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Characterization of I/0O Behaviors
in Cloud Storage Workloads

Qiang Zou ", Yifeng Zhu"”, Jianxi Chen

Abstract—As cloud platforms become increasingly popular, ac-
curately understanding I/0 behaviors in modern cloud storage is
of paramount importance for system design and optimization. This
paper sheds new light on the correlation of inter-arrival times of
both read and write requests at the block level in four representative
cloud storage workloads — AliCloud, Systor’17, MSRC and FIU.
Our study reveals that I/O arrivals at the block level are very
complex in modern cloud storage. There is a certain degree of
correlation in the long-term timescale for request arrival inter-
vals in AliCloud and Systor’17_read. Request arrival intervals in
MSRC, FIU and Systor’17_write, however, are almost uncorre-
lated. The Gaussianity test confirms that I/O burstiness appears to
be Gaussian in AliCloud_write and Systor’17_read, but the bursti-
ness is non-Gaussian in other workloads. Importantly, we unfold
the existence of self-similarity in cloud storage workloads with a
certain degree of correlations, via visual evidence, the autocorrela-
tion structure of the aggregated process of I/0 request sequences,
and Hurst parameter estimates. We further design an alpha-stable
workload model for synthetic I/0O generation, and the experimental
results demonstrate that our model has an edge over conventional
models in terms of accurately emulating I/O burstiness.

Index Terms—Aggregated process, cloud block storage, inter-
arrival time, self-similar, synthesis, workload characterization.

I. INTRODUCTION

LOUD block storage systems are critical infrastructure
C to render leading-edge cloud services, such as virtual
desktops, database, web services, and key-value store [1], [2].
The design and optimization of cloud block storage systems
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are anchored on insights gained from block-level I/O workload
studies. A viable first step in understanding I/O characteristics
is to analyze inter-arrival time [1], [3], [4] followed by adopting
a corresponding stochastic model to effectively characterize
storage workloads [3].

On one hand, recent studies suggest that I/O burstiness widely
exists in block-level workloads [5], [6], [7], [8], [9]. With
increasing load intensity in cloud block storage systems [10],
I/0 activities in block workloads become more bursty [1] such
that long-tailed properties are often observed [5], [11], [12]. On
the other hand, previous studies often employed the traditional
distributions including normal [11], [13], [14], [15], exponen-
tial [16], and Poisson [12], [17] to model I/O characteristics in
storage workloads. Some studies even simply assume that I/O
activities follow exponential distribution [16] or Poisson distri-
bution [12], in favor of their attractive theoretical properties and
modeling theories. In fact, it remains unexamined whether these
traditional distributions can faithfully characterize the burstiness
in modern cloud workloads. This fundamental and open question
motivates us to revisit and delve in the understanding of block
workloads in a modern production cloud environment.

We analyze throughout this paper four sets of block traces,
which are collected in typical application environments, includ-
ing AliCloud [1] gleaned at Alibaba, MSRC [18] offered by
Microsoft Research at Cambridge, Systor’l7 [19] harvested at
Fujitsu Laboratories Limited in Kawasaki, and FIU [20] from
Florida International University. For these representative cloud
block workloads, this study thoroughly examines the correla-
tion of inter-arrival times of I/O requests and diagnoses the
Gaussianity, diurnal rhythm, burstiness, and self-similarity in
I/O patterns. In addition, we develop an I/O sequence generator
based on a versatile model to synthesize workloads matching
the temporal and spatial I/O behaviors. With good robustness,
this novel generator is primed to be used to synthetically gen-
erate block I/O workloads for a diversity of application envi-
ronments. To the best of our knowledge, little research work
on production cloud block workload has been reported in the
literature.

In summary, this study makes the following four contribu-
tions:

® We investigate the correlation of inter-arrival times of read

requests and write requests in these four sets of represen-
tative block I/O workloads in modern cloud computing
environments. We observe that there is a certain degree
of correlation in the long-term timescale for request ar-
rival intervals in AliCloud and Systor’17_read. In contrast,
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request arrival intervals are almost uncorrelated in Sys-
tor’17_write, MSRC, and FIU. This discrepancy may be
associated with highly diverse I/O burstiness in AliCloud,
as observed in a prior study [1].

e We perform a Gaussianity test for all four workloads,
discovering that I/O burstiness appears to be Gaussian in
AliCloud_write and Systor’17_read, but the burstiness is
non-Gaussian in AliCloud_read, MSRC, Systor’17_write
and FIU. It will be futile if not impossible to truly and
accurately describe I/O burstiness in real block storage
workload when this distinction is not taken into consid-
eration.

e For cloud storage workloads with a certain degree of
correlations, we present visual evidence and theoretical
evidence through the autocorrelation function structure of
the aggregated process of the request sequences, thereby
showing the existence of self-similarity. We further deploy
statistical tools to estimate the Hurst parameters. All the
estimates are greater than 0.5, confirming the observation
above.

® We implement an I/O request series generator, expanding
a versatile workload model in which parameters can be
obtained directly measured from cloud block traces, to
synthesize the temporal and spatial I/O request series for
all four sets of block I/O workloads. The experimental
results unveil that the proposed generator is conducive to
accurately characterizing the burstiness of I/O behaviors.

The rest of this paper is organized as follows. Section II gives

an overview of cloud block traces investigated throughout in
this work, and the related research studies are summarized in
this section. Section III elaborates on the correlation of inter-
arrival time of I/O requests in block workloads and performs the
Gaussianity test for block workloads. Section IV presents both
visual and statistical evidence for the existence of self-similarity
in cloud storage workloads with a certain degree of correlations.
Section V articulates the implementation of an I/O request series
generator aiming to synthesize the temporal and spatial I/O
request series for AliCloud, Systor’17, MSRC, and FIU. The
significance of block workload characterization is discussed in
Section VI. Finally, Section VII concludes this paper.

II. BACKGROUND AND MOTIVATION
A. Cloud Block Storage systems

More often than not, the storage architecture in modern
clouds embraces three major components: metadata storage,
block storage, and front-end clients. This storage architecture,
depicted in Fig. 1, is widely adopted by traditional desktop and
server applications in a variety of institutions like Microsoft
Research, Fujitsu Laboratory, Florida International University
and Alibaba, where intriguing cloud block I/O traces were
collected, as summarized in Table I.

MSRC. The MSRC block-level 1I/0 traces, collected more
than a decade ago in a data center composed of Microsoft’s
Windows servers, last for one week and include block-level I/O
requests from 179 disks on 13 servers. The overall workload is
read-dominated [21], spanning various applications, including
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Fig. 1. A cloud block storage system comprises of Chunk Store, Metadata
Store and Frontend Clients (application servers).

