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Cocktail: Mixing Data With Different
Characteristics to Reduce Read Reclaims

for NAND Flash Memory
Genxiong Zhang, Yuhui Deng , Yi Zhou , Shujie Pang, Jianhui Yue , and Yifeng Zhu

Abstract—A large number of read-disturb-induced rewrites
are performed in the background [also known as Read Reclaim
(RR)] to alleviate the read-disturb issue in NAND flash memory-
based SSDs. RR can significantly degrade the performance and
shorten the service life of SSD in read-intensive workloads. To
address this issue, we propose a novel read-disturb management
approach called Cocktail that mixes a small proportion of hot-
read pages with a large proportion of cold-read pages, thereby
avoiding clustering hot-read pages into a few blocks. Motivated
by the insight that RR operations are frequently triggered by
hot read-pages, Cocktail first prefills a portion of each block
with cold data extracted from user requests. Then, Cocktail fills
the prefilled blocks with write-back data caused by RR to create
read-balanced blocks. We integrate two thresholds, write pool
capacity and the ratio of RR-write data to User-write data, into
Cocktail to govern the ratio of write-back data caused by RR to
data of user requests in a block. Cocktail dynamically adjusts the
two thresholds according to the characteristics of RR. Cocktail
is conducive to decentralizing hot write-back data caused by RR
across a broad range of blocks, thereby reducing the occurrence
of second-time RR and the number of overall block reads. We
compare Cocktail with three existing schemes baseline, redFTL,
and IPR in terms of SSD service life, SSD response time, write
amplification, and the number of garbage collections (GCs) under
ten real-world workload conditions. Experimental results show
that compared with the existing schemes, Cocktail reduces the
number of RRs, the average response time, the 99-percentile
tail latency, and the number of GCs by an average of 40.77%,
10.82%, 5.40%, and 12.29%, respectively. Cocktail also allevi-
ates the write amplification of the three alternative schemes by
an average of 49.57%.
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I. INTRODUCTION

3 -D NAND flash memory is now widely used as a storage
device. Read-disturb noise has become a major reliability

concern for high-density 3-D NAND flash memory. Traditional
read-disturb management techniques are inadequate to miti-
gate the read-disturb issue. To address this problem, we focus
on reducing the number of overall block reads and the number
of write-backs caused by second-time read reclaims (RRs). We
develop a read-disturb management approach called Cocktail
that leverages a decentralized distribution strategy to place hot
write-back data of RRs across a wide range of blocks. Such
a decentralized distribution strategy facilitates balancing read
access to data blocks, thereby reducing the total number of
block reads and the occurrence of second-time RR. At the
heart of Cocktail are write frontiers and write pool, which
collaboratively combines cold data with hot data into read-
balanced blocks. We show how a write frontier extracts and
prefills cold data from user requests into blocks. We illustrate
how Cocktail leverages a write pool to eventually fill hot data
of read-reclaim-induced write-backs into prefilled blocks to
create read-balanced blocks.

The following three motivations make Cocktail desirable
and achievable.

1) There exists a pressing need for untangling the read-
disturb problem in 3-D NAND flash-based SSD devices.

2) RR for mitigating read-disturb significantly degrades
SSD performance.

3) Read-disturb management techniques designed to
address the issues caused by RR are inadequate for
modern SSDs.

The main cause of the read-disturb problem is read accumu-
lation. When reading a page of a block, NAND flash memory
must apply a pass-through voltage to all other pages in the
same block, which acts like a weak programming opera-
tion. Such an operation seriously disturbs a block after the
block is read too many times. NAND flash memory has to
repeat read operation until the data of a disturbed page is cor-
rectly retrieved [1]. As a result, it takes several times longer
for NAND flash memory to read a page when read-disturb
occurs [2]. An even worse case is that when no correct data
are obtained after multiple reads for a disturbed page, NAND
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flash memory will permanently lose the disturbed page, which
should be definitely avoided.

RR imposes a significant impact on response time and ser-
vice lifetime of modern SSDs [3]. RR is a common approach
used to mitigate the read-disturb issue in 3-D NAND flash [3].
Similar to garbage collection (GC) [4], if there is valid data in
a disturbed block, the valid data must be written to a new free
block (i.e., read-reclaim-induced write-back), followed by an
erase operation on the disturbed block. A disturbed block can
be fully recovered after it is erased. However, under read-
intensive workloads, SSDs must trigger a large number of
erase operations to eliminate possible read errors. These erase
operations will extend response time, increase write amplifi-
cation, and shorten service lifetime of SSDs. In particular, if a
normal I/O request conflicts with an RR operation, the normal
I/O request has to yield and may be postponed for a long time.
Such a response time delay can seriously degrade quality-of-
service of I/O intensive applications [5], [6]. Moreover, the
undesired erase operations triggered in RR can remarkably
shorten the lifespan of NAND flash-based SSDs due to the
maximum erase count per SSD block.

