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Received: 27 April 2023 / Accepted: 5 March 2024 / Published online: 26 March 2024
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024

Abstract
The Benjamin–Ono equation is shown to be well-posed, both on the line and on the
circle, in the Sobolev spaces Hs for s > − 1

2 . The proof rests on a new gauge transfor-
mation and benefits from our introduction of a modified Lax pair representation of the
full hierarchy. As we will show, these developments yield important additional divi-
dends beyond well-posedness, including (i) the unification of the diverse approaches
to polynomial conservation laws; (ii) a generalization of Gérard’s explicit formula
to the full hierarchy; and (iii) new virial-type identities covering all equations in the
hierarchy.
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1 Introduction

This paper is devoted to the study of real-valued solutions to the Benjamin–Ono equa-
tion

d
dt

q = Hq ′′ − 2qq ′, (BO)

which describe the motion of internal waves in stratified fluids of great total depth.
The symbol H appearing here denotes the Hilbert transform; see (2.1).

This model arose contemporaneously in works by Benjamin [4] and by Davis–
Acrivos [10]. The latter authors also performed extensive experiments in a tank using
fresh water floating on an equal volume of salt water. They observed excellent agree-
ment.

Inspired by these works, Ono undertook a series of investigations of (BO), begin-
ning with [54], which in turn generated considerable interest in this model. Among
his contributions was the suggestion that the ease with which Davis and Acrivos were
able to generate solitary wave solutions in the tank may be taken as a sign that these
were, in fact, soliton solutions of the type then only recently discovered in the context
of the Korteweg–de Vries equation.

With our sign conventions, these solitary waves take the form

Qc(t, x) = 2c

c2(x − ct)2 + 1
with c > 0. (1.1)

They are positive and travel to the right. By comparison, solutions of the linearized
equation d

dt
q = Hq ′′ travel to the left.

An instantly striking feature of the functions Qc is their mere algebraic decay.
This is ultimately traceable to the presence of the Hilbert transform in (BO), which
in turn expresses the highly nonlocal nature of the wave dynamics. This nonlocality
originates from the depth of the fluid; in shallow water, both surface and internal
waves have been successfully modeled by local equations such as KdV.

We will be studying the initial-value problem for (BO) posed both on the real
line R and on circle T = R/Z, the latter being equivalent to the study of an initially
periodic excitation. A key determiner of which classes of initial data may be expected
to lead to well-behaved solutions is the scaling symmetry. For the (BO) equation, this
takes the form

q(t, x) �→ qλ(t, x) = λq(λ2t, λx) for λ > 0 (1.2)

and identifies s = − 1
2 as the scaling-critical regularity for Hs spaces.

Conservation laws also play a major role in identifying natural classes of initial
data and in demonstrating that such classes are dynamically invariant. Basic physical
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considerations already present us with three such conserved quantities: the momen-
tum and the energy are given by

P(q) =
∫

1
2q2 dx and HBO(q) =

∫
1
2qHq ′ − 1

3q3 dx, (1.3)

while
∫

q denotes the surplus of water relative to equilibrium q ≡ 0.
The energy functional HBO serves as the Hamiltonian for (BO) with respect to the

Poisson structure

{F,G} =
∫

δF
δq

(x) · ( δG
δq

)′
(x) dx, (1.4)

while the momentum functional P generates translations.
By comparison,

∫
q is a Casimir. This functional will play a limited role in what

follows. In the circle case, it can be altered by redefining the notion of equilibrium
depth. Physically, this amounts to exploiting the Galilei symmetry of (BO): if q̃(t, x)

is a solution, then so to is

q(t, x) = q̃(t, x − 2ct) + c. (1.5)

In the line setting, one cannot use the Galilei transform to force
∫

q = 0. More
significantly from our point of view, is the fact that one needs to impose rather strong
decay assumptions in order to make sense of this quantity. Moreover, regularity hy-
potheses must also be imposed to ensure that any such L1 assumption is not immedi-
ately destroyed by wave dispersion.

Our first main result is the well-posedness of the (BO) flow under minimal as-
sumptions on the initial data. As we will see, this has been a much studied problem
and our resolution depends not only on the recently introduced method of commut-
ing flows, but also on the development of broader algebraic and analytic structures
underlying the (BO) equation. In Sect. 1.5, we will discuss several other dividends of
these developments, not directly related to well-posedness.

Theorem 1.1 Fix s > − 1
2 . The equation (BO) is globally well-posed for initial data

in Hs(R) or Hs(T).

As we will discuss more fully below, the long-standing record on the line was
well-posedness for s ≥ 0. This was also the threshold for the circle case until the
very recent breakthrough [20], which proved well-posedness for all s > − 1

2 . The
paper [20] also shows ill-posedness in H−1/2(T) via instantaneous norm inflation.
Concretely, their arguments show that there is a sequence of smooth solutions qn to
(BO) and a sequence of times tn → 0 so that

‖qn(0)‖H−1/2 → 0 and lim inf‖qn(tn)‖H−1/2 ≥ 1. (1.6)

We conjecture that (BO) is also ill-posed in H−1/2(R) in the sense (1.6).
A simple argument showing the breakdown of well-posedness for s < − 1

2 was
known much earlier [3, 5]. In the line case, ill-posedness for s < − 1

2 can be deduced
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from the fact that the solutions (1.1) converge in Hs(R) to a delta function at t = 0
as c → ∞, but do not converge at any other time.

We have little to say about the long-time behavior of these global solutions; indeed,
this subject is poorly understood even with strong regularity and decay conditions.
It does follow from our Lemma 4.4 and Corollary 5.3 that orbits are bounded and
equicontinuous. In the circle setting, this implies that orbits are precompact. From
[20] we know more: in the circle geometry, orbits are almost-periodic in time.

1.1 Prior work on well-posedness

Here we give a quick overview of the history of well-posedness for (BO); for a com-
prehensive account, we recommend the recent book [38]. The first phase in these
developments was the construction of weak solutions; see, for example, [21–23, 59].

Early proofs of well-posedness employed energy/uniqueness arguments; see, for
example, [1, 28, 55, 59]. Included in [1] is a proof that (BO) is well-posed in H∞ in
both geometries. This period culminated in the proof that (BO) is well-posed in Hs

for s > 3
2 on T and for s ≥ 3

2 on R. The endpoint in the line setting was achieved in
[55] by incorporating local smoothing into the traditional Gronwall argument.

A striking feature of (BO) is that there was no subsequent Strichartz revolution,
nor did the development of Xs,b analysis immediately transform the study of (BO).
There is a fundamental reason for this: (BO) is not analytically well-posed in any
Hs(R) space! This was first demonstrated in [50], which proved that the data-to-
solution map is not C2. Later in [40] it was shown that for s ≥ 0, this map is not even
uniformly continuous in any neighborhood of the origin.

By their very nature, proofs by contraction mapping yield a data-to-solution map
that is real-analytic. The results discussed in the previous paragraph show that (BO)
cannot be solved by this method, no matter what auxiliary norms are introduced, nor
what ingenious estimates one proves.

By incorporating Strichartz control into energy methods, [39] advanced well-
posedness on the line to s > 5

4 . Further refinements of this style of argument in [32]
led to well-posedness for s > 9

8 .
The well-posedness theory for (BO) was much transformed by the paper [64]

which treated data in H 1(R). The transformative new idea here was the introduc-
tion of a gauge (a change of unknown) that substantially ameliorated the trouble-
some high-low frequency interaction responsible for the poor behavior of the data-to-
solution map just discussed. The motivation for this gauge transformation is described
in [65, §4.4], including parallels with the Cole–Hopf transformation. Attention is also
drawn to an analogue for the derivative nonlinear Schrödinger equation (cf. [66]).

By exploiting Tao’s gauge transformation, well-posedness in H 1(T) was subse-
quently shown in [49]. Well-posedness in H 1 is automatically global due to the con-
servation of

H2 :=
∫

1
2

[
q ′]2 − 3

4q2Hq ′ + 1
4q4 dx. (1.7)

Tao’s gauge transformation lead to a flurry of progress on the well-posedness prob-
lem, including [8] which treated s > 1

4 on R and [46] which treated s ≥ 1
2 on T.

Evidently, both yield well-posedness for finite energy initial data.
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As noted earlier, the long-standing record for (BO) on the line was well-posedness
in L2(R). This was proved in [27] via a synthesis of Tao’s gauge transformation and
Xs,b techniques. Well-posedness in L2(T) was proved in [47] via consonant methods.

Well-posedness in [27] means that the data-to-solution map admits a unique con-
tinuous extension from smooth initial data to a mapping from Hs to CtH

s . This is
also the meaning of Theorem 1.1.

The landmark papers [27, 47] stubbornly resisted improvement for a long period.
The topic of well-posedness in L2 has been revisited several times via a variety of
methods without yielding any improvement on the Hs scale; see, [26, 48, 62].

Gibbs-distributed initial data on the circle (with momentum cutoff) lies right at
cusp of the L2 theory. The existence of solutions and preservation of this law was
shown in [11]. Although the subsequent work [20] proves that Gibbs initial data leads
to global solutions, it is unclear to us how readily this approach leads to invariance of
the Gibbs law. By comparison, the manner in which we prove Theorem 1.1 is well-
suited to this problem. The proof of [36, Th. 3.4] demonstrates how the method of
commuting flows blends seamlessly with invariance of measure arguments in finite
volume.

On the circle, the question of well-posedness in Hs spaces was recently com-
pletely resolved in [20], namely, the equation is well-posed for s > − 1

2 and ill-posed
otherwise. This is achieved through the construction of a Birkhoff normal form trans-
formation developed in a series papers; see, for example, [17, 18]. This approach
is reminiscent of the earlier breakthrough [29] for the KdV equation; however, the
Lax operator (1.9) associated to (BO) is of an unconventional type, especially when
compared to the much-studied Sturm–Liouville operators associated with KdV.

The direct analogue of such an approach to Theorem 1.1 on the line would be
via inverse scattering, which is currently utterly untenable. The only complete the-
ory of both forward and inverse scattering is that of [9]. This requires weighted L1

hypotheses that are incompatible with the soliton solutions (1.1), as well as a small
data hypothesis. The state of the art for the forward scattering problem is presented
in [68], which requires 〈x〉αq ∈ L2 for α > 1

2 . Much remains to be done to advance
the inverse scattering theory up to this threshold.

Our pessimism regarding an inverse scattering approach to Theorem 1.1 is also
informed by the state of the art regarding the inverse scattering problem for the
Schrödinger equation, which has been intensively studied for generations. This is
what is relevant to the KdV equation. At this moment, strong spatial decay assump-
tions are required, which then beget regularity hypotheses (to preserve such decay at
later times). For a discussion of the significant hurdles associated with this approach
already in the KdV setting, see, for example, [34]. Later in the introduction we will
draw attention to some interesting questions in the spectral theory of the Lax operator
L for (BO) that arise naturally from this perspective.

In this paper, we will approach the well-posedness problem via the method of
commuting flows introduced in [34] and developed in several subsequent papers [7,
24, 25, 37, 41, 42, 53]. This strategy was previously employed in [62]; however, the
culmination of Talbut’s work was well-posedness in L2, both on the line and on the
circle. It will take us some time to explain the obstacles that lay in Talbut’s path and
how we are able to overcome them.
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1.2 The Lax structure

A Lax-pair representation

d
dt
L(t) = [P(t),L(t)] (1.8)

of (BO) appeared first in [52] and then more directly in [6]. Our presentation here
is also influenced by [67], where it is shown that any negative eigenvalues of L are
necessarily simple.

Both operators of the Lax pair act on the Hardy space L2+ comprised of those
functions in L2 whose Fourier transform is supported on [0,∞). Such functions may
also be viewed as the boundary values of certain holomorphic functions in the upper
half-plane or disk, depending on the geometry. We avoid the more popular Hp nota-
tion for the Hardy spaces because it collides with our notations for Sobolev spaces,
Hamiltonians, and for the Hilbert transform H. We will write C± for the Cauchy–
Szegő projections; see (2.2).

In Proposition 3.2, we will show that the formal expression

Lf = −if ′ − C+
(
qf

)
(1.9)

defines a semi-bounded selfadjoint operator L on L2+ for every q ∈ Hs with s > − 1
2 .

Its companion in the Lax pair is variously given as

P := −i∂2 − 2∂C+q + 2q ′+ or P − iL2 = iC+(Hq ′) − iC+qC+q. (1.10)

Following [67], we will insist on the former; the latter is the original one from [6, 52].
These operators are transparently anti-selfadjoint when q ∈ H∞ and we shall not
need to make sense of them for more irregular functions q .

Earlier, we promised to draw attention to some basic questions in the spectral
theory of L that we regard as both intrinsically interesting and crucial milestones
toward understanding inverse scattering for slowly decreasing initial data on the line.
Specifically, we ask what is the decay threshold for q , expressed via power-law and/or
Lp integrability exponent, at which each of the following spectral transitions takes
place:

• The appearance of embedded eigenvalues;
• The appearance of embedded singular-continuous spectrum;
• The disappearance of absolutely continuous spectrum.

Note that for any q ∈ Lp(R), p < ∞, Weyl’s Theorem guarantees that the essential
spectrum of L fills [0,∞). Our questions seek to clarify the spectral type. The only
progress on these problems of which we are aware is [61, Proposition 2.4], which
building on [67], shows absence of embedded eigenvalues when 〈x〉q ∈ L2. For a
discussion of these problems in the setting of one-dimensional Schrödinger operators,
see [12, 33].
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1.3 Conservation laws

We have already seen several conserved quantities for (BO) in (1.3) and (1.7). Al-
though Theorem 1.1 requires conservation laws at lower regularity, we will first dis-
cuss the general family of ‘polynomial’ conservation laws because it will highlight
several important characters, as well as introduce some of our broader goals in this
paper.

At present, there are multiple competing approaches to understanding these poly-
nomial conservation laws; see, for example, [44] for an accessible and succinct re-
view. As an offshoot of the developments needed for Theorem 1.1, we will offer a
new unity between these approaches by connecting them back to the central objects
of our analysis.

The first demonstrations [6, 52] that (BO) admits infinitely many conservation
laws followed the approach of [45], by introducing one-parameter families of Miura-
type transformations. The connection between these two papers was later explained
in [43]. We will revisit the Bock–Kruskal approach in Sect. 4.1; in Theorem 4.12, we
link the Bock–Kruskal transformation to our own gauge.

A completely different approach was introduced in [14], which presented a vector
field τ which recursively generates conserved densities via forming commutators.
We will discuss this further in Sect. 4.3 before presenting our own generalization in
Sect. 6; see Theorem 6.5.

Another perspective on the conservation laws grew out of the development of an
inverse scattering approach to (BO), as detailed in [2, 13, 30, 31]. Already in [2], it is
remarked that the quantity

∫
q(x)N(x; z, q) dx (1.11)

is conserved under the (BO) flow. Here N represents a certain formal solution of an
inhomogeneous eigenfunction equation:

−i∂xN − C+(qN) = zN − z with N(x) → 1 as x → +∞ (1.12)

and spectral parameter z ∈ [0,∞), which is the essential spectrum of L. The word
formal indicates that this is not an element of the underlying Hilbert space. The non-
local nature of the operator L makes the question of the existence of such solutions a
delicate matter; see [9, 68].

The inhomogeneity of (1.12) is quite unexpected from an inverse scattering point
of view — one would expect honest eigenfunctions to be the central objects. In fact,
this approach lead to the study of two families of formal eigenfunctions, traditionally
denoted N and M , as well as two families of solutions to (1.12), namely, N and
M . (We caution the reader that the bar appearing here does not indicate complex
conjugation.)

Even in the familiar territory of Sturm–Liouville operators, we learn a lot by mov-
ing the spectral parameter off the spectrum. Taking this step, [31] considers the Fred-
holm equation, which in our preferred notation reads

W = 1 + (L0 − z)−1C+(qW), where z ∈C \ [0,∞) (1.13)
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and L0 denotes −i∂x acting on L2+(R), by analogy with (1.9) with q ≡ 0. This paper
also observes that W is analytic in z and that the functions M and N mentioned
earlier may be realized as the boundary values (from above and below) of W .

Our central object in this paper will be m(x;κ, q), defined via

−im′ − C+[q(m + 1)] + κm = 0 or equivalently, m = (L+ κ)−1C+q. (1.14)

The sign change in the spectral parameter is motivated by the fact that we shall only
need to consider −z = κ > 0; moreover, κ will be sufficiently large so that L + κ is
indeed invertible.

In the line setting, m differs little from W ; indeed, W = 1 + m. However, one of
the virtues of m is that it allows us to transition seamlessly between the line and circle
geometries.

