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Sensing Aided Reconfigurable Intelligent Surfaces
for 3GPP 5G Transparent Operation

Shuaifeng Jiang , Ahmed Hindy , and Ahmed Alkhateeb

Abstract— Can reconfigurable intelligent surfaces (RISs) oper-
ate in a standalone mode that is completely transparent to the
3GPP 5G initial access process? Realizing that may greatly sim-
plify the deployment and operation of these surfaces and reduce
the infrastructure control overhead. This paper investigates the
feasibility of building standalone/transparent RIS systems and
shows that one key challenge lies in determining the user
equipment (UE)-side RIS beam reflection direction. To address
this challenge, we propose to equip the RISs with multi-modal
sensing capabilities (e.g., using wireless and visual sensors) that
enable them to develop some perception of the surrounding
environment and the mobile users. Based on that, we develop
a machine learning framework that leverages the wireless and
visual sensors at the RIS to select the high-performance beams
between the base station (BS) and UEs and enable stan-
dalone/transparent RIS operation for 5G high-frequency systems.
Using a high-fidelity synthetic dataset with co-existing wireless
and visual data, we extensively evaluate the performance of the
proposed framework. Experimental results demonstrate that the
proposed approach can accurately predict the BS and UE-side
candidate beams, and that the standalone RIS beam selection
solution is capable of realizing near-optimal achievable rates with
significantly reduced beam training overhead.

Index Terms— Reconfigurable intelligent surface, sensing, com-
puter vision, standalone operation, beam selection.

I. INTRODUCTION

RECONFIGURABLE intelligent surfaces (RISs) and
holographic multiple-input multiple-output surfaces

(HMIMOS) have the potential to extend the cover-
age and reliability of millimeter wave (mmWave) and
terahertz (THz) communication networks in 5G and
beyond [2], [3], [4], [5], [6], [7], [8]. In particular, the RISs
employ large numbers of reflecting elements that can reflect
and focus the incident signals toward the wireless receiver
with proper control. This enables the network to bypass
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blockages and maintain reliable link connections. Figuring out
the right configuration of these reflecting elements, however,
is a challenging task that requires large channel estimation,
beam training, and feedback overhead [9], [10], [11]. Prior
work has mainly assumed that the RIS is controlled by
the base station (BS), simplifying its operation. However,
this approach requires high channel estimation and control
signaling overhead, which needs to be captured in future
releases of the 5G standard to ensure interoperability across
different user equipments (UEs) and network vendors. In this
paper, we address the following question: Can we build
standalone RISs of which the operation is transparent to
the 3GPP 5G protocol? In particular, can the RIS assist
the BS-UE link without any coordination or feedback from
neither of them? We present the key challenges in realizing
this standalone/transparent RIS operation vision and show how
these challenges can be relaxed by employing sensing at the
RIS surfaces.

A. Prior Work

Prior work has extensively studied various aspects of the
RIS system operation, including its channel estimation and
beamforming [9], [10], [11], [12], [13] and the application of
machine learning (ML) to enhance RIS-aided communication
systems [9], [14]. In [12], a channel estimation procedure for
the RIS-aided communication systems was proposed relying
on activating the RIS elements one by one, and estimating
the end-to-end BS-RIS-UE channel at the BS. To reduce the
estimation overhead, [13] proposed to divide the reflecting
elements into groups and estimate the effective channel for
each group. In [10] and [11], the author investigated the chan-
nel estimation for the RIS-aided uplink multi-user systems.
These channel estimation procedures in [10], [11], [12], and
[13], however, can only be used if the RIS is controlled by
the BS and do not support standalone RIS operation because:
(i) these approaches implicitly assume that the RIS reflection
configuration is synchronized with the pilot transmissions,
which requires the RIS coordination with the UE and infras-
tructure and (ii) after channel estimation, the BS and/or UE
needs to feedback the estimated channel or the beamforming
configuration to the RIS, which also needs dedicated signaling.

Towards standalone RIS operation, [9] developed what is
known as the semi-passive RIS architecture which uses sparse
active antenna elements to estimate the channels of the incident
signals. In [14], the authors optimized the equipment of
these sparse active antenna elements at the RIS, which can
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further improve the channel estimation and beamforming per-
formance. [15] used a super-resolution neural network (NN)
to predict the full RIS channel from the partial channel at the
sparse active antenna elements. In [16], the authors proposed
an efficient RIS beamforming approach that does not require
explicit channel estimation. However, it still needs the UE
to feed back the receive power measurements of the probing
beams. In [17], the authors proposed a novel self-configuring
RIS beamforming approach to establish communication links
between BS and UEs by measuring the power of the pilot
signals transmitted from both the BS and the UEs. In the
3GPP 5G initial access process [18], however, the UEs do not
transmit any pilot signals before they receive the BS synchro-
nization signals. Therefore, the above approaches alone are
not sufficient to enable fully transparent RIS operation with
respect to the 3GPP 5G.

In another context, integrating multi-modal sensing at the
infrastructure and mobile UEs to aid wireless communica-
tions has been recently attracting interest for different use
cases [19], [20], [21], [22], [23], [24], [25], [26], [27], and
[28]. For example, in [19], [20], and [22], the authors showed
that position and orientation data could enable the mobile UEs
to predict their optimal beam directions and reduce the beam
search overhead. Further, in [23], [24], and [28], the visual
data collected by cameras installed at the BS was utilized
to narrow down the beam search space, improve the support
for high-mobility users, and enhance the system reliability.
In particular, [28] built real-world proof-of-concept prototypes
that demonstrated the feasibility of using visual information
to aid the mmWave beam selection process and significantly
reduce the beam training overhead. Similarly, in [25], [26],
and [27], LiDAR and radar information are leveraged to
aid mmWave beam prediction and tracking. Reference [29]
investigated joint communication and environment sensing for
multi-user RIS systems, where the communication signals are
utilized for environment object detection.

B. Contribution

We propose a sensing-aided RIS operation that is transparent
to the 3GPP 5G initial access process. In particular, the pro-
posed RIS performs efficient beam selection without dedicated
and additional signaling from the BS and UE according to
3GPP 5G protocols. To the best of our knowledge, this work
is the first to introduce transparent RIS operations and
considers the compatibility with 3GPP 5G protocols. Our
contribution to enabling the transparent RIS beam selection
can be summarized as follows.

• We introduce a sensing-based framework for the RIS to
enable 3GPP 5G transparent beam selection operations.
In particular, the RIS utilizes sparse wireless channel
receivers to obtain information about the BS-side channel
and leverages visual sensors (cameras) to obtain informa-
tion about the UE-side channel.

• We develop a decoupled BS-side and UE-side RIS beam
design formulation that has low complexity yet leads to
near-optimal performance in realistic propagation scenar-
ios. This also provides the flexibility to efficiently process

Fig. 1. The considered system model consists of a BS, a UE, and a RIS. The
link between the BS and UE is blocked, and their communication is aided by
the RIS. The RIS is equipped with cameras and sparsely-distributed receivers.

the sensing information in different (wireless and visual)
modalities for the BS-side and UE-side beam selections,
respectively.

• We develop a ML framework that predicts the UE-side
candidate beam sets based on the visual information. The
proposed learning framework first detects the candidate
UEs using an object detector. Then, an efficient NN
architecture is proposed to predict the corresponding
UE-side candidate beam set.

• We build a high-fidelity synthetic dataset that incorporates
co-existing wireless and visual data, which enables the
research of the proposed sensing-aided RIS system. Using
this high-fidelity dataset, we extensively evaluate the
performance of the proposed sensing-aided RIS beam
selection algorithms.

Simulation results demonstrate the efficiency of the proposed
algorithms in reducing the beam training overhead, achieving
near-optimal data rates, and enabling standalone RIS operation
that is compliant with the 3GPP 5G initial access process,
highlighting a promising framework for future RIS-aided
wireless communication systems.