A number of read-disturb management approaches have
been proposed to address the issues caused by RR [7], [8], [9].
Many existing approaches share a simple strategy: write the
data of a disturbed block back to the same block after RR.
Unfortunately, when using this simple strategy, hot disturbed
blocks may remain in the hot state, which will trigger a
second-time RR. In contrast to this simple write-back strat-
egy, some other studies distribute RR data across different
pages, aiming to avoid centralizing all hot read data into a
small number of blocks [8]. However, because this simple
decentralized strategy is not aware of data popularity, hot
data is very likely to aggregate into hot blocks again, trigger-
ing second-time RRs. Unlike the aforementioned read-disturb
management solutions, our decentralized strategy dynamically
adjusts the proportion of hot data in a block according to
data popularity. Our observations (see Section IV) show that
most of the write-back data caused by read-reclaim is hot
read data. Therefore, it is feasible to extract cold data from
user write requests, place them in a block proportionally in
advance, and reserve the rest of the block for future hot write-
back data filling. Following these design principles, Cocktail
leverages a write pool to quickly combine hot write-back
data into prefilled blocks when RR write-back data arrives,
thereby preventing second-time RR and creating read-balanced
blocks.

In summary, we make the following three contributions on
improving the reliability and performance of SSDs.

1) We analyze the root cause of read-disturb errors and
the adverse impacts of RR on SSDs, which help us to
pinpoint the limitations and shortcomings of previous
read-disturb management methods.

2) We propose a low-cost and high-efficiency read-disturb
management solution—Cocktail—to improve the reli-
ability and performance of high-density 3-D NAND.
Cocktail applies a decentralized write-back strategy to
balance read accesses to blocks, thereby reducing the
number of RRs and the number of block reads.

Fig. 1. Voltage distribution.

Fig. 2. Voltage shift and read retry.

3) We validate Cocktail with ten real-world workloads.
Experimental results show that our Cocktail is far supe-
rior to three alternative management approaches in terms
of the number of block erase operations, read response
time, and the number of GCs.

The remainder of this article is organized as follows. The
background and motivation are discussed in Sections II and III.
The system design and implementation of Cocktail are present
in Section IV. Section V validates the performance of Cocktail
by extensive experiments. Section VI summarizes the related
work. Finally, Section VII shows conclusions including the
contributions of this research.

II. BACKGROUND

A. Threshold Voltage Range

3-D NAND flash memory cell stores data in the form of
threshold voltages. Fig. 1 shows an example cell of eight
regions separated by seven reference voltages (i.e., Vref1–
Vref7). Vpass is the pass-through voltage serving as the upper
bound of the threshold voltage [10]. The voltage region that
the flash cell falls into indicates the cell’s current state. States
“111,” “011,” “001,” “000,” “010,” “110,” “100,” and “101”
represent logical data “0,” “1,” “2,” “3,” “4,” “5,” “6,” and “7,”
respectively.

Ideally, a NAND flash cell performs a read operation by
applying one or more read reference voltages to the word-
line (WL) (see Section II-B) containing the data to be read.
However, in the real-world environment, cell voltage dis-
tribution can be shifted by various circuit-level noises (see
Fig. 2). Specifically, a large portion of flash cells can be read
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Fig. 3. NAND flash block structure.

incorrectly if flash memory applies a preset reference voltage
to WLs. Although such read errors can be corrected by an
error-correcting code (ECC) engine, a failed read operation is
unavoidable when a read error exceeds the correction range
of the ECC engine. To handle a failed read operation, flash
memory adjusts its read reference voltage to perform another
read operation to read the same page. Such an operation is
called a read retry [1], which is several times longer than a
normal read and seriously affects read performance.

B. Read-Disturb Errors

Modern flash memory is suffering from read-disturb errors.
Fig. 3 depicts a typical NAND flash block structure, where the
control gates of the flash memory cells in the same vertical
position connect to the same WL, whereas the cells in the
same column form a bit line (BL).