The direct analogue of the conserved quantity of [2] mentioned in (1.11) is

β(κ;q) :=
∫

q(x)m(x;κ, q) dx = 〈q+, (L+ κ)−1q+〉L2+ . (1.15)

The only difference is the removal of the term
∫

q , whose inclusion would curtail
applicability of this to q ∈ L1. As we will discuss below, this quantity has long played
a central role in the theory of (BO). In calling it β , we are following Talbut [62], where
it arises after differentiating the perturbation determinant with respect to the spectral
parameter; see Sect. 4.2. (We caution the reader that his use of β is very different
from the object with this name in [30]!) In [19, Appendix A], the generating function
β(κ;q) has been shown to also have a determinantal character in the periodic setting.

Kaup–Matsuno [30] approached the question of polynomial conservation laws by
expanding (1.11) in increasing powers of z, noting that (1.12) gave a means of recur-
sively generating the coefficients. In the line geometry, one finds

β(κ;q) = κ−1P(q) − κ−2HBO(q) + κ−3H2(q) +O(κ−4). (1.16)

On the circle, by comparison, one has

β(κ;q) = κ−1
(
P(q) + 1

2

∫
q
)

− κ−2
(
HBO(q) − [∫

q
]
P(q) − 1

6

[∫
q
]3

)
+O(κ−3).

A variation on this approach discussed, for example, in [17, 51, 61] is to expand
the resolvent in (1.15) to obtain

β(κ;q) ∼
∑
	≥0

(−1)	κ−	−1〈q+,L	q+〉, (1.17)

which exhibits a very direct relationship between the Lax operator and the conser-
vation laws of a type not seen, for example, for KdV. In the circle setting, one may
exploit the fact that q+ = L1 to present this formula in a different way; see (4.31).

While the polynomial conservation laws only make sense for very smooth initial
data, we will show that their generating function β(κ;q) makes sense in either ge-
ometry for q ∈ Hs with s > − 1

2 ; see Proposition 4.3. As we will demonstrate, this
can be used to obtain Hs -bounds on smooth solutions, yielding a new proof of the
following:
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Theorem 1.2 (Conservation laws, [63]) Let q be a (global) H∞ solution to (BO),
either on the line or on the circle. Then for all − 1

2 < s < 0 and t ∈R we have

(
1 + ‖q(0)‖Hs

)−2|s|‖q(0)‖Hs � ‖q(t)‖Hs �
(
1 + ‖q(0)‖Hs

) 2|s|
1−2|s| ‖q(0)‖Hs .

This is not a verbatim recapitulation of Talbut’s result: he imposes a mean-zero
assumption in the circle case and formulates an inferior lower bound on q(t). Never-
theless, this result can be deduced from his arguments with only minor changes.

The argument in [63] is based on the analysis of a renormalized perturbation de-
terminant in a manner inspired by [35]. This object will be described in Sect. 4.2,
where we will also discuss its relationship to β(κ;q). We will give a direct proof of
Theorem 1.2, based solely on β(κ;q); see Corollary 5.3. In fact, Corollary 5.3, and
Lemma 4.4 on which it is based, are stronger than Theorem 1.2 in two ways: they
allow more general flows from the (BO) hierarchy and they demonstrate not only
that solutions are bounded, but also that equicontinuous sets of initial data lead to
equicontinuous ensembles of orbits.

1.4 The method of commuting flows

A priori equicontinuity results of the type with which we ended the previous subsec-
tion have been an integral part of the method of commuting flows since its inception.
They have many roles. For example, suppose we have a bounded sequence in Hs

that is convergent in H−100; then this sequence converges in Hs if and only if it
is Hs -equicontinuous. In this way, equicontinuity allows us to recover any loss of
derivatives that may appear when proving that the flow depends continuously on the
initial data.

The main question we need to address is this: How are we to estimate the di-
vergence of two solutions with slightly different initial data? One approach that has
a long tradition is to interpose a regularized flow. Historically, this would typically
be done via parabolic regularization, which introduces dissipation. We will employ
Hamiltonian flows. These will be generated by the Hamiltonians Hκ introduced in
(1.20), which may be regarded as approximations to HBO. In this way, we may rewrite
the difference of the two solutions to (BO) with initial data q0 and q̃0 as

etJ∇HBO(q0) − etJ∇HBO(q̃0) = etJ∇HBO(q0) − etJ∇Hκ (q0)

+ etJ∇Hκ (q0) − etJ∇Hκ (q̃0) (1.18)

+ etJ∇Hκ (q̃0) − etJ∇HBO(q̃0).

Here, J stands for the operator ∂x of the Poisson bracket (1.4).
Any reasonable choice of regularized flow makes the middle term in RHS (1.18)

easy to estimate; this shifts the burden to estimating the first and last terms. For these
terms, the initial data is the same; however, the flows themselves are different.

The central principle of the method of commuting flows is to choose Hκ to Poisson
commute with HBO so that the corresponding flows commute. This commutativity
allows us to write

etJ∇HBO(q0) − etJ∇Hκ (q0) = [
etJ∇(HBO−Hκ) − Id

] ◦ etJ∇Hκ (q0). (1.19)
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In this way, we are led to the following problem: show that the flow generated by
HBO − Hκ is close to the identity, while accepting that the initial data for this more
complicated flow is not simply q0. Indeed, q0 is ‘scrambled’ by the Hκ flow, for
which we have little uniform control as κ → ∞.

Prior work on other models informs where to seek inspiration for the choice of
the regularized Hamiltonian Hκ , namely, from the expansion (1.16) and its circle
analogue. This reasoning leads us to select

Hκ(q) :=
{

κP (q) − κ2β(κ;q) on R,[
κ + ∫

q
]
P(q) − κ2β(κ;q) + κ

2

[∫
q
]2 + 1

6

[∫
q
]3 on T.

(1.20)

Although there are many facets to the full story, we would like to focus attention
on (1.19), how it limited Talbut’s analysis to the case of L2 initial data, and how we
were able to overcome these obstructions.

By writing the nonlinearity as a complete derivative, we see that the vector field
defining the (BO) flow is actually continuous on L2, albeit H−2-valued. Likewise,
the Hκ Hamiltonian defines a continuous vector field on L2. In this way, we may
analyze the difference flow directly as the difference of these two vector fields. As
noted above, the inevitable loss of two derivatives may be recovered by exploiting
equicontinuity. This is what Talbut does in [62]. However, as soon as s < 0, we may
no longer make sense of q2, for q ∈ Hs , even as a distribution.

The idea of incorporating a gauge transformation into the method of commuting
flows appears already in [34], although it is not always a prerequisite for obtaining
sharp results; see [24]. The big hurdle is finding the right transformation.

Given its transformative role in the well-posedness theory discussed earlier, it is
natural to try Tao’s gauge [64]. However, the high-low interactions that are so trouble-
some for this style of analysis and which this gauge removes, are of no consequence
for our methodology; indeed, outermost derivatives are handled with equicontinuity.
By comparison, the impossibility of making sense of q2 as a distribution originates
from high-high frequency interactions. Ultimately, we did not find Tao’s gauge trans-
formation helpful for our analysis.

In previous incarnations of the method of commuting flows, it was the diagonal
Green’s function that played a central role. It is elementary to verify that even when
q ≡ 0, the Green’s function diverges on the diagonal; thus, renormalization is re-
quired. In the case of (BO), however, we found this approach to be fruitless.

Our next attempt was to employ the gauge transformation introduced by Bock and
Kruskal [6] in their study of conservation laws for (BO) posed on the line. This gauge
is defined implicitly via

2q = 1
w+κ

H(w′) + H
[

w′
w+κ

] + 2κw
w+κ

. (1.21)

In Sect. 4.1, we will demonstrate the existence and uniqueness of such a w; indeed,
we will show this is possible even for q ∈ Hs with s > − 1

2 , and that the transformed
unknown w lies in Hs+1.

As noted in [6], it is not difficult to verify that (BO) may be written as

d
dt

w = Hw′′ − 2qw′, (1.22)
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which does not appear to constitute progress — how can we hope to multiply q ∈ Hs

and w′ ∈ Hs? However, combining this with (1.21), a little work reveals that

d
dt

w = Hw′′ + 2iC+
(
w′) · C+

(
w′

κ+w

) − 2iC−
(
w′) · C−

(
w′

κ+w

) + 2κww′
κ+w

.

This was our first breakthrough on the problem! The fact that this is progress rests on
a simple but fundamental observation: the product of two functions in Hs+ is a well-
defined distribution; see Lemma 2.2. Of course, this is not true without the frequency
restriction.

Next, we must find a description of the dynamics of w under the regularized
Hamiltonian (1.20). Immediately, we strike new hurdles. In past analyses employ-
ing a gauge transformation, we were lead to the regularized dynamics of the gauge
variable through the biHamiltonian relation. However, [14] shows that there is no
such biHamiltonian formulation of (BO)! On top of this, we could not find any doc-
umented relationship between β(κ) and w, which might help derive such dynamics.
This is the important role of Theorem 4.12 in our story: it connects w to m and thence
to β .

As we investigated w through its connection to m, it soon became apparent that
our treatment could be much simplified by abandoning w and adopting m as our new
gauge. It is striking to us that despite the long history of m in the theory of (BO), its
value as a gauge transformation has been overlooked until now.

The abandonment of w and adoption of m as our gauge transformation accelerated
us toward a proof of Theorem 1.1, albeit not the proof presented here. The simplic-
ity of the arguments in this paper benefits substantially from a further innovation,
namely, the Lax pair presented in Proposition 5.1. We do not alter the traditional Lax
operator L, only its antisymmetric partner P , which we call the Peter operator (Lax’s
first name).

Although a Lax representation of the flow generated by β(κ) has appeared previ-
ously in Proposition 2.17 of [61], this would not lead one to (5.3) or (5.4); the first
term in each equation is new. At first glance, this may seem inconsequential; however,
the inclusion of these first terms makes a huge difference. It is only these modified
Peter operators that satisfy the special properties (5.5) and (5.14), which much sim-
plify the proof of Theorem 1.1 in Sect. 5. Additional special properties of our Peter
operators are discussed in Sect. 6.

1.5 Applications of the new Lax pair

Section 6 is devoted to reaping certain other rewards from our new Lax pair, not
directly related to well-posedness. Here the reader will find Theorem 6.1, which pro-
vides an extension of Gérard’s recent explicit formula [15] for (BO) to the full hier-
archy, as well as Theorem 6.5 which describes the action of a one-parameter family
of higher symmetries.

The notion of a higher symmetry is described in Sect. 4.3. It is a symmetry that lies
outside the commuting flows of the hierarchy because it does not preserve the values
of the commuting Hamiltonians. Scaling and Galilei boosts are simple examples.
We also discuss a much more profound example from [14], for which we provide a
mechanical explanation: the center of energy travels at a constant speed under every
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flow of the hierarchy. One is then led to ask if there are centers associated to the other
conserved quantities that also travel at constant speed. Theorem 6.5 answers this in
the affirmative, thereby presenting new recursion relations within the hierarchy. As a
consonant example of the utility of our Lax pair, we present a generalization of the
variance identity of [26] to the full (BO) hierarchy.

In extending Gérard’s formula to the full hierarchy, we actually find an explicit
formula for the τ -function associated with (BO). By a τ -function, we mean an ex-
pression for the solution under a general Hamiltonian. Traditionally,

q(�t;q0) =
[
exp

{∑
tiJ∇Hi

}
q0

]
(x = 0) (1.23)

would be written as a logarithmic derivative of the τ -function; however, such a τ -
function evidently contains as much information as q(�t;q0). Here Hi enumerate the
commuting Hamiltonians of the hierarchy, while �t denotes a vector of times (with
only finitely many non-zero terms). Note that this function is scalar-valued. This is
no loss of generality because momentum is one of the Hamiltonians, traditionally
assigned index i = 0; consequently, one may recover the value of the solution at any
spatial point by using the variable t0.

The relation (1.17) has inspired us to propose parameterizing the τ -function in a
different way, namely, by continuous functions φ. Just as

Hφ(q) := 〈q+, φ(L)q+〉 (1.24)

defines a conserved quantity for the hierarchy, so we may define

q(φ;q0) = (
eJ∇Hφq0

)
(x = 0). (1.25)

When φ is a polynomial, this reproduces (1.23).
In Sect. 6 we will prove the following formula for a dense class of functions φ:

C+
(
eJ∇Hφq0

)
(x + iy) = 1

2πi
I+

((
X − ψ(Lq0) − x − iy

)−1
q0+

)
(1.26)

for x ∈ R, y > 0. Recall that functions in the Hardy space are analytic in the up-
per half-plane; moreover, as q is real-valued, it may be recovered from its positive-
frequency part. Here X denotes an extension of the operator of multiplication by x

for which iX is maximally accretive. The functional I+ denotes a kind of conditional
integral. Both objects are described in detail in Sect. 3. The function ψ applied to the
Lax operator associated to the initial data q0 is defined via

ψ(E) = φ(E) + Eφ′(E). (1.27)

This new algebraic relation has an important role: it reveals exactly how the explicit
formula (1.26) varies in response to changes in the Hamiltonian.



Sharp well-posedness for the Benjamin–Ono equation 1011

2 Notation and preliminaries

Our conventions for the Fourier transform are

f̂ (ξ) = 1√
2π

∫
R

e−iξxf (x) dx so f (x) = 1√
2π

∫
R

eiξx f̂ (ξ) dξ

for functions on the line, while on the circle,

f̂ (ξ) =
∫ 1

0
e−iξxf (x) dx so f (x) =

∑
ξ∈2πZ

f̂ (ξ)eiξx .

These Fourier transforms are unitary on L2 and yield the Plancherel identities

‖f ‖L2(R) = ‖f̂ ‖L2(R) and ‖f ‖L2(T) =
∑

ξ∈2πZ

|f̂ (ξ)|2.

With these conventions, we define the Hilbert transform via

Ĥf (ξ) = −i sgn(ξ)f̂ (ξ) (2.1)

with the understanding that sgn(0) = 0, which is only important on the circle.
We will also employ the Cauchy–Szegő projections defined via

Ĉ±f (ξ) = 1[0,∞)(±ξ)f̂ (ξ) (2.2)

and often write q± = C±q . Although iH = C+ − C− in both geometries, we have

C+ + C− = 1 only on the line; on the circle, C+f + C−f = f + ∫
f. (2.3)

To avoid an unnecessary proliferation of parentheses, we adopt the following rules
for the operators C±: Their precedence is lower than multiplication indicated by jux-
taposition (e.g., fg), but higher than multiplication indicated with a dot, addition, and
subtraction. Thus, by our conventions,

C+f · C+(m + g)h + q = [
C+f

][
C+

(
(m + g)h

)] + q.

For σ ∈ R and κ ≥ 1 we define the Sobolev spaces Hσ
κ (R) and Hσ

κ (T) as the
completion of S(R) and C∞(T), respectively, with respect to the norms

‖f ‖2
Hσ

κ (R) =
∫

(|ξ | + κ)2σ |f̂ (ξ)|2 dξ and ‖f ‖2
Hσ

κ (T) =
∑

ξ∈2πZ

(|ξ | + κ)2σ |f̂ (ξ)|2.

When κ = 1, we simply write Hσ (R) and Hσ (T).
We write Hσ+ for the subspace of Hσ comprised of such distributions whose

Fourier transform is supported on [0,∞). Their Poisson integral is well-defined and
yields a holomorphic extension to the upper half-plane. For the special case σ = 0,
we recall that the Paley–Wiener Theorem identifies the space of such holomorphic
extensions as the L2-based Hardy space.



1012 R. Killip et al.

Throughout the paper, we will employ the L2 pairing: 〈g,f 〉 = ∫
g(x)f (x) dx.

This informs our identification of Hσ
κ and H−σ

κ as dual spaces.
For the remainder of the paper, we constrain

s ∈ (− 1
2 ,0) and define ε := 1

2 ( 1
2 − |s|) ∈ (0, 1

4 ). (2.4)

All implicit constants are permitted to depend on s.
As s + 1 > 1

2 , the space Hs+1
κ is an algebra in either geometry. Indeed, we have

‖fg‖
Hs+1

κ
� ‖f ‖Hs+1 ‖g‖

Hs+1
κ

uniformly for κ ≥ 1. (2.5)

However, we will also need to handle products at considerably lower regularity; this
is the topic of the next two lemmas.

Lemma 2.1 The product of any f ∈ Hs and g ∈ Hs+1 belongs to Hs ; indeed,

‖gf ‖Hs
κ

�
[‖g‖L∞ + ‖g‖H 1/2

]‖f ‖Hs
κ

� κ−2ε‖g‖
Hs+1

κ
‖f ‖Hs

κ
, (2.6)

uniformly for κ ≥ 1. Here s, ε are as in (2.4).

