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ABSTRACT. We consider a linear algebraic group G defined over an algebraically
closed field k. By considering k as an embedded residue field of an algebraically
closed valued field K, we can associate to it a compact G-space S%(k), consisting
of p-types on G. We showed that for each p € S¢(k), Stab”(p) is a solvable infinite
algebraic group when p,, is centered at infinity and residually algebraic. Moreover
we give a description of the dimension Stab”(p) in terms of the dimension of p.

1. INTRODUCTION

Let G be a group definable in an o-minimal structure, and let v : (a,b) — G be a
definable curve which is unbounded, in the sense that the limit at b does not exist.
In [9], it was shown that one can associate to this datum a definable one-dimensional
torsion-free group H, C G, that can be viewed as the “stabilizer of v at oo”. The
group H, is called the Peterzil-Steinhorn subgroup associated to 7. For example,
when G is a Cartesian power of the additive group, H,, is the linear subspace whose
translate is the asymptote of v at oco.

Assume now that G is an affine algebraic group over the complex numbers, and
X is an algebraic curve embedded in G. If we view C as the algebraic closure
of a real closed field R, the set of complex points of X can be viewed as the set
of R-points of an R-definable set X“" in the o-minimal structure R. This set is
unbounded, and we may therefore choose an unbounded curve 7 inside X**, and
consider the corresponding PS-group H.,. Taking its Zariski closure, we obtain an
algebraic subgroup G, of G, of (algebraic) dimension 1.

It is natural to ask, to which extent does the subgroup G. depend on the non-
algebraic data involved, namely, the dependence on the real closed field R of choice
and the curve 47 And if it does not depend on the above, can the construction be
described in a purely algebraic manner? We first note that choice of v : (a,b) — X
determines an additional algebraic datum: the curve X (which we may assume
to be smooth) has a canonical compactification X, its projective model, which is
obtained from X by adding finitely many points. Viewing 7 as taking values in
X rather than X", the limit of « at b will be precisely one of these points, and
curves 7y corresponding to different such points definitely might give rise to different
subgroups G. Hence, any hope of providing an algebraic construction of G, should
take into account the choice of such a point at infinity.
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2 PETERZIL-STEINHORN SUBGROUPS AND p-STABILIZERS IN ACF

The main result of this paper (stated below) provides an algebraic construction
as expected above, once the additional datum of a limit point is chosen:

Theorem 1.1. Let GG be a linear algebraic group over k, and let X C G be an
irreducible curve. Then there are finitely many 1-dimensional linear subgroups of
(G, associated to points at infinity of a projective model of the curve X.

A more precise version is given in Theorem 3.11. The actual main result in the
paper includes a generalization to higher dimensions, and some analysis of the struc-
ture of the resulting group. These results are obtained by viewing G as a definable
group in ACVF, the theory of algebraically closed valued fields, and applying some
results from [4].

To state the main result, we need to introduce some additional terminology. The
subgroups we are interested in were introduced in an abstract setup in [7]. There,
one considers (suitably defined) definable topological groups. To such a group G,
one associates an “infinitesimal subgroup” u, the intersection of all definable neigh-
bourhoods of the identity. If P is a (partial) type on G, the set P can be viewed
geometrically as a tube around P, and the u-stabilizer Stab”(P) of P is defined to
be the stabilizer of this set.

In the o-minimal context, the datum of a curve v as above determines a “type at
infinity” p,, and it is easy to see that the PS-group H., depends only on this type.
It is shown in [7] that H., is precisely the p-stabilizer of p,. Similarly, every closed
point of the projective model of a smooth curve X determines an ACVF type on
X, and the associated group is defined as the p-stabilizer of this type. To see that
the definition is reasonable, it is shown that the resulting group is 1-dimensional.
Furthermore, it is contained in the (algebraic) stabilizer of the corresponding point
in every equivariant compactification of G (Remark 3.4).

The definition of u-stabilizer makes sense for types of higher Zariski dimensions
as well. However, two types of different Zariski dimension might have the same tube
(Example 2.15), so the dimension comparison is not straightforward. We say that a
type is p-reduced if it is of minimal dimension among all types with a given tube.
With this terminology, we have the following generalization of Theorem 1.1:

Theorem 1.2 (Main theorem). Let G be a linear algebraic group defined over k
and p be a residually algebraic type. If p is centered at infinity, then Stab’(p) is
infinite.

Furthermore, if p is p-reduced, then dim(Stab”(p)) = dimp. Moreover, for each
type p, Stab”(p) is a solvable linear algebraic group.

Here the term “centered at infinity” should be understood as “unbounded” in the
o-minimal counterpart. Do note that one cannot hope for the group to be torsion-
free, as in the result on PS-groups, since the underlying field may have positive
characteristic.

The structure of the paper is as follows: In §2 we review some definitions and re-
sults related to group actions, and provide an alternative approach to pu-stabilizers.
In §3 we consider the one-dimensional case of Theorem 1.1. Though formally in-
cluded in the general case, the situation is considerably simpler in this case, and
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sheds light on the more complicated general case. Then in §4 we deal with the
general case.
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2. pu-STABILIZERS OVER ACF

Let k be an arbitrary algebraically closed field, and let G' be a linear algebraic
group defined over k. In this section, we develop the theory of u-types and their
stabilizers in this context following [7]. Before going into u-types, lets begin with
some generality on definable group actions.