The rest of the paper is organized as follows. Section II
explains the system and channel models. Section III briefly
introduces the 5G NR initial access procedure. Section IV
presents the key challenge of transparent 3GPP RIS. Section V
demonstrates the idea of obtaining environment awareness
with sensing-based perception, and presents the ML frame-
work and the standalone RIS beam selection. Section VI
explains the deep learning (DL) models in the ML framework.
Simulation setup and results are presented in Section VII and
Section VIII. In Section IX, we discuss the enabling features
to extend the standalone RIS operation to more complex
scenarios. Section X concludes the paper.

II. SYSTEM AND CHANNEL MODELS

In this section, we describe the system and channel models
for the RIS-aided wireless communication scenario considered
in this paper.

A. System Model

We consider a high-frequency (e.g. mmWave and sub-THz)
wireless communication system where a RIS aids the com-
munication between a BS and a UE. For ease of exposition,

Authorized licensed use limited to: ASU Library. Downloaded on June 16,2024 at 12:58:37 UTC from IEEE Xplore.  Restrictions apply. 



6350 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 71, NO. 11, NOVEMBER 2023

we assume that a blockage exists between the BS and the
UE. Consequently, the BS can only communicate with the UE
through the RIS, and the direct links between the BS and UE
have negligible gain compared to the RIS links. This could be
a reasonable assumption in high-frequency systems due to the
high pathloss and penetration loss [9]. Note that, if a LoS direct
link between the BS and the UE exists, then this direct link will
be much more dominant than the RIS link. In this case, it may
be preferable to use the direct link between the BS and the UE.
We assume that the BS has an antenna array of N elements,
and the UE has a single antenna. The RIS has M reconfig-
urable reflecting elements. Further, the RIS is equipped with
RGB cameras and sparse wireless channel receivers to obtain
sensing information about the surrounding environment. There
are three differently-oriented cameras deployed at the center
of the RIS surface. These cameras provide a central view and
two side views of the surrounding environment. Four reflecting
elements at the corners of the RIS are active (connected to
baseband), and they act as the wireless receivers [9]. It is worth
noting that the considered system model makes the following
assumptions. (i) The RIS lies within the coverage area of only
one BS. (ii) The area covered by the RIS cameras is within
the coverage area of only one BS, which is the BS serving the
RIS. (iii) There is only one UE that can be active and served
by the RIS. (iv) The UE is supported by the service provider
corresponding to the BS.

For the uplink and downlink communication, we adopt
orthogonal frequency-division multiplexing (OFDM) with K
subcarriers. Let HT,k ∈ CM×N and hR,k ∈ CM×1 denote the
channel matrix from the BS to the RIS and the channel vector
from the UE to the RIS at the k-th subcarrier, respectively.
If the BS transmits a signal sk ∈ C on the k-th subcarrier,
then we can write the downlink received signal as

yk = hT
R,kΨHT,kfsk + nk, (1)

where f ∈ CN×1 denotes the beamforming vector of the
BS. The transmitted signal sk satisfies the power constraint
E

[
sH

k sk

]
= pt

K with pt representing the total transmit
power. nk ∼ NC(0, σ2

n) is the complex receive noise at the
UE. We use Ψ ∈ CM×M to denote the RIS interaction
matrix, which can be written as Ψ = diag(ψ). The ψ =
[ψ1, . . . , ψM ]T is the diagonal vector of Ψ with ψm ∈ C
denoting the phase shift of the m-th reflecting element. ψm

satisfies |ψm|2 = 1 to capture the constant-modulus constraint.
We call ψ the reflecting beamforming vector of the RIS. The
same ψ is applied to all subcarriers due to the time-domain
implementation.

B. Channel Model

We adopt a wideband geometric channel model for the
channels HT,k and hR,k. With this model, if hR,k consists
of L clusters, and each cluster ℓ ∈ [1, L] contributes with one
ray of time delay τℓ ∈ R, then the delay-d channel vector
between the UE and the RIS can be written as

hR,d =

√
M

ρ

L∑
ℓ=1

αℓp(dTs − τℓ)a(ϕR
ℓ , θ

R
ℓ ), (2)

Fig. 2. This figure summarizes the signaling and message exchange during
the typical 3GPP 5G initial access process.

where ρ denotes the pathloss and p(τ) denotes the pulse shap-
ing function which represents a Ts-spaced signaling evaluated
at τ seconds, a(ϕR

ℓ , θ
R
ℓ ) is the array response vector of the

RIS. ϕR
ℓ and θR

ℓ are the azimuth and elevation angles of arrival
(AoA) associated with the ℓ-th cluster. αℓ ∈ C is a complex
coefficient of the ℓ-th cluster. Given the delay-d channel in
(2), the frequency domain channel vector at subcarrier k can
be written as

hR,k =
D−1∑
d=0

hR,de
−j 2πk

K d, (3)

where D represents the maximum delay of the channel. The
channel HT,k is similarly defined.

III. 3GPP 5G INITIAL ACCESS: A BRIEF BACKGROUND

We assume that the BS and the UE try to initiate a link
using the 3GPP 5G protocol [18]. Here, we briefly revisit the
3GPP 5G initial access process, which is illustrated in Fig. 2.

A. SSB Signals

The BS transmits periodic synchronization signal blocks
(SSBs) using a predefined set of beams (codebook) [18]. When
a UE wants to access the 5G wireless network, it listens to
these SSB signals and blindly decodes them with its set of
initial access beams. Based on this beam training process,
the UE selects the pair of the SSB beam and receive beam
that results in the maximum reference signal receive power
(RSRP).

B. Message 1 UE Preamble

After successfully decoding the SSBs, the UE initiates a
random access process by transmitting an uplink preamble
sequence using the selected receive beam (which maximizes
the RSRP of the SSBs) at a physical random access chan-
nel (PRACH) occasion. Based on the transmitted preamble
sequence and the PRACH occasion where the preamble
sequence is transmitted, the BS knows which SSB beam
(direction) was selected by the UE [18]. The preamble
sequence is also called Message 1 (Msg1).

C. Message 2 BS Random Access Response (RAR)

The BS always listens to the PRACH. Upon detecting a UE
preamble, the BS transmits RAR using the same SSB beam.
The RAR is also known as Message 2 (Msg2). It contains a
temporary cell radio network temporary identifier (TC-RNTI),
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which is calculated based on the PRACH occasion of the UE
preamble. By receiving the TC-RNTI, the UE knows if its
preamble was decoded by the BS (more details in [18]).

IV. TRANSPARENT 3GPP 5G RIS: THE KEY CHALLENGE

Section III briefly introduced the 3GPP 5G initial access.
Now, if the direct link between the BS and UE is blocked, the
RIS needs to configure its beamforming to aid this communi-
cation. But how can this be done if both the BS and the UE
do not know about the existence of the RIS? We provide an
initial investigation to address this question and highlight its
key challenges.