Proof The second inequality in (2.6) is elementary. We focus on the first.
By duality, it suffices to verify that

‖gh‖Hσ
κ

�
[‖g‖L∞ + ‖g‖H 1/2

]‖h‖Hσ
κ

(2.7)

holds with σ = |s|. In fact, (2.7) holds for any σ ∈ [0, 1
2 ). This is a special case of

Theorem II.3.2 in [60]. For completeness, we give an elementary proof of our own.
Our argument is based on the Besov–Slobodeckij characterization:

‖h‖2
Hσ

κ
∼ κ2σ ‖h‖2

L2 +
∫∫ |h(x) − h(y)|2

|x − y|2σ+1
dx dy for any σ ∈ (0,1). (2.8)

It is not difficult to see that

|(gh)(x) − (gh)(y)|2 � ‖g‖2
L∞|h(x) − h(y)|2 + |h(x)||h(y)||g(x) − g(y)|2. (2.9)

The first summand presents no difficulty. For the second summand we employ
Hölder’s inequality and then the homogeneous Sobolev embedding Ḣ σ ↪→
L2/(1−2σ):
∫∫ |h(x)||h(y)||g(x) − g(y)|2

|x − y|2σ+1 dx dy � ‖h(x)h(y)‖
L

2
1−2σ
x,y

∥∥∥∥ |g(x) − g(y)|2
|x − y|2σ+1

∥∥∥∥
L

2
1+2σ
x,y

� ‖h‖2
Hσ

κ
‖g‖1−2σ

L∞ ‖g‖1+2σ

H 1/2 .

�

In general, pointwise multipliers on negative regularity spaces must have consid-
erable positive regularity; indeed, this is evident from the duality reduction performed
in this proof. There is one important exception, namely, when both functions lie in the
same Hardy space. This observation, whose proof is quite elementary, plays a crucial
role in our analysis.
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Lemma 2.2 Fix r < 0. Then for f,g ∈ Hr+ we have

‖fg‖H 2r−1 � ‖f ‖Hr ‖g‖Hr . (2.10)

Proof We start by rewriting LHS (2.10) in Fourier variables:

‖fg‖2
H 2r−1 = 1

2π

∫ ∞

0

1

(ξ + 1)4|r|+2

∣∣∣∣
∫ ξ

0
f̂ (ξ − η)ĝ(η) dη

∣∣∣∣
2

dξ.

Using that for η ∈ [0, ξ ] we have

1
(ξ+1)2 ≤ 1

ξ−η+1 · 1
η+1 ,

distributing the factors of (ξ + 1)4r evenly between f and g, and using Cauchy–
Schwarz, we may bound

∫ ∞

0

1

(ξ + 1)4|r|+2

∣∣∣∣
∫ ξ

0
f̂ (ξ − η)ĝ(η) dη

∣∣∣∣
2

dξ

≤
∫ ∞

0

1

(ξ + 1)2

(∫ ξ

0

|f̂ (ξ − η)|
(ξ − η + 1)|r|

|̂g(η)|
(η + 1)|r|

dη

)2

dξ

≤
∫ ∞

0

1

(ξ + 1)2
‖f ‖2

Hr ‖g‖2
Hr dξ � ‖f ‖2

Hr ‖g‖2
Hr . �

Definition 2.3 (Equicontinuity) Fix σ ∈ R. A bounded set Q ⊂ Hσ is said to be
equicontinuous if

lim sup
δ→0

sup
q∈Q

sup
|y|<δ

‖q(· + y) − q(·)‖Hσ = 0.

On the circle, Q ⊂ Hσ is precompact if and only if it is bounded and equicon-
tinuous. In the line setting, a third condition is required for compactness, namely,
tightness; see [58].

By Plancherel, equicontinuity in the spatial variable is equivalent to tightness in
the Fourier variable. Specifically, a bounded set Q ⊂ Hσ is equicontinuous if and
only if

lim
κ→∞ sup

q∈Q

∫
|ξ |≥κ

|̂q(ξ)|2(|ξ | + 1)2σ dξ = 0 on R (2.11)

or

lim
κ→∞ sup

q∈Q

∑
|ξ |≥κ

|̂q(ξ)|2(|ξ | + 1)2σ = 0 on T. (2.12)

It is important for our arguments that we are able to transfer the equicontinuity
property from classes of initial data to the corresponding orbits. This we achieve
by combining the following characterization of equicontinuity with the two-sided
estimate (4.14) and the conservation of β(κ;q).
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Lemma 2.4 (Characterization of equicontinuity) Let Q be a bounded subset of Hs .
Then the following are equivalent:

(i) The subset Q is equicontinuous in Hs .
(ii) ‖q‖Hs

κ
→ 0 as κ → ∞ uniformly for q ∈ Q.

Proof We only consider the real-line case below; the argument on the circle is similar,
with integrals being replaced by sums.

First, we show that (i) implies (ii). Fix δ > 0. For κ ≥ 1 to be chosen later, we may
bound

∫
R

|̂q(ξ)|2
(|ξ | + κ)2|s| dξ � κ

2|s|

κ2|s|

∫
R

|̂q(ξ)|2
(|ξ | + 1)2|s| dξ +

∫
|ξ |≥κ

|̂q(ξ)|2
(|ξ | + 1)2|s| dξ.

As Q is equicontinuous, we may pick κ = κ(δ) sufficiently large so that the second
integral on the right-hand side is at most δ. Then, as Q is bounded in Hs , we may
choose κ sufficiently large so that the first term on the right-hand side is at most δ.
Together, this shows that the left-hand side is at most 2δ for all κ sufficiently large,
uniformly for q ∈ Q. As δ > 0 was arbitrary, this proves (ii).

Conversely, the inequality

∫
|ξ |≥κ

|̂q(ξ)|2
(|ξ | + 1)2|s| dξ �

∫
R

|̂q(ξ)|2
(|ξ | + κ)2|s| dξ

shows that (ii) implies (i). �

3 The Lax operator

In this section, we investigate the Lax operator and its mapping properties. We begin
by establishing inequalities that will allow us to prove convergence of the various
resolvent expansions that arise in our analysis.

We will write

R0(κ) := (L0 + κ)−1

for the resolvent of the free Lax operator L0 = −i∂x acting on L2+. We will only
consider spectral parameters κ ≥ 1.

Lemma 3.1 For s, ε as in (2.4), we have

‖C+qR0(κ)C+f ‖Hs � κ−2ε ‖q‖Hs ‖f+‖Hs
κ
,

‖C+qR0(κ)C+f ‖Hs
κ

� κ−2ε ‖q‖Hs
κ
‖f+‖Hs

κ
,

(3.1)

where the implicit constants are uniform in κ ≥ 1. Moreover,

‖C+ q C+ f ‖
H

−1/2
κ

� κ−2ε‖q‖Hs
κ
‖f+‖

H
1/2
κ

. (3.2)
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Proof We begin by proving the first estimate in (3.1). The second estimate can be
proved by small modifications of this method; however, it also follows easily from
Lemma 2.1. We will present the details on the line; the argument on the circle is a
close analogue, with integrals replaced by sums.

In Fourier variables, we have

‖C+qR0(κ)C+f ‖2
Hs = 1

2π

∫ ∞

0

1

(ξ + 1)2|s|

∣∣∣∣
∫ ∞

0
q̂(ξ − η)

f̂ (η)

η + κ
dη

∣∣∣∣
2

dξ.

To estimate the contribution of the region where η ≥ 2ξ ≥ 0, we use that

1

η + κ
� 1

(η + κ)|s|
1

(|ξ − η| + 1)|s|
1

(ξ + κ)1−2|s|

uniformly for η ≥ 2ξ ≥ 0 and κ ≥ 1. Together with Cauchy–Schwarz, this yields

∫ ∞

0
(ξ + 1)2s

∣∣∣∣
∫ ∞

2ξ

q̂(ξ − η)
f̂ (η)

η + κ
dη

∣∣∣∣
2

dξ

�
∫ ∞

0

(ξ + 1)2s

(ξ + κ)2−4|s|

(∫ ∞

2ξ

|̂q(ξ − η)|
(|ξ − η| + 1)|s|

|f̂ (η)|
(η + κ)|s|

dη

)2

dξ

≤
∫ ∞

0

dξ

(ξ + 1)1−4ε(ξ + κ)8ε
‖q‖2

Hs ‖f+‖2
Hs

κ

� κ−4ε ‖q‖2
Hs ‖f+‖2

Hs
κ
.

In the last step we integrated separately over ξ ∈ [0, κ] and ξ ∈ [κ,∞).
To estimate the contribution of the remaining region, 0 ≤ η ≤ 2ξ , we use that

1

(ξ + 1)2|s| � 1

(|ξ − η| + 1)2|s| uniformly for 0 ≤ η ≤ 2ξ.

Together with the Minkowski and Cauchy–Schwarz inequalities, this yields

∫ ∞

0

1

(ξ + 1)2|s|

∣∣∣∣
∫ 2ξ

0
q̂(ξ − η)

f̂ (η)

η + κ
dη

∣∣∣∣
2

dξ

�
∫ ∞

0

(∫ ∞

0

|̂q(ξ − η)|
(|ξ − η| + 1)|s|

|f̂ (η)|
(η + κ)|s|

dη

(η + κ)1−|s|

)2

dξ

≤ ‖q‖2
Hs

(∫ ∞

0

|f̂ (η)|
(η + κ)|s|

dη

(η + κ)1−|s|

)2

≤ ‖q‖2
Hs ‖f+‖2

Hs
κ

∫ ∞

0

dη

(η + κ)1+4ε

� κ−4ε ‖q‖2
Hs ‖f+‖2

Hs
κ
.

As in the previous region, ε > 0 is needed for convergence of the integral. Together
with our treatment of the first region, this proves (3.1).
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It remains to prove (3.2). We proceed as previously. Observing that

κε(ξ + κ)ε � (|ξ − η| + κ)−|s|√η + κ uniformly for 2η > ξ > 0 and κ ≥ 1

and using Cauchy–Schwarz, we deduce that

∫ ∞

0

∣∣∣∣
∫ ∞

ξ/2
q̂(ξ − η)f̂ (η) dη

∣∣∣∣
2

dξ

ξ + κ

�
∫ ∞

0

κ−2ε

(ξ + κ)1+2ε

∣∣∣∣
∫ ∞

0

|̂q(ξ − η)| |f̂ (η)|
(|ξ − η| + κ)|s|

√
η + κ dη

∣∣∣∣
2

dξ

� κ−4ε‖q‖2
Hs

κ
‖f+‖2

H
1/2
κ

. (3.3)

Complementing this, we have

(ξ + κ)−1 � (|ξ − η| + κ)−2|s|(η + κ)2|s|−1 uniformly for 0 < 2η < ξ and κ ≥ 1.

Consequently, by Minkowski and Cauchy–Schwarz,

∫ ∞

0

∣∣∣∣
∫ ξ/2

0
q̂(ξ − η)f̂ (η) dη

∣∣∣∣
2

dξ

ξ + κ

�
∫ ∞

0

∣∣∣∣
∫ ∞

0

|̂q(ξ − η)|
(|ξ − η| + κ)|s|

√
η + κ |f̂ (η)|
(η + κ)1−|s| dη

∣∣∣∣
2

dξ

� κ−4ε‖q‖2
Hs

κ
‖f+‖2

H
1/2
κ

. (3.4)

Combining (3.3) and (3.4) proves (3.2). �

We now come to the principal purpose of this section, namely, understanding L as
a selfadjoint operator and obtaining quantitative information on its mapping proper-
ties, as well as those of its resolvent.

Proposition 3.2 (Lax operator) Let s, ε be as in (2.4). Given q ∈ Hs , there is a unique
selfadjoint, semi-bounded operator L associated to the quadratic form

f �→ 〈f,L0f 〉 −
∫

q(x)|f (x)|2 dx

having form domain H
1/2
+ . This operator satisfies

‖Lf ‖Hs �
[
1 + ‖q‖Hs

]‖f ‖Hs+1 . (3.5)

Moreover, there is a constant Cs ≥ 1 so that whenever

κ ≥ Cs

(
1 + ‖q‖Hs

κ

) 1
2ε , (3.6)
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the resolvent R(κ;q) of L exists, maps H
−1/2
+ into H

1/2
+ , and satisfies

‖R(κ)f ‖
Hs+1

κ
� ‖f ‖Hs

κ
and

∥∥[R(κ)−R0(κ)]f ∥∥
Hs+1

κ
� κ−2ε ‖q‖Hs

κ
‖f ‖Hs

κ
. (3.7)

The essential spectrum σess(L) agrees with that of L0 and for any f ∈ Hs+,

z �→ 〈f, (L+ z)−1f 〉 (3.8)

defines a meromorphic function on the region where −z ∈ C \ σess(L).

Proof For f ∈ H
1/2
+ , the estimate (3.2) shows

∣∣〈f,qf 〉∣∣ � κ−2ε ‖q‖Hs
κ
‖f ‖2

H
1/2
κ

= κ−2ε ‖q‖Hs 〈f, (L0 + κ)f 〉. (3.9)

By choosing κ large, we see that the potential q is an infinitesimally form-bounded
perturbation of the operator L0. Therefore the existence and uniqueness of L follows
from [56, Th. X.17]. The operator so defined automatically maps the form domain
H

1/2
+ into its dual space H

−1/2
+ . (It will not be important for us to discuss the operator

domain of L.) The estimate (3.5) follows directly from (2.6).
By virtue of Lemma 3.1, there is a choice of Cs ≥ 1 so that (3.6) ensures

‖C+qR0(κ)C+‖Hs
κ →Hs

κ
< 1

2 and ‖C+qR0(κ)‖
H

−1/2
+ →H

−1/2
+

< 1
2 . (3.10)

This in turn guarantees the convergence of the resolvent series

R(κ;q) = (L+ κ)−1 = R0(κ)
∑
	≥0

[
C+qR0(κ)

]	
, (3.11)

both as an operator from Hs
κ to Hs+1

κ and as an operator from H
− 1

2+ to H
1
2+ . This also

proves both claims in (3.7).
To show that σess(L) = σess(L0), we need only demonstrate that R(κ) − R0(κ) is

a compact operator for some κ > 0; see [57, Th. XIII.14]. For this purpose, we write

R(κ) − R0(κ) = R0(κ)C+q
√

R0(κ) · √R0(κ)
[
1 + C+qR(κ)

]
. (3.12)

It is easy to verify that the first factor in this expansion is compact by computing its
Hilbert–Schmidt norm. On the line, for example,

∥∥R0(κ)C+q
√

R0(κ)
∥∥2

HS = 1

2π

∫ ∞

0

∫ ∞

0

|̂q(ξ − η)|2 dη dξ

(η + κ)(ξ + κ)2
� κ−1‖q‖2

H
−1/2
κ

.

Boundedness on L2 of the second factor on RHS (3.12), for κ sufficiently large,
follows from (3.7) and (2.6).

The spectral theorem already guarantees that the mapping defined in (3.8) is mero-
morphic off the essential spectrum provided that the vector f belongs to the quadratic
form domain of the resolvent, which is to say, the dual of the quadratic form do-
main. In this way, we see that the argument could be expanded beyond f ∈ Hs+ to

f ∈ H
−1/2
+ . �
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Clearly, (3.6) is implied by the simpler condition

q ∈ Bs
A := {real-valued q ∈ Hs : ‖q‖Hs ≤ A} and κ ≥ Cs

(
1 + A

) 1
2ε . (3.13)

However, we will need to continue with the more complicated formulation in order
to close a bootstrap argument in the proof of Lemma 4.4.

The conditions (3.6) and (3.13) guarantee the constructive invertibility of L + κ

via the series (3.11). In this regard, they cannot be substantially improved; this can
be easily seen by considering the family of solitons (1.1). Indeed, when q = Qc , the
operator L has an eigenvalue at −c/2 with eigenvector (cx + i)−1. By comparison,
the Hs

c norm of Qc is comparable to c2ε .
Our next lemma will be needed for the proof of Lemma 5.4.

Lemma 3.3 For f,g ∈ Hs+1+ we have

C+
(
f Lg − gLf

) = iC+
(
f g

)′ + f [1 − C−](q+g). (3.14)

Proof We compute

C+
(
f Lg − gLf

) = C+
{
if g′ − f C−(qg) + if ′g + gC+(qf )

}

= iC+
(
f g

)′ + C+
{
gqf − f C−(qg)

}

= iC+
(
f g

)′ + C+
{
f [1 − C−](qg)

}

= iC+
(
f g

)′ + f [1 − C−](qg).

Finally, noting that the presence of [1 − C−] allows us to replace q by q+ in the last
term, we obtain (3.14). �

The remainder of this section concerns the interaction between the Lax operator
L and multiplication by x. To do this, we must first describe how multiplication by x

can be interpreted as an operator on the Hardy space L2+(R). It cannot be realized as
a selfadjoint operator!

In order to make sense of multiplication by x on L2+(R), it is easiest to employ
Fourier transformation and the theory of semigroups. We wish to make sense of i∂ξ as
an operator on a half-line. The naturally associated semigroups et∂ and e−t∂ represent
translation to the left (with truncation to [0,∞)) and translation to the right (padded
with zero), respectively. Each gives rise to a strongly continuous semigroup and we
may then define multiplication by x as the associated generator.