2.1. Definable group actions. Let us start by recalling some general facts about
stabilizers of definable types following [7, Section 2], the material works in an arbi-
trary complete theory T. We fix a monster model U of T" and all the models of T
we consider will be elementary submodels of U.

Let X be a definable set. Let A be a small set of parameters such that X can
be defined over A. We use Lx(A) to denote the set of formulas ¢ over A such that
Y(xr) = = € X. Such formulas will occasionally be called X-formulas. And by a
(partial) X-type over A, we mean a consistent collection of formulas in Lx(A).

We fix H be a definable group with a definable action on X. For H-formula ¢(z)
and X-formula 1(y), let (¢ - 1¥)(z) be the following X-formula

Jz Iy d(z) Ap(y) Nz =z y.

And for a partial X-type p, ¢ -p={¢ -9 : ¢ € p}.

For a set of parameters A by a definable X-type over A, we mean a X-type p over
A such that for any formula ¢(z,y), {a € A: ¢(x,a) € p} ={a € A:dy,¢(a)} for
some formula d,¢ over A. Note in the above definition, a can be tuples in A.

Let M a model of T" such that A =Y (M) for some M-definable set Y. Then any
such definition d,¢ will be equivalent. Moreover, p can be extended to a unique type
over Y (L) determined by {¢(z,¢) : U |= d,¢(c) where ¢ is a tuple in Y(L)} for any
L such that M < L, and we denote it by p|L.

Convention 2.1. For the remainder of the paper, we will assume that we are
working over a set of parameters A such that A = Y (M) for some model M, and we
assume further that H and its action on X is defined over A. We assume further
that H C Y" for some Cartesian product of Y.

Definition 2.2. Let p be a definable partial X-type over A as in Convention 2.1.
We define

Stab(p)(M) = {h € H(M) : For any ¢ € Lx(4) p = h-6 < p b= 6}

where h - ¢ stands for (z = h) - ¢. We will occasionally denote Stab(p)(M) by
Stab(p)(A).

The following is [7, Proposition 2.13].
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Fact 2.3. Let H be a definable group with a definable action on X and assume we
are in the setting of Convention 2.1. Let p be a partial definable X-type over A.
Then Stab(p) is a A-type-definable subgroup of H in the following sense: There is
a small system H, of A-definable subgroups of H such that for every elementary
extension M < L, for a € H(L), we have that a € Stab(p|L)(L) if and only if
a € H,(L) for all a.

With the language set up, we will now look at the setting to talk about u-types
as in [7] over algebraically closed fields.

2.2. u-stabilizers over ACF. The theory of algebraically closed fields is not rich
enough to have a good notion of infinitesimal subgroups as in [7]. Hence, it is natural
to work with the theory Tj,. as introduced in [3, Section 6]. The language for Tj,. has
3 sorts, a sort VF for the valued field, a sort RES for the residue field and a sort I" for
the value group. It is equipped with a function symbol res(z,y) : VF? — RES and
i : RES — VF and amap val : VF — I'. The theory T;,. asserts that the VF sort is
an algebraically closed valued field, val is a valuation map, res(x,y) = res(z/y), the
residue of x/y if val(z) > val(y) and 0 otherwise, and the map i is a field theoretic
embedding of RES into VF with res(i(c), 1) = c.

With this map, we may identify the residue field as a subfield of the valued field,
where the residue map restricts to the identity on it. For notational simplicity, we
will use res(x) to denote res(z, 1) for z € O, the valuation ring. For the remainder
of the paper, we will identify freely RES with its image in VF.

Fact 2.4 ([3, Lemma 6.3]). T}, admits quantifier elimination in this language. The
sorts I' and RES are stably embedded and orthogonal to each other. The induced
structure on I' is divisible ordered abelian groups and on RES algebraically closed
fields respectively.

Remark 2.5. In the paper [3], a constant symbol 1 in the I'-sort for some positive
element was included. But the proof of quantifier elimination does not rely on the
constant.

Let us assume further that we have a set of constants for k, in the RES-sort. In
some cases, we will work in the reduct of Tj,. in the 3-sorted language L,,. The
language L, consists of the valued field sort VF, the value group sort I' and the
residue field sort RES and maps val : VF — I, res : VF — RES. In this reduct,
we have constants for k in both VF-sort and RES-sort. The theory ACVF admits
quantifier elimination in L,;.

For general facts concerning ACVF, we refer the readers to [12]. For the purpose of
the paper, T}, was only introduced to discuss the definable group acting canonically
on the space of types, and its definable extensions. The readers should feel free to
identify our setup with working in a model of ACVF with constants for k in both
the valued field and residue field sort, such that res(cyvr) = crgs for ¢ € k.

Recall that we have a linear algebraic group G defined over k, an algebraically
closed field. We denote by G the linear algebraic group G viewed as a definable
set in VF, and by G(O) and G the definable subgroups of © and RES points,
respectively. Here, remember we identify RES with its image in VF-sort given by
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the section (this makes sense since G is defined over k). By applying pointwise
the residue map res, we have a map res : G(O) — G, and since G is defined over
k € RES, the map is actually a group homomorphism, whose kernel we denote
by p. Note p is definable over k as well. Geometrically, p can be viewed as an
(infinitesimal) neighbourhood of the identity in G.

