
Pairwise-Independent Contention
Resolution

Anupam Gupta1, Jinqiao Hu2, Gregory Kehne3, and Roie Levin4(B)

1 New York University, New York, NY, USA
anupam.g@nyu.edu

2 Peking University, Beijing, China
cppascalinux@gmail.com

3 University of Texas at Austin, Austin, TX, USA
gregorykehne@gmail.com

4 Rutgers University, New Brunswick, NJ, USA

roie.levin@rutgers.edu

Abstract. We study online contention resolution schemes (OCRSs) and
prophet inequalities for non-product distributions. Specifically, when the
active set is sampled according to a pairwise-independent (PI) distribu-
tion, we show a (1−ok(1))-selectable OCRS for uniform matroids of rank
k, and Ω(1)-selectable OCRSs for laminar, graphic, cographic, transver-
sal, and regular matroids. These imply prophet inequalities with the same
ratios when the set of values is drawn according to a PI distribution. Our
results complement recent work of Dughmi et al. [14] showing that no
ω(1/k)-selectable OCRS exists in the PI setting for general matroids of
rank k.
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1 Introduction

Consider the prophet inequality problem: a sequence of independent positive real-
valued random variables X = 〈X1,X2, . . . , Xn〉 are revealed one by one. Upon
seeing Xi the algorithm must decide whether to select or discard the index i;
these decisions are irrevocable. The goal is to choose some subset S of the indices
{1, 2, . . . , n} to maximize E[

∑
i∈S Xi], subject to the set S belonging to a well-

behaved family I ⊆ 2[n]. The goal is to get a value close to E[maxS∈I
∑

i∈S Xi],
the value that a clairvoyant “prophet” could obtain in expectation. This problem
originally arose in optimal stopping theory, where the case of I being the set
of all singletons was considered [23]: more recently, the search for good prophet
inequalities has become a cornerstone of stochastic optimization and online deci-
sion making, with the focus being on generalizing to broad classes of downward-
closed sets I [16,22,28], considering additional assumptions on the order in which
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these random variables are revealed [1,2,15,17], obtaining optimal approxima-
tion guarantees [11,24], and competing with nonlinear objectives [18,29].

One important and interesting direction is to reduce the requirement of inde-
pendence between the random variables: what if the r.v.s are correlated? The case
of negative correlations is benign [26,27], but general correlations present signif-
icant hurdles—even for the single-item case, it is impossible to get value much
better than the trivial E[maxi Xi]/n value obtained by random guessing [20].
As another example, the model with linear correlations, where X = AY for
some independent random variables Y ∈ R

d
+ and known non-negative matrix

A ∈ R
d×n
+ , also poses difficulties in the single-item case [21].

Given these impossibilities, Caragiannis et al. [7] gave single-item prophet
inequalities in the setting of weak correlations: specifically, for the setting of
pairwise-independent distributions. As the name suggests, these are distribu-
tions that look like product distributions when restricted to any two random
variables. While pairwise-independent distributions have long been studied in
other contexts [25], they have received less attention in the context of stochastic
optimization. Caragiannis et al. [7] give both algorithms and some limitations for
X exhibiting pairwise independence. They also considered related pricing and
bipartite matching problems.

We ask the question: can we extend the prophet inequalities known for richer
classes of constraint families I to the pairwise-independent case? In particular,

Which matroids admit good pairwise-independent prophet inequalities?

Specifically, we investigate the analogous questions for (online) contention
resolution schemes (OCRSs) [16], another central concept in online decision
making, and a close relative of prophet inequalities. In an OCRS, a random
subset of a ground set is marked active. Elements are sequentially revealed to
be active or inactive, and the OCRS must decide irrevocably on arrival whether
to select each active element, subject to the constraint that the selected element
set belongs to a constraint family I. The goal is to ensure that each element,
conditioned on being active, is picked with high probability. It is intuitive from
the definitions (and formalized by Feldman et al. [16]) that good OCRSs imply
good prophet inequalities (see also [24]).

1.1 Our Results

Our first result is for the k-uniform matroid, where the algorithm can pick up
to k items: we achieve a (1 − ok(1))-factor of the expected optimal value.