To start, we adopt the achievable rate as the communication
performance metric of interest. Given the system model in
Section II and the downlink received signal in (1), the down-
link achievable rate for the adopted RIS-based communication
system can be written as

R =
1
K

K∑
k=1

log2

(
1 + SNR

∣∣∣(hR,k ⊙ HT,kf)
T
ψ

∣∣∣2) , (4)

where SNR= pt

Kσ2
n

denotes the signal-to-noise ratio. The
⊙ denotes the element-wise multiplication of two vectors.
Therefore, for a given BS beamforming vector f , the optimal
reflecting beam for this pair of BS and UE is the one that
maximizes the achievable rate as shown by

ψ⋆ =arg max
ψ∈O

1
K

K∑
k=1

log2

(
1+SNR

∣∣∣(hR,k ⊙ HT,kf)
T
ψ

∣∣∣2 )
,

(5)

where O is the set of all the reflecting beamformers ψ
that satisfy the constant modulus phase-only constraint, i.e.,
|ψm|2 = 1. Note that the RIS reflecting beam ψ can be
decomposed into the BS-side and the UE-side beam as ψ =
p ⊙ q, where p,q ∈ O denote the BS-side and UE-side
beamforming vectors. The optimization problem in (5) can
then be equivalently written as

(p⋆,q⋆)

=arg max
p,q∈O

1
K

K∑
k=1

log2

(
1+SNR

∣∣∣(hR,k⊙HT,kf)
T (p⊙q)

∣∣∣2).
(6)

Now, to account for the practical constraint of quantized
phase shifters [30], we limit the search space of p and q to
pre-designed finite-size codebooks P and Q. It is important
to note here that (the new optimization problem) can act as
an upper bound of the designed codebooks. Given the two
codebooks, the optimization problem in (5) can be re-written
as

(p⋆,q⋆)

=arg max
p∈P,
q∈Q

1
K

K∑
k=1

log2

(
1+SNR

∣∣∣(hT,k ⊙ p)T (hR,k ⊙ q)
∣∣∣2),

(7)

where hT,k = HT,kf is the effective channel vector between
the BS and the RIS (accounting for the BS beamforming).
It can be seen from (7) that the optimal BS-side beam p⋆

and the optimal UE-side beam q⋆ depend on both the BS-side
channel hT,k and the UE-side channel hR,k. To further sim-
plify the RIS operation, we decouple the optimization problem
in (7) to the sub-optimal approximation as follows:

p⋆ = arg max
p∈P

1
K

K∑
k=1

∣∣∣(hT,k ⊙ p)H a∗
∣∣∣2 (8a)

q⋆ = arg max
q∈Q

1
K

K∑
k=1

∣∣∣(hR,k ⊙ q)H a
∣∣∣2 , (8b)

where a ∈ CM×1 is an arbitrary reference vector. It is worth
noting that the p⋆ and q⋆ obtained in (8) is the optimal
solution to (7) for a very important case, i.e., when the BS-side
channel and the UE-side channel only contain the LoS path,
and P = Q = O (proof in Appendix).

A. BS-Side RIS Beam Selection

The optimal BS-side beam in (8a) depends on the effective
BS-RIS channel hT,k. Here, we propose that the RIS can
predict the BS-side beam by exploiting the SSBs as pilot
signals. Since the SSBs are transmitted with or without the RIS
in 3GPP 5G [18], dedicated signaling for RIS is not required.
Note that the effective BS-RIS channel hT,k may vary with
different BS beams f . To enhance clarity, we first explain the
BS-side beam selection with a constant f . Then, we extend it
to align with the 3GPP 5G, which allows for variation in the
BS SSB beam f .

With a constant BS beam f , the RIS first blindly decodes
the SSBs with its sparse wireless channel receivers. Next,
the RIS employs the SSBs as predefined pilot signals and
estimates the channel between the BS and the sparse wireless
channel receivers, which is denoted by hT,k. The hT,k can
be considered a sub-sampled version of the effective BS-RIS
channel hT,k because the wireless channel receivers are a
subset of the RIS elements. In [9], the author showed that
it is possible to estimate hT,k from the sub-sampled channel
hT,k when the channel experiences sparse scattering, which
is typically the case in the considered high-frequency system.
The literature has extensively studied estimating the hT,k from
the sub-sampled channel hT,k using compressive sensing or
DL approaches [9], [14], [15]. With the existing solutions,
we can obtain the estimate of hT,k, which can then be used to
find the optimal BS-side beam p ∈ P via an offline exhaustive
search using (8a).

As explained in Section III, each SSB can be transmit-
ted with a different BS beam in the predefined BS beam
codebook. In this case, the RIS can estimate all the BS-RIS
effective channels (accounting for different BS beams) using
the corresponding SSBs. Then, the optimal BS-side beam
can be obtained via an offline exhaustive search over all
BS-RIS effective channels using (8a). Once the RIS beam
is determined, the BS can select the optimal BS beam that
maximizes the UE’s RSRP based on the beam sweeping
and the UE feedback in Msg1 (explained in Section III).
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Fig. 3. This figure illustrates the key challenge in applying the 3GPP 5G initial access process for a RIS-aided communication system; the UE sends the
preamble sequence only after it receives and decodes the SSBs. Hence, the RIS cannot have any information about the UE channel and it needs to perform
beam sweeping over a very large codebook.

Since the BS-side RIS beam selection can be solved with
existing approaches, we do not focus on this problem. Instead,
we assume that the optimal BS-side beam is employed.

B. The Key Challenge

Selecting the UE-side beam from the codebook Q is the
key challenge. According to the 3GPP 5G initial access, the
UE does not transmit any signal/preamble until it detects
the BS SSB signals. When there is a blockage between the
BS and the UE, the UE may not be able to detect the BS
SSBs without a communication link established by the RIS.
Therefore, the RIS is required to configure its interaction
matrix to guarantee sufficient receive signal power at the
UE before the UE can detect any signal from the BS,
and before it (the RIS) receives any signals from the UE.
In other words, the RIS needs to configure the interaction
matrix without receiving any signals from the UE. A trivial
solution to design the UE-side beamforming vector at the
RIS is the exhaustive search (beam sweeping) over all the
beams in the codebook Q until the UE responds with an index
corresponding to one of the beams. However, the number of
beams that the RIS supports generally grows proportionally to
the number of reflecting elements to fully exploit them. Due
to the large number of RIS reflecting elements, the beam
sweeping requires tremendous training overhead. Further,
the beam sweeping becomes more impractical for mobile UEs
as the beam sweeping needs to be frequently repeated in short
periods of time.

Then, our objective is to solve the optimization problem in
(8b), i.e., finding the UE-side beamforming vector q⋆ ∈ Q,
with the smallest number of trials. In Section V, we propose
to leverage sensing to achieve this objective.

V. SENSING FOR STANDALONE RIS OPERATION

The convergence of communication, sensing, and local-
ization is considered one of the key features in 6G and
beyond [31], [32]. The sensing and localization capabilities
may provide rich information and awareness about the sur-
rounding environment to the communication systems. In this
section, we propose to utilize sensing at the RIS to build
up environment awareness and leverage this awareness in
enabling efficient transparent operation for these surfaces.

A. Key Idea: Observe With Sensing

This paper mainly focuses on high-frequency RIS-aided 5G
communications. The high-frequency systems often rely on
the beamforming gain of highly directional beams to achieve
sufficient receive SNR. Moreover, in high-frequency systems,
RIS is primarily used to aid communications through the
reflected LoS path, where the channels between the RIS and
the BS/UE are likely to be dominated by LoS paths. Therefore,
the RIS beams highly rely on the geometric topology, such
as the position and direction of the communication devices.
This motivates employing sensors at RIS to obtain sensing
information about the communication environment. While the
sensing information may not fully reveal the cluster informa-
tion for wideband channel modeling, it captures the geometric
topology information which can be used to aid the RIS
beamforming. Although there are various modalities of sensors
that can capture information about the communication environ-
ment, we are particularly interested in adopting visual sensors
at the RIS for the following reasons. (i) In high-frequency RIS
systems, the communication devices are likely to be LoS with
the RIS. Cameras can provide fine-grained spatial and visual
information about LoS objects, which can aid in identifying
and locating them. (ii) Compared to other types of sensors,
such as LiDAR and radar, cameras typically have the advan-
tage of low hardware cost. (iii) Advanced computer vision
and image processing algorithms, e.g., object detection, can
be adopted to aid communications with little modifications.

The visual sensing information can help the RIS-integrated
wireless communication system in several ways. (i) The
RIS can leverage the sensing information for identifying the
promising beamforming directions and avoid extensive (blind)
beam training. (ii) The sensing information can potentially
help the RIS manage its beams to avoid causing interference
to adjacent users associated with neighboring BSs. (iii) By
periodically monitoring the locations/directions of the candi-
date UEs, the RIS can track the UEs’ beams and model their
mobility patterns. Next, we focus on the first potential gain,
which is reducing the beam training overhead.