We apply the results of 2.1 to T, in the case H = G and X = P, a variety
over k with an (algebraic) action of GG, viewed as a definable set in Tj,.. Our main
example of interest will be P = G, with G acting on itself by left multiplication,
but occasionally we will need the more general setup. Note that the choice of k as
parameters satisfies Convention 2.1 as k = RES(M), by taking M to be certain field
of series with coefficients in k, say for example, Hahn series.

Definition 2.6. We denote by Sp (k) the space of complete L,,-P-types over k. By
quantifier elimination, it is easy to see that such types correspond to tuples of the
form (X, v), where X is an irreducible subvariety of P and v is a valuation on the
function field of P which is trivial on k. For p € Sp(k), the u-stabilizer Stab"(p) of
p is Stab(u - p).

By Fact 2.4, the RES-sort is stably embedded as an algebraically closed field. In
particular, p € Sp(k) is definable over k in L.

Proposition 2.7. Let p € Sp(k). Then p - p is a definable partial type over k.

Proof. Let X be a Ly,-definable set over k. Then pu-p = X iff p(z) E Ve € p(e-z €
X). The latter condition is Ly,-definable over k, hence the result follows from the
definability of p. O

By Fact 2.3 and the above discussion, Stab”(p) is given by an intersection of
L.-definable subgroups of G. However, G has the descending chain condition on
subgroups by Fact 2.4, hence we have:

Corollary 2.8. Let p be an L,q-complete G-type over k. Then the p-stabilizer
Stab”(p) of p is a k-definable subgroup of G, in the sense that there is a k-definable
subgroup H of G, such that Stab*(p|L)(IL) = H(LL) for any model L = M.

For p and g € Sp(k), define p ~ qif u-p = p-q. It is easy to check that p-p = u-q
iff in a monster model U, there are a |=p, b = ¢ and € € p such that €-a = 0.

We denote by Sh(k) the quotient by this equivalence relation and for each p €
Sp(k), we denote by p, its equivalence class. Since p is normal in G(O), the G (k)
action on Sp(k) given in Subsection 2.1 respects the equivalence relation. Hence
G(k) acts on Sp(k) , and Stab¥(p) = Stab(p,), where the right hand side is by
considering G(k) acting on Sh (k).

Lastly, we finish the section with an easy fact and some discussion.

Lemma 2.9. Let g € G(k) be such that g- p, = g,. Then Stab”(q) = gStab*(p)g~".

2.3. A different view on p-stabilizers. Instead of viewing the p-stabilizers syn-
tactically as in the previous section, we have some concrete constructions to realize
them in the monster model as well. In this section, we describe the construction,
following the same idea of Section 2.4 in [7]. We work in a fixed monster model
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of Tj,e, U, and identify definable sets and (partial) types with their realisations in
U. From now on, we restrict our attention to the case P = G, unless mentioned
otherwise. And as before, we identify G with its image under the section.

Definition 2.10. For p € Sg(k) we use G, to denote the following set (- p)- (u -
p) )NG.

Proposition 2.11. Let a € p-p. The following are equivalent for an element
b e G(k):

(beu-p-atnG

(2) b= res(a;a™") for some a; |= p for which a,a™" € G(O)

(3) be G,

(4) b= res(ajay!) for some ay,ay = p for which aja,™! € G(O)
Hence, G, (k) = - p-a~' N G(k)

Proof. The equivalence of (1) and (2) follows directly from the definitions, and
likewise for (3) and (4). Hence we need to show (4) implies (2). Assume b =
res(aja;'). Since a and ay satisfy the same type over k, and RES is stably embedded
and stable, there is an automorphism 7 over k such that 7(ay) = a. Then b = 7(b) =
res(7(ay)a™t), with 7(a;) also satisfying p, showing (2) for b. O

We now have the following description of Ep.
Corollary 2.12. G,(k) = Stab”(p)(k)

Proof. Assume g € G stabilizes p - p. Then for any a € ju-p, g-a € p - p, hence
g € -pa” ", so is in G Conversely, if g € G and a € p - p, writing g = aya™! as
above we obtaln g-a€p-p. 0

Remark 2.13. We would like to have Cor. 2.12 to hold for RES-points, instead
of just k-points. This is not automatic, since G, is not, a-priori, a definable set.
However, in the special case as in Theorem 1.1, it is indeed the case.

2.4. p-reduced types. For p € Si(k) we denote by dim(p) the dimension of its
Zariski closure in G over k. Most of the rest of this paper is devoted to comparing
this dimension to the dimension of Stab”(p). We first note that if X is a variety
over a valued field L and let O denote its valuation ring, then the Zariski dimension
of res(X N O) is at most the dimension of X (this follows for example from [11,
Lemma 00QK], by choosing a model of X over O). Applying this observation to
X =Ya !, where Y is a variety containing p, we obtain:

Proposition 2.14. For any p € Sg(k), dim(Stab(p)) = dim G,(k) < dim(p),
where dim means the Krull dimension in Stab”(p) and dim ép(]k). dim(p) is the
minimal VF-dimension of the formulas ¢ € p

In general, the above bound will not be sharp, since types of different dimensions
may have the same p-type:

Example 2.15. Let G = A? as an additive group. Let K be a large enough Hahn
series in variable ¢ over k. Let p = ¢tp((¢t~*, ¢~ +¢")/k) where r > 0,7 ¢ Q. Then


https://stacks.math.columbia.edu/tag/00QK

PETERZIL-STEINHORN SUBGROUPS AND p-STABILIZERS IN ACF 7

dim(p) = 2, since t "' +¢" is transcendental over t 1. But pu-p = p-q since (71, t 71 4+¢7)
and (¢, ¢7') differes by (0, —t") € pu, where ¢ = tp((¢t~*,¢7')/k), and ¢p denotes the

La-type. So dim(G,) <1 (in fact equal). Furthermore, when Char(k) = p > 0, we
can see that Stab’(p) is not torsion-free.