We adopt the left shift as the basis for our notion of multiplication by x since this
leads to an operator with larger domain. We record here some basic results of the
general theory presented, for example, in [56, §X.8]:

Lemma 3.4 Let X denote the (unbounded) operator on L2+(R) with

D(X) = {
f ∈ Hs+(R) : f̂ ∈ H 1([0,∞)

)}
and
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X̂f (ξ) = i
df̂
dξ

(ξ) for f ∈ D(X).

Then iX is maximally accretive and is the generator of the semigroup

e−itXf = 1√
2π

∫ ∞

0
eiξx f̂ (ξ + t) dξ = C+

(
e−itxf

)

defined on L2+(R). The spectrum of X consists of the closed lower half-plane. For
Im z > 0, the resolvent is given by

(X − z)−1f = f (x)−f (z)
x−z

where f (z) is defined via analytic continuation to the upper half-plane.

Each z with Im z < 0 is actually an eigenvalue of X with eigenvector 1/(x − z).
The adjoint X∗ of X is the generator of right translations. Its domain is smaller,

being comprised of those f ∈ L2+ such that f̂ ∈ H 1
0 ([0,∞)) or, equivalently, xf ∈

L2. For such f , we have X∗f = Xf = xf .
Functions in the domain of X∗ are absolutely integrable and integrate to zero.

Typical functions in D(X) are not absolutely integrable: their Fourier transform has
a jump discontinuity at the origin. Nevertheless, they are ‘conditionally integrable’
with a value representing half the height of the jump. For example, using the Poisson
integral formula, we have

lim
y→∞πyf (iy) = lim

y→∞

∫
y2

x2 + y2 f (x)dx = lim
ξ↓0

√
2π
2 f̂ (ξ) (3.15)

for all f ∈ D(X). Following earlier models, such as [15, 61], we define a linear
functional representing twice this value: For f ∈ D(X),

I+(f ) := lim
y→∞ 2πyf (iy) = lim

y→∞
〈
χy,f

〉

= lim
ξ↓0

√
2πf̂ (ξ) with χy(x) = iy

x+iy
. (3.16)

One may regard the middle expression in (3.16) as originating from splitting the
Poisson kernel into its Hardy-space components, or as simply the Cauchy integral
formula.

Another form of the Cauchy integral formula, which follows from the above, is

f (z) = 1
2πi

I+
(
(X − z)−1f

) = lim
y→∞

1
2πi

〈
χy, (X − z)−1f

〉
(3.17)

valid for all f ∈ L2+ and Im z > 0.

Lemma 3.5 If q ∈ H∞(R) and f ∈ D(X), then C+(qf ) ∈ D(X),

[X,C+q]f = i
2π

q+I+(f ), and [X,L]f = i − i
2π

q+I+(f ). (3.18)
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This expresses the well-known facts that the commutator of X with a Toeplitz
operator, such as f �→ C+(qf ), is a rank-one operator, while that of ∂ and X is
the identity. These observations follow from straightforward computations in Fourier
variables; see, for example, [61, Lem. 3.1] for details.

4 A new gauge

In this section, we analyze the function m = m(κ,q), which was introduced as the
solution to the modified eigenvalue equation

m′ = −iκm + iC+[q(m + 1)], (4.1)

or what is equivalent, (L+ κ)m = q+.
As we will see in this section, this object plays many roles in the theory of (BO).

The title of the section, however, reflects our new and crucial application of m as a
gauge transformation, replacing q as the dynamical variable.

First we must show that such a function exists and derive its basic properties. This
certainly requires restrictions on κ ; most naturally, we should avoid the spectrum of
L. For our purposes, it will suffice to consider κ large and positive. For the moment,
we will continue to use the approach of Proposition 3.2 by requiring

κ ≥ Cs

(
1 + ‖q‖Hs

κ

) 1
2ε , (4.2)

for a suitable large constant Cs and ε as in (2.4). Once we have developed suffi-
cient preliminaries, we will adopt the more permanent solution expounded in Con-
vention 4.5 below.

Proposition 4.1 (Existence and Uniqueness) There is a constant Cs ≥ 1 so that the
following hold: For any q ∈ Hs and κ satisfying (4.2), there is a unique m ∈ Hs+1+
solving (4.1). It is given by

m(x;κ, q) := R(κ, q)q+ = R0(κ)
∑
	≥1

[C+qR0(κ)]	−1q+ (4.3)

and satisfies

‖m‖
Hs+1

κ
� ‖q‖Hs

κ
, ‖m‖L∞ < 1, and ‖m‖Hs � κ−1 ‖q‖Hs . (4.4)

Moreover, if q(x) belongs to H∞ then so too does m(x).

Proof Proposition 3.2 guarantees the existence of Cs ≥ 1 so that L + κ is invertible
whenever (4.2) holds; indeed, this is demonstrated by proving the convergence of
the series (3.11). This verifies the existence and uniqueness of m, as well as formula
(4.3). In fact, by Proposition 3.2 we see that m is unique not only in Hs+1 but also in
the larger space H 1/2.
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The first estimate in (4.4) follows directly from (3.7). Using this we also see that

‖(L0 + κ)m‖Hs
κ

= ‖m‖
Hs+1

κ
� ‖q‖Hs

κ
.

Writing m = R0(κ)
[
q+ + C+qR0(κ)(L0 + κ)m

]
and using (3.1), we deduce that

‖m‖Hs � κ−1[‖q‖Hs + κ−2ε‖q‖Hs ‖q‖Hs
κ

]
.

The last estimate in (4.4) now follows from our assumption on κ .
Using Cauchy–Schwarz in the frequency variable and (4.2), we find

‖m‖L∞ � κ−2ε ‖m‖
Hs+1

κ
� C−2ε

s .

The middle bound in (4.4) follows by choosing Cs large enough.
Finally, we turn to the statement that q ∈ H∞ implies m ∈ H∞. By uniqueness,

the m associated to a translated potential is simply given by the translation of m:

m(x + h;κ, q) = m(x;κ, q(· + h)) for all h ∈R. (4.5)

For any integer σ ≥ 1, we use (4.5) and (4.3) to see that

m(σ) =
∑
	≥1

∑
σ1,...,σ	≥0

σ1+···+σ	=σ

(
σ

σ1 . . . σ	

)
R0C+q(σ1)R0C+q(σ2) · · ·R0q

(σ	)+

and so deduce that

‖m(σ)‖
Hs+1

κ
≤

∑
	≥1

	σ sup
σ1,...,σ	≥0

σ1+···+σ	=σ

‖q(σ	)‖Hs
κ

	−1∏
i=1

‖C+q(σi)R0C+‖Hs
κ →Hs

κ
.

For any 1 ≤ i ≤ 	−1 with σi = 0, we apply (3.10). This leaves at most σ many of the
coefficients σ1, . . . , σ	−1 that may be non-zero. We estimate these remaining factors
with (3.1), combine them with q(σ	), and use that

J∏
j=1

‖q(σ̃j )‖Hs
κ

≤ ‖q‖J−1
Hs

κ
‖q‖Hs+σ

κ
whenever σ̃1 + · · · + σ̃J = σ.

In this way, we obtain

‖m(σ)‖
Hs+1

κ
�

∞∑
	=1

	σ 2σ−	
(

1 + ‖q‖Hs
κ

)σ ‖q‖Hs+σ
κ

< ∞ (4.6)

for any q ∈ H∞ and any κ satisfying (4.2). �

Proposition 4.2 (Diffeomorphism property) There is a constant Cs ≥ 1 so that for
any A > 0 and κ satisfying

κ ≥ Cs

(
1 + A

) 1
2ε , (4.7)

the mapping q �→ m is a diffeomorphism from Bs
A into Hs+1.
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Proof Initially, we choose Cs as required by Propositions 3.2 and 4.1. For g ∈ Hs ,
the resolvent identity implies

dm|q(g) = d

dθ
m(x;κ, q + θg)

∣∣∣∣
θ=0

= R(κ, q)
[
(m + 1)C+g

]
, (4.8)

which for q ≡ 0 reduces to

dm|0(g) = R0(κ)C+g. (4.9)

Taking a supremum over g ∈ Hs
κ and using (3.7), (2.6), and (4.4), we deduce that

∥∥dm|q − dm|0
∥∥

Hs
κ →Hs+1

κ
� κ−2ε‖q‖Hs

κ
� C−2ε

s , (4.10)

uniformly for q ∈ Bs
A and κ satisfying (4.7).

On the other hand, for f ∈ Hs+1+ we have

∥∥(dm|0)−1(f )
∥∥2

Hs
κ

≤ 2‖f ‖2
Hs+1

κ
,

and so
∥∥(dm|0)−1

∥∥−1
Hs+1

κ →Hs
κ

≥ 1√
2
. (4.11)

Combining (4.10) and (4.11), we see that enlarging Cs if necessary,

∥∥dm|q − dm|0
∥∥

Hs
κ →Hs+1

κ
≤ 1

2

∥∥(dm|0)−1
∥∥−1

Hs+1
κ →Hs

κ
.

Using this as input for the standard contraction-mapping proof of the inverse function
theorem, we conclude that we may pick Cs sufficiently large so that

q �→ m is a diffeomorphism from {q : ‖q‖Hs
κ

≤ A} into Hs+1
κ

for all κ satisfying (4.7). As the domain {q : ‖q‖Hs
κ

≤ A} includes the smaller domain
Bs

A, this completes the proof. �

Proposition 4.3 There is a constant Cs ≥ 1 so that for q ∈ Hs and κ satisfying (4.2),
the quantity

β(κ;q) :=
∫

q(x)m(x;κ, q) dx =
∫

q(x)m(x;κ, q) dx

= 〈
q+, (L+ κ)−1q+

〉
(4.12)

is finite and real-valued. For such κ , this is a real-analytic function of q with

δβ
δq

= m + m + |m|2 (4.13)

and satisfies

C−1
s ‖q‖2

Hs
κ

≤
∫ ∞

κ

κ
2sβ(κ;q)dκ ≤ Cs ‖q‖2

Hs
κ
. (4.14)
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Lastly, for each q ∈ Hs , the mapping z �→ β(z;q) extends to a meromorphic function
on {z ∈ C : Re z > 0}.

Proof Proposition 4.1 shows that for a suitable choice of Cs , we are guaranteed
that m = (L + κ)−1q+ exists and lies in Hs+1. This in turn means that m defines
a bounded linear functional on Hs under the natural pairing:

∫
q(x)m(x;κ, q) dx = 〈q,m〉 = 〈q+,m〉 = 〈

q+, (L+ κ)−1q+
〉
.

As L is a selfadjoint operator, this quantity is real. This proves all the identities stated
in (4.12). The possibility of extending this to a meromorphic function in the right
half-plane follows from Proposition 3.2 and the final representation in (4.12).

The fact that β is a real-analytic function of q follows from the convergence of the
series (4.3). Using the functional derivative (4.8) of m, we see that

dβ|q(f ) =
∫

f m + q · R(κ, q)[(m + 1)f+]dx

=
∫

f m + R(κ, q)q+ · (m + 1)f dx

=
∫

[m + m(m + 1)]f dx,

which yields (4.13).
It remains to prove (4.14). As we will see, this may require us to increase Cs . Let

us first examine a quadratic approximation of the central object. By Plancherel and
Fubini,

∫ ∞

κ

κ
2s〈q+,R0(κ)q+〉dκ =

∫ ∞

0

∫ ∞

κ

κ
2s |̂q(ξ)|2

ξ +κ
dκ dξ �s ‖q+‖2

Hs
κ
. (4.15)

This leaves us to control the remainder. Using the duality of Hs+1
κ

and H
−(s+1)
κ

and (3.7), we have
〈
q+,

[
R(κ) − R0(κ)

]
q+

〉
� κ

−2ε ‖q+‖
H

−(s+1)
κ

‖q‖2
Hs
κ

� κ
−1−2s−2ε ‖q‖3

Hs
κ

for any q ∈ Hs and κ ≥ κ . In this way, we deduce that
∫ ∞

κ

κ
2s

〈
q+,

[
R(κ) − R0(κ)

]
q+

〉
dκ � ‖q‖Hs

κ

∫ ∞

κ

κ
−1−2ε‖q‖2

Hs
κ

dκ

�s κ−2ε ‖q+‖3
Hs

κ
.

Combining this with (4.15) and taking Cs sufficiently large, we conclude that (4.14)
holds. �

Propositions 3.2, 4.1, 4.2, and 4.3 show important quantitative properties of m and
β under the restriction that κ is large enough, depending on the size of q . Ultimately,
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we wish to consider trajectories in Hs rather than individual q ∈ Hs and so we must
account for the possibility that the Hs norm of solutions may grow.

For the flows of interest to us, β is conserved and our next lemma shows how this
fact can be leveraged to control the growth and equicontinuity of trajectories. Indeed,
this will lead to an alternate proof of Theorem 1.2 based on β(κ;q), rather than the
perturbation determinant; see Corollary 5.3.

One may wonder what conservation of β means if the κ-interval on which it is
defined depends on q itself. It was to address this irritation that we demonstrated that
β can be interpreted as a meromorphic function on the right half-plane. Evidently, if
β(κ;q0) and β(κ;q1) agree on some ray κ ≥ κ1 then they agree throughout the right
half-plane (as meromorphic functions).

Lemma 4.4 Given A > 0 and Q ⊂ Bs
A, let

Q∗∗ =
{
q(b)

∣∣∣q : [a, b] → Hs is continuous, q(a) ∈ Q,

and β(z;q(t)) ≡ β(z;q(a))
}
,

where β(z;q(t)) ≡ β(z;q(a)) indicates equality as meromorphic functions on the
right-half plane for all t ∈ [a, b]. Then Q∗∗ is bounded; indeed, for Cs as in Propo-
sition 4.3,

sup
q∈Q∗∗

‖q‖Hs � C1+|s|
s

(
1 + 2CsA

) 2|s|
1−2|s| A. (4.16)

Moreover, if Q is Hs -equicontinuous, then so too is Q∗∗.

Proof Given q(a) ∈ Q, consider

κ ≥ Cs

(
1 + 2Cs‖q(a)‖Hs

κ

) 1
2ε . (4.17)

For such κ and any time interval [a,T ] on which

‖q(t)‖Hs
κ

≤ 2Cs‖q(a)‖Hs
κ
, (4.18)

we may apply the equivalence (4.14) to deduce that

‖q(t)‖Hs
κ

≤ Cs ‖q(a)‖Hs
κ
. (4.19)

A standard bootstrap argument then shows that (4.19) holds on the entire time interval
[a, b].

As Q ⊂ Bs
A, the hypothesis (4.17) is satisfied for every q(a) ∈ Q with

κ = Cs

(
1 + 2CsA

) 1
2ε . (4.20)

Using this choice, we obtain

κs sup
q∈Q∗∗

‖q‖Hs ≤ sup
q∈Q∗∗

‖q‖Hs
κ

≤ Cs sup
q∈Q

‖q‖Hs
κ

≤ Cs sup
q∈Q

‖q‖Hs (4.21)

and thence (4.16).
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The equicontinuity of Q∗∗ follows from that of Q by Lemma 2.4 and (4.19). �

We have now proven all the results we need that require us to adjust the constant Cs

and so are ready to adopt our unified notion of κ being sufficiently large. Moreover,
Lemma 4.4 allows us do this in a way that ensures κ remains sufficiently large for all
trajectories of interest to us. We also take the opportunity to introduce the abbreviated
notation (4.22).

Convention 4.5 Given A > 0, we choose κ0 = κ0(A) large enough so that the hy-
potheses of Propositions 3.2, 4.1, 4.2, and 4.3 are all met whenever κ ≥ κ0 and
q ∈ (Bs

A)∗∗. Moreover, for such q ∈ (Bs
A)∗∗, we write

m := m(x;κ, q) and n := m(x;κ, q) (4.22)

and demand that κ,κ ≥ κ0(A).

Lemma 4.6 (Equicontinuity properties of m) Given A > 0 and an equicontinuous set
Q ⊂ Bs

A, we have

lim
κ→∞ sup

q∈Q

‖m‖
Hs+1

κ
= 0 and lim

κ→∞ sup
q∈Q

‖LR(κ, q)n‖Hs+1 = 0 (4.23)

for all κ,κ ≥ κ0(A) as dictated by Convention 4.5.

Proof The first claim in (4.23) follows immediately from the estimate (4.4) and the
characterization (ii) of equicontinuity from Lemma 2.4.

For the second claim in (4.23), we write

R(κ, q)n = R(κ, q)R(κ, q)q+ = R(κ, q)R(κ, q)q+ = R(κ, q)m.

Commuting L and R(κ, q) and using the estimates (3.5) and (3.7) for these operators,
we find

‖LR(κ, q)n‖Hs+1 = ‖R(κ, q)Lm‖Hs+1 � ‖Lm‖Hs � (1 + ‖q‖Hs )‖m‖Hs+1 .