Theorem 1 (Uniform Matroid PI Prophets). There is an algorithm in
the prophet model for k-uniform matroids that achieves expected value at least
(1 − O(k−1/5)) of the expected optimal value.

We prove this by giving a (1 − O(k−1/5))-selectable online contention resolu-
tion scheme for k-uniform matroids, even when the underlying generative process
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is only pairwise-independent. Feldman et al. [16] showed that selectable OCRSs
immediately lead to prophet inequalities (against an almighty adversary) in the
fully independent case, and we observe that their proofs translate to pairwise-
independent distributions as well. Along the way we also show a (1 − O(k−1/3))
(offline) CRS for the pairwise-independent k-uniform matroid case.

We then show Ω(1)-selectable OCRSs for sevaral classes of matroids, again
via pairwise-independent OCRSs.

Theorem 2 (Other Matroids PI Prophets). There exist Ω(1)-selectable
OCRSs for laminar (Sect. 3), graphic (Sect. 4), cographic (full version), transver-
sal (full version), and regular (Sect. 5) matroids. These immediate imply Ω(1)
prophet inequalities for these matroids against almighty adversaries.

Finally, we consider the single-item case in greater detail in the full version.
For this single-item case the current best result from Caragiannis et al. [7] uses a
multiple-threshold algorithm to achieve a (

√
2 − 1)-prophet inequality; however,

this bound is worse than the 1/2-prophet inequality known for fully independent
distributions. We show that no (non-adaptive) multiple-threshold algorithm (i.e.,
one that prescribes a sequence of thresholds τi up-front, and picks the first index
i such that Xi ≥ τi) can beat 2(

√
5 − 2) ≈ 0.472, suggesting that if 1/2 is at all

possible it will require adaptive algorithms.

Theorem 3 (Upper Bound for Multiple Thresholds). Any multiple-
threshold algorithm for the single-item PI prophet inequality is at most 0.472-
competitive.

In the full version, we also give a single-sample single-item PI prophet inequality.

Theorem 4 (Single-Sample Prophet Inequality). There is an algorithm
that draws a single sample from the underlying pairwise-independent distribution
〈X̃1, . . . , X̃n〉 ∼ D on R

n
+, and then faced with a second sample 〈X1, . . . , Xn〉 ∼ D

(independent from 〈X̃1, . . . , X̃n〉), picks a single item i from X1, . . . , Xn with
expected value at least Ω(1) · EX∼D[maxi Xi].

1.2 Related Work

In independent and concurrent work, Dughmi et al. [14] also study the pairwise-
independent versions of prophet inequalities and (online) contention resolution
schemes. This work can be considered complementary to ours: they show that for
arbitrary linear matroids, nothing better than O(1/r) factors can be achieved for
pairwise-independent versions of OCRSs, and nothing better than O(1/(log r))
factors can be achieved for pairwise-independent versions of matroid prophet
inequalities (where r is the rank of the matroid). They also obtain Ω(1)-selectable
OCRSs for uniform, graphical, and bounded degree transversal matroids by
observing that these have the α-partition property (see [5]), reducing to the
single-item setting. Another motivation for our work is the famous matroid sec-
retary problem, since the latter is known to be equivalent to the existence of
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good OCRSs for arbitrary distributions that admit Ω(1)-balanced CRSs against
a random-order adversary [13].

The original single-item prophet inequality for product distributions was
proven by Krengel and Sucheston [23]. There is a vast literature on variants
and extensions of prophet inequalities, which we cannot survey here for lack of
space. Contention resolution schemes were introduced by Chekuri et al. [10] in
the context of constrained submodular function maximization, and these were
generalized by Feldman et al. [16] to the online setting in order to give prophet
inequalities for richer constraint families.

Limited-independence versions of prophet inequalities were studied from
the early days e.g. by Hill and Kertz and Rinott and Samuel-Cahn [20,27].
Many stochastic optimization problems have been studied recently in correlation-
robust settings, e.g., by Bateni et al., Chawla et al., Immorlica et al. [6,9,21];
pairwise-independent prophet inequalities were introduced by Caragiannis et al.
[7].

There is a line of work on single-sample prophet inequalities in the i.i.d.
setting [3,4,8,19,30]. This is the first such study for pairwise-independent dis-
tributions.