This observation motivates the following definition.

Definition 2.16. For p € Sg(k), we say that p is u-reduced if p is a type of minimal
dimension in p,. An element a € G is p-reduced over k if a |= p for some p-reduced

p.
2.5. Bounded types. In this sub-section, we revert to working with a general G-
variety P. We recall the following definition (e.g., from [4, §4.2]):

Definition 2.17. Let V be an affine variety, viewed as a definable set in ACVF,
and let X C V be a L,,-definable subset. We say that X is bounded if for every
regular function f on V there is v € I" such that val(f(X)) > .

For a general variety V, a subset X C V is bounded if it is covered by bounded
subsets of an affine cover.

A partial type p in V is bounded if p = X for some bounded X C V. A type in
V is said to be centered at infinity if it is not bounded.

Note that the property of a definable set to be bounded depends on the ambient
variety (for example, A! is bounded as a subset of P!, but not as a subset of A!).
However, if V is a closed subvariety of W, then X C V is bounded in V if and only
if it is bounded in W. Also, it suffices to check the conditions for generators of the
regular functions. In particular, a subset X of a closed subvariety of A" is bounded
if and only if val(X) > « for some 7.

Over k, we have in our situation the following;:

Proposition 2.18. A k-definable set X C V is bounded if and only if it is contained
in V(O)

Proof. By definition, it suffices to prove the statement for V affine, and by the
remarks above, for V.= A",

If X € O™ we may take v = 0 in the definition. Conversely. We may assume
n = 1 by projecting. If a € X \ O then v = val(a) < 0 has the same type as any
other negative value 7/, so there is an automorphism of I" taking v to +/, and since I'
is stably embedded and I' and RES are orthogonal, it extends to an automorphism
over k that takes a to o’ € X, with val(a’) = 4. Thus, X is unbounded. O

Let p be a bounded type on P, a variety endowed with an action of G. A
realization a of p is then an O-point of P, and so determines a point @ of P in the
residue field. The type of @ depends only on p (since it is encoded there), and we
denote it by p. The group G acts on the set of all types in P, the variety P viewed
as a definable set in RES. In particular, we may consider the stabilizer of p.

Proposition 2.19. For any bounded type p on P we have Stab”(p) < Stab(p).

Proof. Let @ be a realization of p, and let a be a realization of p whose residue is
a. Assume that for some g € G we have g -a = € - b for some € € p and b realizing
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p (so that g € Stab”(p)). Since all elements involved are in O, we may apply the
residue map, and obtain ¢g - @ = b. Since b realizes p, b realizes p. Thus ¢g-p = p,
i.e., g € Stab(p). d

Returning to the case P = G, we obtain:

Corollary 2.20. If p is a bounded type on G such that p is realized in k then its
p-stabilizer is trivial.

Proof. In this case p corresponds to a (closed) point of G, hence the stabilizer is
trivial. ]

Because of the last corollary, we shall concentrate on types centered at infinity.

3. ANALYZING THE ONE-DIMENSIONAL CASE

In this section, we prove the main theorem in dimension 1 (Theorem 1.1). We
think this section worth including even though it follows from the general case,
since it is relatively simple, and it sheds light on the important idea in proving the
general case. The result in this section is first prove by Moshe Kamensky and Sergei
Starchenko in their unpublished notes via the language of places.

3.1. Points on curves. Each smooth curve X over k embeds in a unique smooth
projective one over k, its projective model X. Every closed point ¢ on X corresponds
to a valuation val. on the function field k(X), given by the order of vanishing at c.
In particular, val. is trivial on k. The projective model contains a finite number of
closed points outside of X, which we call the points at infinity.

In our case, X is an affine curve, embedded as a closed subvariety in a fixed affine
space A". To any point ¢ € X we associate the complete type on X determined by

pe(a) = {val(f(a)) > 0: val.(f) > 0}
where f runs over all elements of the local ring corresponding to X, and f is the
corresponding element in k(X).
We would like to describe the types that occur in this way intrinsically, in a way
that will be helpful later. The condition that ¢ is a closed point corresponds to the
following.

Definition 3.1. An extension of (possibly trivially) valued fields is residually al-
gebraic if the corresponding residue field extension is algebraic. For L a (possibly
trivially) valued field, an L, -type p over L is residually algebraic if a/every realiza-
tion a satisfies L(a) is residually algebraic over L.

Proposition 3.2. Let X be a smooth curve embedded in A" (viewed as a definable
set in VF"). A L. -type p over k on X is residually algebraic if and only if it is
of the form p, for a closed point ¢ of X, the projective model of X. Furthermore,
ceX \ X if and only if p. is unbounded.