Modern flash memory strives to pass through unread cells
by ensuring the pass-through voltage is higher than the read
reference voltage, aiming to reduce errors during read oper-
ations. For example, to read a single cell on a BL, flash
memory must apply a pass-through voltage to the WL of
the read cell so that all other cells on the same BL are not
read [11]. Although the pass-through voltage is lower than the
programming voltage that moves the cell’s threshold voltage
to a desired range, it still has a “weak programming” effect.
This read-disturb effect inadvertently shifts threshold voltages,
causing unbearable read delays and data loss.

C. Read Reclaim

3-D NAND flash memory relies heavily on RR to address
the read-disturb problem. The key idea of RR is to rewrite the
valid data of a block to a new block and erase the block if the
block is suffered from the read-disturb problem.

RR is triggered when the number of reads for a block
exceeds a preset threshold—the maximum number of toler-
able reads for a block. Since RR needs to rewrite the data of
a disturbed block to a new block, it generates a large num-
ber of writeback data, which remarkably affects SSD response
time. Another issue is that erase operations caused by RR will
significantly shorten the SSD lifetime due to NAND‘s limited
erase count. Therefore, reducing RR count becomes a pressing
need in modern SSDs.

D. Write Amplification

There are two main problems with SSDs, namely, write
amplification and read disturbance. Solutions to these two
problems often require co-existence and effective integration.

In order to alleviate the read disturbance problem, it is nec-
essary to avoid placing too much hot read data in the same
block. However, this strategy is inapplicable to alleviate the
write amplification problem. Specifically, because SSD uses
an out-of-place update strategy [12], hot-write data should be
put together, so that the effective pages in the victim block
will be reduced during GC. A widely used strategy to solve
the write amplification problem is to collect hot write data in
one place and cold write data in another [13], [14], [15]. In this
study, we employ write frontier [15] to write data sequentially
into physical blocks, which can be found in Section IV that
details how we effectively integrate Cocktail with this write
amplification mitigation approach.

III. MOTIVATION

To understand data popularity in real-world workloads,
we characterize ten traces under the same conditions (see
Section V for a detailed description of our infrastructure and
methodology). Fig. 4 shows the frequency of requests and
their data popularity distribution. Requests with the same
request id have the same logical address and request size.
Frequency represents the number of occurrences of requests
with the same request id. There are some requests whose
frequency exceeds the maximum value of the y-axis, and
these requests are represented as maximum values to make
the hierarchy more visible in the graph. We take the maxi-
mum value as the standard. We mark requests with a frequency
less than half of the maximum value in blue, and requests
with a frequency greater than half in red. Fig. 4 demonstrates
that data with relatively low popularity is more than that with
relatively high popularity in different traces.

To further examine the workloads characteristics, we con-
duct another group of experiments on trace ali206, which
consists of more than 2.8 billion read requests. We record
the read count of other blocks in the plane at the last RR (a
total of 28507 RRs were triggered). Fig. 5 plots the experi-
mental results, where we only show blocks filled with data.
Each small square represents a block, and the color of the
small square represents the current disturbance level (i.e., the
current read count). Again, in Fig. 5, the value greater than
10 000 is represented by the maximum read count, which is
set to 10 000. We can observe that only a few blocks in a plane
suffer from severe read disturbance, while most blocks have
almost no read disturbance.

These observations reveal that high-popularity data tend to
cluster together, resulting in severe read disturbance. Inspired
by these compelling findings, we propose a data management
strategy of mixing a small amount of hot data proportionally
with a large amount of cold data, such that the pressure of
read disturbances can be spread over different blocks. Another
design principle behind our data management strategy is that
erase factor in SSDs should be GC, rather than RR. More
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 4. Data popularity of ten different traces. (a) ads1. (b) ads2. (c) ali206. (d) ali188. (e) msr_web. (f) sys1. (g) sys2. (h) nexus5. (i) usr1. (j) websearch.

Fig. 5. Heat distribution of read data in a plane.

specifically, it is possible to avoid triggering RR before trig-
gering GC on a block as long as we can configure the read
disturbance of the block at low level. It is noteworthy that
data in a block can also be recovered from the read distur-
bance when the block is erased due to GC. See the details of
our proposed data management strategy in Section IV.