1.3 Preliminaries

We provide several essential definitions here, and a more complete preliminaries
section in the full version. We assume the reader is familiar with the basics of
matroid theory, and refer to Schrijver [31] for definitions. For a matroid M =
(E, I) the matroid polytope is defined to be PM := {x ∈ R

E : x ≥ 0, x(S) ≤
rank(S) ∀S ⊆ E}. For polytope P and scalar b ∈ R, define bP := {bx : x ∈ P}.

We focus on pairwise independent versions of contention resolution schemes
(CRSs), in both offline and online settings. Our setting entails a set R ⊆ E drawn
from a distribution D with marginal probabilities given by some x ∈ bPM , and
the goal is to select items I ⊆ R, I ∈ I, such that Pr[i ∈ I | i ∈ R] ≥ c for all i.
An algorithm which does this is a (b, c)-balanced CRS.

For online contention resolution schemes (OCRSs) the items arrive one-at-
a-time; a scheme must decide whether to include each arriving element into its
independent set I or irrevocably reject it [16]. Generally the events [i ∈ R] are
taken to be independent, so that x determines D. For a pairwise-independent
(PI) OCRS these events are only pairwise independent under D.

The Almighty Adversary. The almighty adversary knows everything. It first
sees the realization of R ∼ D, as well as all randomness the algorithm will use.
It then adversarially orders R. To describe PI-OCRS’s with guarantees against
the almighty adversary, we adopt ideas from Feldman et al. [16], and restrict our
attention to a schemes which coincide with their greedy OCRSs:
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Definition 1 ((b, c)-selectable PI-OCRS). Let P ⊆ [0, 1]n be some convex
polytope. We call a (randomized) algorithm π : 2[n] → 2[n] a (b, c)-selectable
PI-OCRS if it satisfies the following:

1. Algorithm π precommits to some feasible set family F ⊆ I, and then adds
each arriving i to I only if the resulting set is in F .

2. For any x ∈ bP, any distribution D PI-consistent with x and any i ∈ [n], let
F be the feasible set family defined by π. Let R be sampled according to D,
then

Pr
R∼D

[I ∪ {i} ∈ F ∀I ⊆ R, I ∈ F | i ∈ R] ≥ c. (1.1)

Here the probability is over R and internal randomness of π in defining F .

Notice the definition here is slightly different from [16], as we need to condition
on the event i ∈ R. This is due to our limited independence over events i ∈ R.
For the mutually independent case, one can prove that PrR∼D[I∪{i} ∈ F ∀I ⊆
R, I ∈ F | i ∈ R] = PrR∼D[I ∪ {i} ∈ F ∀I ⊆ R, I ∈ F ], but this may not hold
in the pairwise-independent case.

A (b, c)-selectable PI-OCRS implies a (1, bc)-selectable PI-OCRS (or for short
bc-selectable PI-OCRS), and gives guarantees against an almighty adversary. For
details see the full version.

The Offline Adversary and Prophet Inequalities. The offline adversary
does not know the randomness of π and must choose an arrival order for [n]
before R ∼ D is sampled. PI-OCRSs that are (b, c)-balanced are effective against
the offline adversary, and since the offline adversary is weaker than the almighty
adversary, a (b, c)-selectable PI-OCRS is always (b, c)-balanced. Once again, a
(b, c)-balanced PI-OCRS may be converted to a (1, bc)-balanced PI-OCRS (or a
bc-balanced PI-OCRS for short) via independent subsampling of R.

Feldman et al. [16] showed connections between OCRSs and prophet inequal-
ities. In the full version, we formally establish this connection in the pairwise-
independent setting through the formulation of a PI matroid prophet game, and
we demonstrate that balanced PI-OCRSs are enough to give prophet inequali-
ties.

As an upshot, we show that our results imply matroid prophet inequalities
for the pairwise-independent setting; for each class of matroids, any c-balanced
PI-OCRS yields a c-competitive prophet inequality for values drawn from a
pairwise-independent distribution. This generalizes the single-item PI prophet
inequality of Caragiannis et al. [7] in the setting where the gambler knows the
joint distribution as well as the marginals.