TABLE 1
SUMMARY OF MSRC, SYSTOR’ 17, FIU AND ALICLOUD TRACES

Repository: MSRC [18]  Systor’17 [19] FIU [20] AliCloud [1]
Volumes 36 - - 1,000
Duration 7 days 28 days 21 days 31 days

Reads (Mill.) 304.9 2455.4 55.3 5,058.6
Writes (Mill.) 128.9 898.3 851.1 15,1744
Read Traffic 9.04 TiB 64.8 TiB 71.19 GB 161.6 TiB
Write Traffic 2.39 TiB 15.0 TiB 642.42 GB 455.5 TiB
Server file, web, VDI file, web, key-value
Categories media, etc email store, web, etc

home directory, web services, media services, and the like. The
MSRC traces were extensively analyzed to direct the design
and optimization of storage systems, including cloud block
storage [2]. Please refer to [18] for the detailed description of
the MSRC traces.

Systor’17. To investigate the storage traffic characteristics
of virtual desktop infrastructure (VDI), Lee et al. [19] em-
ployed several measurement methods, such as a VDI monitoring
system, a fibre channel capture system, connection brokers, a
system profiler, and usage questionnaire, to glean 28 consecutive
days of various types of enterprise storage trace in the commer-
cial office VDI. The overall workload is read-dominated, and a
detailed description of Systor’17 trace is articulated in [19].

FIU. To delve into the nature of content similarity and en-
hance I/O performance, Koller et al. [20] collected I/O traces
downstream of an active page cache for a duration of three
weeks, on the web, email, and file servers that were used daily
by the Department of Computer Science at FIU. The acquired
block-level FIU traces, as tabulated in Table I, indicate that FIU
workloads are write-dominated. A comprehensive description
of the FIU traces can be found in [20].

AliCloud. Unlike MSRC or Systor’17, a cloud environment’s
write operations dominate I/O workload due to the extensive
use of read caches in cloud applications. A production-level
cloud block trace, called AliCloud, was collected at a cloud
block storage system underlying Alibaba Cloud in 2020. Ali-
Cloud includes block-level I/O requests harvested from 1000
volumes and spans various types of cloud applications such as
web servers, running operating systems, key-value stores, as
summarized in Table I. The detailed description of the AliCloud
trace is documented in the literature [1].

To provide insights into cloud block storage system de-
sign, storage community often approximately articulate the
empirical data of I/O features as traditional distributions such
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as normal [11], [13], [14], [15], and it is often assumed that
I/O activities follow exponential distribution [16], Poisson dis-
tribution [12] and the like, in favor of its attractive theoreti-
cal properties and modeling theories. The above approaches,
however, do not specialize in lending themselves to accurately
characterize the burstiness in block I/O workloads with very
bursty I/O activities observed in block storage workloads such
as those gleaned from MSRC [21] and AliCloud [1].

In this study, we extract the data sets of both the arrival
intervals and the number of read (or write) requests in AliCloud,
Systor’17, MSRC, and FIU traces, by merging all the requests
in each subtrace (or volume). Taking the Systor’17 case for
example, we reorder the timestamps of the read (or write)
operations in the trace in chronological order. Then, we calculate
the time intervals between two adjacent requests, and the number
of read and write requests per second, respectively. Anchored
on the aforementioned data sets, we examine the feasibility
and effectiveness of using traditional distributions, including
normal and Poisson, to delineate I/O arrival behaviors and then
analyze the storage system performance. In other words, we
address the following fundamental question: for a diversity of
cloud applications, is it still appropriate to use independently
and identically distributed (IID) methods such as Poisson and
normal, to model block I/O activities with intensive burstiness
in cloud block storage systems?

B. Related Work

Recently, several works studied the arrival patterns or access
patterns in the block-level I/O workloads, such as inter-arrival
time of requests [1], [3], [4], numbers of I/O requests [13], reuse
time [4], and I/O size [1], [4].

Workload Characterization. From the perspective of data min-
ing, Seo et al. [13] extracted basic properties that can effectively
represent I/O workload features, such as the total number of I/O
requests and the average interval between I/O requests. After
discovering that number of I/O requests is close to normal dis-
tribution, Seo et al. devised the clustering algorithms to exploit
representative access patterns in the I/O workload. Kashyap
etal. [14] analyzed the characteristics of workload on hard drives
in enterprise storage systems, and the sample characteristics
include transmission length, access pattern, throughput, and uti-
lization. The studies unravel that reads are the primary workload,
accounting for 80% of accesses to the hard drive. And write
operations presenting burstiness are dominated by short block
random accesses. Lee et al. [19] gleaned 28 consecutive days
of various types of enterprise storage trace on the commercial
office virtual desktop infrastructure. Three observations are: read
traffic is dominant, write operations present a local uniform
distribution, and the diurnal burstiness is especially obvious.
Through analyzing several traces using various distributions,
Wajahat et al. [3] developed a stochastic model anchored on a
Markov chain to estimate the system performance in storage
workloads. Li et al. [1] investigated billions of I/O requests
collected from the AliCloud to study the characteristics of
load intensity, spatial patterns, and temporal patterns — inter-
arrival times of requests. Compared with the well-known public
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block-level 1/0 trace, MSRC, the I/O behavior in AliCloud
presents more burstiness. This finding may be associated with
the trend of increasing load intensity in cloud block storage
systems [10].

Self-Similarity. Recently, there were a handful of studies
examining self-similarity in different domains, such as cloud
workloads [22], Internet traffic [23], and social network dynam-
ics [24]. Using autocorrelation analysis and R/S analysis, Gupta
et al. [22] explored Google cluster traces, and the presence of
self-similarity and heavy-tailed behavior were detected in cloud
workloads. Similarly, Li et al. [23] showed that self-similarity
existed in industrial internet traffic. Liu et al. [24] inspected
the traces originated from Renren social networks as well as
Facebook, and the findings imply that the edge creation process
in both networks is consistent with the self-similarity scale.