IV. SYSTEM DESIGN

A. Write-Back Data Distributing Principles

Now, we introduce the data distributing principle for read-
reclaim-induced write-backs in Cocktail. Assuming that each
block consists of q pages and is divided into n groups, each
group then contains q/n pages; after reading for a period of
time, each group causes m page reads; the threshold for trig-
gering an RR operation is n*m reads per block. If a block is
heavily read and reclaimed, with k groups of this reclaimed
block written into a new block, we can ensure the new block
will not trigger a second-time RR as long as it meets the

following constraint:

k ∗ m + d < n ∗ m (1)

where d is the total number of reads for other cold data in
the new block. We can derive from Constraint (1) three data
distributing principles for read-reclaim-induced write-backs,
aiming to reduce the total number of reads for the new block,
thereby avoiding the block from triggering a second-time RR.

1) The value of d should be small, that is, there should be
enough cold pages in the new block.

2) The value of k should be small, that is, the number of
groups allocated to the new block should be small.

3) The value of n should be large. When n becomes larger,
the write-backs caused by read-reclaims will be split into
more copies and written to more blocks.

It is challenging to place pages in a block to satisfy the
above three conditions. Also, it is difficult to predict the pop-
ularity of pages (i.e., read-hot pages or read-cold pages). To
address these challenges, we propose Cocktail which sys-
tematically manages write operations caused by both write
requests issued by users (referred to as user-write requests)
and write requests triggered by RR (referred to as RR-write
requests). Cocktail splits a block into two parts: 1) user-
write-part serving user-write requests and 2) RR-part serving
RR-write requests. Cocktail writes RR-write requests to the
block whose user-write-part has been used up, and such a
block is called UW-block. If the portion of user-write-part of
each block is relatively large, each block has a smaller num-
ber of read operations, thus reducing RR frequency. Three
main reasons can explain this trend: 1) Although the data
popularity of I/O traces in different environments is differ-
ent, we can still extract cold-read data from a large number
of user-write data [12], [13], [14], [15]; 2) clustering over-
written pages into a block not only reduces the block’s read
traffic but also increases the number of invalid pages in it; and
3) RR pages are likely to be read-hot pages. To this end, we
design a write-pool that maintains a sufficient number of UW-
blocks. In addition, we scatter RR-write pages across multiple
UW-blocks in the write-pool to further mitigate RR issue.
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Fig. 6. Compare Cocktail with a conventional RR scheme.

Fig. 6 compares our Cocktail with a conventional read-
disturb management scheme. Assuming a block is comprised
of four pages, and the RR threshold of a block is set to 50.
Given the request queue shown in Fig. 6, after the first four
requests are serviced, Block 0 will trigger an RR since the
total number of reads for Block 0 (i.e., Page_1–Page_4) is
equal to the RR threshold 50. The conventional scheme writes
Page_1, Page_2, Page_3, and Page_4 into Block1, which can
cause another RR if a set of requests in the same order arrives.
However, Cocktail writes these four pages to four different
blocks, which reduces the likelihood of the second RR.

The overarching goal of Cocktail is to decentralize hot
write-back data of RRs across blocks prefilled with cold data
of user requests. There are two challenging issues. First, it
is not feasible to predict the popularity of the cold data of
user requests. Second, each page requested by a user has
its own access pattern, resulting in different popularity [12].
To address these two issues, we equip Cocktail with dou-
ble write frontiers [15] coupled with a write pool, thereby
achieving the goal of dynamically adjusting the ratio of hot
write-back data of RRs to cold data of user requests accord-
ing to the characteristics of RR. In particular, we leverage
double write frontiers to separate external user-write requests
from internal read-reclaim-induced write-backs. We make use
of write frontiers to prefill blocks with relative read-cold data
from external user write requests at an adjustable proportion.
We keep the prefilled blocks in a corresponding write pool.
When the internal hot data of read-reclaim-induced write-
backs arrives, we search for the block with the fewest reads
in the write pool. In this way, hot write-back data can be eas-
ily decentralized and written back to blocks with few reads.
As a result, the chance for a block to trigger a second-time
RR becomes considerably low. As shown in Section IV-E, the
block with the fewest reads in the write pool may contain
many invalid pages. Furthermore, even if a second-time RR
is triggered, write amplification is still reduced substantially
because a small number of hot reads may be put together with
many invalid pages in each block.

B. System Overview of Cocktail

The overarching goal of Cocktail is to reduce the num-
ber of average reads for blocks by distributing hot writeback

data caused by RRs (or RR-write data) across blocks pre-
filled with cold data of user write requests (or user-write
data). We implement Cocktail in the FTL of the tested SSD.
Cocktail leverages double write frontiers [12] to prefill blocks,
which facilitates creating read-balanced blocks. Cocktail main-
tains a corresponding write pool to combine user-write data
and RR-write data (see Fig. 7). Cocktail utilizes two dynamic
thresholds to govern the ratio of user-write data to RR-write
data in a block. To balance block-read accesses, Cocktail
processes write-backs with respect to two cases, namely, a
user-write-intensive case and an RR-write-intensive case.