2 Uniform Matroids

Recall that the independent sets of a uniform matroid M = (E, I) of rank k
are all subsets of E of size at most k; hence our goal is to pick some set of
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size at most k. Identifying E with [n], the corresponding matroid polytope is
PM := {x ∈ [0, 1]n :

∑n
i=1 xi ≤ k}. Our main results for uniform matroids are

the following, which imply Theorem 1.

Theorem 5 (Uniform Matroids). For uniform matroids of rank k, there is

(i) a (1 − O(k−1/3))-balanced PI-CRS, and
(ii) a (1 − O(k−1/5))-selectable PI-OCRS.

A simple greedy PI-OCRS follows by choosing the feasible set family F = I,
i.e. selecting R as the resulting set if |R| ≤ k. However, conditioning on i ∈ R,
pairwise independence only guarantees the marginals of the events j ∈ R (and
they might have arbitrary correlation), so we can only use Markov’s inequality
to bound Pr[|R| ≤ k | i ∈ R]. This analysis only gives a (b, 1 − b)-selectable
PI-OCRS for k-uniform matroid. (For details see the full version.)

Hence instead of conditioning on some i ∈ R and using Markov’s inequality,
we consider all items together and use Chebyshev’s inequality to bound Pr[|R| ≥
k, i ∈ R]. The following lemma is key for both our PI-CRS and PI-OCRS.

Lemma 1. Let M = (E, I) be a k-uniform matroid, where E is identified as [n].
Given x ∈ (1 − δ)PM and a distribution D of subsets of E that is PI-consistent
with x, let R ⊆ E be the random set sampled according to D. Then

n∑

i=1

Pr[|R| ≥ k, i ∈ R] ≤ 1 − δ2

δ2
.

Proof. The left-hand side can be written as

n∑

i=1

Pr[|R| ≥ k, i ∈ R] =
n∑

i=1

n∑

t=k

∑

S:
|S|=t

1[i ∈ S] Pr[R = S] =
n∑

t=k

∑

S:
|S|=t

Pr[R = S]|S|

=
n∑

t=k

t · Pr[|R| = t] = k Pr[|R| ≥ k] +
n∑

t=k+1

Pr[|R| ≥ t].

We now bound the two parts separately using Chebyshev’s inequality. Let Xi :=
1[i ∈ R] be the indicator for i being active, and let X =

∑
i∈E Xi. Since Xi are

pairwise independent, Var[X] =
∑

i Var[Xi] ≤ ∑
i E[X2

i ] =
∑

i E[Xi] = E[X].
For the first part, we have

k · Pr[|R| ≥ k] = k · Pr[X ≥ k] ≤ k · Var[X]
(k − E[X])2

(Chebyshev’s ineq.)

≤ k · 1 − δ

δ2k
=

1 − δ

δ2
. (2.1)
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For the second part,

n∑

t=k+1

Pr[|R| ≥ t] =
n∑

t=k+1

Pr[X ≥ t] ≤
n∑

t=k+1

Var[X]
(t − E[X])2

(Chebyshev’s ineq.)

≤
n∑

t=k+1

(1 − δ)k
(t − (1 − δ)k)2

≤ (1 − δ)k ·
∑

t≥1

1
(δk + t)2

≤ (1 − δ)k · 1
δk

=
1 − δ

δ
, (2.2)

where we used the inequality

∑

j≥1

1
(x + j)2

≤
∑

j≥1

1
(x + j − 1)(x + j)

=
∑

j≥1

(
1

x + j − 1
− 1

x + j

)

=
1
x

.

Summing up the (2.1) and (2.2) finishes the proof. ��
Using this lemma, we can bound mini Pr[|R| ≥ k | i ∈ R] and obtain a

(1−O(k−1/3))-balanced PI-CRS (in the same way that [10, Lemma 4.13] implies
a (b, 1− b)-CRS in the i.i.d. setting). The details are deferred to the full version.