In the storage community, after gathering spark data for up to
six months, Talluri et al. [4] conducted statistical analysis on the
popularity of files, read size, inter-arrival time and reuse time:
an intriguing conclusion is that read operations showed heavy
tail, bursty and negative long-range dependence. For requests in
key-value stores, Pitchumani et al. [17] deployed the b-model
with only one parameter for self-similar request arrival gener-
ation. Nevertheless, it may be unrealistic to accurately model
storage workload using only a small set of parameters [25].
Abad et al. [26] investigated six-month traces from two large
Hadoop clusters at Yahoo, and the file prevalence, temporal
locality, as well as arrival patterns are characterized to resemble
the workload conditions. Here is an inspiring discovery: the
requests including open, create and delete not only are bursty
but also present self-similar behaviors. The aforementioned
observations motivated us to delve into the following issue: As
I/O activities become a whole lot intensive in modern clouds,
does self-similarity exist in representative cloud block storage
workloads?

Rooted in four representative block-level cloud workloads,
including the read-dominated (MSRC, Systor’17) and write-
dominated (AliCloud, FIU) workloads, this work is focused on
the appropriateness of capturing intensive I/O behaviors with
the traditional distributions. A second focal point of this study
is the existence of self-similarity. The third focal point of this
work is the synthesis of I/O request sequence.

III. DIAGNOSING CLOUD BLOCK WORKLOADS

To resolve the issues raised in Section II, through correlation
study and Gaussianity test, we diagnose AliCloud, MSRC, Sys-
tor’17 and FIU to gain a deep understanding of I/O activities in
those modern cloud workloads.

A. Correlation Study

In what follows, we make use of the autocorrelation function
or ACF to study the correlation of inter-arrival times of both
read and write requests in the workloads. For a stationary time
series S = {S;:t=1,2,...,n} with expectation 6 = E[S;],
each time interval — also referred to as lag — k corresponds to an
autocorrelation coefficient independent of the time itself.
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Fig. 2. Auto-correlation functions of inter-arrival time of read and write
requests in the AliCloud, MSRC, Systor’17 and FIU workload conditions.

We have s; = S; — 0 and then {s;:t=1,2,...,n}. The
autocorrelation coefficients, AC'F'(k), are calculated at various
lags as follows:

E[St . $t+k]

ACF(R) = = s

, fork>0. (1
where £ is the independent variable. A series of autocorrelation
coefficients form a functional relationship with various lags,
called autocorrelation function, which is widely used to measure
the interrelationship between the front and back elements in a
time series. A detailed introduction of ACF can be found in [27].

The trend of the autocorrelation coefficients is closely related
to I/0 activities as follows. With an increasing lag, if the correla-
tion coefficient of inter-arrival times of I/O requests rapidly de-
creases and approaches 0, it entails that there is little correlation
for I/O arrivals in storage workload. Then, it may be reasonable
to employ an independent and identical distribution to model I/O
activities. If the correlation coefficient does not sharply come
closer to zero, there is a certain degree of correlation in /O
arrival behaviors.

The autocorrelation functions of inter-arrival times of read
and write requests in the AliCloud, MSRC, Systor’17 and FIU
workloads are plotted in Fig. 2. The results unveil that there is
meager correlation between the arrival intervals for I/O requests
in Systor’17_write, MSRC and FIU, especially for I/O requests
in FIU, MSRC_write and Systor’17_write. Read requests in
MSRC show an unstable weak correlation between the arrival
intervals within short-term time scales (lag < 170), which may
be caused by the fact that MSRC is read-dominated. However,
there is insufficient correlation between the arrival intervals for
read requests in MSRC in longer time scales. I/O arrival process
in this kind of workload may be approximated as independently
and identically distributed: the aforementioned Poisson distri-
bution tends to be a superb modeling tool.

Unlike Systor’17_write, MSRC and FIU, AliCloud and Sys-
tor’17_read workloads exhibit a stable correlation between the
arrival intervals for requests within a long-term time scale (lag =
500). For AliCloud, this phenomenon is aligned with a recent
finding reported in the literature — the I/O features of the various
types of upper-level cloud applications managed by the AliCloud
block storage system are often quite different [1], indicating
that independently and identically distributed time series are not
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TABLE II
SUMMARY OF THE DIAGNOSES FOR ALICLOUD, MSRC, SYSTOR’17 AND FIU

Test AliCloud MSRC Systor17 FIU
read | write | read | write | read [ write | read | write
ACF V4 VA X X VA X X X
Gauss X Vv X X vV X X X

suitable to characterize I/O activities in AliCloud. Furthermore,
the existence of the long-term correlation of inter-arrival times
of I/O requests in AliCloud and Systor’17_read inspires us to
further explore the self-similarity in cloud storage workloads.

Below we summarize two key observations:

Observation 1: There is almost no correlation between re-
quest arrival intervals in the MSRC, FIU and
Systor’17_write workloads.

Observation 2: There is a certain degree of correlation in
the long-term timescale for request arrival
intervals in the AliCloud and Systor’17_read
workloads.

B. Gaussianity Test

Previous studies indicate that Gaussianity or non-Gaussianity
is an important factor that must be carefully considered in
constructing models for performance optimization [11], [28].
Gaussian test facilitates the accurate description of tail trends in
the distribution of I/O characteristics, thus forging more accurate
models. Therefore, we opt for the deployment of Gaussianity test
to investigate cloud workloads in this section.

Gaussianity test (Gauss) can be performed through quantile-
quantile (QQ) plots. The quantile of a random variable, X =
{X;:t=1, 2,...}, refers to the real number z that satisfies
the condition P(X; < x) = ¢, where c¢ is a constant. The QQ
plot is the trajectory formed by the points (x, y) corresponding
to the quantiles x, y for two random variables X and Y. If these
two data sets share the same distribution, points (z,y) will fall
on a line with a 45-degree angle, and vice versa.

Fig. 3 depicts the QQ plots of block trace data versus stan-
dard normal with respect to I/O requests in AliCloud, MSRC,
Systor’17 and FIU. Fig. 3(b) and (e) show that the offset of the
scatter curve of AliCloud_write and Systor’17_read is relatively
small, the major scatters of AliCloud_write and Systor’17_read
fall approximately on a straight line, indicating that both read
requests in Systor’17 and write requests in AliCloud appear to
be Gaussian. The other plots in Fig. 3 show that the scatters
of AliCloud_read, MSRC, Systor’17_write, and FIU obviously
do not fall on a straight line, and the entire curves are concave
upward, suggesting that I/O requests in AliCloud_read, MSRC,
Systor’17_write, and FIU appear to be non-Gaussian.

Table II summarizes the aforementioned diagnoses for Ali-
Cloud, MSRC, Systor’17 and FIU. If the corresponding request
activity shows the Gaussianity or a certain degree of correlation,
a tick is used; otherwise, a cross is used. Table II confirms
the diversity of workload characteristics. In a given workload,
the arrival process can be autocorrelated and but not Gaussian,
or vice versa. For example, even though there is a certain
degree of correlation in AliCloud_read and Systor’17_read,
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respectively.