Proof. Let p be a residually algebraic type on X, and let a be a realization that
witnesses this. If a € k, p corresponds to the k-point a of X, and we are done.
Otherwise, k(a) is isomorphic to k(X) as a field, and since p is residually algebraic,
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the valuation on k(a) is non-trivial. Thus, we obtain a k-point ¢ of X by the
discussion earlier in this subsection, and it is clear that the two procedures are
inverse to each other. The last statement also follows from the above. 0]

We have been working with smooth curves, but since we are interested in points
at infinity, hence the assumption is immaterial, since the singularity of varieties are
at least codimension 1, hence varieties are smooth at generic points.

Corollary 3.3. For X a curve, there are finitely many residually algebraic types
centered at infinity. Moreover, they are isolated by L. -formulas over k.

Proof. It remains to prove the moreover part of the statement. Since we know that
there are only finitely many types on X centered at infinity, call them pq, ..., pp,.
Without loss of generality, for each 4, j, there will be regular functions f;;, g;; such
that p; = val(fi;) < val(g;;) but p; = val(fi;) > val(g;;). Hence some Boolean
combinations of the formulas above together with the formula « ¢ X(O) will isolate
the above types. 0

Remark 3.4. Let X be an affine curve embedded in GG, and assume that we are
given a G-equivariant embedding of G in a G-variety P. Assume that the closure
X’ of X in P includes the point ¢ € X. The type p. is then bounded in P, and by
Prop. 2.19 the p-stabilizer of p. is contained in the stabilizer of the residue type of
Pe, which is simply c. Hence, the p stabilizer of ¢ is contained in the stabilizer of
this point in every equivariant “compactification” where the point is realized.

This fact, along with the dimension equalities for the p-stabilizers justifies viewing
the u-stabilizer as a “canonical stabilizer” for the corresponding point.

Let p € Sg(k) be a residually algebraic type of Zariski dimension 1 inside G.
There is then a curve X in G containing p. We had explained in Proposition 2.11
and Remark 2.13 that Stab”(p)(k) = - p-a~' N G(k) for any realization a of p
(this will be shown again for residually algebraic types in Cor. 4.8). However, since
p is isolated by Corollary 3.3, we see that Stab*(p|L)(LL) = u-p-a~*(L) N G(L) for
any L extending M and a. In particular, one can work with a model of Tj,., I with
RES(L) = k. Working in this model and let p;, p; be as above, if g € G(k) satisfies
g+ Di € pj,, then p-p;-a~! = g-Stab”(p;), for any a = p;.

To complete the proof, we would like to show that this set is infinite for some
realization a of p. This amounts to showing that x - p-a~! cannot be covered by a
finite number of open balls. To do that, we will use topological methods from [4],
which we review below.

3.2. Tame topology on definable sets. We make a slight digression into the
tame topology of definable sets in ACVF, as developed in [4]. This is an important
ingredient in the proof of the main result.

The results in this section can be found in [4]. In this section, the underlying
theory is ACVF, and the main motivation is to study the topological structure of
L,.-definable sets in the VF-sort.

Definition 3.5. Let V be an algebraic variety over a valued field F', a subset X C'V
is v-open if it is open for the valuative topology.
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A subset X C V is g-open if it is a positive Boolean combination of Zariski open,
closed sets and sets of the form

{z:vo f(x)>vog(x)}

where f and g are regular functions defined on U, a Zariski open subset of V.

If Z C V is a definable subset of V, a subset W of Z is said to be v(respectively
g)-open if W is of the form Z N'Y, where Y is v (respectively g)-open in V.

The complement of a v(respectively g)-open is called v(respectively g)-closed.
We say X is v+g-open (respectively v+g-closed) if it is both v-open and g-open
(respectively both v-closed and g-closed).

Note that the v+g-opens does not form a topology, as it is not even closed under
arbitrary union. However, it is still makes sense to talk about connectedness in this
setting:

Definition 3.6. Let X be a definable subset of V, an algebraic variety. We say that
X is definably connected if X cannot be written as a disjoint union of two non-empty
v+g-open subsets of X.

We say that X has finitely many definably connected components if X can be
written as a finite disjoint union of v+g-clopen definably connected subsets.

Definition 3.7. Let f : V — W be a definable function from V to W, we say f
is v-continuous if f~1(X) is v-open for X a v-open subset of W, and we define g-
continuous functions similarly. We say f is v4g-continuous if f is both v-continuous
and g-continuous.

Proposition 3.8 (Hrushovski, Loeser). If f is v+g-continuous and X is a definably
connected and f is defined on X, then f(X) is definably connected.

If V is an geometrically /absolutely irreducible variety, then V is definably con-
nected.

The following is an easy corollary of [4, Theorem 11.1.1].

Theorem 3.9 (Hrushovski, Loeser). Given a definable subset X C V, where V is
some quasi-projective variety, X has finitely many definably connected components.

We also have the following.

Theorem 3.10. Let V C A" be a closed subvariety. V is bounded iff V is zero
dimensional.

Proof. 1t 'V is bounded, then V will be definably compact as in Section 4 of [4]. This
implies V is proper by [4, Proposition 4.2.30], hence V is zero dimensional. The
converse is clear. O

We may now prove the following more precise version of Theorem 1.1 (the case of
curves).

Theorem 3.11. Let p € Si(k) be a residually algebraic type, centered at infinity
with dim(p) = 1. Then dim(Stab”(p)) = 1.
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Proof. By Prop. 2.14 and the discussion preceding Section 3.2, it suffices to show
that the p-stabilizer is infinite. Let X be the Zariski closure of p in G. Assume
to the contrary, that Stab*(p) is finite. Then res(u - p-a™' N G(O)) is finite by
Prop. 2.11. By Cor. 3.3, there are only finitely many types centered at infinity on
X, so the set X-a™' N G(O) is the intersection of X-a™! with a (disjoint) union of
finitely many balls y- g, for g € G(k).