2.1 A (1 − O(k−1/5))-Selectable PI-OCRS for Uniform Matroids

Our PI-CRS has to consider the elements in a specific order, and therefore it
does not work in the online setting where the items come in adversarial order.
The key idea for our PI-OCRS is to separate “good” items and “bad” items,
and control each part separately. Let us assume R is sampled according to some
distribution D PI-consistent with x, and that x is on a face of (1 − ε)PM , i.e.

n∑

i=1

Pr[i ∈ R] = (1 − ε)k. (2.3)

We will choose the value of ε later. For some other constants r, b ∈ (0, 1) define
an item i to be good if Pr[|R| > �(1 − rε)k� | i ∈ R] ≤ b. Let Eg denote the set
of good items, and Eb := E\Eg the remaining bad items. Our algorithm keeps
two buckets, one for the good items and one for the bad, such that

(i) the good bucket has a capacity of �(1 − rε)k�, and
(ii) the bad bucket has a capacity of �rεk�.
When an item arrives, we put it into the corresponding bucket as long as that
bucket is not yet full. Finally, we take the union of the items in the two buckets
as the output of our OCRS. This algorithm is indeed a greedy PI-OCRS with
the feasible set family F = {I ∈ I : |I ∩ Eg| ≤ �(1 − rε)k�, |I ∩ Eb| ≤ �rεk�}.

We show that for any item i, Pr[I ∪ {i} ∈ F ∀I ∈ F , I ⊆ R | i ∈ R] ≥
1 − o(1). First, for a good item i, by definition
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Pr[I ∪ {i} ∈ F ∀I ∈ F , I ⊆ R | i ∈ R] = 1 − Pr[|R ∩ Eg| > �(1 − rε)k� | i ∈ R]
≥ 1 − Pr[|R| > �(1 − rε)k� | i ∈ R] ≥ 1 − b.

Next, for a bad item i, we can use Markov’s inequality conditioning on i ∈ R:

Pr[I ∪ {i} ∈ F ∀I ∈ F , I ⊆ R | i ∈ R] = 1 − Pr[|R ∩ Eb| > �rεk� | i ∈ R]

≥ 1 −
∑

j∈Eb
Pr[j ∈ R | i ∈ R]

rεk
= 1 −

∑
j∈Eb

Pr[j ∈ R]
rεk

, (2.4)

where we use Markov’s inequality, and the last step uses pairwise independence
of events i ∈ R. We now need to bound

∑
j∈Eb

Pr[j ∈ R]. If we define ε′ as
1 − ε′ = 1−ε

1−rε , then we have

∑

j∈Eb

Pr[j ∈ R] =
∑

j∈Eb

Pr[|R| ≥ �(1 − rε)k�, j ∈ R]
Pr[|R| ≥ �(1 − rε)k� | j ∈ R]

≤
∑

j∈Eb

Pr[|R| ≥ �(1 − rε)k�, j ∈ R]
b

(since j is bad)

(�)

≤ (1 − (ε′)2)/(ε′)2

b
≤ 1

(1 − r)2ε2b
,

where (�) uses Lemma 1. Substituting back into (2.4), Pr[I ∪ {i} ∈ F ∀I ∈
F , I ⊆ R | i ∈ R] ≥ 1 − ((1 − r)2rε3bk)−1.

To balance the good and bad items, we set b = ((1 − r)2rε3bk)−1 = ((1 −
r)2rε3k)−1/2. If we set r = 1/3, then we have an (1−ε, 1−( 4

27ε3k)−1/2)-selectable
PI-OCRS. Finally, if we set ε = k−1/5, since a (b, c)-selectable PI-OCRS implies
a (bc)-selectable PI-OCRS, we have a (1 − O(k−1/5))-selectable PI-OCRS.

3 Laminar Matroids

In this section we give an Ω(1)-selectable PI-OCRS for laminar matroids. A
laminar matroid is defined by a laminar family A of subsets of E, and a capacity
function c : A → Z; a set S ⊆ E is independent if |S ∩ A| ≤ c(A) for all A ∈ A.

The outline of the algorithm is as follows: we construct a new capacity func-
tion c′ by rounding down c(A) to powers of two; satisfying these more stringent
constraints loses only a factor of two. Then we run greedy PI-OCRSs for uniform
matroids from Sect. 2.1 independently for each capacity constraint c′(A), A ∈ A.
Finally, we output the intersection of these feasible sets. For our analysis, we
apply a union bound on probability of an item being discarded by some greedy
PI-OCRS; this is a geometric series by our choice of c′.