The right-hand side above tends to zero as κ → ∞ by the first claim in (4.23). �

Proposition 4.7 (Dynamics) For an H∞ solution q(t) to (BO),

d
dt

q+ = Pq+ = −iq ′′+ − 2C+(qq+)′ + 2q+q ′+ (4.24)

d
dt

m = Pm = −im′′ − 2C+([q − q+]m)′ − 2q+m′ (4.25)

d
dt

β(κ) = 0. (4.26)

Here P is given by (1.10) and Convention 4.5 applies.

Proof The first equality in (4.24) appears in [61, Proposition 2.13], although in a
different form due to the differing choices of Peter operator. It was the compact form
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of (4.24) and (4.25) that stimulated our selection of P as the preferable choice of
Peter operator; this leads to significant algebraic simplifications in the analysis that
follows.

On the circle, the first identity in (4.24) can also be deduced by applying the iden-
tity (1.8) to the constant function 1. We thank the referee for this observation. This
relies on the fact that for this choice of Peter operator, P1 = 0.

As q2 = 2qq+ − (q+)2 + (q − q+)2, so

C+(2qq ′) = C+
(
2qq+ − (q+)2 + (q − q+)2)′ = 2C+(qq+)′ − 2q ′+q+

and consequently,

Pq+ = −iq ′′+ − 2C+(qq+)′ + 2q ′+q+ = C+
(
Hq ′′ − 2qq ′) = d

dt
q+ . (4.27)

This proves (4.24).
By virtue of the Lax pair representation, (4.3), and (4.24),

d
dt

m = [P,R(κ)]q+ + R(κ)Pq+ = Pm.

From here, (4.25) follows easily:

d
dt

m = Pm = −im′′ − 2C+(qm)′ + 2q ′+m = −im′′ − 2C+([q − q+]m)′ − 2q+m′.

From the final representation in (4.12) and (4.24), we deduce that

d
dt

β(κ) = 〈
Pq+,R(κ)q+

〉 + 〈
q+, [P,R(κ)]q+

〉 + 〈
q+,R(κ)Pq+

〉
= 〈

Pq+,R(κ)q+
〉 + 〈

q+,PR(κ)q+
〉
.

This vanishes because P is an antisymmetric operator on the Hardy space L2+. Thus
(4.26) holds. �

We pause to note that the right-hand side of (4.25) extends continuously (in H−2,
for example) from q ∈ H∞ to q ∈ Hs . For the first term, this follows from Proposi-
tion 4.2. For the second, we also apply Lemma 2.1. In the third term, q+ and m′ do
not have enough Sobolev regularity to make sense of the product. Here it is essential
that both are holomorphic, which allows us to use Lemma 2.2.

Employing the Stone–Weierstrass (on a compactified interval [−E0,∞]) and
spectral theorems, it is not difficult to deduce from (4.26) and (4.12) that for any
measurable function F : R →R satisfying

∣∣F(E)
∣∣ � (1 + |E|)−1, the functional q �→ 〈

q+,F (L)q+
〉

(4.28)

defines a conserved quantity for the (BO) flow. This is interesting because it provides
a clear way of separating out the contribution of any embedded point or singular
continuous spectrum to the conserved quantities. We know of no analogue of this
fact in the much-studied KdV equation, for example.

Our next lemma presents other ways in which m and β are related, beyond the
definition (4.12).
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Lemma 4.8 Under Convention 4.5,
∫

mndx =
∫

mndx = 〈
(L+κ)−1q+, (L+ κ)−1q+

〉 = −β(κ) − β(κ)

κ −κ
(4.29)

for any q ∈ Bs
A and distinct κ, κ ≥ κ0(A). In the periodic case, we also have

κ

∫
mdx = κ

∫
mdx =

∫
qmdx +

∫
q dx = β(κ) +

∫
q dx (4.30)

and, writing 1 for the constant function,

〈1, (L+ κ)−11〉 = κ−1 + κ−2β(κ;q) + κ−2
∫

q dx. (4.31)

Proof The identities (4.29) are evident from the definitions of m, n and

(L+κ)−1(L+ κ)−1 = (L+ κ)−1(L+κ)−1 = −1

κ −κ

[
(L+ κ)−1 − (L+κ)−1].

The identities (4.30) follow by integrating (4.1) over the circle and using that β(κ)

is real-valued.
As L01 = 0, the resolvent identity gives

(L+ κ)−11 = (L0 + κ)−11 + (L+ κ)−1C+q(L0 + κ)−11 = κ−1(1 + m).

Thus (4.31) follows from (4.30). �

Remark 4.9 In Lemma 6.4, we will show that m + m ∈ L1(R) when 〈x〉q ∈ L2(R).
By integrating the identity (6.10) over the whole real line and using (4.29), we find

κ

∫
R

m + m + |m|2 dx = β(κ) − κ
∂β

∂κ
+

∫
R

q dx. (4.32)

This particular line analogue of (4.30) will reappear in Sect. 4.1 as the connection
between β(κ) and the Bock–Kruskal approach to conserved quantities.

Our next result is an important identity, which first appeared as [31, Eq. (58)].
In that paper, it was used as a stepping stone in the calculation of Poisson brackets
between certain scattering-theoretic data, defined for smooth rapidly decreasing q .
Our first application of this identity will be to demonstrating Poisson commutativity
of β(κ) at differing spectral parameters. In Sect. 4.1 we will also see that it provides
an important key for unlocking the significance of the Bock–Kruskal transformation.

Lemma 4.10 For q ∈ H∞(R) we have

H(mn + m + n)′ + i(m + 1)n′ − im′(n + 1) − 2q(m + 1)(n + 1)

+ i(κ −κ)H(mn + m + n) + (κ +κ)(mn + m + n) = 0,
(4.33)
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subject to Convention 4.5. For q ∈ H∞(T), this expression need not vanish; however,
it is a real-valued constant function:

LHS (4.33) = κ

∫
mdx + κ

∫
ndx. (4.34)

Proof Employing equation (4.1) to eliminate m′ and n′, we obtain

LHS(4.33) = κ(1 + iH)n +κ(1 − iH)m + (1 + iH)
[
(n + 1)C+(q(m + 1))

]
+ (1 − iH)

[
(m + 1)C−(q(n + 1))

] − 2q(m + 1)(n + 1).

Thence, using the operator identity 2 = (1 + iH) + (1 − iH) on the last term yields

LHS(4.33) = κ(1 + iH)n +κ(1 − iH)m + (1 + iH)
[
(n + 1)[C+ − 1](q(m + 1))

]
+ (1 − iH)

[
(m + 1)[C− − 1](q(n + 1))

]
.

Consideration of the Fourier supports shows that the last two terms vanish in either
geometry. The first two terms vanish on the line but reduce to RHS (4.34) in the
circle case. The fact that this constant is real (and generically nonzero) follows from
(4.30). �

A fundamental part of the identification of (BO) as an integrable system is the
mutual commutativity of associated conserved quantities. This is equivalent to prov-
ing that their generating functions Poisson commute. On the line, this was already
demonstrated in [31], under strong regularity and decay hypotheses. In [17] it is
shown that for q ∈ L2(T), the eigenvalues of the Lax operator Poisson commute with
one another; this is then used to deduce commutativity of the generating functions.
For completeness, we include a proof of this fact using the objects at the center of our
discussion. We also provide a direct proof of the commutativity of β(κ;q) and the
momentum P(q). Physically, this expresses the invariance of β(κ;q) under spatial
translations of q or, equivalently, the invariance of the L2 norm under the dynamics
generated by β(κ;q).

Lemma 4.11 Under Convention 4.5,

{β(κ),β(κ)} = 0 and {P,β(κ)} = 0 (4.35)

as functions on Bs
A and Bs

A ∩ H∞, respectively.

Proof By (1.4), (4.13), and integration by parts,

{β(κ),β(κ)} =
∫ (|m|2 + m + m

)(|n|2 + n + n
)′

dx = 1
2

∫
F(x)dx,

where we adopt the notation

F := [|m|2 + m + m
][|n|2 + n + n

]′ − [|m|2 + m + m
]′[|n|2 + n + n

]
. (4.36)

Proposition 4.1 shows that these expressions are all well-defined on Bs
A.
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To continue, we rewrite F as

F = G + G + K + K where G = [mn + m + n][(m + 1)n′ − m′(n + 1)
]

and K = (m − n)(m + n)′.

We split F in this way in order to take advantage of Lemma 4.10, which shows that

(m + 1)n′ − m′(n + 1) = iH(mn + m + n)′ − (κ −κ)H(mn + m + n)

+ i(κ +κ − 2q)(mn + m + n) − 2iq − ic,
(4.37)

where the constant function c denotes the value of LHS (4.33) appropriate to each
geometry. Recall that c = 0 on R and is real on T. Combining this identity with the
antisymmetry of H and of iH∂ , we find that

∫
(G + G)dx = i

∫
(2q + c)[mn − mn + m − m − n + n]dx. (4.38)

Using (4.12), (4.29), and (4.30), this further simplifies to
∫

(G + G)dx = 2i

∫
q[mn − mn]dx. (4.39)

On the other hand, integrating by parts and employing (4.1), we obtain
∫

(K + K)dx = 2
∫

mn′ + mn′ dx

= 2i

∫
(κ − q)[mn − mn]dx − 2i

∫
q[m − m]dx.

Using (4.12) and (4.29), this simplifies to
∫

(K + K)dx = −2i

∫
q[mn − mn]dx. (4.40)

Combining (4.39) and (4.40) gives
∫

F = 0 and so proves the first identity in
(4.35).

To prove the commutativity of β(κ) and the momentum P = 1
2

∫
q2 dx, we use

the functional derivative (4.13) for β to compute

{β(κ),P (q)} =
∫ (|n|2 + n + n

)
q ′ dx =

∫
−[(1 + n)n′ + (1 + n)n′]q dx.

Next, we use the equation (4.1) for n′ together with (4.12) to deduce that

{β(κ),P (q)} = i

∫
κ[n(n + 1) − n(n + 1)]q dx

− i

∫
(n + 1)q · C+(n + 1)q − (n + 1)q · C−(n + 1)q dx

= 0. �
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4.1 The Bock–Kruskal transformation

In [6], Bock and Kruskal introduced an analogue of the Miura transform applicable
to the Benjamin–Ono equation and used this to show the existence of infinitely many
conserved quantities, at least for smooth solutions decaying sufficiently rapidly at
(spatial) infinity. This transformation q �→ w was defined implicitly via the formula

2q = 1
w+κ

H(w′) + H
(

w′
w+κ

) + 2κw
w+κ

. (4.41)

The function w is real-valued. As in the original paper [6], we will confine our dis-
cussion to the R geometry.

In the introduction, we described the important inspirational role that the Bock–
Kruskal transformation played in developing the methods ultimately employed in
this paper. Given this pivotal role, we feel compelled to share with the reader how it
connects to the principal themes of this paper. Concretely, we will demonstrate the
unique solvability of (4.41) and identify this solution in terms of the central object
m(x;κ, q) of this section.

Evidently, some restriction on w (beyond mere regularity) must be imposed to
handle the denominators κ + w appearing in (4.41). As any w ∈ Hs+1 is automat-
ically continuous and converges to zero at (spatial) infinity, the natural condition is
this:

inf
x

(
κ + w(x)

)
> 0. (4.42)

Theorem 4.12 Suppose A > 0 and κ0(A) satisfies Convention 4.5. Then, for any q ∈
Bs

A and any κ ≥ κ0,

w = κ
δβ
δq

= κ
(|m|2 + m + m

)
(4.43)

is the unique Hs+1(R) solution to (4.41) satisfying (4.42).

Proof By virtue of (4.4), we must have ‖m‖L∞ < 1. Consequently, the function
κ

δβ
δq

= κ|m+1|2 −κ satisfies (4.42). Setting κ = κ in (4.33) and dividing by |m+1|2,
we find that

2q = H(|m|2+m+m)′
|m+1|2 + i

[
m′

m+1 − m′
m+1

]
+ 2κ

|m|2+m+m

|m+1|2

= H(|m|2+m+m)′
|m+1|2 + iH

[
m′

m+1 + m′
m+1

]
+ 2κ

|m|2+m+m

|m+1|2 ,

which demonstrates that the function κ
δβ
δq

satisfies (4.41).

It remains to verify the uniqueness of Hs+1 solutions to (4.43) satisfying (4.42).
We will focus on the unknown u = κ−1w. Suppose first that w is a solution of the
type described. The restriction (4.42) guarantees that log(1 + u) ∈ Hs+1; see, for
example, (2.8). Thus, we may factor

1 + u(x) = [1 + μ(x)][1 + μ(x)] with μ ∈ Hs+1+ (R). (4.44)
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The next step is to insert w = κ[1 + μ][1 + μ] − κ in (4.41). In doing so, we take
advantage of the following:

(1 + u)H
[

u′
1+u

] = |μ + 1|2H
(

μ′
1+μ

+ μ′
1+μ

) = i(1 + μ)μ′ − iμ′(μ + 1).

This allows us to completely eliminate the denominators in (4.41); indeed, combining
this with 2C± = [I ± iH], we find the equivalent formulation

2q[1+μ][1+μ] = 2C−
[
i(1+μ)μ′]−2C+

[
iμ′(μ+1)

]+2κ[μ+μ+|μ|2]. (4.45)

Isolating the positive-frequency component of (4.45), we get

C+
[
(1 + μ)

(−iμ′ − C+(qμ) + κμ − q+
)] = 0. (4.46)

In fact, this is equivalent to (4.45) because the negative-frequency component is sim-
ply the complex conjugate of this.

Let us write f for the quantity inside the square brackets of (4.46). By Lemma 2.1,
we know f ∈ Hs(R). Thus we may interpret (4.46) as saying that f belongs to the
Hardy–Sobolev space Hs−, which in turn shows

−iμ′ − C+(qμ) + κμ − q+ = f
1+μ

∈ Hs−(R). (4.47)

However every term in LHS (4.47) belongs to the other Hardy–Sobolev space
Hs+(R). Only the zero function belongs to both spaces and so we deduce that μ is
a solution of (4.1). However, Proposition 4.1 guarantees that m is the only solution of
this equation. Thus μ = m, which then yields w = κu = κ

δβ
δq

. �

The Bock–Kruskal approach to conservation laws is that w is a conserved density
and consequently, its formal expansion in powers of κ−1 provides an infinite family
of conservation laws of polynomial type. Combining (4.43) with (4.32) allows us to
connect this approach to the conservation of β(κ). Concretely, for 〈x〉q ∈ L2(R),

∫
R

w(x;κ, q) dx = β(κ) − κ
∂β

∂κ
+

∫
R

q dx. (4.48)

4.2 The perturbation determinant

Our next result establishes the connection between our gauge m and the logarithm of
the renormalized perturbation determinant

α(κ;q) :=
∑
	≥2

1
	

tr
{
(R0(κ)C+q)	

}
, (4.49)

which is the central object in Talbut’s proof of Theorem 1.2 in [63]. Such a connection
in the line setting was presented by Talbut in his thesis [62, §3.3].

On the line, convergence of the series (4.49) may be demonstrated as follows: For
A > 0 and κ0 = κ0(A) chosen according to Convention 4.5, we have

‖√R0(κ)C+q
√

R0(κ)‖2
HS = 1

2π

∫ ∞

0

∫ ∞

0

|̂q(ξ − η)|2 dη dξ

(η + κ)(ξ + κ)
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= 1

2π

∫
R

log(1 + |ξ |
κ

)

|ξ | |̂q(ξ)|2 dξ � κ−4ε‖q‖2
Hs

κ
< 1,

whenever κ ≥ κ0 and q ∈ Bs
A. In particular, the Hölder inequality in Schatten classes

yields convergence of the series defining α. Parallel arguments yield convergence in
the circle setting.

Lemma 4.13 For A > 0 and κ0 = κ0(A) satisfying Convention 4.5, we have

α(κ;q) = 1
2π

∫ ∞

0

β(κ+ξ ;q)
κ+ξ

dξ on R and

α(κ;q) =
∑

ξ∈2πZ+

β(κ+ξ ;q)
κ+ξ

on T,

whenever q ∈ Bs
A and κ ≥ κ0. Here, Z+ = {0,1,2, . . .}.

Proof We will present the details in the circle setting. The computations in the line
setting are a close parallel.

Using symmetry followed by a change of variables and Plancherel, we may write

1

	
tr
{
(R0(κ)C+q)	

}

=
∑

ξ1,...,ξ	∈2πZ+

1

	

q̂(ξ1 − ξ2)

κ + ξ1

q̂(ξ2 − ξ3)

κ + ξ2
· · · q̂(ξ	 − ξ1)

κ + ξ	

=
∑

ξ1≤min{ξ2,...,ξ	}
ξ1,...,ξ	∈2πZ+

q̂(ξ1 − ξ2)

κ + ξ1

q̂(ξ2 − ξ3)

κ + ξ2
· · · q̂(ξ	 − ξ1)

κ + ξ	

=
∑

ξ∈2πZ+

1

κ + ξ

∑
η2,...,η	∈2πZ

ηj +···+η	≥0,∀2≤j≤	

q̂
(−(η2 + · · ·η	)

) 	∏
j=2

q̂(ηj )

κ + ξ + ηj + · · · + η	

=
∑

ξ∈2πZ+

1

κ + ξ

〈
q,

(
R0(κ + ξ)C+q

)	−2
R0(κ + ξ)q+

〉
.