Systor’17_read is Gaussian, but AliCloud_read is obviously
non-Gaussian.

The following summarizes our major observations:

Observation 3: Read requests in Systor’ 17 and write requests
in AliCloud appear to be Gaussian.
Requests in AliCloud_read, MSRC, FIU and
Systor’ 17_write tend to be non-Gaussian.
Even though AliCloud_read and Sys-
tor’17_read appears to show a certain de-
gree of correlation, Systor’17_read is Gaus-
sian but AliCloud_read is obviously non-
Gaussian.

Observation 4:

Observation 5:

IV. SELF-SIMILARITY ANALYSIS

Since the AliCloud and Systor’17_read workloads embrace a
certain degree of correlation, in this section we deploy the mature
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Fig. 4. Diurnal rhythm of write requests (WRITEs) in AliCloud. .

theory and statistical techniques to explore the existence of self-
similarity in these block workloads through three approaches:
(1) visual evidence (see Section IV-A which takes AliCloud
for example), (2) the autocorrelation structure of the aggregated
process of request sequences (see Section IV-B), and (3) Hurst
parameter measurement (see Section I'V-C).

A. Visual Evidence

We observe that in the AliCloud workload 1/O activities
present clearly diurnal rhythm. For example, the peak and trough
of write requests in AliCloud, as well as the changing trend in
each day, are almost identical in each period, as evidenced in
Fig. 4. This finding is unsurprising, and it is consistent with
the temporal properties exhibited in disk, network and web
traffics [17]. On the other hand, the prior studies on LAN traffic
suggest that data traffic gradually loses self-similar feature after
exceeding the time scale of day [29]. Therefore, it is viable for
us to adopt data on several timescales within a day to intuitively
present the self-similarity in AliCloud.

Fig. 5 unfolds both read and write request arrival rates in
AliCloud at three different time scales. The horizontal axis
represents the time scale, and the vertical axis represents the
number of requests per unit of time. Each plot is a subinterval
randomly extracted from the time range of the latter plot, and
the time resolution is increased by 10 times. For example, plots
(a)—(c) shows read request arrival rates. Plot (a) illustrates a
randomly drawn period (100 seconds) drawn from plot (b), and
plot (b) depicts a short period (1000 seconds) randomly derived
from plot (c). The same pattern is applied to plots (a’)—(c’),
which demonstrates write request arrival rates.

In sum up, the time range in which I/Os are bursty consists
of a raft of subintervals that have similar burst behaviors. Fur-
thermore, each of such subintervals is made of even smaller
subintervals with similar burst behaviors. As result, I/O activities
in AliCloud appear to be self-similar over the long-term time
scales.

Observation 6: 1/O activities in AliCloud present clearly di-
urnal rhythm.

I/O activities in AliCloud appear to be self-
similar.

Observation 7:

B. Theoretical Evidence

A covariance stationary stochastic process X = {X; : ¢t =
1, 2,8, X0 = {x\™ :t=1, 2 3,..}is called as
the corresponding m-order aggregated process, if expression
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Visualization of AliCloud block trace: Left plots illustrate the number of read requests (READs) per time unit for three different time scales (a)—(c), and

right plots present the number of write requests (WRITESs) per time unit for the same time scales (a’)—(c’). Each plot has ten thousand buckets.

Xt(m) = % Z?;Bl Xm—; 1s held. Hence, we denote the corre-
sponding ACF as AC'F (™) (k). For the traditional stochastic pro-
cess, such as Poisson, AC'F'("™) (k) degenerates with the increase
of 1, and converges to 0 (i.e., ACF("™) (k) — 0, as m — o).
If the structure of ACF for X (™) tends to be the same auto-
correlation function structure rather than degenerating with an
increasing m, i.e., as m — o0

ACFI™(E) = o [(k+ 127 = 287 4 (=17, @

the process X is said to be self-similar with the Hurst parameter
H . The Hurst parameter is the sole parameter gauging the degree
of self-similarity. A Hurst parameter in the range of (0.5, 1),
indicating the presence of self-similarity which is also called
long-range dependence (LRD). This statement constitutes a
theoretical basis for exploring the existence of self-similarity,
and it entails that self-similar workloads exhibit burstiness across
different time scales, due to the scale-invariant property that is
similar from different time scales.

When it comes to the Systor’17_read case, we plot the auto-
correlation functions of the aggregated time series of read re-
quest series at multiple aggregation levels in Fig. 6(a) where the
x-axis represents the number of requests [30], and we draw the
autocorrelation functions of the corresponding artificial Poisson
workload at each aggregation level in Fig. 6(b). The aggregation
level (m) in Fig. 6 is 1, 10, and 100, respectively.

0.8 0.8
- = =m=1 - —=m=1
0.6 m=10 0.6 m=10
o —====m =100 ® —====m =100
"‘(30_4 60.4
< <
0.2 02
0 0
0 100 200 300 400 500 0 100 200 300 400 500
Lag Lag

(a) Systor’17_read (b) Poisson workload

Fig. 6. Autocorrelation functions of the aggregated time series for (a) Sys-
tor’17_read, and (b) artificial Poisson workload.

For Systor’17_read requests shown in Fig. 6(a), the auto-
correlation coefficients of the aggregated time series obviously
do not converge to 0 as the lag increases from 1 to 500. The
corresponding curves approach the same function structure. In
contrast, as illustrated in Fig. 6(b), the autocorrelation coef-
ficients of artificial Poisson workload at all the aggregation
levels are nearly 0. The above observations unfolds that the
autocorrelation structure of read request series for Systor’17 is
completely dissimilar from that of the Poisson workload.

By the same token, for read and write requests in AliCloud,
we further plot the autocorrelation functions at different aggre-
gation levels (m is 1, 10, 100, and 1000) in Fig. 7(a) and (b),
respectively. The autocorrelation coefficients of the aggregated
time series of read and write request series in AliCloud also do
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Fig. 7.  Autocorrelation functions of the aggregated time series for (a) AliCloud_read, and (b) AliCloud_write.
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Fig. 8. Estimating Hurst parameter for request series in Systor’17_read and AliCloud: (a) Variance-time plots; and (b) Pox plots.

not converge to 0 as the lag rises from 1 to 1000. In addition, the
corresponding curves in each plot exhibit regular fluctuations
and appear to have the same function structure. This finding is
overlapping with that observed in the Systor’17_read request
series.
In summary, request activities in both AliCloud and Sys-
tor’17_read behave similarly to a self-similar process.
Observation 8: The autocorrelation structure of request se-
ries at different aggregation levels indicates
that request activities in both AliCloud and
Systor’17_read behave similarly to a self-
similar process.