As the first step, we define c′(A) to be the largest power of 2 smaller than
c(A), for each A ∈ A. (For simplicity we assume that E ∈ A.) Moreover, if
sets A,B ∈ A with A ⊆ B and c′(A) ≥ c′(B), then we can discard A from the
collection. In conclusion, the final constraints satisfy:
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1. The new laminar family is A′ ⊆ A.
2. For any A ∈ A′, c′(A) is power of 2, and c(A)/2 < c′(A) ≤ c(A).
3. (Strict Monotonicity) For any A,B ∈ A′ with A � B, we have c′(A) < c′(B).

Let M ′ denote the laminar matroid defined by the new set of constraints. We
can check that any c-selectable PI-OCRS for M ′ is a (1/2, c)-selectable PI-OCRS
for M . Hence, it suffices to give a Ω(1)-selectable PI-OCRS for M ′.

Now we run greedy OCRSs for uniform matroids to get a (1/25, 1/2.661)-
selectable PI-OCRS: for a set A with capacity c′(A), from Sect. 2 we have both
a (1 − b, b)-selectable PI-OCRS and a (1 − b, 1 − ( 4

27b3c′(A))−1/2)-selectable PI-
OCRS: the former is better for small capacities, whereas the latter is better for
larger capacities. Setting a threshold of t = 13 and choosing b = 24/25, we use
the former when c′(A) < 2t, else we use the latter. Now a union bound over the
various sets containing an element gives us the result: the crucial fact is that we
get a contribution of t(1 − b) from the first smallest scales and a geometric sum
giving O(2−t/2b−3/2) from the larger ones. The details appear in the full version.

4 Graphic Matroids

Recall that graphic matroids correspond to forests (acyclic subgraphs) of a given
(multi)graph. For these matroids we show the following.

Theorem 6. For b ∈ (0, 1/2), there is a (b, 1 − 2b)-selectable PI-OCRS scheme
for graphic matroids.

Let M = (E, I) be a graphic matroid defined on (multi)graph G = (V,E).
Let D be any distribution over 2E that is PI-consistent with some x ∈ bPM , and
R sampled according to D. We follow the construction of OCRS of Feldman et
al. [16]. Our goal is to construct a chain of sets: ∅ = El � El−1 � · · · � E0 = E
where for any i ∈ {0 · · · l − 1} and any e ∈ Ei\Ei+1,

Pr[e ∈ span
M/Ei+1

(((R ∩ (Ei\Ei+1))\e) | e ∈ R] ≤ 2b. (4.1)

We can now define the feasible set for our greedy PI-OCRS as F = {I ⊆ E :
∀i, I ∩ (Ei\Ei+1) ∈ I(M/Ei+1)}. By definition of contraction, F ⊆ I(M). To
check selectability, for an edge e in Ei\Ei+1, we have Pr[I ∪ {e} ∈ F ∀I ∈
F , I ⊆ R | e ∈ R] = Pr[e /∈ spanM/Ei+1

(((R ∩ (Ei\Ei+1))\e) | e ∈ R] ≥ 1 − 2b
(using (4.1)). Therefore this is a (b, 1 − 2b)-selectable PI-OCRS. It remains to
show how to construct such a chain. We use the following recursive procedure:

1. Initialize E0 = E, i = 0.
2. Set S = ∅.
3. While there exists e ∈ Ei\S such that Pr[e ∈ spanM/S((R ∩ (Ei\S))\e) | e ∈

R] > 2b, add e into S.
4. i ← i + 1, set Ei = S.
5. If Ei �= ∅, goto step 2; otherwise set l = i and terminate.
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Inequality (4.1) is automatically satisfied by this procedure. It remains to show
that the process always terminates, i.e. that step 3 always leaves at least one
element unidentified, and hence Ei+1 � Ei. We start with the following claim.

Claim 1. If u0 ∈ V satisfies
∑

e∈E(u0)
xe ≤ 2b, then in the above procedure

generating E1 from E, we have that for all e ∈ E(u0), e /∈ S.

