unit of analysis to understand teachers’ design decisions. The team first examined the 
mathematics in each task, elements of variation, and teachers’ learning goals. To support 
reliability in coding, all four team members coded one teacher’s submission together as a group 
and then pairs of team members double coded the remaining 18 teachers’ submissions. Building 
on these early observations, the team shifted the unit of analysis to be individual mathematics 
tasks, rather than teachers. Subsequently, the team engaged in refined coding of the eight tasks 
looking for themes related to the objective or object of learning for each task; the type of 
variation; and whether the object of learning could be reached based on the variation observed. 
Emergent themes, such as variation for the purpose of practice or for illuminating patterns, were 
recorded in matrices (Saldaña, 2015). Throughout this process, the team specifically looked for 
disconfirming evidence (Creswell & Miller, 2000).  
In the final stage of coding, the team refined codes based on the work of Watson and Mason 

(2006). Tasks were coded for dimensions of the task that could be varied; of those dimensions, 
which ones were fixed; of those dimensions, which ones were open for variation; what was the 
possible range of variation; and what range of variation was chosen by the task designer. The 
team found that by distinguishing the possible range of variation from the chosen range helped to 
characterize the learning opportunities available to students. Again, all tasks were double coded 
by pairs of researchers with the lead author coding all eight tasks. The research team met 
together to discuss and came to consensus on codes related to dimensions and ranges of 
variation.  
We acknowledge that the analysis of the tasks depends on our own mathematical 

perspectives and teaching experience. All researchers identify as university-based mathematics 
teacher educators, and most have taught in K-12 schools. Two members of the research team are 
faculty in mathematics departments and two are members of education departments. 

Findings 
We observed a wide range of objectives and task structures as the teachers applied BTC 

recommendations to create their first thin sliced tasks. For this paper, we focus on the analysis of 
two tasks because they are instructive in revealing the relationship between the objective and the 
chosen dimensions of variation. One task was designed to help students develop new 
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mathematical knowledge (Task 1: Exploring Negative Exponents), and one task was designed 
for skill practice (Task 2: The Quadratic Formula). We analyzed the open dimensions of 
variation and the chosen range of variation leading to the opportunities for learning in each task. 
Task 1: Exploring Negative Exponents   
The teachers’ stated goal for the Exploring Negative Exponents task is to use patterns to help 

students draw “their own conclusions about the reciprocal nature of negative exponents.” The 
teachers thinly sliced the concept of negative exponents into five “task cards” intended to be 
given to students in sequence. Card 1 (Figure 1) is a review of prior knowledge to establish the 
meaning of a base and exponent. The equations are exponential, with the open dimensions of 
variation being the base, exponent, and its equivalent value. The chosen range of variation for 
each of these dimensions is positive integers. The opportunity for learning is to recall the 
relationship between base, exponent, and the equivalent value they define. 

 
Figure 1. Exploring Negative Exponents Task Cards 1 and 2 

In Card 2 (Figure 1), two dimensions of variation are closed: the value of the base and the 
unknown value. The base of the exponential expression is always 3, and the unknown is always 
the equivalent value of the exponential expression. The exponent is an open dimension of 
variation for which the range is constrained to positive integers from 1 to 5. It is intended that 
students complete the task sequentially beginning with 3!, and students are encouraged to look 
for a pattern. The opportunity to learn is that the values of the equivalent expressions for each 
exponential increase by a factor of 3 as the exponent value increases by 1.    
In Card 3 (Figure 2), three aspects are varied relative to the previous card: the base, the order 

of the exponents, and the inclusion of 0 as an exponent. Students are encouraged to complete the 
pattern sequentially beginning with 2J. With these changes, the opportunity to learn now 
includes a recognition that the pattern in the equivalent values for each expression is multiplied 
by a factor of ½ as the exponent decreases by a value of 1. Students also have the opportunity to 
conjecture that 2- follows the same pattern, if this was not already known.  
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Figure 2. Exploring Negative Exponents Task Cards 3, 4, and 5 