Therefore, X-a~!' N G(O) is a non-empty v+g-open subset of X-a~!. However,
it is also a v+g-closed subset of X-a™! since G(Q) is v+g-closed. By Prop. 3.8,
X-a~! is definably connected, so X-a~! C G(O) C A". However, this is impossible
since this implies that X-a~! as an affine curve is bounded in A", contradicting
Theorem 3.10. 0

4. PROOF OF THE MAIN THEOREM

4.1. Residually algebraic saturation. We would like to work with saturation in
a residually algebraic context, i.e., without extending the residue field. Thus we
make the following definition.

Definition 4.1. A model K of T}, is (sufficiently) I"-saturated if every L, -residually
algebraic type over a (sufficiently) small subset of K is realised in K.

Theorem 4.2. Let L be a (possibly trivially) valued field, then there is a I'-saturated
extension of L.

Proof. Let I be a sufficiently saturated ordered abelian group and k the algebraically
closed closure of RES(L). Consider the Hahn series field

E((t") = {Z et ey €k, {y:c, # 0} is well ordered }
ol
Clearly L embeds into K (see [6] for example). Then, by a result of Poonen ([10,
Theorem 2]), is a I'-saturated model (with residue field k). O

From now on, K will be a fized sufficiently I'-saturated model K with residue field
k and we will identify definable sets and p € Sg(k) with their realizations in K.
As a first application, we note:

Lemma 4.3. Let p € Sg(k) be residually algebraic. Then there is ¢ € p, which is
pu-reduced and residually algebraic.

Proof. Let a be a realization of p in K. There is a variety V over k of minimal
dimension that intersects p - a. The above can be expressed as L,-formula, so it

is witnessed by some element of K. Take g to be the L,,-type of this element over
k. d

We would like to give a syntactic (or geometric) description of types realised in K.
To this end, we use another result from [4], which requires the following definition.
The following is a part of Lemma 9.1.1 in [4], which will be needed in the proof.

Lemma 4.4. (Hrushovski, Loeser) Let V be an F-variety and X C V be a F-
definable g-open set, then X(Ms) C X(M;) whenever M; and M, are algebraically
closed valued field extensions of F' with the same underlying field, and Oy, C Oyy,.
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We now have the following description:

Proposition 4.5. Let ®(z) be a small finitely consistent collection of g-open sets,
with parameters in L C K. Then ® is realised in K. In addition, if p is a Lya-
residually algebraic type, then it is the intersection of the g-open formulas that it
implies.

In other words, every partial type > of g-open sets admits an extension to a
L-residually algebraic complete type p over the same set of parameters.

Remark 4.6. It is worth pointing out that Proposition 4.5 has an easy proof in the
case when L =k = C. See [8, Section 3.1].

Proof. Let b be any realisation of ® in U, and let k& be the residue field of L(b). Then
k is the function field of some variety X over k, fix a valuation val’ of k over k, with
residue field k.

Let Ms be the algebraic closure of L(b) with the induced valuation from U. Con-
sider a valuation of RES(M;) extending val’. Abusing notaion, we call the valuation
val’ as well. Let O be the valuation ring of RES(M;). Consider res™*(O) C Mo,
this is again a valuation ring of the underlying field of M; over k. We use M; to
denote the same field as M, with the valuation determined by res™*(O). Note that
M has residue field k.

Then by Lemma 4.4, ¢(My) C ¢(M;) for each ¢ € ®. In particular, b is a
realisation of ® in M;. But the residue field of M; is k, so tpys, (b/L) is residually
algebraic and hence realizable in K.

For the converse, let p be a complete L,,-residually algebraic type. By quantifier
elimination in ACVF| it is given within its Zariski closure by formulas of the form
f(z) # 0, val(f(x)) > val(g(z)) and val(f(x)) = val(g(x)) # oco. Each formula of the
last form is equivalent to val( f(z)/g(x)) = 0, so that f(z)/g(x) has non-zero residue.
Since p is residually algebraic, the residue is actually a well determined element b of
k, so the original formula is equivalent to val(f(z) — bg(z)) > val(bg(z)). O

We now apply this result in our context:
Corollary 4.7. Let p € Sg(k). Then pu(K)-p(K) = (1 - p)(K).

Proof. Since K is contained in the monster model, pu(K)-p(K) C (u-p)(K). For
the reverse containment, for p residually algebraic, fix a € (- p)(K). Recall that it
means that for any ¢ € p, there is ¢4 € p such that = ¢(g4-a). Since p is residually
algebraic, we may, by Prop. 4.5, assume that each such ¢ is g-open.