Proof. We prove our claim using induction. For any edge e ∈ E(u0) ∩ R, e ∈
span(R\{e}) implies the existence of a circuit C ⊆ R containing e. By the
definition of circuits, C must contain some edge e′ ∈ E(u0)\{e}. By the pair-
wise independence of events e ∈ R, we have Pr[e ∈ span(R\{e}) | e ∈ R] ≤
Pr[∃e′ ∈ E(u0)\{e}, e′ ∈ R | e ∈ R] ≤ ∑

e∈E(u0)
xe ≤ 2b.

Therefore we do not add any e ∈ E(u0) into S in the first iteration. Suppose
no e ∈ E(u0) has been added to S during the first i iterations, then before the
(i + 1)th iteration starts, u0 has not been merged with any other vertex in the
contracted graph G/S, so E(u0) in G/S is the same as the original graph G.
Thus

∑
e∈E(u0)

xe ≤ 2b still holds for u0 in G/S, and by the same argument as
the first iteration, no e ∈ E(u0) will be added to S in the (i + 1)th iteration. ��

Since x ∈ bPM , we have
∑

e∈E xe ≤ b(n − 1), which implies∑
u∈V

∑
e∈E(u) xe ≤ 2b(n − 1). By averaging, there exists a vertex u0 ∈ V

such that
∑

e∈E(u0)
xe ≤ 2b(n − 1)/n ≤ 2b, and by Claim 1, E(u0) ∩ E1 = ∅.

Assuming no isolated vertex in V , E1 � E0. Similarly, for any i, since M |Ei

is also a graphic matroid and x|Ei
∈ bPM |Ei

, the same argument holds for it.
Therefore Ei+1 � Ei always holds, which finishes our proof of termination for
our construction.

5 Regular Matroids

We now give a Ω(1)-competitive PI-OCRS for regular matroids. We use the
regular matroid decomposition theorem of Seymour [32] and its modification
by Dinitz and Kortsarz [12], which decomposes any regular matroid into 1-
sums, 2-sums, and 3-sums of graphic matroids, cographic matroids, and a specific
10-element matroid R10. (These matroids are called the basic matroids of the
decomposition). We now define 1,2,3-sums, and argue that it suffices to run a
PI-OCRS for each of the basic matroids and to output the union of their outputs.

Definition 2 (Binary Matroid Sums [12,32]). Given two matroids M1 =
(E1, I1) and M2 = (E2, I2), the matroid sum M defined on the ground set
E(M1)ΔE(M2) is as follows. The set C is a cycle in M iff it can be written as
C1ΔC2, where C1 and C2 are cycles of M1 and M2. respectively. Furthermore,

1. If E1 ∩ E2 = ∅, then M is called 1-sum of M1 and M2.
2. If |E1 ∩ E2| = 1, then we call M the 2-sum of M1 and M2.
3. If |E1 ∩ E2| = 3, let Z = E1 ∩ E2. If Z is a circuit of both M1 and M2, then

we call M the 3-sum of M1 and M2.
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(The i-sum is denoted M1 ⊕i M2.) Our definition differs from [12,32] as we
have dropped some conditions on the sizes of M1 and M2 that we do not need.
A {1, 2, 3}-decomposition of a matroid M̃ is a set of matroids M called the basic
matroids, together with a rooted binary tree T in which M̃ is the root and the
leaves are the elements of M. Every internal vertex in the tree is either the
1-, 2-, or 3-sum of its children. Seymour’s decomposition theorem for regular
matroids [32] says that every regular matroid M̃ has a (poly-time computable)
{1, 2, 3}-decomposition with all basic matroids being graphic, cographic or R10.

The Dinitz-Kortsarz Modification. Dinitz and Kortsarz [12] modified Seymour’s
decomposition to give an O(1)-competitive algorithm for the regular-matroid sec-
retary problem, as follows. Given a {1, 2, 3}-decomposition T for binary matroid
M̃ with basic matroids M, we define ZM , the sum-set of a non-leaf vertex M
in T , to be the intersection of the ground sets of its children (the sum-set is
thus not in the ground set of M). A sum-set ZM for internal vertex M is either
the empty set (if M is the 1-sum of its children), a single element (for 2-sums),
or three elements that form a circuit in its children (for 3-sums). A {1, 2, 3}-
decomposition is good if for every sum-set ZM of size 3 associated with internal
vertex M = M1 ⊕3 M2, the set ZM is contained in the ground set of a single
basic matroid below M1, and in the ground set of a single basic matroid below
M2. For a given {1, 2, 3}-decomposition of a matroid M̃ with basic matroids M,
define the conflict graph GT to be the graph on M where basic matroids M1