In Card 4 (Figure 2), only one aspect is varied relative to the previous card: the value of the 
exponents. By extending the range of variation to include negative exponents, students have the 
opportunity to conjecture the equivalent values for 25!, 25", and 25$. Students are then asked to 
predict	25J. Since there are no explicit instructions for how to do this, some students may 
continue to extend the pattern, concluding that 25J will be 1/32.   
In Card 5 (Figure 2), there are four aspects that are varied from the previous: the base, the 

value of the exponents, some equivalent expressions are provided, and the position of the 
problems into two columns rather than one. The juxtaposition of the two expressions with a base 
of 4 with exponents of n and −𝑛 opens the opportunity to notice the reciprocal relationship 
between 4? and 45?. Because the students have been prompted to discover patterns, they have a 
way to determine the missing information if they do not yet see the reciprocal relationships.   
If students use a calculator for Cards 4 and 5, the reciprocal relationship may not be available 

for them to notice. While this means that students could complete Card 4 without observing the 
intended relationship, the implementation of the task in the classroom could provide a rich 
discussion of the equivalence of fraction and decimal representations and the recognition that 
one representation is more advantageous in this instance for pattern recognition.  
Task 2: The Quadratic Formula 
 For the Quadratic Formula task, the teachers’ stated goal is to help students “feel 

confident substituting and then following the order of operations” to find the solution(s) to the 
quadratic equation. Each equation in Figure 3 is one “slice” presented to students sequentially. 
The open dimensions of variation for the task include the form of the equation (set equal to 0 or 
not); the values for coefficients a, b, and c; the number of unique solutions; and whether the 
solutions are rational or irrational. For each slice, the a, b, and c values are varied, and the range 
of variation only includes integers.  

 
Figure 3. The Quadratic Formula Task 

For Slices 1-5, the form of the equation remains consistent with 0 on one side of the equal 
sign. In Slice 1, the choices for a, b, and c result in solutions that are rational (in this case one 
integer and one non-integer). There is an opportunity for students to identify where a, b, and c 
are located in a quadratic equation set equal to zero with the quadratic, linear, and constant terms 
in descending order. There is also an opportunity to notice that values of a, b, and c can be 
positive integers, and solutions can be integer or non-integer rational numbers. In Slice 2, the 
only aspects varied relative to the previous slice are the values for a and c. There is an 
opportunity for students to recognize, conjecture, or ask the meaning of an implicit coefficient of 
1 and to recognize the effect of a = 1 in the quadratic formula. In Slice 3, the value of b is a 
negative integer, while a remains 1, and c is a positive integer. There is an opportunity for 
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students to see that the b-value can be a negative integer. There is also the opportunity for 
students to notice the effect of a negative b-value in the quadratic formula. In Slice 4, the choices 
of a, b, and c yield irrational solutions, giving students an opportunity to notice that irrational 
solutions are possible for quadratic equations. In Slice 5, the choices of a, b, and c yield one 
unique solution giving students an opportunity to notice that there may only be one unique 
solution for a quadratic equation, and the one solution can be rational (non-integer). 
In Slice 6, the form of the equation is varied because it does not have 0 on one side of the 

equal sign. There is an opportunity for students to notice that quadratic equations are not always 
given in the same form. Students may have an opportunity to notice that determining the c value 
will require computation, but this observation is not certain. The introduction to the lesson (not 
shown in Figure 3) includes a discussion of how to identify a, b, and c when the equation is set 
equal to 0, but there is no indication that the form of the equation will be varied during the 
discussion. While students may notice that the equation is not equal to 0, there is not an explicit 
opportunity to notice how this impacts the value of c. Students are encouraged to check their 
solutions by substitution, which could provide the opportunity to recognize that something is 
incorrect if they choose 𝑐 = −1	(rather than 𝑐 = −3). It is also possible that students recognize 
that 𝑐 = −1 is incorrect by graphing the left and right sides of the equation as two functions and 
examining the intersection points. However, if students graph only the left side and examine the 
x-intercepts, they will not have an opportunity to recognize that the solution is incorrect.  
In Slice 7, there are two varied aspects from the previous slice: b is 0 (as opposed to a 

positive or negative integer) and the equation is set equal to 0 again. There is an opportunity for 
students to notice b can be 0. There is also the opportunity for students to notice the effect of  
𝑏 = 0 in the quadratic formula.  