C. Measurement of Hurst Parameter

We advocate for two popular statistical analysis tools,
variance-time plot [31] and R/S (rescaled adjusted range) anal-
ysis [32] (also called Pox plot), to estimate the Hurst parameters
for requests issued in Systor’17_read and AliCloud.

Fig. 8(a) unveils the variance-time plots of request series
in Systor’17_read and AliCloud. Fig. 8(a) draws the curve of

logio(Var(X (™)) (briefly noted as logyo(variances)) versus
log10(m), and the corresponding Hurst parameter is estimated
to be 0.991, 0.993 and 0.744, respectively. In addition, Fig. 8(b)
presents the Pox plots resulting from the R/S analysis of request
series in Systor’17_read and AliCloud block trace data. Using
the least squares linear fitting, we obtain the Hurst parameter as
0.771, 0.764, and 0.736.

The Hurst parameter estimates for request series in Sys-
tor’17_read and AliCloud are significantly greater than 0.5,
which quantitatively stipulates the existence of self-similarity.

Observation 9: All the Hurst parameter estimates are greater

than 0.5 in Systor’17_read and AliCloud,
thereby confirming the existence of self-
similarity.

V. SYNTHESIZING REQUEST SEQUENCES

For the cloud storage community, synthetic models are slated
to offer a deep understanding of the characteristics of offline
workloads, including I/O bursty activities, heavy-tail property,
and the like. As I/O request activities involve both temporal and
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spatial locality, this section is dedicated to a versatile model to
accurately capture the temporal and spatial distribution of block
I/0 requests.

A. The Alpha-Stable Model

By plugging in the correlation study, Gaussianity test, and
self-similarity analysis on these four representative cloud block
storage workloads, we record the following complex obser-
vations: (1) I/O bursty generally exists in the read-dominated
and write-dominated cloud block workloads, (2) I/O activities
in some block workloads, including Systor’17_write, MSRC,
and FIU, appear to be independently and identically distributed,
whereas AliCloud and Systor’17_read evidently display self-
similar, and (3) I/O activities resemble the Gaussian condition
in Systor’17_read, and AliCloud_write, and the non-Gaussian
one in MSRC, AliCloud_read, Systor’17_write, and FIU.

To effectively synthesize these cloud block workloads con-
taining complex I/O activities, we advocate for employing a
versatile trace generator to not only accurately synthesize both
the IID and self-similar workloads but also flexibly characterize
burstiness under both the Gaussian and non-Gaussian conditions
for block workloads. This feature is a shinning example of the
strengths embraced by the alpha-stable process: the observation
galvanizes us to extend the alpha-stable workload model re-
ported in the literature [33] to devise the temporal and spatial I/O
request series in cloud block workloads for AliCloud, Systor’ 17,
MSRC, and FIU, respectively.

A random variable X that follows an alpha-stable distribution
is denoted by X ~ S¢ [33], and the formalization of the

o8,
alpha-stable workload model can be expressed as follows:

REQUEST(i) = v+ Na .z (i) + 6, 3)

where REQU EST (i) represents the number of requests in
the 7" unit time or the i*" block. Similarly, we establish the
following parameters from the temporal and spatial perspectives,
respectively: o measures the degree of burstiness, [ represents
the degree of the heavy tail in block workloads, and variables
o and p measure the scale and location parameters. In addition,
variable v is referred to as the mean number of requests per unit
time (or per block) in block workload, H denotes the degree of
self-similarity, 6 gauges the standard deviation of the number
of requests per unit time (or per block) relative to the mean.
The detailed description of N, g 7 (7) can be located in the
literature [33].

The values of all the aforementioned parameters are estimated
and derived from the real cloud block traces. In this study, the
maximum likelihood estimation is used to measure I/O request
series in the AliCloud, Systor’17, MSRC, and FIU trace samples
to estimate the parameters used in the alpha-stable request series
generator.

When it comes to the read/write-request datasets articulated
in Section II-A, there tend to be orders of magnitude discrep-
ancies in dataset sizes for various workloads. Given AliCloud,
Systor’17, and FIU_write workloads with particularly large data
volumes, we take the first one million data items as a temporal
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TABLE III
ESTIMATED PARAMETERS OF ALPHA-STABLE MODEL BASED ON THE
MAXIMUM-LIKELIHOOD ESTIMATE FOR THE TEMPORAL SAMPLE SEQUENCES

’ Trace ‘ /O | Alpha-stable parameter » ‘ s ‘

name type | « [ B [ o T w7
AliCloud read 1.488 1.000 296.8 262.7 710.3 803.9
write 1.900 1.000 1251 5288 5750 1886
Systor'17 read 2.000 0.000 273.1 337.0 433.0 389.8
Y write 1.038 0.9286 34.28 77.00 151.6 202.2
MSRC read 0.5481 0.6839 283.1 69.26 5985 16073
write 0.7760 0.7615 76.70 153.1 806.8 3039
FIU read 0.5115 1.000 3.605 -48.85 585.9 1814
write 0.5327 1.000 3.347 4.658 336.6 1734

TABLE IV

ESTIMATED PARAMETERS OF ALPHA-STABLE MODEL BASED ON THE
MAXIMUM-LIKELIHOOD ESTIMATE FOR THE SPATIAL SAMPLE SEQUENCES

Trace | Alpha-stable parameter

name & [ B [ o [ ] " \ ° \
AliCloud 1.1708 1.000 0.24957 0.63755 4.8613 256.78
Systor’17 0.9358 1.000 0.69412 1.1642 6.8534 283.31
MSRC 0.9658 1.000 1.9350 0.21095 33.766 2017.6
FIU 0.9909 1.000 0.18884 0.64576 1.9688 1.9312

sample sequence. The projected values are tabulated in Table
1.

By the same token, we calculate — in the context of the spatial
I/O request series — the number of I/O requests on each block for
AliCloud, Systor’17, MSRC and FIU workloads. Due to space
limitation, we target the I/O request datasets corresponding to
DiskNumber 0 in MSRC, LUN 0 in Systor’17, block major
number 2 in FIU, and volume 0 in AliCloud, thereby sampling
the first one million data as the spatial sample sequences. The
estimated values are tabulated in Table IV.