B. RIS Beam Set Prediction
As discussed in Section IV, the key challenge of realizing

standalone RIS operation lies in the high beam training over-
head associated with UE-side RIS beam sweeping. To tackle
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Fig. 4. Overview of the proposed ML framework for the RIS UE-side candidate beam set prediction. Given the visual information of the surrounding
environment of the RIS, the framework first detects the candidate UEs with an object detector. Then the information about the candidate UEs (bounding boxes
and object classes) are used to predict the candidate beams.

this problem, we propose an ML framework that (i) utilizes
visual sensors at the RIS to obtain information about the
candidate UEs in the scene, and (ii) exploits this information to
reduce the UE-side beam training overhead of the RIS. Fig. 4
shows the overview of the proposed ML framework. With the
equipped cameras, the RIS first obtains visual information,
namely, RGB images, of the surrounding environment. Then,
the RIS leverages computer vision object detection models
to identify the candidate UEs in the scene. The information
of all the detected candidate UEs is then used to predict
the set of the most promising beams for the candidate UEs.
Note that the number of these promising/candidate beams is
proportional to the number of candidate UEs in the scene,
which is typically much smaller than the size of the RIS beam
codebook. This highlights the potential of significantly reduc-
ing the beam training overhead by leveraging the available
visual information.

The objective of the ML framework is then to accurately
predict a set of UE-side candidate beams that correspond to
the candidate UEs in a given scene. More specifically, for each
UE, the objective is to accurately predict the UE-side RIS
beam q⋆ that satisfies (8b). The optimal UE-side candidate
beam set of an image can then be defined as

Q⋆ = {q⋆
1, . . . ,q

⋆
U} , (9)

where U is the total number of ground-truth candidate UEs
in the image, and q⋆

u (u = 1, . . . , U) is the optimal UE-side
beamforming vector for the u-th ground-truth UE. The optimal
framework f⋆(·) is then defined as the one which can perfectly
predict the optimal UE-side candidate beam set for any given
image. Let X ∈ Rw×h×3 denote the input RGB image to the
ML framework with w and h denoting the width and height
of X. The optimal framework can be expressed as

f⋆(X) = Q⋆
X, (10)

where Q⋆
X is the optimal UE-side candidate beam set of image

X. Deriving the exact expression of f⋆(·) is very difficult since
it depends on the channel model, the visual model, and the
environment around the UE and RIS. This motivated using
DL models to learn the complex function f⋆(·) in a data-
driven manner. The adopted DL models will be explained in
Section VI.

Algorithm 1 Proposed Sensing-Aided Transparent RIS
Operation

# Step 0: RIS predicts the BS-side beam (explained in
Section IV-A)

1: The RIS synchronizes with the BS by receiving and blind
decoding SSBs

2: RIS estimates the channels at the sparse wireless receivers
using SSBs as pilots

3: RIS predicts BS-side beam p̂ using the channel estimates
at the sparse wireless receivers [9], [14], [15]
# Step 1: RIS predicts the UE-side candidate beam set

4: RIS detects candidate UEs using the DL-based object
detection (explained in Section VI-A)

5: RIS predicts the UE-side candidate beam set Q̂ using the
DL model (explained in Section VI-B)
# Step 2: RIS beam sweeping over the UE-side candidate
beam set

6: for each UE-side beam q̂ in the predicted UE-side candi-
date beam set Q̂ do

7: RIS configures its elements using the RIS beam (p̂⊙q̂)
8: if RIS detects a successful initial access then
9: Jump to Line 13

10: end if
11: end for
12: Jump to Line 2

# Step 3: Maintaining the link
13: while Stopping criterion is not met do
14: RIS performs beam tracking starting from the current

RIS beam. (This is not implemented in this paper)
15: end while
16: Jump to Line 2

C. Vision-Aided Transparent RIS for 3GPP 5G

Here, we describe the proposed transparent 3GPP 5G
operation of the vision-aided RIS system. The proposed RIS
operation mainly comprises four steps, which are summarized
in Algorithm 1.

Step 0. RIS Predicts the BS-Side Beam: Using the
sparse wireless channel receivers, the RIS blindly decodes
the SSBs periodically transmitted by the BS. These SSBs
are first used to synchronize with the BS. Then, the RIS
exploits the SSBs as pilot signals to predict the BS-side
beamforming vector p̂ as explained in Section IV-A. Note

Authorized licensed use limited to: ASU Library. Downloaded on June 16,2024 at 12:58:37 UTC from IEEE Xplore.  Restrictions apply. 



6354 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 71, NO. 11, NOVEMBER 2023

Fig. 5. This figure shows the proposed standalone RIS system operation and its compliance with the 3GPP 5G protocol. Exploiting the visual information,
the ML framework reduces the UE-side beam training overhead for the RIS (step 1).

that we assume the RIS knows beforehand the initial access
configuration, including the SSB periodicity, bandwidth, and
carrier frequency. This can be achieved if the RIS has the
same capability as a UE device. Note that we assume that the
RIS lies within the coverage area of only one BS, otherwise,
it may not be able to correctly align its BS-side beam with the
intended BS.

Step 1. RIS Predicts UE-Side Candidate Beam Set
With Camera Information: The RIS obtains the visual
information (images) of the surrounding environment with its
visual sensors. Given this visual information, the RIS detects
the candidate number of UEs Û and predicts the corresponding
UE-side candidate beam set Q̂ with the ML framework shown
in Fig. 4. Note that we assume that the area covered by the
images is within the coverage area of only one BS, which is
the BS that the RIS is aligned with in Step 0.

Step 2. RIS Performs Beam Sweeping Over the Predicted
UE-Side Beam Set: The RIS applies the BS-side beam
vector obtained in Step 0, and performs beam training within
the UE-side candidate beam set Q̂ obtained in Step 1. For
each UE-side candidate beam q̂u ∈ Q̂, the RIS holds the
beam for a time window longer than one SSB cycle (e.g.
20 milliseconds). Meanwhile, using its sparse wireless channel
receivers, the RIS tries to detect a successful initial access
(Msg1 ∼ Msg4) by detecting the signal power on the wireless
bands where the initial access messages are transmitted.1 If
the RIS cannot detect a successful initial access, it concludes
that no UE can use the currently tested UE-side beam. The
RIS then switches to the next UE-side candidate beam in the
set Q̂, and repeats the same process. As shown by Fig. 5,
when testing the UE-side beams, the RIS ensures its beam
switching is synchronized with the BS’s SSB beam sweeping.
In such a manner, the UE can have a chance to receive one
or more complete SSBs. Note that the proposed transparent
RIS operation focuses on the single-user MIMO scenario. The

1By monitoring the signal power on the wireless band, the RIS does not
need to decode the messages exchanged between the BS and the UE in the
initial access process.

RIS may detect multiple candidate UEs in Step 1, however,
it serves only one of the candidate UEs. We briefly discuss
the multi-user scenario in Section IX.

Step 3. Maintaining the Link: If the RIS detects a success-
ful initial access, it indicates that one UE is communicating
with the BS via the current RIS beam. The RIS should perform
beam tracking (starting from this beam) to serve this UE as it
moves. To achieve beam tracking, the sensing information can
be exploited to infer the optimal UE-side beam for the current
time instance. Furthermore, enabled by the sensing capability,
the RIS can predict the dynamics of the environment and the
UE to achieve proactive beam tracking (predict the future
optimal UE-side beam). During the beam tracking, the RIS
keeps monitoring certain stopping criteria. After a stopping
criterion is met, the RIS stops beam tracking and goes back to
Step 0. For the stopping criteria, we expect that the RIS beam
tracking stops when the communication between the UE and
the BS is terminated. More specifically, the RIS beam tracking
stopping criteria include the following: (i) There is a blockage
between the RIS and the BS/UE. (ii) The BS has switched to
serve another UE. (iii) The communication session between
the BS and the UE is terminated. Note that the RIS beam
tracking and stopping criteria detection functionalities are not
currently handled in this work. We highlight them as future
research directions in Section IX-B.