Consider the following partial type: X(y) = {¢(y-a) A u(y) : p€p g-open}. Each
¢ there is g-open, hence also ¢(y-a) (since the group is algebraic) and p is given
by strict inequalities, so this is a small collection of g-open sets, consistent by as-
sumption. By the other direction of Prop. 4.5, we can find € € u(K) such that e-a
satisfies p. O

Corollary 4.8. Let p be a residually algebraic G-type over k, and let a be a real-
ization in K. Then Stab”(p)(k) = res(u(K) p(K)-a=' N G(O)).
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Proof. Since res(u(K)-p(K)-a™* N G(O)) C res(u(U)- p(U)-a~! N G(O)), we have
that Stab”(p)(k) 2 u(K) - p(K)-a~* N G(O) by Cor. 2.12. The reverse containment
follows from Cor. 4.7. O

4.2. pu-reduced types and their stabilizers. In this section we prove Cor. 4.11,
an analogue of Corollary 3.3 for types of higher dimension.

Recall that we are working within K, a I'-saturated model, and all the elements
i the statement are from K and definable sets are identified with their realization
mn K.

In particular, we have the following.

Lemma 4.9. If a is p-reduced and g € G(O), then g - a is also p-reduced, of the
same dimension.

Proof. Assume e-g-a € W with ¢ € pp and W a variety over k. Sincee-g-a = g-¢'-a
for some g € G(k) and ¢’ € i, we have ¢’ -a € g~' - W, a variety over k of the same
dimension as W. 0

The following is an important observation about p-reduced types.

Proposition 4.10. Let p € Sg(k) be a p-reduced residually algebraic type centered
at infinity, and let a = p. Let V be the unique irreducible k-variety such that a € V
and dim(V) = dim(p). Assume that X C G(O)-a NV be definably connected and
a € X. Then for every b € X we have tp(a/k) = tp(b/k), where tp(-/k) denotes the
La-type over k.

Proof of 4.10. By Lemma 4.9, b is not contained in any proper subvariety of V, so
is nonzero when evaluated by any regular function on V. Hence, every element of
the function field k(V) is well defined as a k-definable function on X.

Assume that the types of a and b are different. By quantifier elimination in ACVF,
without loss of generality, there is f € k(V) such that val(f(a)) < 0 < val(f(b)).
We may further assume that the last inequality is strict, by subtracting the residue.

By [4], it can be easily checked that rational functions are v+g-continuous on
their domain, so the image f(X) is again definably connected. As a definable subset
of K, it is a union of “Swiss cheeses”, and by definable connectedness, the Swiss
cheese decomposition of the image will be of the form B\ U;<,,C;, where B is a ball
and C;’s are disjoint sub-balls of B.

Claim. f(X) contains a k-point.

Proof of claim. Since B contains both a point with positive valuation and point
with valuation < 0, then it must contain O. If f(X) contains no k-point, k must
be covered by |J,.,, C;. This implies one of the C; contains at least two points in k
and hence contains O. But this is a contradiction since that means that there is no
point in f(X) with positive valuation. O

Hence, we know that there must be some ¢ € k such that ¢ € f(X). Note however
that each element in X is a generic point of V by Lemma 4.9 and we know that
this would imply that the rational function f is constant, a contradiction to the
assumption. Hence we know that tp(a/k) = tp(b/k). O
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Using a similar argument, we have the following, which is the key fact that will
replace Cor. 3.3 for our proof of the main theorem.

Corollary 4.11. Let a € V be p-reduced, with V the Zariski closure of a over
k. Then there are finitely many types pi,...,pm € Sg(k) for some m such that if
g € G(O) and g-a € V| then tp(g-a/k) = p; for some i.

Proof. From Theorem 3.9, we know that there are only finitely definably connected
components of the set G(O)-a NV, call them X; for i = 1,...,n for some n. By
Proposition 4.10, we have that for each b,b" € X;, we have that tp(b/k) = tp(b'/k).
Hence there are only finitely many types p;’s with the property stated in the state-
ment of the corollary. 0

Here, we stated a variant that is similar to the [7]’s Claim 3.13.

Corollary 4.12. In the same setting as above, there is a L,,-definable set X over k
containing a, such that for each b € G(O)-aNX, tp(b/k) = tp(a/k). Furthermore,
X is v+g-open and X-a~! is v+g-clopen in G(O).

Proof. By the above corollary, we see that there are finitely many regular functions
fij» gi; such that for the formula val(f;;) < val(g;;) p; and p; disagrees. The set
defined by some boolean combinations of the above formulas containing tp(a/k) will
define the set X. O

In particular, we have the following.
Corollary 4.13. Stab”(p)(k) is infinite for each p centered at infinity.

Proof. Without loss of generality, we can assume that p is p-reduced and let a |= p
be any realization and V denote its Zariski closure. We have dim'V > 0 since p is
centered at infinity. Also, V is an irreducible k-variety hence v+g-connected and so
is V-a~!. By Proposition 2.11, if Stab”(p) (k) = G, (k) is finite, V- ¢ *NG(O) can be
covered by finitely many v+g-open sets and hence is v+g-open. But V-a='\ G(O)
is also v+g-open by definition, a contradiction to the fact that non-zero dimensional
affine varieties are not bounded in the affine space. 0

It is worth noting that the above proof uses the same idea in the 1-dimensional
case where the key ingredient is the connectedness of irreducible varieties.

We are now ready to begin the proof of the main theorem on the dimension of
p-stabilizers. Let a € V be p-reduced, and let V be its Zariski closure. Note that if
g€ G(O) and g-a € -V, then tp(g - a/k) will be the same as one of the above p;’s.
Hence p1- V-a=* N'G(O) will be a finite union of cosets of p - G,. Thus it suffices to
show that res(V-a=' N G(O)) and V have the same dimension. We will establish
this fact in the next section.