and M2 share an edge if their ground sets intersect. [12] show that if T is a
good {1, 2, 3}-decomposition of M̃ , then GT is a forest. We can root each tree in
such a forest arbitrarily, and define the parent p(M) of each non-root matroid
M ∈ M. Let AM be the sum-set for the edge between matroid M and its parent,
i.e., AM = E(M) ∩ E(p(M)).

Theorem 7 (Theorem 3.8 of [12]). There is a good {1, 2, 3}-decomposition
T for any binary matroid M̃ with basic matroids M such that (a) each matroid
M ∈ M has no circuits of size 2 consisting of an element of AM and an element
of E(M̃), and (b) every basic matroid M ∈ M can be obtained from some
M ′ ∈ M̃ by deleting elements and adding parallel elements.

Dinitz and Kortsarz showed that a good {1, 2, 3}-decomposition for a matroid M̃

can be used to construct independent sets for M̃ as follows. Below, ·|S denotes
restriction to the set S.

Lemma 2 (Lemma 4.4 of [12]). Let T be a good {1, 2, 3}-decomposition for
M̃ with basic matroids M. For each M ∈ M, let IM be an independent set of
(M/AM )|

(E(M)∩E(˜M))
. Then I =

⋃
M∈M IM is independent in M̃ .

Our Algorithm. Given the input matroid M̃ , our idea is to take a good decom-
position T and run a PI-OCRS for (M/AM )|

(E(M)∩E(˜M))
for each vertex M in

the conflict graph GT . Then we need to glue the pieces together using Lemma
2. One technical obstacle is that the input to an OCRS is a feasible point in the
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matroid polytope, so to use the framework of [12] we need to convert it into a
feasible solution to the polytopes of the (modified) basic matroids. Our insight
is captured by the following lemma.

Lemma 3. Let T be a good {1, 2, 3}-decomposition of regular matroid M̃ with
basic matroids M, and let vector x ∈ 1

3P
˜M

. Then for every basic matroid M ∈
M, if M̂ := (M/AM )|

(E(M)∩E(˜M))
, then x|

̂M
∈ P

̂M
.

Proof. Fix a set S ⊆ E(M)∩E(M̃). We will show that rank
̂M

(S) ≥ 1
3 rank

˜M
(S),

from which the claim follows.

Case 1: AM = {z}. For any maximal independent set I ⊂ S according to
M , there always exists a ∈ I such that (I ∪ {z})\{a} is independent in M ,
therefore rank

̂M
(S) ≥ rank

˜M
(S) − 1. Also since no element in S is parallel to

z, for any non-empty S we have rankM/AM
(S) ≥ 1, and we can conclude that

rankM/AM
(S) ≥ 1

3 rank
˜M

(S).

Case 2: AM is some 3-cycle {z1, z2, z3}. For any maximal independent set I ⊂ S
according to M where |I| ≥ 3, there always exists a, b ∈ I such that (I ∪
{z1, z2})\{a, b} is independent in M . Therefore rankM2/Z(S) ≥ rankM (S) − 2.
We claim that there does not exist e in E(M)\AM such that e ∈ span(AM ).

Suppose for contradiction such an e exists. Then there is some circuit in
AM ∪ e containing e. Since there are no parallel elements, this circuit have size
3. Without loss of generality, assume this circuit is C = {z1, z2, e}. Since AM is a
circuit, by definition of binary matroids, the set CΔAM = {z3, e} is a cycle, and
thus e is parallel to z3, a contradiction. Therefore for any non-empty S, we have
that rankM/AM

(S) ≥ 1, and we conclude that rankM/AM
(S) ≥ 1

3 rank
˜M

(S). ��
We conclude the main theorem of the section (see the full version for a proof).

Theorem 8 (Regular Matroids). There is a (1/3, 1/12)-selectable PI-OCRS
for regular matroids.
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