Fig. 5 shows the timing of each step of the proposed
vision-aided standalone RIS system operation with respect to
the 3GPP 5G initial accessed process described in Section III.
This demonstrates the compatibility of the proposed beam
selection with the 3GPP 5G protocol.

D. Deployment Considerations

Here, we discuss several essential considerations for
the implementation of the proposed RIS system, including
(i) power consumption and implementation cost, (ii) sensing
and processing delay, and (iii) compatibility with different 5G
deployment methods.
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1) Power Consumption and Implementation Cost: One
motivation of the RIS is to reduce power consumption and
implementation cost [33]. We anticipate that the proposed
sensing-aided RIS will have reasonable power consumption
and implementation cost due to the following reasons. (i) The
proposed RIS adopts a power-efficient array architecture where
only a few baseband processing chains are needed for the
sparse channel receivers. Moreover, the sparse wireless chan-
nel receivers do not need the transmitter functionality. These
reduce power consumption and implementation cost. (ii) The
proposed RISs do not need dedicated and additional signaling
with the BS or user, which helps improve wireless resource
efficiency and overall energy efficiency. (iii) Compared to
other modalities of sensors such as radar and LiDARs, the
proposed RIS adopts cameras that often have lower implemen-
tation costs. (iv) Although the adopted DL models consume
some power, they can be more efficiently implemented using
techniques model quantization and pruning techniques [34]
and efficient DL hardware [35]. Moreover, the object detector
may utilize more advanced and lightweight models [36].

2) Sensing and Processing Delay: The proposed RIS uses
sensors to capture information about the communication envi-
ronment and select the RIS beam. Obtaining and processing
the sensing information, however, may lead to time delay.
The impact of this delay depends on the dynamics in the
system. For example, the time delay may pose challenges to
serving highly mobile users. In this case, it might be interesting
to leverage the sensing information to predict future RIS
beams [24], which can help compensate for the time delay.
Note that this delay is not modeled in this paper.

3) Compatibility With Different 5G Deployment Methods:
There are several popular deployment methods for 5G. For
instance, the non-standalone deployment utilizes the existing
4G LTE infrastructure including the evolved packet core (EPC)
and the eNodeB. The pure 5G deployment, however, adopts
the 5G gNodeB and next-generation core network (NGC).
Since the proposed standalone RIS operation does not rely on
explicit signaling with the infrastructure, it is compatible with
both EPC and NGC. Since we mainly consider high-frequency
systems, the proposed RIS operation is compatible with the
gNodeBs that operate on the 5G frequency range 2 (FR2)
high-frequency bands. However, the proposed RIS operation
may not be compatible with the eNodeBs that only support
the frequency range 1 (FR1) sub-6 GHz bands.

VI. DEEP LEARNING MODELING

The proposed sensing-aided transparent RIS approach
depends on the capability of the RIS to leverage its sensors
(cameras in this paper) to determine the set of candidate
beams. We employ the powerful learning capabilities of com-
puter vision and DL to achieve this task, which we divide into
two sub-tasks, namely candidate UE detection in the field of
view, and candidate beam set prediction. Next, we describe
the adopted DL models for these two sub-tasks.

A. Candidate UE Detection

Convolutional neural networks (CNNs) have been exten-
sively investigated for visual object detection and have

demonstrated promising performance. Therefore, we adopt a
CNN-based object detection model. Since the wireless envi-
ronment is typically changing quickly, the object detector in
the proposed framework for UE-side candidate beam set pre-
diction needs to satisfy an essential requirement: the capability
to produce fast object detections of high quality. To that end,
the YOLOv3 object detector [37] is selected due to its fast
prediction speed, high accuracy, and ease of implementation,
which make it well-suited for real-world deployments. Given
an image, the YOLOv3 model outputs a class index c ∈ Z, and
a bounding box vector b ∈ R4×1 for each detected candidate
UEs. The b consists of the x-center, the y-center, the width,
and the height of the bounding box. We refer readers to [37]
for more details. Note that the object detection algorithm may
detect some non-user objects. These objects will not respond
to the SSBs but they may cause adding additional beams in
the predicted UE-side candidate beam set.

B. Candidate Beam Set Prediction

Based on the class and bounding box information of the
candidate UEs, we now design an NN that can predict the
UE-side candidate beam set. Next, we will describe the key
components of the proposed NN for the UE-side candidate
beam set prediction, namely the input/output representation,
the NN architecture, and the loss function and learning model.

1) Input/Output Representation and Normalization: Given
one image, the YOLOv3 model detects Û candidate UEs. For
each candidate UE, the YOLOv3 model outputs a class index
c ∈ Z, and a bounding box b ∈ R4×1. To make the training
process of the NN faster and more stable, we convert the class
c to a one-hot vector c̄, and we normalize the bounding box b
by the size of the image, w and h. The normalized bounding
box is denoted by b̄. Then the one-hot representation of the
class c̄ and the normalized bounding box b̄ are concatenated to
the candidate UE information vector v = [c̄T , b̄T ]T . Finally,
the input matrix V to the NN architecture is written as V =
[v1, . . . ,vÛ ,0, . . . ,0]. Note that we pad (Umax − Û) zero-
vectors since the number of detected UEs varies from image
to image. Umax denotes the maximum number of candidate
UEs that exist in any image. To construct the desired output
of the NN, we first obtain the optimal UE-side beam set Q⋆

corresponds to the image as shown by (9) with an exhaustive
search over the codebook Q. Then we convert Q⋆ into a
multi-hot vector t⋆ =

[
t⋆1, . . . , t

⋆
|Q|

]
. With Qj denoting the

j-th beam in Q, the j-th element of t⋆, t⋆j satisfies

t⋆j =

{
1 Qj ∈ Q⋆,

0 otherwise.
(11)

2) NN Architecture: As shown by Fig. 6, we propose an
NN architecture that effectively predicts the UE-side candi-
date beams from the class and bounding box information
of all detected candidate UEs in an image. The proposed
NN architecture first applies the same stack of fully con-
nected NN layers on each candidate UE’s information vector
(each column of V) to extract high-level features. These
fully-connected layers adopt the ReLU activation function
given by fReLU(x) = max(x, 0). After this feature extraction,
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Fig. 6. The proposed NN architecture for predicting candidate beam set
from detected UE information. The NN architecture first applies the same
stack of FC layers on all the UE information vectors to project them into
|Q|-dimensional vectors. The |Q|-dimensional vectors are then added up and
activated by the sigmoid function.

each input candidate UE information vector is transformed to
a |Q|-dimensional vector. Then these |Q|-dimensional vectors
are combined by a summation operation. Since the desired
output of the NN is designed as a multi-hot vector, the sigmoid
activation is applied to the combined vector to restrict its value
into the range (0, 1). After the sigmoid activation, we obtain
the output vector, t ∈ R|Q|×1.

The proposed NN architecture has two advantages for
predicting the UE-side candidate beam set from the candidate
UE information vectors. (i) It reuses the same stack of fully
connected layers to extract features from different candidate
UE information vectors. This aligns with the intuition that all
candidate UEs are equivalent for the NN architecture, thus,
they should be processed in the exact same way. Reusing
this same stack of fully connected layers also reduces the
complexity of the proposed NN architecture, which stabilizes
the training process and reduces the computational complexity
of the inference process. (ii) The output of the proposed NN
architecture does not rely on the order of the input candidate
UE information vectors. This is achieved by reusing the same
stack of fully connected layers and the summation operation
that combines features from all candidate UE information
vectors. Thus, the proposed NN architecture can be more
robust by not overfitting to the order of the input candidate
UE information vectors. We validate our intuitions on the NN
structure by numerical results presented in Section VIII-B.