4.3. Dimension of the u-stabilizers. Before proving the main theorem, we need
the machinery about varieties over O, those facts can be found in [5] and [2].

Definition 4.14. Let O be a valuation ring, let L = Frac(O) and k = res(O).
By an variety over O, we mean a flat reduced scheme of finite type over O. In
particular, it will have a generic fiber, which is a variety over L, obtained by base
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changing with respect to the morphism O — L. And it has a special fiber, which is
a variety over k, obtained by base changing with respect to O — k.

Remark 4.15. It is worth noting that since O is a valuation ring, A = Oz, ..., z,] /]
is flat over O iff no nonzero element in O is a zero divisor in A.

In particular, if S is any subset of O”, then I = {f € O[z1,...,x,] : f(s) =0Vs €
S}is anideal and A = O|xy, ..., x,) /I is flat over O. We use I, and I} to denote the
ideal generated by I in A® L and A® k respectively. Then the generic(respectively
special) fiber of Spec(A) is Spec(A ® L/11)( respectively Spec(A ® k/I})).

If V is a variety over O, we use V}, to denote its special fiber and Vg to denote
its generic fiber. The following is [2, Theorem 3.2.4].

Theorem 4.16 (Halevi). Let K be a model of ACVF and V be an irreducible
variety over Og. If Vi has an Og-point then the Og-points are Zariski dense, and
the canonical map res : Vi (Ok) — Vi (k) is surjective, where res is given by taking
residue pointwise.

Now let us get back to the proof of the main theorem.

Proof of Theorem 1.2. By assumption, V is an affine variety over k, and a € V is
a p-reduced element such that the Zariski closure of a is V. In particular, V is
irreducible. Then V-a~! is an affine variety over K, and by multiplying the defining
polynomials by elements in K, it can be viewed as the generic fiber of a variety V
over Og. Furthermore, V has an Og-point, namely e, the identity of the group G.

It follows from Theorem 4.16 that the map res : V-a~' N G(O) — G maps onto
the special fiber of V-a~!. Also, by flatness, the special fiber has the same dimension
as the generic fiber, which is the dimension of p. OJ

The proof also shows that the special fiber, being the image of V-a~! N G(0O), is
a finite union of cosets of Stab”(p). Therefore, we have established the following.

Corollary 4.17. Let V C G be a variety over k, let a = p, where p € Sg(k) is
a p-reduced residually algebraic type centered at infinity. Assume further that the
Zariski closure of p over k is V.

Then the special fiber of V-a~! is equi-dimensional i.e. each irreducible compo-
nent of it has the same dimension. Moreover, each irreducible component of the
special fiber of V-a~! is a coset of an algebraic subgroup of G.

4.4. Structure of Stab”(p). In this section, we analyze the structure of Stab”(p).
Note that due to trivial constraints on characteristic, it is not possible to show in
general such a group is torsion-free. However, in characteristic 0, we can indeed
show it is torsion free.

Lemma 4.18. Let p € Si(k) be residually algebraic and let H be a k-definable
linear subgroup of G with p € H. Then Stab"(p) computed in G and in H coincide,
where H denotes the group H viewed as a subset in VF.

Proof. Since the Zariski closure V of p is contained in H in this case since H is a
Zariski-closed subgroup and pug N H = puy. Hence, the arguments of computing the
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p-stabilizers of p can be carried out in both H and G and the results will be the
same. U

The following is the Iwasawa Decomposition over non-archimedean fields, it can
be found in [1, Proposition 4.5.2].

Theorem 4.19. Let G be a reductive linear algebraic group over k, there is a
solvable subgroup H over k such that G(K) = G(O)- H(K).

For GL, we may take H to be the standard Borel subgroup (upper triangular
matrices).

Theorem 4.20. Let p € Sg(k) be centered at infinity and residually algebraic.
Then Stab”(p) is solvable.

Proof. We can embed G C GL, over k for some n, and use the lemma 4.18 to
reduce to the case G = GL,. Let H be the Borel. By the Iwasawa decomposition,
we have some g € G(O) such that g7'-a = 8 € H(K). Let g; € G(k) be such
that gi-g~' € p. Hence g;*-a € u(K)- 3, so Stab(g;*-p) = Stab”(q) € H. By
Lemma 2.9, this group is conjugate to Stab”(p), hence Stab”(p) is solvable. OJ

Corollary 4.21. If GG is not solvable and G is irreducible, then there is no p-reduced
residually algebraic G-type of full dimension.

Remark. We briefly introduce the Zariski-Riemann space of a variety over k, and
explain its connection with our setting.

Definition. Let V' be an variety over k, the Zariski-Riemann space of V' over k, is
the set of valuation rings of k(V') over k, denoted by RZ(V).

Note that by quantifier elimination in ACVF, for a linear algebraic group G over
k, it is not hard to see that the above set RZy(G) is in canonically embeddable
into the set Sg(k). Hence we can identify RZy(G) with its image in Sg(k). Note
further, since u is Zariski dense in G, we see that for each p € Sg(k), there is some
q € RZy(G) such that p ~, ¢.

The above argument implies that we can consider the quotient of RZy(G) under
w, which exactly the space Sg (k). Note further that the equivalence relation induced
by p on RZy(G) is independent of the k-closed-immersion of G into A", since every
embedding over k will respect p. We will explore more on the structure of RZy(G)
in a subsequent paper.
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