Recalling (4.3), (4.12), and summing over 	 ≥ 2, we obtain

α(κ;q) =
∑

ξ∈2πZ+

1

κ + ξ
〈q,m(κ + ξ, q)〉 =

∑
ξ∈2πZ+

1

κ + ξ
β(κ + ξ ;q),

which completes the proof in the circle setting. �

4.3 The action of higher symmetries

With infinitely many conserved quantities, the Benjamin–Ono equation possesses a
wide array of Hamiltonian symmetries. As these Hamiltonians are all mutually com-
muting, these symmetries preserve the values of all these conserved quantities.
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By higher symmetries, we mean those that do not preserve the conserved quan-
tities. Scaling and Galilei/Lorentz boosts are important examples, common to a rich
class of Hamiltonian PDE. In the Benjamin–Ono setting, these symmetries take the
forms given in (1.2) and (1.5), respectively.

The scaling symmetry is Hamiltonian; indeed, the center of momentum

CofP :=
∫

1
2xq(x)2 dx generates d

dt
q = (xq)′ = xq ′ + q = dqλ

dλ

∣∣
λ=1. (4.50)

While one should actually divide by the total momentum to find the true centroid,
this muddies the formulas without yielding better physical insight.

The Galilei symmetry is not Hamiltonian; indeed, no Hamiltonian flow can change
the value of the Casimir

∫
q .

Our first result describes the action of these higher symmetries on the totality of
the conserved quantities, expressed in terms of their generating function β:

Lemma 4.14 Working on the line, with qλ defined by (1.2), we have

β(λκ;qλ) = β(κ;q) for any λ > 0. (4.51)

On the circle, the Galilean symmetry acts as follows: for any c ∈R,

β(κ;q + c) + ∫
(q + c) dx = κ2

(κ−c)2

[
β(κ − c;q) + ∫

q dx
]
+ cκ

κ−c
. (4.52)

Proof We define an operator Uλ via

[Uλf ](x) = √
λf (λx). (4.53)

This is unitary on L2+(R). It differs from the scaling (1.2) by qλ = √
λUλq .

Direct computation shows that (L(qλ) + λκ)Uλ = λUλ(L(q) + κ), which implies

Uλ(L(q) + κ)−1 = λ(L(qλ) + λκ)−1Uλ.

The identity (4.51) now follows easily:

β(λκ;qλ) = λ〈Uλq+, (L(qλ) + λκ)−1Uλq+〉
= 〈Uλq+, Uλ(L(q) + κ)−1q+〉 = β(κ;q).

The identity (4.52) follows from (4.30), (4.31), the observation L(q +c) = L(q)−
c, and elementary manipulations. �

By differentiating the identity (4.51) with respect to λ and setting λ = 1, we obtain
the following virial-type identity:

{β(κ),CofP} = −κ
∂β
∂κ

. (4.54)

Understanding the CofP as the generator of scaling and matching coefficients in the
κ → ∞ expansion, we see that (4.54) shows that the Hamiltonians for which β(κ) is
the generating function are individually homogeneous under scaling.
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An alternate physical interpretation of (4.54) is that it reveals the time dependence
of CofP under each of the Hamiltonians; specifically, it shows that the center of mo-
mentum travels at a constant speed equal to a numerical multiple of the Hamiltonian.

A third perspective on (4.54) is this: Given a conserved quantity, taking the Poisson
bracket with CofP will yield a new conserved quantity. Sadly, it is not really ‘new’;
each term in the expansion of β merely picks up a numerical prefactor illustrating its
scaling degree. The Galilei symmetry is more exciting. The formula (4.52) shows that
by performing a Galilei boost on a single Hamiltonian yields a polynomial in c whose
coefficients are all the preceding Hamiltonians. It allows one to descend through the
hierarchy!

As mentioned in the introduction, Fokas and Fuchssteiner [14] found a vector field
τ that allowed them to ascend in the hierarchy. As the culmination of this section, we
will now explain how the preceding discussion led us to a new and physically appeal-
ing interpretation of their discovery. Then in Sect. 6 we will present a far reaching
generalization; see Theorem 6.5.

Let us declare that the center of energy is given by

CofE :=
∫

1
2xq(x) · H∂q(x) − 1

3xq(x)3 dx. (4.55)

The term xq3 is not controversial. However, we have selected a very specific way
of inserting the weight x into the kinetic energy term and would have to admit other
possibilities, but for the following dramatic observation: The Hamiltonian vector field
associated to CofE is (subject to our sign conventions) precisely the τ vector field of
[14]! To see this, we use that [H∂, x] = H and so

∂x

(
δ
δq

CofE
) = [

xHq ′ + 1
2 Hq

]′ − [xq2]′ = x(Hq ′′ − 2qq ′) − q2 + 3
2 Hq ′. (4.56)

In this way, the miraculous property of τ can be summarized as

{β(κ),CofE} = κ2 ∂β
∂κ

+ κβ(κ), (4.57)

which shows that the Poisson bracket of CofE and one of Hamiltonians of the hierar-
chy yields the next higher Hamiltonian. Equivalently, the center of energy travels at
a constant speed, which is given by this higher Hamiltonian.

This presentation leads us naturally to ask: Is there a coherent way of defining the
center for every one of the conserved quantities? Perhaps even a unifying Cofβ? And
can this be done in such a way that these centers move at a constant speed? Naturally,
this speed would be another conserved quantity. We will answer all these questions
successfully in Sect. 6. This will include a proof of (4.57).

For such a direct identity involving m and q , it is tempting to imagine that (4.57)
should follow quickly from (4.1), (4.12), and (4.29) together with some strategic
integrations by parts. We know of no simple argument of this type. Nevertheless,
our discovery of just the right Lax representation of the flows, presented in the next
section, will yield the result very quickly indeed.
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5 Well-posedness

Our analysis begins with the discussion of the evolution dictated by our regularized
Hamilonians Hκ introduced in (1.20). These Hamiltonians are not globally defined:
for a given size of initial data, κ needs to be chosen sufficiently large. With this in
mind, Convention 4.5 will be in force throughout this section.

In this section, we will verify that β is conserved under the Hκ flow, as well as
under (BO). In this way, our convention ensures that κ will be large enough, not only
for the initial data, but also for all trajectories of interest to us.

Before turning to the well-posedness of the Hκ flow, our first result is devoted to
describing the associated vector field.

Proposition 5.1 The evolution induced by the Hamiltonian Hκ is

d
dt

q =
{

−κ2
(
m + m + |m|2)′ + κq ′ on R,

−κ2
(
m + m + |m|2)′ + [

κ + ∫
q
]
q ′ on T.

(5.1)

Moreover, we have the following Lax pair representation: q solves (5.1) if and only if

d
dt
L = [Pκ ,L] (5.2)

where L = L(q(t)) is the Lax operator described in Proposition 3.2 and

Pκ := iκ3(L+ κ)−1 − iκ2(m + 1)C+(m + 1) + κ∂, (5.3)

on the line; on the circle, Pκ is defined by

Pκ := iκ2[κ + β(κ) + ∫
q
]
(L+ κ)−1 − iκ2(m + 1)C+(m + 1) + [

κ + ∫
q
]
∂. (5.4)

These operators have the special property

d
dt

q+ = Pκq+. (5.5)

Before turning to the proof of this result, we pause to note that irrespective of
the geometry, the first term in the definition of Pκ is inconsequential to the Lax-
pair property, because it commutes with L. Just such an alternate choice of Pκ was
introduced already in [17, §6].

Removing the first terms in (5.3) and (5.4) destroys the special property (5.5)
that greatly expedites the arguments of this section and played a crucial role in our
discoveries reported in the next section. Let us also note that while restricting the
circle evolution to

∫
q = 0 would unify the dynamical equations (5.1), it would not do

the same for the operators Pκ ; they would still differ by the summand iκ2β(κ)R(κ).

Proof of Proposition 5.1 To avoid repeating ourselves, we will only present the details
in the periodic case, which are slightly more involved.

The equation (5.1) follows from (1.20), (4.13), and the Poisson structure (1.4):

d
dt

q = −κ2( δβ
δq

)′ + [
κ + ∫

q
](

δP
δq

)′ = −κ2(m + m + |m|2)′ + [
κ + ∫

q
]
q ′. (5.6)
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Next we address the Lax pair formulation of the Hκ flow. As noted above, it suf-
fices to prove the Lax property with

P̃κ := −iκ2(m + 1)C+(m + 1) + [
κ + ∫

q
]
∂. (5.7)

If q satisfies (5.1), then

d
dt
L = κ2C+m′(m + 1) + κ2C+(m + 1)m′ − [

κ + ∫
q
]
C+q ′ (5.8)

as operators on L2+. We will show that RHS (5.2)=RHS (5.8), which proves that (5.1)
implies (5.2).

Conversely, as ( d
dt
L)f = −C+(

dq
dt

f ), the time derivative of L uniquely deter-

mines dq
dt

. Thus, the equality RHS (5.2)=RHS (5.8) also shows that (5.2) implies
(5.1).

Proceeding directly from the definitions, we find

[P̃κ ,L] = κ2{m′C+(m + 1) + (m + 1)C+m′} − [
κ + ∫

q
]
C+q ′ (5.9)

− iκ2C+q(m + 1)C+(m + 1) + iκ2(m + 1)C+(m + 1)C+q

= RHS(5.8) − κ2C+m′[1 − C+](m + 1) − κ2C+(m + 1)[1 − C+]m′

− iκ2C+q(m + 1)C+(m + 1) + iκ2(m + 1)C+(m + 1)C+q

as operators on L2+. Now for f ∈ H∞+ , (4.1) yields

C+m′[1 − C+](m + 1)f + C+(m + 1)[1 − C+]m′f

= −iκC+m[1 − C+](m + 1)f + iκC+(m + 1)[1 − C+]mf

+ iC+[q(m + 1)]+[1 − C+](m + 1)f

− iC+(m + 1)[1 − C+][(m + 1)q]−f

= iC+q(m + 1)[1 − C+](m + 1)f − iC+(m + 1)[1 − C+](m + 1)qf

= −iC+q(m + 1)C+(m + 1)f + iC+(m + 1)C+(m + 1)qf

= −iC+q(m + 1)C+(m + 1)f + iC+(m + 1)C+(m + 1)C+qf.

Substituting this into (5.9) gives [P̃κ ,L] = RHS(5.8), which shows that RHS (5.2)
and RHS (5.8) are equal, thereby completing the proof of the Lax pair formulation.

It remains to justify (5.5). One important distinction between the two geometries
is (2.3). For example, working on T and using (4.12) and (4.1), we have

C+(m + 1)q+ = C+(m + 1)q = [1 − C−](m + 1)q + [
β(κ) + ∫

q
]

= (m + 1)q − im′ − κm + [
β(κ) + ∫

q
]
.

Similar reasoning using (4.1) shows that

C+(m + 1)(m + 1)q = C+(m + 1)C+(m + 1)q + C+(m + 1)[1 − C+](m + 1)q
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= C+(m + 1)(−im′ + κm),

irrespective of the geometry.
Combining our last two calculations, we find that on T,

iκ2C+(m + 1)C+(m + 1)q+

= iκ2C+
[
(m + 1)(m + 1)q + (m + 1)

[−im′ − κm + β(κ) + ∫
q
]]

= iκ2C+
[
(m + 1)(−im′ + κm) + (m + 1)

[−im′ − κm + β(κ) + ∫
q
]]

= κ2C+
[
m + m + |m|2]′ + iκ3C+(m − m) + iκ2[β(κ) + ∫

q
]
(m + 1).

Again we meet a distinction. On the line, C+m = 0; however, on T, (4.30) shows

iκ3C+m = iκ3∫ m = iκ2[β(κ) + ∫
q
]
.

In this way, we deduce that on T,

iκ2C+(m + 1)C+(m + 1)q+ = κ2C+
(
m + m + |m|2)′ + iκ2[κ + β(κ) + ∫

q
]
m,

from which (5.5) follows easily. �

Theorem 5.2 (Well-posedness of the Hκ flow) Given A > 0, let κ0(A) be chosen
according to Convention 4.5. For κ ≥ κ0, the Hκ flow is globally well-posed for initial
data in Bs

A. Moreover, the quantity β(κ;q(t)) is conserved by the Hκ flow:

d
dt

β(κ;q(t)) = 0 for any κ ≥ κ0. (5.10)

Furthermore, if q(0) ∈ Bs
A ∩ H∞ then q(t) ∈ H∞ for all t ∈ R and the Hκ flow

commutes with the Benjamin–Ono flow on H∞.

Proof We present the proof in the line setting. On the circle, the linearized flow con-
tains an additional translation at speed

∫
q . This alters several formulas, but introduces

no additional difficulty.
We begin by recasting (5.1) as the integral equation

q(t) = etκ∂q(0) − κ2
∫ t

0
e(t−s)κ∂

[|m(κ,q(s))|2 + 2 Rem(κ,q(s))
]′

ds.

Next, we observe that q �→ [|m|2 +2 Rem]′ is a Lipschitz function. This follows from
(4.4), (4.9), (4.10), the fundamental theorem of calculus, and the fact that Hs+1 is an
algebra:

∥∥[|m(κ,q)|2 + 2 Rem(κ,q)
]′ − [|m(κ, q̃)|2 + 2 Rem(κ, q̃)

]′∥∥
Hs

�
∥∥[|m(κ,q)|2 + 2 Rem(κ,q)

] − [|m(κ, q̃)|2 + 2 Rem(κ, q̃)
]∥∥

Hs+1

� ‖m(κ,q) − m(κ, q̃)‖Hs+1

[‖m(κ,q)‖Hs+1 + ‖m(κ, q̃)‖Hs+1 + 1
]
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� ‖q − q̃‖Hs

∥∥dm|q
∥∥

Hs→Hs+1

[‖q‖Hs + ‖q̃‖Hs + 1
]

� ‖q − q̃‖Hs

uniformly for q, q̃ ∈ (Bs
A)∗∗ and κ ≥ κ0. (For this notation, see Lemma 4.4.) Thus,

local well-posedness on this larger set follows by Picard iteration.
Next we address the propagation of additional regularity. By Proposition 4.1 we

know that q ∈ H∞ implies m(κ,q) ∈ H∞. Indeed, the quantitative bound (4.6) to-
gether with a Gronwall argument shows that higher regularity norms can grow at most
exponentially in time. Most important for us is the conclusion that when q(0) ∈ H∞,
so q(t) ∈ H∞ for all times of existence.

For H∞ solutions to the Hκ flow, Lemma 4.11 shows that

d
dt

β(κ) = {β(κ),Hκ } = −κ2{β(κ), β(κ)} + κ{β(κ),P (q)} = 0.

The conservation of β(κ) for Hs -solutions then follows from the Hs -continuity of
q �→ β(κ;q) and the local well-posedness of the flow.

As Lemma 4.4 demonstrates, the conservation of β ensures that the local-in-time
argument may be iterated indefinitely, thus yielding global well-posedness in Hs .

Lastly, we verify that the Hκ and the Benjamin–Ono flows commute on H∞ so-
lutions. We have

{Hκ,HBO} = −κ2{β(κ),HBO} + κ{P,HBO}.

Each bracket on the right-hand side above vanishes because the HBO flow conserves
both β (see (4.26)) and the momentum P . �

Due to their commutativity, one may define a joint flow under both the Benjamin–
Ono and Hκ Hamiltonians, at least for H∞ initial data. The conservation of β under
both of these flows provides bounds and equicontinuity of joint orbits:

Corollary 5.3 Given A > 0 and a set of real-valued initial data Q ⊂ Bs
A ∩ H∞, we

define

Q∗ = {
eJ∇(t1HBO+t2Hκ)(q) : q ∈ Q, t1, t2 ∈ R, κ ≥ κ0(A)

}
. (5.11)

Then Q∗ ⊂ Q∗∗ and so Q∗ is bounded; indeed,

(
1 + ‖q0‖Hs

)−2|s|‖q0‖Hs � ‖q‖Hs �
(
1 + ‖q0‖Hs

) 2|s|
1−2|s| ‖q0‖Hs (5.12)

for every q ∈ {q0}∗∗ and q0 ∈ Bs
A. If Q is equicontinuous, then so too is Q∗.