3) Loss Function and Learning Model: The NN is designed
to predict the UE-side candidate beam set based on the
candidate UEs detected by the YOLOv3 model. This can be
modeled as a multi-class classification problem. Therefore,
we adopt a classification learning model. We train the NN by
supervised learning and employ the cross-entropy loss function
expressed by

LCE(ωNN ) = −
Ntr∑
i=1

|Q|∑
j=1

t⋆i,j log2(ti,j), (12)

where t⋆i,j is the j-th element of the desired output vector
t⋆
i of the i-th training sample, and ti,j is the j-th element

of the NN’s output vector of the i-th training sample. Ntr is

Fig. 7. A top-view of the adopted simulation scenario of the ViWi dataset.
This scenario models a busy downtown area with a variety of objects including
cars, buses, trucks, trees, and buildings.

the number of training samples. ωNN denotes the trainable
parameters of the NN.

VII. DATASET AND PERFORMANCE METRICS

In this section, we first explain in detail the considered
simulation setup. Second, we elaborate on the generation
process of the dataset, which is later used to train and evaluate
the NN. Then, we introduce the metrics used to evaluate the
UE-side beam set prediction performance.

A. Simulation Setup

We propose to utilize sensing to enable beamforming for
standalone RIS. Hence, realistic wireless and visual modelings
are essential for our simulation. Therefore, we generate the
training and test data with the ViWi dataset [38]. The ViWi
dataset provides co-existing wireless and visual data based on
accurate ray tracing. It comprises sequences of RGB frames,
wireless channels, and user link statuses. They are generated
from a large synthetic outdoor environment depicting a down-
town street with multiple moving objects. To simulate our
RIS-aided system, we construct a new scenario based on the
ViWi scenario 1. A top view of our scenario is presented
in Fig. 7. The BS is located on the vertical street at the
upper right. The UEs are the moving vehicles on the main
street. The RIS is installed at the side of the main road
to aid communication between the BS and the UEs. In the
simulation, since we focus on the RIS operations, we assume
the BS and the UEs to be single-antenna for simplicity. Note
that, however, the proposed RIS operation is compatible with
the multi-antenna BSs in the 3GPP 5G. The RIS is equipped
with a uniform planar array (UPA) with 32 columns and 8 rows
of reflecting elements, i.e., the total number of reflecting
elements of the RIS is 256. Three cameras (“Camera 4”,
“Camera 5” and “Camera 6”) are deployed at the RIS as shown
in Fig. 7. The central “Camera 5” has a 110◦ field of view
while the side cameras’ field of views are 75◦. In the following
simulations, we focus on the UEs in the views of “Camera 4”
and “Camera 5”. Note that, we adopt this camera setting
as an example to demonstrate the proposed RIS operations.
However, the optimal setting for the camera may need further
investigation.

B. Data Generation

We first generate 10000 scenes with the ViWi dataset.
The BS and RIS are fixed in positions for all scenes. The
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vehicles are placed at different positions in each scene, thus,
different scenes produce different wireless environments and
UE channels. Then, for “Camera 4”, each scene consists of
an image X, and the channels of all UEs in the view of the
camera. Note that we only keep the data where the UE does
not have direct links with the BS, i.e., all the paths between
the BS and the UE go through the RIS. We obtain the optimal
UE-side candidate beam set Q⋆ for each image according to
(8b) and (9) by exhaustively searching over the codebook Q.
The optimal UE-side candidate beam set for each image is
then converted to the multi-hot representation t⋆. Then X and
t⋆ form a data point (X, t⋆). We apply the same process to the
data from “Camera 5”. After processing all scenes, we have
a dataset for “Camera 4” with 9384 data points, and a dataset
for “Camera 5” with 5955 data points.

To generate the datasets for the beam set prediction NNs,
a fine-tuned YOLOv3 model is first applied to all images
in the two datasets to obtain the candidate UE information
vectors. Then, each data point (X, t⋆) is converted to (V, t⋆).
The two datasets for “Camera 4” and “Camera 5” are split
into training and test datasets using an 80%-20% data split.
To evaluate the generalizability of our proposed approach,
we ensure that the test datasets consist of data that are unseen
in the training datasets. Note that two NNs are separately
trained and evaluated on the two datasets for “Camera 4” and
“Camera 5” since they have different camera angles.

C. Performance Metrics

Here, we present the metrics followed to evaluate the
quality of the NNs’ UE-side beam set prediction. In the NNs’
output vector t, each element represents a promising score
of the corresponding beam in Q. To evaluate the prediction
performance, we first apply the following unit step function on
each element of the output vector, fstep(x) = u(x−δ), where
we use δ = 0.5 as the threshold. By applying the threshold to
t as (11), we obtain t̂. Let t̂j denote the j-th element of t̂, the
predicted UE-side candidate beam set Q̂ can then be written
as

Q̂ =
{
Qj |t̂j = 1

}
. (13)

The metrics adopted to evaluate the performance of the
UE-side candidate beam set prediction are the accuracy and
the recall. They are defined as follows:

Acc =
1

Ntest

Ntest∑
i=1

∣∣∣Q⋆
i ∩ Q̂i

∣∣∣∣∣∣Q̂i

∣∣∣ (14)

Recall =
1

Ntest

Ntest∑
i=1

∣∣∣Q⋆
i ∩ Q̂i

∣∣∣
|Q⋆

i |
, (15)

where Ntest is the number of data samples in the test dataset.
Q⋆

i and Q̂i denote the optimal and the predicted UE-side
candidate beam set for the i-th data sample, respectively.

VIII. SIMULATION RESULTS

Here, we evaluate the performance of the proposed stan-
dalone RIS beam selection. First, we present the performance

Fig. 8. This figure shows two example images taken by the RIS cameras
and illustrates the UE object class and bounding box information annotated
by the fine-tuned YOLOv3 model.

of the candidate UEs detection. Then, we present the accuracy
and recall performance of the proposed NN structure in
predicting candidate beam sets. Next, we study the amount of
data required to train the proposed NN. After that, we show
the efficacy of the proposed RIS beam selection in terms of
the achievable rate and beam training overhead.

A. Can YOLOv3 Detect Candidate UEs?

Candidate UE detection is the first step of the proposed ML
framework for predicting UE-side candidate beam sets. There-
fore, the quality of the candidate UE detection is essential for
the downstream task and the performance of the framework.
Hence, we first demonstrate the performance of the YOLOv3
object detector. In Fig. 8, we apply the fine-tuned YOLOv3
model on two images from “Camera 4” and “Camera 5”, and
let the YOLOv3 model annotate the class and bounding box
information on the detected candidate UEs. This figure shows
that the YOLOv3 model can accurately detect the candidate
UEs in the two cameras and produce high-quality information
(class and bounding box) on these UEs.

B. Does the Proposed NN Structure Learn Better?

In Section VI-B, we mentioned two key features of the
proposed NN structure: (i) Reusing the fully connected layer
stack on all the UE information vectors, and (ii) combining the
information of the detected UEs by the summation operation.
These two features are expected to improve the performance of
the candidate beam set prediction. To analyze the effectiveness
of the proposed NN structure and verify the intuitions used in
its design, we study the training process of the NN. Fig. 9
presents the learning curves of the proposed NN structure
compared with two variants trained on the “Camera 5” dataset.
The first variant adopts vanilla fully connected NN. The
second variant reuses the same fully connected layer stack
on the information vectors from all candidate UEs, but it
concatenates the resulting high-level feature vectors instead
of applying the summation operation. From the training and
the test loss in Fig. 9, we see that the vanilla fully connected
NN overfits to the training dataset and its loss diverges on
the test set. For the second variant, the test loss can converge
along with training iterations. This indicates that reusing the
fully connected layer stack stabilizes the training process.
The proposed NN structure achieves the lowest loss on the test
dataset, and the gap between the training and the test losses
is the smallest. This implies that combining the information
from different UEs with the summation operation improves
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TABLE I
ACCURACY AND RECALL PERFORMANCE OF THE ML FRAMEWORK WITH THREE DIFFERENT NN STRUCTURES TRAINED ON 80% OF THE DATA

Fig. 9. This figure compares the learning curves (train and test) of the
proposed neural network structure and two other baseline models when trained
on the “Camera 5” dataset.

the robustness of the model. These results highlight the
effectiveness of the proposed NN structure. Next, we will
further evaluate the proposed NN structure in terms of the
accuracy and recall performance.