Since the alpha-stable stochastic process will degenerate into
a Gaussian stochastic process as « is closing to 2 [33], and the
estimate of o for AliCloud_write and Systor’17_read in Table
III are 1.9 and 2, meaning that write request series in AliCloud
and read request series in Systor’17 appear to be Gaussian — a
trend that is fully consistent with the test results given in Section
IIT and supports the Gaussianity test results.

B. Temporal Analysis

Anchored on the parameter estimated in Table III, we apply
the alpha-stable workload model to generate synthetic requests,
and we compare the synthesized request sequences to the real
sequences, aiming to analyze the accuracy of our model. To con-
vey confidence to the accuracy of the proposed model, we adopt
the trimmed mean of errors, empirical distribution, and relative
error to assess the bias between each real request sequence and
the synthetic series.

1) Trimmed Mean of Errors: The trimmed mean of data set is
the arithmetic mean after cutting off a smaller proportion of data
atboth ends of the sample data, which is more stable to abnormal
data than the usual sample average, such as the arithmetic mean.

We implement the alpha-stable model — the PatIO generation
algorithms based on the Pareto distribution [34] — accompanied
by the typical self-similar workload models, including fractional
Brownian motion (FBM) [35] and fractional auto-regressive
integrated moving average (FARIMA) [36], to generate 1/O
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TABLE V
THE TRIMMED MEANS OF ERRORS FOR SYNTHESIZING THE TEMPORAL REQUEST SEQUENCES

Trace 1/0 Self-similar method IID method Patio ® | Proposed Improvement
name type | FBM ® [ FARIMA @ [ Normal ® | Poisson @ P vs D [vs@ [ vs® [ vs@ [ vs®
AliCloud read 1913.7 473.39 - - 5618.8 437.81 77% 8% - - 92%
write 5257.5 5554.6 - - 23587 1777.2 66% 68% - - 92%
Svstor'17 read 937.91 352.95 - - 5824.1 365.97 61% -4% - - 94%
Yy write - - 163.45 76.969 869.83 72.833 - - 55% 5% 92%
MSRC read - - 13027 5873.9 1892.2 2000.2 - - 85% 66% -6%
write - - 641.11 640.83 493.31 234.31 - - 63% 63% 53%
FIU read - - 1407.0 578.29 132.18 105.56 - - 92% 82% 20%
write - - 1270.0 319.92 40.578 29.832 - - 98% 91% 26%
1 r r 1 1
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Fig. 9. Comparison of CDFs between synthetic trace and real trace for the temporal request sequences, respectively.

sequences for AliCloud and Systor’17_read. The corresponding
trimmed mean of errors are recapped in Table V.

More often than not, the trimmed means of error between
the real request sequences and the alpha-stable synthetic series
are minimal in the AliCloud cases. Moreover, there are different
degrees of improvement compared with the typical methods, and
the improvement degrees of the trimmed means of error for write
request are even more than 66%. Even for the Systor’17_read
case, the trimmed mean of error between the real workload and
the alpha-stable synthetic workload is also close to the mini-
mum. The trimmed mean of errors for the alpha-stable synthetic
workload and the minimum error are only a 4% gap, indicating
that the matching degree between the genuine workload and the
alpha-stable synthetic workload is still reasonably good.

We also employ the alpha-stable generator and the conven-
tional normal, Poisson, and PatlO methods to generate 1/O
sequences for the independently and identically distributed Sys-
tor’17_write, MSRC, and FIU workloads. The corresponding
trimmed mean of errors are also summarized in Table V. Gener-
ally speaking, except the PatlO synthetic series for MSRC_read,
the trimmed means of error between the real request sequences
and the alpha-stable synthetic sequences are relatively small
for the I/O request series in Systor’17_write, MSRC_write,

and FIU. When it comes to the MSRC_read case, the dif-
ference between the trimmed mean of errors for the alpha-
stable synthetic workload and the minimum error is merely
6%, unfolding that the matching degree between the genuine
workload and the alpha-stable synthetic workload is reasonably
good. Moreover, there are different degrees of improvement
compared against the traditional Poisson and normal methods,
and the improvement rate of the trimmed means of error in the
Systor’17_write, MSRC and FIU cases are almost consistently
exceeding 55%.

2) An Empirical Study: In order to intuitively contrast the
matching degrees between the various synthetic series and real
series, we plot the cumulative distribution functions (CDF) of
the real and synthetic series for AliCloud, Systor’17, MSRC
and FIU in Fig. 9. Fig. 9(a)-(c) show the matching degree
of the self-similar request series in the AliCloud and Sys-
tor’17_read scenarios, and Fig. 9(d)—(h) plot the matching
degree of the independently and identically distributed re-
quest series in the Systor’17_write, MSRC and FIU cases,
respectively.

The horizontal axis in Fig. 9 represents the logscale of I/O re-
quests per unit time, and the vertical axis denotes the proportion
of the corresponding values in the whole request series. A point
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Fig. 10. Comparison of relative errors between synthetic trace and real trace for the temporal request sequences, respectively.

(z,y) in the distribution curve indicates that the proportion of
I/0 volume less than or equal to z in the corresponding request
series is y.

Fig. 9 reveals that the request sequences synthesized by
the proposed model well match the real trace, especially for
the self-similar series in AliCloud and Systor’17_read, and
the IID request series in Systor’17_write, MSRC_write and
FIU_write. The corresponding trimmed means of errors are
437.81, 1777.2, 365.97, 72.833, 234.31 and 29.832, respec-
tively, as shown in Table V. These trimmed means of errors
for the AliCloud and Systor’17_read cases are somewhat large,
which is partially due to the high density of requests in Ali-
Cloud and the read-dominated Systor’17. With respect to Al-
iCloud, for example, the trimmed means of errors — 437.81
and 1777.2 — are small relative to the thousands of requests per
second.

Although the trimmed mean of errors between the real se-
quence and the alpha-stable synthetic sequence from the per-
spective of Systor’ 17_read is greater than the FARIMA synthetic
sequence (see Table V), Fig. 9(c) unveils that the alpha-stable
synthetic sequence can more accurately characterize the request
behaviors in the actual workload. This observation confirms that
the accuracy of the proposed synthetic model is credible for the
Systor’17_read case.

Furthermore, except for the PatIO synthetic sequences in Fig.
9(e) and (g), there are different degrees of improvement relative
to all of the other synthetic sequences. For instance, the alpha-
stable synthetic series reduce the trimmed mean of error of the
PatlO synthetic series in the AliCloud, Systor’17, MSRC_write
and FIU_write scenarios by 92%, 92%, 94%, 92%, 53%, and
26% (see Table V), respectively.