Proof As we saw in (4.26) and (5.10), both flows defining Q∗ conserve β . Thus
Q∗ ⊂ Q∗∗ and so Lemma 4.4 may be applied. The right-hand inequality in (5.12) is
just a recapitulation of (4.16). The left-hand inequality follows from this by reversing
the roles of q and q0. �
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As discussed in the introduction, we wish to show that trajectories under the Hκ

Hamiltonian closely parallel the original Benjamin–Ono flow. How is this to be done?
An obvious approach would be to compute the difference of the two vector fields and
endeavor to show this is small in some sense. This strikes the immediate hurdle that
(BO) does not define a vector field on Hs because the operator q �→ q2 is not well-
defined, even as a distribution. Before taking the difference, we must make a gauge
transformation; specifically, we will use q �→ n = m(κ, q). Recall that by Proposi-
tion 4.2, this is a diffeomorphism from bounded subsets of Hs into Hs+1, provided
κ is sufficiently large.

The special property (5.5) of our Lax pair representation (5.2) makes it easy to
deduce the dynamics of the new unknown n = (L+κ)−1q+ under the Hκ flow:

d
dt

n = [Pκ ,R(κ)]q+ + R(κ)Pκq+ = PκR(κ)q+ = Pκn. (5.13)

Indeed, this is the argument we used to deduce (4.25), which says that

d
dt

n = Pn = −in′′ − 2C+([q − q+]n)′ − 2q+n′ (5.14)

under the (BO) flow.
While these formulas are succinct and do make sense for q ∈ Hs , they obscure the

numerous subtle cancellations that we must exploit in order to show convergence of
the Hκ flows to the Benjamin–Ono flow as κ → ∞. Indeed, in the form presented, it
is far from clear that the κ → ∞ limit of Pκn even exists! Our next step is to rewrite
the evolution of n under both the Benjamin–Ono and the Hκ Hamiltonians in a new
way that is amenable to demonstrating this essential convergence.

Lemma 5.4 If q(t) is an H∞(R) solution of (BO) on the line, then

d
dt

n = {
Ln − C+(q−n)

}′ − iq+Ln + q ′+n − iq+C+(qn), (5.15)

while for solutions of the Hκ flow on the line we have

d
dt

n = {
κR(κ)Ln − κ2C+

[
mR(κ)n

]}′ − iκq+R(κ)Ln + κm′n

− iκmC+([q − q− + κm]n) − iκC+(q+m) ·LR(κ)n (5.16)

+ κC+
(|m|2)′ · n − iκ[1 − C−](q+m) · mn.

On the circle, these formulas are modified as follows:

d
dt

n = RHS (5.15) + [∫ q]n′ under (BO),

d
dt

n = RHS (5.16) + [∫ q]n′ under the Hκ flow.

Proof We will provide the details in the periodic setting to explain the appearance of
the extra term. The key distinction comes from (2.3).

From (4.25), which we recalled in (5.14), under the Benjamin–Ono flow we have

d
dt

n = −in′′ − 2C+([q − q+]n)′ − 2q+n′
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= {−in′ − C+(qn) − C+([q − q+]n)
}′ + (q+n)′ − 2q+n′

= {
Ln − C+([q − q+]n)

}′ + q ′+n − iq+Ln − iq+C+(qn)

= RHS (5.15) + [∫ q]n′.

We now consider the Hκ flow. Our starting point is (5.13) with Pκ as defined in
(5.4). Let us manipulate some of these terms before putting them together:

iκ3R(κ, q)n + κ∂n = iκ2n + κ∂n − iκLn + iκLR(κ)Ln

= iκ2n + iκC+(qn) + iκLR(κ)Ln,

iκ2[∫ q
]
R(κ)n = iκC+

([∫
q
]
n
) − iκ

[∫
q
]
R(κ)Ln,

−iκ2(m + 1)C+
([m + 1]n) = −iκ2n − iκ2C+([m + m]n) − iκ2mC+(mn).

In this way, we find

d
dt

n = iκLR(κ)Ln − iκC+
([

κm + κm − q − ∫
q
]
n
) − iκ2mC+(mn)

− iκ
[∫

q
]
R(κ)Ln + iκ2β(κ)R(κ)n + [∫

q
]
n′.

(5.17)

Our next simplification involves the second term on the RHS (5.17); by (4.1),
[
κm + κm − q − ∫

q
] = (κm − q+) + (κm − q−) = −Lm −Lm.

Regarding the first and fourth terms on the RHS (5.17), we have

iκLR(κ)Ln − iκ
[∫

q
]
R(κ)Ln = (

κR(κ)Ln
)′ − iκC+

([q+ + q−]R(κ)Ln
)
.

Incorporating this information reveals

d
dt

n = (
κR(κ)Ln

)′ − iκq+R(κ)Ln − iκ2mC+(mn) + iκ(Lm)n

+ iκC+
[
(Lm)n

] − iκC+
[
q−LR(κ)n

] + iκ2β(κ)R(κ)n + [∫
q
]
n′.

(5.18)

Consideration of the fifth and sixth summands on RHS (5.18) leads us to observe

iκC+
[
(Lm)n − q−LR(κ)n

]
= iκC+

[
Lm · (L+ κ)R(κ)n − (L+ κ)m ·LR(κ)n

]

= iκ2C+
[
Lm · R(κ)n − m ·LR(κ)n

]
,

to which we apply Lemma 3.3. This yields

iκC+
[
(Lm)n − q−LR(κ)n

]
= −κ2C+

[
mR(κ)n

]′ + iκ2[1 − C−](q+m) · R(κ)n.

Before using this to rewrite d
dt

n, let us pause to observe that (4.12) shows that the last
term here may be profitably combined with the second to last term in (5.18):

iκ2[1 − C−](q+m) · R(κ)n + iκ2β(κ)R(κ)n = iκ2C+(q+m) · R(κ)n
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= iκC+(q+m) · [n − R(κ)Ln].
Incorporating all these deductions into (5.18), we find

d
dt

n = (
κR(κ)Ln

)′ − iκq+R(κ)Ln − iκ2mC+(mn) + iκ(Lm)n

− κ2C+
[
mR(κ)n

]′ − iκC+(q+m) · R(κ)Ln + iκC+(q+m) · n
+ [∫

q
]
n′. (5.19)

Two terms require further attention: neither iκ(Lm)n nor iκC+(q+m) · n admit
a κ → ∞ limit. However, the combination does! Using the definition of L together
with Lemma 3.3, we may write

iκ
[
(Lm) + C+(q+m)

]
n

= κm′n − iκ[q − q−]mn − iκnC+(q−m) + iκnC+(q+m)

= κm′n − iκ[q − q−]mn − iκnC+
{
q+m − mq+

}

= κm′n − iκ[q − q−]mn − iκnC+
{
(L+ κ)m · m − m · (L+ κ)m

}

= κm′n − iκ[q − q−]mn − iκnC+
{
Lm · m − m ·Lm

}

= κm′n − iκmC+
([q − q−]n) + κnC+

(|m|2)′ − iκmn[1 − C−](q+m).

Inserting this into (5.19) completes our treatment of the Hκ flow. �

Theorem 5.5 Let {q0
j }j≥1 ⊂ H∞ be a sequence of real-valued initial data that con-

verges in Hs . Then for all T > 0, the corresponding H∞ solutions qj (t) to (BO)
converge in C([−T ,T ];Hs).

Proof Let Q = {q0
j : j ≥ 1} and let Q∗ be defined as in (5.11). By Corollary 5.3, Q∗

is bounded and equicontinuous in Hs .
As the Hκ and HBO flows commute (cf. Theorem 5.2), we may write

qj (t) = etJ∇HBO(q0
j ) = etJ∇(HBO−Hκ) ◦ etJ∇Hκ (q0

j )

and so

sup
|t |≤T

∥∥qj (t) − q	(t)
∥∥

Hs ≤ sup
|t |≤T

∥∥etJ∇Hκ (q0
j ) − etJ∇Hκ (q0

	 )
∥∥

Hs

+ 2 sup
q∈Q∗

sup
|t |≤T

∥∥etJ∇(HBO−Hκ)(q) − q
∥∥

Hs .
(5.20)

By the well-posedness of the Hκ flows, the first term on RHS (5.20) converges to
zero as j, 	 → ∞ for each fixed κ ≥ κ0. Therefore, it suffices to show that

lim
κ→∞ sup

q∈Q∗
sup
|t |≤T

∥∥etJ∇(HBO−Hκ)(q) − q
∥∥

Hs = 0. (5.21)
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We adopt the following notation: given initial data q ∈ Q∗, we write

q(t) = etJ∇(HBO−Hκ)(q)

for the corresponding solution to the difference flow and n(t) := n(x;κ, q(t)). By the
diffeomorphism property demonstrated in Proposition 4.2, (5.21) will follow from

lim
κ→∞ sup

q∈Q∗
sup
|t |≤T

‖n(t) − n(0)‖Hs+1 = 0. (5.22)

Note that as Q∗ is bounded and equicontinuous in Hs , the diffeomorphism prop-
erty together with the translation identity (4.5) yield that the set

{
n(x;κ, q(t)) : q ∈ Q∗, t ∈R

}

is bounded and equicontinuous in Hs+1. As equicontinuity in a high regularity space
together with convergence in a low regularity space imply convergence in the high
regularity space, we see that to prove (5.22) it suffices to show

lim
κ→∞ sup

q∈Q∗
sup
|t |≤T

‖n(t) − n(0)‖H−2 = 0. (5.23)

By the fundamental theorem of calculus, (5.23) is a consequence of

lim
κ→∞ sup

q∈Q∗
sup
|t |≤T

∥∥ dn
dt

∥∥
H−2 = 0, (5.24)

where the time derivative of n is dictated by the difference flow. The equation for this
evolution may be deduced immediately from Lemma 5.4. In taking this difference,
the distinction between the two geometries disappears.

Combining (5.15), (5.16), and the identity L− κR(κ)L = LR(κ)L, we find

d
dt

n = {
LR(κ)Ln − C+

[(
q− − κ2mR(κ)

)
n
]}′ − iq+LR(κ)Ln

+ (
q ′+ − κm′)n − i(q+ − κm)C+(qn) − iκmC+([q− − κm]n) (5.25)

+ iκC+(q+m) ·LR(κ)n − κC+
(|m|2)′ · n + iκ[1 − C−](q+m) · mn.

We will verify (5.24) by showing that each of these terms converges to zero in H−2

as κ → ∞, uniformly for q(t) ∈ (Q∗)∗ = Q∗. Before delving in the details of this,
let us recall some basic bounds that we will use repeatedly:

‖q‖Hs + ‖n‖Hs+1 + ‖m‖
Hs+1

κ
+ ‖κm‖Hs � 1 (5.26)

uniformly for q ∈ Q∗ and κ ≥ κ0. The first two of these were noted above; the latter
two follow from (4.4).

For the first term in (5.25), we use (3.5) and (4.23) to see that
∥∥{

LR(κ, q)Ln
}′∥∥

H−2 � ‖LR(κ, q)Ln‖Hs � ‖R(κ, q)Ln‖Hs+1 → 0 as κ → ∞,

uniformly for q ∈ Q∗.
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Using (4.1), (3.5), and (4.23), we obtain

‖κm − q+‖Hs = ‖Lm‖Hs � ‖m‖Hs+1 → 0 as κ → ∞ (5.27)

uniformly for q ∈ Q∗. Employing κR(κ) = 1 −LR(κ) and (2.6), we deduce
∥∥C+

[(
q− − κ2mR(κ,q)

)
n
]′∥∥

H−2

�
∥∥(

q− − κm
)
n
∥∥

Hs + κ ‖mLR(κ, q)n‖Hs

� ‖q+ − κm‖Hs ‖n‖Hs+1 + ‖κm‖Hs ‖LR(κ, q)n‖Hs+1 .

By (4.23), (5.26), and (5.27), this converges to zero as κ → ∞ uniformly for q ∈ Q∗.
Next, we use the estimates (2.10) and (3.5) to bound

‖q+LR(κ, q)Ln‖H−2 � ‖q+‖Hs ‖LR(κ, q)Ln‖Hs � ‖q+‖Hs ‖R(κ, q)Ln‖Hs+1 .

By (4.23), this converges to zero as κ → ∞ uniformly for q ∈ Q∗.
Using the triangle inequality, (2.6), and (2.10), we may bound

∥∥(
κm′ − q ′+

)
n
∥∥

H−2 ≤ ∥∥{
(κm − q+)n

}′∥∥
H−2 + ∥∥(κm − q+)n′∥∥

H−2

� ‖(κm − q+)n‖Hs + ∥∥(κm − q+)n′∥∥
H 2s−1

� ‖κm − q+‖Hs ‖n‖Hs+1 + ‖κm − q+‖Hs ‖n′‖Hs

� ‖κm − q+‖Hs ‖n‖Hs+1 .

By (5.26) and (5.27), this converges to zero as κ → ∞ uniformly for q ∈ Q∗.
Using (2.10) and (2.6) again, we may bound

‖(q+ − κm)C+(qn)‖H−2 � ‖q+ − κm‖Hs ‖qn‖Hs

� ‖q+ − κm‖Hs ‖q‖Hs ‖n‖Hs+1 .

This converges to zero as κ → ∞ uniformly for q ∈ Q∗ in view of (5.26), (5.27).
By (2.10), and (2.6), we have

∥∥κmC+
[
(q− − κm)n

]∥∥
H−2 � ‖κm‖Hs

∥∥(q− − κm)n
∥∥

Hs

� ‖κm‖Hs ‖q+ − κm‖Hs ‖n‖Hs+1 .

This converges to zero as κ → ∞ uniformly for q ∈ Q∗ because of (5.26), (5.27).
Using (2.10) and κR(κ) = 1 − R(κ)L, followed by (2.6) and (3.5), we have

‖κC+(q+m) ·LR(κ, q)n‖H−2 � ‖q+m‖Hs

[‖Ln‖Hs + ‖LR(κ, q)Ln‖Hs

]
� ‖q+‖Hs ‖m‖Hs+1

[‖n‖Hs+1 + ‖R(κ, q)Ln‖Hs+1

]
,

which converges to zero as κ → ∞ uniformly for q ∈ Q∗ in view of (4.23), (5.26).
By the triangle inequality and the estimates (2.6) and (2.10), we may bound

∥∥κC+
(|m|2)′ · n∥∥

H−2 ≤ κ
∥∥C+

(|m|2) · n∥∥
H−1 + κ

∥∥C+
(|m|2) · n′∥∥

H−2



1044 R. Killip et al.

� κ

∥∥∥C+
(|m|2)

∥∥∥
Hs

[∥∥n
∥∥

Hs+1 + ∥∥n′∥∥
Hs

]

� κ ‖m‖Hs ‖m‖Hs+1 ‖n‖Hs+1 ,

which converges to zero as κ → ∞ uniformly for q ∈ Q∗ as follows from (5.26) and
(5.27).

Finally, using the estimates (2.10) and (2.6), we have

‖κ[1 − C−](q+m) · mn‖H−2 � κ ‖q+m‖Hs ‖mn‖Hs

� κ ‖q+‖Hs ‖m‖Hs+1 ‖m‖Hs ‖n‖Hs+1 ,

which converges to zero as κ → ∞ uniformly for q ∈ Q∗ in view of (5.26), (5.27).
Collecting all our estimates, we deduce (5.24), which completes the proof of the

theorem. �

Proof of Theorem 1.1 By the prior work discussed in the introduction, it suffices to
consider − 1

2 < s < 0. We want to show that the solution map � for (BO) extends
uniquely from H∞ to a jointly continuous map � : R× Hs → Hs .

Given initial data q0 ∈ Hs , we define �(t, q0) as follows: Let {q0
j }j≥1 be a se-

quence of H∞ functions that converges to q0 in Hs . Applying Theorem 5.5 to the
sequence {q0

j }j≥1, we see that the corresponding H∞ solutions qj (t) to (BO) con-

verge in Hs and the limit is independent of the sequence {q0
j }j≥1. Consequently,

�(t, q0) := lim
j→∞qj (t)

is well-defined.
We must show that � is jointly continuous. Fix T > 0 and let {q0

j }j≥1 be a se-
quence of initial data in Hs that converges to q0 in Hs . By the definition of �, we
may choose another sequence q̃j (t) of H∞ solutions to (BO) such that

sup
|t |≤T

∥∥∥�(t, q0
j ) − q̃j (t)

∥∥∥
Hs

→ 0 as j → ∞. (5.28)

In particular, q̃j (0) → q0 in Hs , and so Theorem 5.5 yields

sup
|t |≤T

∥∥q̃j (t) − �(t, q0)
∥∥

Hs → 0 as j → ∞. (5.29)

Given {tj } ⊂ [−T ,T ] that converges to some t ∈ [−T ,T ], we may bound
∥∥∥�(tj , q

0
j ) − �(t, q0)

∥∥∥
Hs

≤
∥∥∥�(tj , q

0
j ) − q̃j (tj )

∥∥∥
Hs

+ ∥∥q̃j (tj ) − q̃j (t)
∥∥

Hs + ∥∥q̃j (t) − �(t, q0)
∥∥

Hs

≤ sup
|t |≤T

∥∥∥�(t, q0
j ) − q̃j (t)

∥∥∥
Hs

+ ∥∥q̃j (tj ) − q̃j (t)
∥∥

Hs

+ sup
|t |≤T

∥∥q̃j (t) − �(t, q0)
∥∥

Hs .
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The right-hand side above converges to zero as j → ∞ by (5.28), (5.29), and Theo-
rem 5.5. This demonstrates that � is jointly continuous. �

6 The tau function and virial identities for the full hierarchy

This section presents two new families of identities. The first is Theorem 6.1, which
generalizes Gérard’s explicit formula [15]; the second is Theorem 6.5, which presents
virial-type identities fulfilling the promises made at the end of Sect. 4.