C. Can the Proposed NN Structure Predict the Candidate
Beams More Accurately?

After the YOLOv3 detects the candidate UEs, the proposed
NN structure predicts the UE-side candidate beam set. The
quality of the predicted candidate beam set directly determines
the final transmission rate and the required beam training
overhead. Therefore, in Table I, we present the accuracy and
recall performance of the proposed NN structure compared
with its two variants. Our proposed NN structure achieves
94.2% and 92.9% on the “Camera 4” dataset for accuracy and
recall, respectively. On the “Camera 5” dataset, the accuracy
and recall performances of the proposed NN structure are
92.1% and 86.4%. These results highlight that the proposed
NN structure can accurately predict the UE-side candidate
beam set.

Comparing the proposed NN structure with the two variants,
it can be seen that reusing the fully connected stack offers
significant improvements on both datasets. For the dataset
of “Camera 5”, the accuracy increases by 59.5%. Moreover,
by reusing the fully connected stack and combining informa-
tion of candidate UEs with the summation operation, our NN
structure results in the highest performance on the test datasets.
The recall performance for the “Camera 5” dataset is improved
by 15.1%. This again emphasizes that the two key features

Fig. 10. The accuracy and recall performance of the proposed neural network
structure when trained on different training dataset sizes (as fractions of
the full training set). The figure shows that only 30%-40% of the dataset
(which correspond to 2500-3000 data points) is enough to achieve around
90% accuracy and recall.

of the proposed NN structure help stabilize the training and
achieve better performance in the beam set prediction.

D. How Much Data Is Needed to Train the
Beam Prediction NN?

The size of the training data set is crucial for ML models
when deployed in the real world. To that end, we draw
insights on the dataset size required to train the proposed ML
framework. Fig. 10 plots the test accuracy and recall obtained
on datasets “Camera 4” and “Camera 5” versus the fraction
of data used to train the proposed UE-side candidate beam
prediction NNs. As can be seen from this figure, more training
data helps improve the accuracy and recall performance. The
accuracy and recall start to saturate after 30% and 40% of
data are used in the training process for “Camera 4” and
“Camera 5”, respectively. This corresponds to 2815 data points
for “Camera 4” and 2382 data points for “Camera 5”. Training
the proposed NN structure only requires a relatively small
dataset since the proposed NN predicts the candidate beam
set from the UEs detected by the YOLOv3 model instead of
the raw RGB images. Besides, only 500 samples are used to
fine-tune the YOLOv3 model for each dataset. These results
show that the proposed ML framework is data-efficient in
the training process.

E. How Good Are the Beamforming Gain and
Achievable Rate?

Fig. 11 shows the relative beamforming gain and achiev-
able rate performance of the proposed transparent RIS beam
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Fig. 11. This figure compares the beamforming gain and achievable rates of the proposed approach and four benchmark methods. The proposed approach
does not rely on dedicated and additional signaling with the BS/UE, which is transparent to the 3GPP 5G initial access. The benchmark methods require
channel information, large training overhead, and/or dedicated signaling.

selection compared with four baseline beamforming methods.
(i) The first baseline method is the equal gain beamforming
per subcarrier. It uses the conjugate of the channel vectors as
the beamforming vectors, which serves as an upper bound of
the achievable rate. (ii) The second baseline method is the
non-decoupled UE-side exhaustive search with a codebook
size of 256. Given the optimal BS-side beam, this method
tries all UE-side beams in the UE-side codebook to obtain the
highest achievable rate in (7). (iii) The third baseline method
adopts the optimal BS-side beam, and performs the UE-side
exhaustive search over the decoupled UE-side beam selection
problem in (8b) with a codebook size of 256. The above
three baseline beamforming methods are not practical. The
equal gain combine applies different beamforming on different
subcarriers, which violates the implementation constraint of
the RIS. The two exhaustive search methods require either the
channel information on both the BS-side and UE-side or the
large beam training (sweeping) overhead. (iv) The fourth base-
line method is a self-configuring RIS beamforming approach
called MARISA [17]. This method configures the RIS beam
by measuring the power of the pilot signals transmitted by
the BS and the UEs. Since it relies on the pilot signal from
both the BS and the UEs, this approach is not transparent to
3GPP 5G initial access. Moreover, this approach adopts beam
sweeping over 256 probing beams, which leads to large beam
training overhead. In our approach, we assume that the RIS
uses the optimal BS-side beam (explained in Section IV-A),
and the best UE-side beam within the predicted UE-side
candidate beam set.2 Our approach is transparent to 3GPP 5G
initial access, which does not rely on dedicated and additional
signaling from the BS and the UE.

Fig. 11(a) presents the beamforming gain relative to the
equal gain beamforming. The proposed transparent approach

2In practice, the UE may respond to the first decodable SSBs, and then
the RIS selects the UE-side beam corresponding to those SSBs. However,
the decodable SSBs vary from one UE to another depending on the receive
sensitivity of the UE manufacturer. In the simulation, we assume that the RIS
selects the best UE-side beam within the UE-side candidate beam set.

achieves 85% beamforming gain compared to the exhaustive
search methods that require 256 beam training iterations.
Compared to [17], our proposed transparent approach achieves
89% beamforming gain which corresponds to only −0.4 dB
loss in SNR. Fig. 11(b) shows the achievable rate performance
that increases with the SNR. Notably, the performance gap
between the non-decoupled (7) and decoupled (8b) exhaustive
search methods is minimal. This suggests that the performance
degradation due to decoupling the RIS beam selection problem
in (7) is small in the considered scenario. Furthermore, our
proposed transparent approach obtains high performance
in the SNR range from −10 to 10 dB compared to the
exhaustive search methods (upper bounds). For example,
at 0 dB receive SNR, it achieves 86.1% of the exhaustive
search data rate. Moreover, Compared to [17], our approach
achieves only slightly lower achievable rate performance.
Again, [17] is a non-transparent RIS beamforming approach
that requires the pilot signals from both the BS and UE.
In contrast, the proposed approach is transparent to 3GPP 5G
initial access, which does not rely on pilot signals and other
dedicated and additional signalings from the BS and UE.

F. How Much Beam Training Overhead Is Required?
One goal of this paper is to reduce the beam training

overhead of the standalone RIS. In Fig. 12, we study the
effect of the size of the UE-side candidate beam set on
the achievable rate at 0 dB receive SNR. In the previous
simulations, we apply the step function in Section VII-C to
the output vector of the NN, and construct the candidate
beam set as shown by (13). Here, the candidate beam set
consists of the k beams corresponding to the top-k highest
value in t, the output vector of the NN. As shown in Fig. 12,
when the candidate beam set size increases, the achievable rate
performance of our proposed standalone RIS beam selection
approaches the performance of the exhaustive search. When
the RIS sweeps over only 12 beams in the UE-side
candidate beam set, the proposed approach can achieve
96.4% of the data rate achieved by the RIS exhaustive
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Fig. 12. This figure shows the achievable rate of the proposed standalone RIS
approach with different sizes of the UE-side candidate beam set. The beam
training overhead of the proposed approach is compared with two baseline
approaches.

search over 256 UE-side beams. Note that this exhaustive
search provides the optimal achievable rate given the BS-side
beam. Therefore, approaching this upper bound indicates that
the proposed standalone RIS beam selection can efficiently
reduce the beam training overhead with little negative effect
on the achievable rates of the RIS-aided system. [17] can
achieve high achievable rate performance when sweeping over
256 probing beams. However, when 64 probing beams are
employed, the performance of [17] degrades noticeably. [17]
typically requires a large number of probing beams (e.g. 256)
to sense the communication environment with high spatial
resolution and obtain high-performance RIS communication
beams. In contrast, the proposed approach senses the commu-
nication environment with wireless and visual sensors. With
this sensing information, the RIS can achieve high achievable
rates when sweeping over only 12 UE-side candidate beams.
This again highlights the potential of leveraging sensing to
guide RIS beam selection and reduce beam training overhead.