Discussion   
When designing a task with variation theory, the open dimensions of variation and the 

constraints on the range of variation impact what students have the opportunity to notice. In the 
present study, the teachers chose constraints on the range of variation for different reasons, such 
as illuminating mathematical patterns or anticipating student difficulties. For the Exploration of 
Negative Exponents task, the teachers’ goal was for students to recognize the reciprocal 
relationship between positive and negative exponents of 2 and generalize this relationship to a 
base of 4, concluding that 4? and 45? are reciprocals. The choice of constraints on the 
dimensions of variation and ranges of variation was guided by the teachers’ desire for the 
students to recognize a pattern resulting in a generalization. For instance, the teachers explained 
that Cards 2 and 3 were intended to help students “recognize that increasing the exponent by one 
creates a subsequent answer that’s a scalar multiple of the base.” This targeted goal of pattern 
recognition and generalization resulted in very few open dimensions of variation and a small 
range for variation of open dimensions. Consequently, the task adequately provided variation 
against a background of sameness. This task provides an example of how students can enact a 
procedure on carefully varied problems illustrating a pattern that ultimately leads to a 
mathematical generalization (Gu et al., 2007; Watson & Mason, 2007).   
In contrast, the Solving Quadratic Equations task was designed to increase students’ 

“confidence substituting in numbers and then following the order of operations,” resulting in 
different reasons for the teachers’ selection of constraints of variation than the exponent task. 
The teachers’ reported design decisions indicated that they wanted students to attend to (1) 
coefficients of the quadratic: positive, negative, and zero values for b; positive and negative 
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values for a, including a = 1; (2) solutions to a quadratic equation can be rational and irrational; 
(3) there can be one or two unique solutions; and (4) quadratic equations are not always set equal 
to 0. These ranges of variation do not account for all variation in quadratic equations. For 
instance, it is possible that 𝑐 = 0, but 𝑎 ≠ 0, and a quadratic equation can have zero real 
solutions. We point out these additional variations not to argue that this task should include all of 
them, but rather to highlight that the teachers’ decisions about what to constrain were not focused 
on illustrating the full range of variation related to quadratic equations. We conjecture that the 
teachers intentionally chose constraints to address students’ challenges with numerical 
computation. For instance, the teachers included an implied 𝑎 = 1, likely because this is 
something they want to reinforce with students, but they did not intentionally choose 𝑏 = 1 or 
𝑐 = 1. Additionally, b is varied in Slices 2 and 3 from a positive integer to a negative integer, 
and in Slice 7,	𝑏 = 0. We conjecture that the teachers wanted to highlight various b-values to 
address common errors when evaluating the expressions −𝑏 and 𝑏" in the quadratic formula. 
Variation theory suggests that varying too many aspects of a problem unrelated to the targeted 
concept might not provide the background of sameness needed to highlight the intended concept. 
For example, if students have difficulty understanding the meaning of −𝑏 when 𝑏 is negative, 
they will likely get an incorrect answer in the quadratic formula but not have an opportunity to 
focus on the concept that led to the incorrect answer because there are many places where the 
computation error could have occurred. For this task, the goal of learning how to use the 
quadratic formula had a subgoal of accurately evaluating expressions for positive and negative 
integers. Since the variation of b values occurred at the same time other dimensions were varied 
(e.g., form of equation, values of a and c), students may not have had the opportunity to observe 
patterns in evaluating −𝑏 and 𝑏" for positive and negative b-values. Another draft of this thin-
sliced task might highlight the nuances of working with −𝑏 and 𝑏" by offering a more static 
background by closing some dimensions of variation. This task provides an opportunity for some 
students to develop efficiency and accuracy with the quadratic formula, which are components of 
procedural fluency (NRC, 2001), but opportunities for developing fluency may be missing for 
students who have difficulty with the necessary numerical computations.  

Conclusion 
Well-designed thin sliced tasks can provide opportunities for students to learn curricular 

content while developing their mathematical thinking and reasoning (Liljedahl, 2021). With any 
task design method, there is much to learn about the nuances of design and possible learning 
opportunities afforded in the task as well as limitations in the design. This report illustrates how 
the elements of variation theory (Watson & Mason, 2006), specifically the juxtaposition of 
sameness and variation within and across dimensions, can be used to highlight the learning 
opportunities available in thin sliced tasks. The analytic approach used here to identify the 
dimensions of variation along with the ranges of variation seems a promising tool for teachers 
and mathematics teacher educators to reflect on their thin sliced task designs. Such reflection 
before implementation may inform task revisions resulting in increased opportunities for 
students to learn the intended objectives. Additionally, by examining why particular dimensions 
of variation were constrained and by considering the resulting opportunities to learn, teachers 
may identify important mathematics to discuss or call attention to when consolidating ideas 
(Liljedahl, 2021) at the conclusion of the learning activity. 
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