Throughout this section we will work on the line and consider the flow generated
by employing β(κ;q) as Hamiltonian. See [17, §6] for a discussion of this flow on
the circle.

The Hamiltonian β(κ;q) generates the dynamics

d
dt

q = (
m + m + |m|2)′

, (6.1)

whose well-posedness in Hs follows from the arguments presented in Theorem 5.2.
Indeed, the Hκ flow differs from the β(κ) flow only by a time rescaling and a spatial
translation. Because of this relationship, Proposition 5.1 also provides us with a Lax
pair representation of this flow, namely,

Pβ
κ := −iκ(L+ κ)−1 + i(m + 1)C+(m + 1). (6.2)

We will be studying the evolution (6.1) with initial data q0 ∈ L2. The equation
(6.1) is also well-posed in this finer topology, as can be shown by mimicking the proof
of Theorem 5.2. To avoid such repetition, we offer the following alternate argument.
By (4.35), we know that the flow (6.1) preserves the L2 norm. In this way, continuity
of the data-to-solution map follows from mere weak continuity, which may be derived
from Hs well-posedness.

The central theme of this section is how the special properties of the Lax repre-
sentation (6.2) lead quickly to the sought-after formulas. In addition to the special
properties

d
dt

q+(t) = Pβ
κ q+(t) and d

dt
n(x;q(t)) = Pβ

κ n(x;q(t)) (6.3)

that played an important role in the previous section, we also need two more.
One of these additional properties is that Pβ

κ 1 = 0. Strictly speaking, this is only
true in the circle setting, where it follows from the arguments used to prove (4.31).
On the line, the constant function 1 does not belong to the natural domain of Pβ

κ . We
will prove a proper analogue in Lemma 6.2.

The second additional property is the value of the commutator between Pβ
κ and

the operator X presented in Lemma 3.4; this is the subject of Lemma 6.3.
As motivation for such preliminaries, let us now present our generalization of

Gérard’s explicit formula for the Benjamin–Ono equation from [15]. We provide an
analogous explicit formula for other flows in the hierarchy. A formula with a similar
structure was found for the periodic cubic Szegő hierarchy in [16].
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Theorem 6.1 Let A > 0 and κ0(A) satisfy Convention 4.5. Then for any q0 ∈ Bs
A ∩

L2(R) and any κ ≥ κ0, the solution q(t) to (6.1) with initial data q0 satisfies

q+(t, z) = 1
2πi

I+
((

X − tκR(κ;q0)2 − z
)−1

q0+
)

(6.4)

for all Im z > 0.

Although (6.4) only contains the positive frequency part of q(t) and only off the
real axis, this is sufficient to recover the entire waveform; indeed,

q(t, x) = lim
y↓0

[
q+(t, x + iy) + q+(t, x + iy)

]

in L2(R) sense.
Our next lemma gives the promised line analogue of the relation Pβ

κ 1 = 0 valid
on the circle.

Lemma 6.2 Let A > 0 and κ0(A) satisfy Convention 4.5. Then

χy(x) = iy
x+iy

satisfies lim
y→∞Pβ

κ χy = 0 (6.5)

in L2+-sense uniformly for q in L2-compact subsets of Bs
A ∩ L2(R).

Proof Using the resolvent identity and elementary manipulations, we find that

[κR(κ) − 1]χy = R(κ)C+qκR0(κ)χy + [κR0(κ) − 1]χy

= R(κ)q+ − R(κ)C+(q − qχy) + [R(κ)C+q + 1][κR0(κ) − 1]χy.

As R(κ)q+ = m and κR0(κ) = 1 − R0(κ)L0, we deduce that
∥∥[κR(κ) − (m + 1)]χy

∥∥
L2 �

∥∥m(1 − χy)
∥∥

L2 + ∥∥q(1 − χy)
∥∥

L2 + ∥∥L0χy

∥∥
L2 ,

which converges to zero as y → ∞, uniformly on compact subsets of Bs
A ∩ L2(R).

To complete the proof of (6.5), it remains to show that (m + 1)C+(mχy) → 0 in
L2 as y → ∞. Noting that C+(m) = 0, we find

‖(m + 1)C+(mχy)‖L2 �
[
1 + ‖m‖Hs+1

]‖m(1 − χy)‖L2 → 0 as y → ∞,

uniformly on compact subsets of Bs
A ∩ L2(R). �

Next we record another algebraic virtue of the operators Pβ
κ , regarding their com-

mutator properties with the operator X.

Lemma 6.3 Let A > 0 and κ0(A) satisfy Convention 4.5 and suppose q ∈ Bs
A satisfies

q ∈ H∞(R) and 〈x〉q ∈ L2(R). Then

[X,Pβ
κ ] = −κR(κ, q)2 (6.6)

as operators on D(X).
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Proof We adopt the shorthand R = R(κ;q). We have

−iκ[X,R] = iκR[X,L]R = −κR2 − iκR[X,C+q]R. (6.7)

Using (3.18) for m ∈ H∞(R) and f ∈ D(X), we obtain

[X, i(m + 1)C+(m + 1)]f
= i[X, (m + 1)]C+(m + 1)f + i(m + 1)[X,C+(m + 1)]f
= i[X,m]C+(1 + m)f

= − 1
2π

m · I+
(
f + C+(mf )

)

= − 1
2π

Rq+ · I+
(
f + C+(mf )

)
. (6.8)

Using (3.16) and noting that mf ∈ L1, we find

I+
(
C+(mf )

) =
∫

mf dx = 〈Rq+, f 〉 = 〈q+,Rf 〉 = I+
(
C+(qRf )

)
.

Note that the hypothesis 〈x〉q ∈ L2 ensures that C+(qRf ) ∈ D(X) whenever f ∈
D(X). As derivatives vanish at zero frequency, we also have

I+
(
f

) = I+
(
(L+ κ)Rf

) = κI+
(
Rf

) − I+
(
C+(qRf )

)
.

Employing the last two identities in (6.8) and invoking (3.18), we obtain

[X, i(m + 1)C+(m + 1)]f = iκR[X,C+q]Rf.

The identity (6.6) now follows by combining this with (6.7). �

Our last result before the proof of Theorem 6.1 ensures the propagation of the
weighted decay condition 〈x〉q ∈ L2(R) under the flow (6.1).

Lemma 6.4 Let A > 0 and κ0(A) satisfy Convention 4.5 and suppose q0 ∈ Bs
A satis-

fies 〈x〉q0(x) ∈ L2(R) and q0 ∈ H∞(R). Let q(t) denote the evolution of q0 under
(6.1) with κ ≥ κ0. Then

∥∥〈x〉q(t, x)
∥∥

L2 + ∥∥q(t, x)
∥∥

Hσ + ∥∥〈x〉[n(x;κ, q(t)) + n(x;κ, q(t))]∥∥
L2 < ∞

(6.9)

for all t ∈R, all κ ≥ κ0, and all σ ∈ N.

Proof The smoothness of solutions to (6.1) follows from (4.6) and a simple Gronwall
argument. Our main focus here is on spatial decay.

Combining (4.1) and its complex conjugate shows

(|∂| + κ
)
(m + m) = q + C+(qm) + C−(qm). (6.10)
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We first study the last two terms in (6.10). As Hs+1 ↪→ L∞, so

‖〈x〉qm‖L2 + ‖〈x〉qm‖L2 � ‖〈x〉q‖L2‖m‖Hs+1 .

This shows that q̂m ∈ H 1(R) and likewise for the Fourier transform of qm. To deduce
that 〈x〉[C+(qm) + C−(qm)] is square integrable, we need to confirm only that the
Fourier transform has no discontinuity at the origin. This is guaranteed by the middle
equality in (4.12).

The arguments presented in the previous paragraph yield the quantitative bound

∥∥〈x〉[q + C+(qm) + C−(qm)]∥∥
L2 �

[
1 + ‖m‖Hs+1

]‖〈x〉q‖L2 .

Noting that the commutator [x, |∂|] is L2 bounded, this can be combined with (6.10)
to yield

∥∥〈x〉[m + m]∥∥
H 1 �

[
1 + ‖m‖Hs+1

]‖〈x〉q‖L2 . (6.11)

This does not say that 〈x〉m ∈ L2 because Fourier truncation will typically introduce
a discontinuity at the frequency origin. Taking a derivative remedies this and we may
conclude that

∥∥〈x〉[m + m + |m|2]′∥∥
L2 �

[
1 + ‖m‖L∞

]‖〈x〉m′‖L2

�
[
1 + ‖m‖Hs+1

]2‖〈x〉q‖L2 .

(6.12)

Combining (6.12) with a simple Gronwall argument shows that 〈x〉q(t, x) ∈ L2

for all time. Combining this with (6.11) provides the claimed bounds for the function
n = m(x;κ, q(t)). �

Proof of Theorem 6.1 We start by observing that both sides of (6.4) depend con-
tinuously on q0 in L2(R). In the case of the left-hand side, this follows from
the well-posedness of the flow on L2(R). Regarding the right-hand side, we note
that X − tκR2 is also maximally accretive (with the same domain as X) and so
X − tκR2 − z is boundedly invertible on L2 for z ∈ C with Im z > 0. In this way,
continuity follows from the resolvent identity.

By virtue of this continuity, it suffices to verify (6.4) for the special case of initial
data q0 ∈ H∞ satisfying 〈x〉q0 ∈ L2. Lemma 6.4 guarantees that these properties
remain true for q(t) and so allow us to apply Lemma 6.3 at all times.

As t �→ Pβ
κ (t) is a continuous curve of bounded anti-selfadjoint operators, so

d
dt

U(t) = Pβ
κ (t)U(t) with U(0) = Id

has a unique solution, which is unitary at every time. Moreover, by virtue of the Lax
pair representation and (6.3), we know that

U(t)∗R(κ;q(t))U(t) = R(κ;q0) and q+(t) = U(t)q0+ for all t ∈ R. (6.13)
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Fixing z with Im z > 0, we consider two one-parameter families of bounded oper-
ators:

Y1(t) := (
X − tκR(κ;q0)2 − z

)−1 and Y2(t) := U(t)∗(X − z)−1U(t). (6.14)

Both are solutions to

d
dt

Y (t) = κY (t)R(κ;q0)2Y(t) with Y(0) = (X − z)−1. (6.15)

In the case of Y1, this follows immediately from the resolvent identity. For Y2(t), it
follows from Lemma 6.3 and (6.13):

d
dt

Y2(t) = U(t)∗[(X − z)−1,Pβ
κ ]U(t) = −U(t)∗(X − z)−1[X,Pβ

κ ](X − z)−1U(t)

= κY2(t)U(t)∗R(κ;q(t))2U(t)Y2(t)

= κY2(t)R(κ;q0)2Y2(t).

A simple Gronwall argument (in operator norm) shows that (6.15) has at most one
solution and consequently,

(
X − tκR(κ;q0)2 − z

)−1
q0+ = U(t)∗(X − z)−1U(t)q0+ (6.16)

for all times. Recalling (6.13) and the Cauchy integral formula (3.17), this yields

q+(t, z) = lim
y→∞

1
2πi

〈
U(t)∗χy,

(
X − tκR(κ;q0)2 − z

)−1
q0+

〉
.

To complete the proof of (6.4), it remains only to observe that U(t)∗χy − χy → 0 in
L2 as y → ∞, uniformly for t in compact sets, which follows easily from Lemma 6.2.

�

The proof of Theorem 6.1 shows that the mapping between the Hamiltonian and
the time-dependent term in the explicit formula is actually linear. Suppose, for exam-
ple, we adopt

∑
cjβ(κj ) = 〈q+, φ(L)q+〉 where φ(E) =

∑
cj (E + κj )

−1 (6.17)

as the Hamiltonian. This admits a Lax pair representation with P = ∑
cjPβ

κj
. Fur-

thermore, taking the commutator with X is also a linear operation. In this way, we
find the associated explicit formula

q+(t, z) = 1
2πi

I+
((

X − tψ(Lq0) − z
)−1

q0+
)

with ψ(E) = φ(E) + Eφ′(E). (6.18)

One may also allow φ ≡ 1, which leads to the Hamiltonian P generating transla-
tions and to ψ(Lq0) = Id. In this setting, the formula (6.18) is a direct consequence of
(3.17). Indeed, t is merely modifying the real part of z. This parallels our discussion
in the introduction of the role of t0 in the definition of the τ -function.
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Underlining such a τ -function interpretation is the fact that linear combinations
of the functions 1 and E �→ 1

κ+E
are dense in the class of continuous functions on

intervals of the form [−E0,∞].
The linearity property described above also allows us to consider performing a

κ → ∞ expansion of (6.4). Recall from (1.16) that this is precisely how β(κ) en-
codes the traditional Hamiltonians. As an example of how these formal manipula-
tions proceed, consider the (BO) flow which corresponds to choosing φ(E) = E and
so to ψ(E) = 2E. In this way, we are lead back to the explicit formula

q+(t, z) = 1
2πi

I+
{(

X − 2tLq0 − z
)−1

q0+
}

(6.19)

presented in [15]; see also [61] for the special case where q is an exact multisoliton.
At this moment, (6.19) has only been proven rigorously for q ∈ L2+ ∩ L∞; see [15].

We turn now to our last topic. In (6.20) we introduce our extension of the notion
of the center of momentum to all conserved quantities of the (BO) hierarchy, ex-
pressed through the generating function β . The property that makes these special is
that they move at a constant speed dictated by other Hamiltonians in the hierarchy.
As discussed in Sect. 4.3, this also generalizes the Fokas–Fuchssteiner recursion for
the construction of conserved quantities.

Theorem 6.5 (Virial identities) Suppose 〈x〉q(x) ∈ L2(R). Then

Cofβ(κ) := 1
2

∫
xq[n + n]dx (6.20)

satisfies

{
Cofβ(κ), β(κ)

} = −κ〈q+,R(κ)R(κ)R(κ)q+〉 = −κ ∂
∂κ

β(κ)−β(κ)
κ−κ

. (6.21)

Proof Given a pair of real-valued functions f,g ∈ L2(R) with 〈x〉f (x) ∈ L2(R),

〈g+,Xf+〉 + 〈Xf+, g+〉 =
∫ ∞

−∞
ĝ(ξ) · if̂ ′(ξ) dξ =

∫
xf (x)g(x) dx. (6.22)

In this way, we see that the definition of Cofβ may be rewritten as

Cofβ(κ) = 1
2 〈n,Xq+〉 + 1

2 〈Xq+, n〉. (6.23)

Exploiting (6.3) and the antisymmetry of Pβ
κ , we deduce that

{
Cofβ(κ), β(κ)

} = 1
2 〈n, [X,Pβ

κ ]q+〉 + 1
2 〈[X,Pβ

κ ]q+, n〉.
The first identity in (6.21) now follows from (6.6) and the selfadjointness of R(κ).
The second identity is a consequence of (4.29). �

By expanding the resolvent, we find that

n = κ
−1q+ −κ

−2Lq+ +κ
−3L2q+ ± · · ·
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and so also that

Cofβ(κ) = κ
−1CofP −κ

−2CofE + O(κ−3). (6.24)

In this way, both (4.54) and (4.57) can be recovered as elementary corollaries of
(6.21) and the definition (4.12) of β .

One cannot give an exhaustive account of all possible virial-type identities associ-
ated with (BO) or its hierarchy. Our goal in this section has been to exhibit how our
modified Lax representation begets dramatic algebraic simplifications. Let us offer
just one more example. Consider

VofP(q) :=
∫

1
2x2q2 dx = 〈Xq+,Xq+〉,

which may be viewed as expressing the variance of the momentum distribution. By
the results of this section, we find

{∫
1
2x2q2 dx, β(κ)

}
= 2κ

d

dκ
Cofβ(κ)

and consequently, this variance has a very simple time dependence under (6.1):

VofP
(
q(t)

) = −t2(κ d2β

dκ2 + κ2 d3β

dκ3

)
(κ;q(0)) + 2tκ d

dκ
Cofβ(κ;q(0)) + VofP

(
q(0)

)
.

This represents the generalization to the full (BO) hierarchy of an important identity
from [26].
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