3) Relative Error: To make the accuracy of the proposed
model more trustworthy, we further adopt the relative er-
ror — an evaluation metric widely accepted by the storage

community [13], [25] — to test the matching degrees between
various synthetic series and real series.

Fig. 10 depicts the empirical distribution of the relative errors
between the various synthetic series and real series in the context
of AliCloud, Systor’17, MSRC, and FIU. Fig. 10(a)—(c) show
the relative errors of the self-similar request series in the Ali-
Cloud and Systor’17_read scenarios, and Fig. 10(d)—(h) plot the
relative errors of the independently and identically distributed
request series in the Systor’17_write, MSRC, and FIU scenarios,
respectively.

The horizontal axis of Fig. 10 represents the relative error,
whereas the vertical axis denotes the proportion of the corre-
sponding values in the whole relative errors. A point (z,y) in
the distribution curve indicates that the proportion of relative
error is less than or equal to x in the corresponding request
series is y.

The higher the proportion of values with a relative error close
to 0, the better the matching degree between the synthetic series
and real series is. Fig. 10 reveals that the matching degree
between the proposed synthetic series and real series is the best
for almost all the sample sequences.

Although the matching degrees between the real sequences
and the alpha-stable synthetic sequences from the perspectives
of MSRC_read and FIU_read are not sufficiently satisfactory in
Fig. 9, Fig. 10(e) and (g) unravel that compared to the PatIO syn-
thetic sequences, the relative errors of the alpha-stable synthetic
sequences have an edge in capturing the request characteristics
of the actual MSRC_read and FIU_read sequences.

In summary, for the independently and identically distributed
and self-similar block workloads, or for the Gaussian and
non-Gaussian workloads, or for the read-dominated and write-
dominated workloads, the matching degree between the real
trace series and the alpha-stable synthetic sequence is encour-
aging, satisfying, and practical.
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TABLE VI
THE TRIMMED MEANS OF ERRORS FOR SYNTHESIZING THE SPATIAL I/O SERIES

Trace PatlO ® | Uniform ® | Proposed Improvement
name vs® [ vs®
AliCloud 0.6811 66971 0.5738 16% | 99.9%
Systor’17 1.7765 65956 2.0107 -13% | 99.9%
MSRC 4.1258 66152 5.6686 -37% | 99.9%
FIU 0.8647 56.072 0.6858 21% | 98.8%

C. Spatial Analysis

Using the parameters speculated in Table IV, we apply the
alpha-stable workload model to originate spatial requests. We
also employ the aforementioned three tools elaborated in Section
V-B to gauge the corresponding errors.

1) Trimmed Mean of Errors: We implement the alpha-stable
model, the PatlO generation algorithms furnished by the Zipf
distribution [34], and the typical uniform method, to forge spatial
1/0 sequences catering for AliCloud, MSRC, Systor’17 and FIU.
We compare the synthesized request sequences to the authentic
sequences and tabulate the corresponding trimmed mean of
errors in Table VL.

Glancing at Table VI, the trimmed means of errors of the
synthetic sequences for the proposed model seem to be non-
minimum in the Systor’17 and MSRC scenarios. Although
the trimmed means of errors between the real sequences and
the alpha-stable synthetic sequences from the perspectives of
Systor’17 and MSRC are slightly larger than that of the PatIO
synthetic sequences, the margin of 0.2 and 1.5 over the corre-
sponding minimum errors can be ignored. The results indicate
that the matching degree between the real workload and the
alpha-stable synthetic workload is satisfactory.

Another intriguing finding observed in Table VI is that the
trimmed means of error of the synthetic sequences for the
proposed and PatlO methods are much smaller than the uniform
synthetic sequences, and the improvement rates of the trimmed
means of error for all the cases are almost consistently above
99%.

2) An Empirical Study: To intuitively contrast the matching
degrees between the various synthetic series and real series, we
plot the cumulative distribution functions of the authentic and
synthetic series for AliCloud, Systor’17, MSRC, and FIU in
Fig. 11.

In Fig. 11, the horizontal axis represents the log scale of I/O
requests per block, and the vertical axis denotes the proportion

Comparison of CDFs between synthetic trace and real trace for the spatial I/O request sequences, respectively.

of the corresponding values in the entire request series. A point
(z,y) in the distribution curve implies that the proportion of
I/0 volume less than or equal to x in the corresponding request
series is ¥.

Fig. 11 reveals that the spatial request sequences synthesized
by the proposed model are well aligned with the real traces,
especially for the I/O request series in the AliCloud, Systor’17,
and MSRC cases. Thus, although the corresponding trimmed
means of errors for Systor’17 and MSRC — 2.0107 and 5.6686
listed in Table VI — are non-minimum, the alpha-stable synthetic
sequences are still convincing. This finding once again demon-
strates that the accuracy of the proposed synthetic model for the
spatial scenarios is no less than PatIO.

3) Relative Error: To incorporate confidence to the accuracy
of the alpha-stable workload model, we further adopt the relative
error metric to measure the matching degrees between the vari-
ous synthetic series and real series. Fig. 12 depicts the empirical
distribution of the relative errors between the various synthetic
series and real series of AliCloud, Systor’17, MSRC, and FIU,
respectively.

The horizontal and vertical axes in Fig. 12 denote the rel-
ative error and the proportion of the corresponding values in
the whole error series. A point (z,y) in the distribution curve
suggests that the proportion of relative error less than or equal
to z in the corresponding error series is y. A high proportion
of values with a relative error close to O attests a prominent
matching degree between the synthetic series and authentic
series.

Fig. 12 reveals that for the proposed synthetic request se-
quences, the proportions of the relative error close to O for all of
the cases are almost consistently above 80%, and the measures of
AliCloud and FIU impressively exceed 95%. More interestingly,
the empirical distribution of the relative errors for the proposed
synthetic sequences is almost identical to that for the PatlO
synthetic sequences. These observations illustrate that both the
proposed and PatlO synthetic sequences satisfyingly mirror the
spatial sequences in the AliCloud, Systor’17, MSRC, and FIU
scenarios.

The key takeaway from the perspectives of the trimmed mean
of errors, empirical distribution, and relative error is that for the
synthesis of the spatial I/O series, the accuracy of the alpha-
stable model is no worse than the PatlO method. We conclude
that the matching degree between the genuine trace series and
the alpha-stable synthetic sequence is satisfactory and desirable.
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VI. DISCUSSIONS

Block workload Characterization is often used to design and
optimize data storage stacks. In this section, we discuss the
significance of characterizing cloud block workload.