In the user-write-intensive case, Cocktail writes user-write
data to the write frontier block, whereas RR-write data are
written to one of the blocks in the write pool. Cocktail keeps
writing user-write data into the write frontier block until the
amount of the data in the write frontier block reaches the preset
threshold. Next, if the write pool is not fully filled, Cocktail
will put the write frontier block into the write pool. Otherwise,
Cocktail will compare the write frontier block against each
block in the write pool to place the blocks with the fewest
expected reads in the write pool. If the write frontier block
can be placed in the pool, the block exchanged from the pool
will become the write frontier. In doing so, Cocktail combines
user-write data and RR-write data in the write pool, forging
read-balanced blocks. Moreover, Cocktail dynamically adjusts
the ratio of user-write data to RR-write data for a block by
tuning the two dynamic thresholds. In the RR-write-intensive
case, on the other hand, Cocktail performs similar operations
except that Cocktail writes RR-write data to the write frontier
block while writing user-write data to the blocks in the write
pool.

It is worth mentioning that Cocktail will continuously
update the blocks in the write pool. There are two purposes
for it. The first purpose, as we mentioned before, is to leave
relatively cold read data in the write pool. The second pur-
pose is to remove blocks with heavy reads from the write
pool to prevent the blocks from triggering RR. As shown in
Section II-C, the essence of RR operations and GC operations
are erasing blocks. Since blocks in SSD are limited in the num-
ber of erasures, each block should be as fully utilized before
erasing. However, there still exists free space in the blocks in
the write pool. If RR is triggered in these blocks, the free space
will be wasted. Therefore, Cocktail will promptly remove the
blocks with heavy reads from the write pool and receive user-
write data, which ensures that these blocks are fully utilized
before being erased.

C. Double Write Frontier

Double write frontier strategy is widely used to reduce
write amplification by separating internal and external write
requests [12]. We exploit the write frontier to prefill blocks
for future data filling in the write pool. We prefill a write
frontier block with either user-write data or RR-write data at a
given ratio, depending on the characteristics of writeback data.
The RR-write frontier is used to receive RR-write data, and
the user-write frontier is used to receive user-write data. Since
modern SSDs support plane-level parallelism, Cocktail sets up
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Fig. 7. Cocktail overview.

two write frontiers for each plane, and each plane is associ-
ated with an independent write pool. Cocktail also maintains
a pool of free blocks. If a write frontier block is prefilled to a
predefined threshold, Cocktail will try to exchange the write
frontier block with a heavy-read block in the write pool. Or
if the write frontier block has been filled, then Cocktail will
select one block from the free block pool and then make it a
new write frontier block.

To govern the proportions of user-write data and RR-write
data in a prefilled block, we introduce two thresholds THuser
and THrr. Since a read-balanced block in Cocktail is only com-
prised of user-write data and RR-write data, we have THuser =
(1−THrr) to guarantee the ratio of RR-write data to user-write
data in a block remains unchanged regardless of user-write-
intensive or RR-write-intensive situations. Recall that in the
user-write-intensive case, Cocktail prefills the write frontier
block with user-write data. If the amount of data in the block
reaches THuser, Cocktail will stop prefilling the write frontier
block, put it in the write pool to receive RR-write data for
producing a read-balanced block. Cocktail performs similar
operations on the write frontier block for RR-write data when
working in the RR-write-intensive situation.

D. Write Pool

We set up a write pool where user-write data and RR-write
data are written into prefilled blocks, forging read-balanced
blocks. We set a flag for each block in the write pool to indi-
cate if a block is prefilled with user-write data or RR-write
data. If a block is prefilled with user-write data, Cocktail will
fill the block with RR-write data in the write pool, and vice
versa.

We employ a sliding window protocol to determine the write
pool capacity. The sliding window has a minimum value and a
maximum value. We set the minimum value according to real-
istic experimental situations. Specifically, the minimum value
is decided as a floor function of 1% of the number of blocks in
a plane. For example, if there are 2048 blocks in a plane, the
capacity of the write pool is determined as 20 blocks. Recall
from Section III that only a few blocks in a plane suffer from
severe read disturb, while most blocks are hardly affected by
read disturbance. Moreover, our experiments calculating the
number of reads per block when RR is triggered show that

the heat distribution is similar to that plotted in Fig. 5. In
short, a small ratio can better retain cold data.