IX. DISCUSSION AND FUTURE WORK

In this section, we provide some insights on how to extend
the proposed 3GPP 5G transparent RIS operation to more
dynamic and complex scenarios, and discuss the enabling
features.

A. Beam Tracking

Efficient beam tracking is essential for the RIS to support
mobile UEs in dynamic environments. The 3GPP 5G beam
refinement process includes the following: (i) The BS performs
beam sweeping within a subset of transmit beams while the
UE is maintaining a receive beam, and (ii) the UE reports
the beam measurement results and the selected beam(s) to
the BS. This beam refinement process, however, cannot be
directly employed by the standalone RIS operation. The beam
refinement requires signaling between the RIS and the BS/UE
because the RIS lacks knowledge of the content of some
messages exchanged between the BS and UE, e.g., the Msg 1
and Msg 2. As discussed in Section V-C, however, the RIS’s

sensing capability can be utilized to achieve transparent RIS
beam tracking. With the sensing capability, the RIS can
obtain rich information about the UE position, its mobility
pattern, and the environment layout, from which the RIS can
infer its future UE-side beam from the current/previous beam
sequence.

B. Beam Tracking Stopping Criteria

The RIS should stop the beam tracking when it detects
that the communication between the BS and the UE ends.
As discussed in Section V-C, the RIS beam tracking stopping
criteria include: (i) There is a blockage between the RIS
and the BS/UE, (ii) the BS has switched to other UEs, and
(iii) the communication session is terminated. Note, however,
that since the standalone RIS does not communicate with the
BS or the UE, it can not directly know that the session has
ended and it also can not access the configuration of the
wireless resource allocation. Therefore, the RIS needs to infer
and keep track of the wireless resource associated with the UE.
Having a spectrum sensing capability at the RIS may be one
step towards this objective. It remains, however, an interesting
and open research problem. Apart from the spectrum sensing
approach, other sensing modalities at the RIS can also be
leveraged to detect the beam tracking criteria. For instance,
the sensors (such as camera, radar, LiDAR, etc.) can detect
and proactively predict the potential blockages between the
BS/UE and the RIS and assist the stopping criteria detection
for the standalone RIS beam tracking.

C. Multi-User Scenario

The proposed transparent RIS operations focus on the
single-user scenario. However, it could be interesting to extend
that to support the multi-user scenarios. Since different UEs
can be allocated to different time and frequency resources in an
uncontrolled way from the transparent RIS’s perspective, the
RIS may use one reflection beam to serve multiple UEs. This
multi-user beam design problem may be addressed in various
ways, such as (i) dividing the RIS into multiple sub-arrays
with each sub-array configured to support the communication
for one UE, and (ii) employing multi-lobe and composite
beams [39], [40]. Using the multi-user beam design, the pro-
posed transparent RIS operations may be extended to support
the initial access for multiple UEs. Take the sub-array beam
design as an example, the RIS can first serve a single user
“UE 1” using its first sub-array. After that, to establish con-
nections for other UEs, the RIS predicts the candidate UE-side
beam set from the visual information. Then, the RIS sweeps
over the candidate UE-side beam set using its second sub-array
while maintaining the beamforming of the first sub-array to
serve UE 1. By monitoring the UE preamble on the PRACH,
the RIS can start to serve a new UE with its second sub-
array. While the proposed transparent RIS operation may be
extended to the multi-user initial access process, maintaining
the links for multiple users is challenging. For the multi-user
beam tracking and stopping criteria detection, the RIS may
need to identify the users being served from the sensory
data and associate them with the previously and currently
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used UE-side beams. This user identification problem has
been studied in [41] for a visual sensing-aided mmWave BS.
However, it remains an open problem for the transparent RIS
which lacks dedicated signaling with the BS and UEs.

X. CONCLUSION

In this paper, we investigated the feasibility of enabling
3GPP 5G transparent RIS operation using sensing-based
perception. Utilizing the sensing capability at the RIS, we pro-
posed a standalone RIS beam selection operation that does not
need any dedicated signaling with the BS and the UE, and is
compatible with the 3GPP 5G initial access process. To guide
the RIS beam selection in the proposed standalone RIS opera-
tion, we developed an ML framework and an NN architecture
that leverage the visual data captured by cameras installed at
the RIS to predict the candidate set of beams. To evaluate
the developed solution, we conducted extensive simulations
based on a high-fidelity synthetic dataset gathering co-existing
wireless and visual data. When benchmarked against other
NN architectures, the proposed one shows clear advantages in
both learning stability and prediction accuracy. In particular,
the simulation results demonstrated that the proposed ML
framework can accurately predict the UE-side candidate beam
set. Further, these results showed that the proposed standalone
RIS system can achieve near-optimal spectral efficiency with
significantly reduced beam training overhead. This highlights
the potential of leveraging sensing-based perception to develop
3GPP 5G transparent RIS operations.

APPENDIX

When the BS-side channel and UE-side channel only con-
tain the LoS path, all the subcarriers have the same channels,
i.e., hT,k = hT, ∀k = 1, . . . ,K , and hR,k = hR, ∀k =
1, . . . ,K . Without loss of generality, let us assume

hT =
[
a1e

jϕ1 , . . . , aMejϕM
]T

hR =
[
b1e

jω1 , . . . , bMejωM
]T

a =
[
c1e

jβ1 , . . . , cMejβM
]T
, (16)

where am, bm, cm ≥ 0, ϕm, ωm, βm ∈ [−π, π),
∀m = 1, . . . ,M . Since ψ⋆,p⋆,q⋆ ∈ O, they can be written
as

ψ⋆ =
[
ejλ1 , . . . , ejλM

]T

p⋆ =
[
ejλp,1 , . . . , ejλp,M

]T

q⋆ =
[
ejλq,1 , . . . , ejλq,M

]T
, (17)

where λm, λp,m, λq,m ∈ [−π, π), ∀m = 1, . . . ,M .
With hT,k = hT and P = O, (8a) can be re-written as

p⋆ = arg max
p∈O

1
K

K∑
k=1

∣∣∣(hT ⊙ p)H a∗
∣∣∣2

= arg max
p∈O

∣∣∣(hT ⊙ p)H a∗
∣∣∣2

= arg max
ϕm,βm,λp,m

∣∣∣∣∣
M∑

m=1

amcme
−j(ϕm+βm+λp,m)

∣∣∣∣∣
2

(18)

⇔ ϕm1 +βm1 +λp,m1 =ϕm2 +βm2 + λp,m2 , ∀m1,m2.

(19)

Similarly, (8b) can be re-written as

q⋆ = arg max
q∈O

∣∣∣(hR ⊙ q)H a
∣∣∣2

= arg max
ϕm,βm,λq,m

∣∣∣∣∣
M∑

m=1

bmcme
−j(ϕm−βm+λq,m)

∣∣∣∣∣
2

(20)

⇔ ωm1 − βm1 +λq,m1 =ωm2 − βm2 +λq,m2 , ∀m1,m2.

(21)

Adding up (19) and (21), we can derive

ϕm1 + ωm1 + λp,m1 + λq,m1

= ϕm2 + ωm2 + λp,m2 + λq,m2 , ∀m1,m2. (22)

Similarly, (5) can be re-written as

ψ⋆ = arg max
ψ∈O

∣∣∣(hR ⊙ hT)T
ψ

∣∣∣2
⇔ ϕm1 + ωm1 + λm1 = ϕm2 + ωm2 + λm2 , ∀m1,m2.

(23)

Since p⋆⊙q⋆ =
[
ej(λp,1+λq,1), . . . , ej(λp,M+λq,M )

]T
, it can be

seen from (22) that p⋆⊙q⋆ satisfies (23), therefore, p⋆⊙q⋆ is
an optimal solution of (5). Thus, they are an optimal solution
of (7).
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