A. Block Workload Characteristics

Oftentimes the design and optimization of cloud block stor-
age systems rely on insights derived from studying block-level
storage workloads. For example, through profiling applications
where I/0 traces are similar to one other in their I/O behaviors,
Kang et al. [37] proposed a framework that effectively estimates
the execution time of I/O traces on solid-state drives (SSDs),
thereby fostering both users and manufacturers to accurately
evaluate SSD. Based on the characteristics of cloud storage
workload, Mao et al. [38] proposed a hybrid data distribu-
tion method that distributes data blocks with replication or
erasure code schemes, to judiciously and adaptively distribute
data blocks among multiple cloud storage providers. Yadgar
et al. [39] found that specific I/O workload features like logical
locality strongly affect write amplification, read amplification
and flash read costs, thus providing opportunities for optimizing
SSD design.

Recently, cloud providers like the Alibaba cloud, widely
employed hybrid storage nodes consisting of SSDs and hard-
drive disks (HDDs). These hybrid storage nodes are usually in
SSD write-back (SWB) mode, writing incoming data to their
SSDs, followed by refreshing the data to the corresponding hard
disks to ensure a lower write latency. The characteristics of real
production workload from Pangu, a large-scale storage platform
underlying AliCloud, unveil that a plethora of write-dominated
storage nodes (WSN5s) exist, and the SSDs of these WSNs have
severe high-write intensity and long tail latency in the SWB
mode. Then, Liu et al. [40] proposed a run-time I/O scheduling
mechanism for WSNs, the SSD write redirect, to fully alleviate
the above problems and significantly improve the overall system
performance and SSD durability. Wang et al. [41] proposed
a buffer-controlled writing method to actively control buffer
writing, and a hybrid I/O scheduler was devised to adaptively
direct incoming data to SSDs and HDDs to minimize write
latency.

B. Distribution of I/O Characteristics

To accurately understand block-level I/O workload char-
acteristics, one ought to master the distribution of /O

Comparison of relative errors between synthetic trace and real trace for the spatial I/O request sequences, respectively.

characteristics to effectively predict the system performance
in storage workload by the virtue of an accurate stochastic
model according to the corresponding distribution. For example,
through investigating AliCloud’s empirical distributions of I/O
patterns, including inter-arrival times of requests, Li et al. [1]
unfolded 15 new discoveries, which furnish optimization in-
sights into load balancing, cache efficiency, and storage cluster
management in cloud block storage systems. Wajahat et al. [3]
performed a distribution fit to I/O features (e.g., inter-arrival
times) in the different workloads and developed a stochastic
model based on Markov chain to evaluate system performance
in storage workloads. After studying the empirical distribu-
tion of various features in the block-level I/O workloads of
common applications on nexus5 smartphones, Zhou et al. [42]
proposed an array of ideas including fast serving small re-
quests to enhance the overall performance of smartphone storage
subsystems.

In recent years, with the escalated load intensity in cloud
workloads, I/O behaviors at the block level become increasingly
more bursty - a challenge for accurately modeling I/O patterns. In
this work, four representative sets of block I/O traces are placed
under the microscope to diagnose the correlation of inter-arrival
times of request series in block workload, and Gaussianity,
diurnal rhythm, burstiness, and self-similarity in I/O patterns.
Then, an I/O sequence generator based on the alpha-stable model
is proposed to synthesize workloads matching the real I/O prop-
erty. Such a workload generation method is highly configurable,
and it is slated to be deployed by modifying model parameters to
offer good scalability. In addition, the proposed model embraces
good robustness measure, thereby being applied to generate I/O
request series in multiple representative cloud block workloads
such as those used throughout this study.

Synthetic workloads can be replayed on a real cloud block
storage system to simulate I/O behaviors. Through generating
block I/O workload, we expect to help system administra-
tors in evaluating and optimizing I/O performance by gaining
workload characteristics like system throughput. Therefore, our
full-fledged modeling solution becomes a vital and pragmatic
auxiliary means of system performance evaluation.

VII. CONCLUSION

With an accurate understanding of target workloads, it is
viable to revamp the performance of cloud block storage systems
running various applications, including deduplication, caching,
metadata management, replication, energy saving. This work
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furnishes a novel method for understanding and accurately
characterizing I/O behaviors in cloud block storage workloads.

In this study, we analyzed four representative sets of block
I/O traces, namely, the AliCloud, Systor’17, MSRC, and FIU
workloads, gleaned in the classic application environments.
After delving into the correlation of request arrival intervals in
block I/0 workloads, we observed that there is an unequivocal
correlation in the long-term timescale for request arrival inter-
vals in AliCloud and Systor’ 17_read. In contrast, when it comes
to Systor’ 17_write, MSRC and FIU, request arrival intervals are
almost uncorrelated. This discrepancy may be associated with
the more diverse I/O burstiness in AliCloud.

We also performed the Gaussianity test for all the four traces,
and we discovered that I/O burstiness appears to be Gaussian in
AliCloud_write and Systor’17_read, whereas it is likely to be
non-Gaussian in AliCloud_read, MSRC, Systor’17_write, and
FIU. It will be arduous to genuinely and accurately capture I/O
burstiness in real block storage workload if such a distinction is
not taken into consideration.

Since AliCloud and Systor’17_read have a certain degree of
correlation, we presented the visual evidence and theoretical
evidence through the autocorrelation function structure of the
aggregated process of the request sequences, unfolding the
existence of self-similarity. We further deployed statistical tools
to estimate the Hurst parameter, and all the estimates are greater
than 0.5, confirming that self-similarity occurs in AliCloud and
Systor’17_read.

We designed an I/O request series generator anchored on
the alpha-stable workload model, in which the parameters are
directly gauged from block traces, to synthesize the temporal
and spatial I/O request series for these four sets of block I/O
workloads. The experimental results unveil that the proposed
generator is adroit at characterizing the burstiness of the tempo-
ral and spatial I/O behaviors: our model has an accuracy edge
over the conventional models.

As the storage community designs I/O scheduling, caching,
or any other service policies for cloud block storage systems,
such as the Alibaba Pangu [41], it is indispensable to accurately
characterize I/O activities in the spatial locality. Therefore, we
intend to shed the bright light on the relevance of long-range de-
pendence in cloud block workloads from the spatial perspective
in the not-too-distant future.
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