When the write pool is full and the user-write frontier block
reaches its threshold, Cocktail will increase the write pool
capacity by 1 and put the frontier block into the write pool.
When the write pool completes an RR-write operation and the
number of blocks in the write pool is less than the minimum
value, the write pool capacity will be set to the minimum value
again to quickly fill the write pool.

Recall from Section IV-B that blocks in the write pool
should avoid RR. If the capacity of the write pool is too large,
some blocks with many reads may trigger RR while they are
still in the write pool. Since determining the maximum value is
as difficult as determining a unified overprovisioning in differ-
ent production environments [16], [17], we set the maximum
value to 3% of the plane’s block number. The experimental
results in Section V show that this configuration is conducive
for Cocktail to perform well with ten different traces.

Now, let us demonstrate how Cocktail produces read-
balanced blocks with respect to the following two cases.

Case 1 (User-Write Data Processing): The primary goal of
processing user-write data is to combine such data with pre-
filled RR-write data into read-balanced blocks. To this end, we
propose Algorithm 1 that facilitates user-write data processing.

When a request of user-write data arrives, Cocktail first
searches the write pool for an available block prefilled with
RR-write data (see line 3 in Algorithm 1). If such a block is
found, Cocktail populates the user-write data into the found
block, thereby generating a read-balanced block by combining
the newly written user-write data with the prefilled RR-write
data (see line 37 in Algorithm 1). Otherwise, with no such
block found in the write pool, Cocktail writes the user-write
data into the write frontier block until it reaches the predefined
threshold THuser (see lines 13 and 14 in Algorithm 1). When
THuser is reached, Cocktail checks the write pool to deter-
mine whether the number of blocks in the pool has reached
its capacity. If the pool is not full, Cocktail will put this write
frontier block directly into the pool, then apply for a free block
from free block pool and makes it a new write frontier block. If
the pool is full, Cocktail will compare the write frontier block
with the existing blocks in the pool in terms of future block
reads. As a result, blocks with fewer reads will stay in the pool,
whereas the block with the highest future reads will serve as
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Algorithm 1 User-Write Data Write Strategy
1: /*RR_blocks are pre-filled RR-write data*/
2: /*WR_blocks are pre-filled user-write data*/
3: if RR_block can be found in pool then
4: target_block = RR_block
5: else
6: target_block = nullptr
7: end if
8: /*wf is the write frontier of user-write data*/
9: /*bkpool is the blocks number of pool*/

10: /*numblocks is the blocks number of plane*/
11: /*numpages is the pages number of block*/
12: if target_block == nullptr then
13: write user-write data to wf
14: wf .index++
15: if bkpool < max_numblocks then
16: if wf .index >= THuser ∗ numpages then
17: /*It will be a WR_block*/
18: wf .status = StateWR
19: pool.push(wf )
20: wf = get_a_new_block()
21: check GC required
22: end if
23: else
24: if wf .index == numpages then
25: wf = get_a_new_block()
26: check GC required
27: else if wf .index >= THuser ∗ numpages then
28: Find(target_block)
29: if target_block ! = nullptr then
30: pool.remove(target_block)
31: pool.push(wf )
32: wf = target_block
33: end if
34: end if
35: end if
36: else
37: write user-write data to target_block
38: target_block.index++
39: end if

the write frontier block (see lines 15–35 in Algorithm 1). It is
noteworthy that there exist two factors that significant affect
the number of future reads for a block. One is the number
of current reads for a block, and the other is the number of
invalid pages in a block.

Case 2 (RR-Write Data Processing): Cocktail follows a
similar procedure to generate read-balanced blocks when pro-
cessing RR-write data. Algorithm 2 presents the pseudo-code
of Cocktail’s RR-write data procedure. More specifically,
when a request of RR-write data arrives, Cocktail will first
search for a block prefilled with user-write data in the pool (see
line 3 in Algorithm 2). Then, if such a block is found, Cocktail
writes the arriving data into the found block; if not, Cocktail
writes the arriving data in the write frontier block. Next, when
the write frontier block reaches the RR-write data threshold

Algorithm 2 RR-Write Data Write Strategy
1: /*RR_blocks are pre-filled RR-write data*/
2: /*WR_blocks are pre-filled user-write data*/
3: if WR_block can be found in pool then
4: target_block = WR_block
5: else
6: target_block = nullptr
7: end if
8: /*wf is the write frontier of RR-write data*/
9: /*bkpool is the blocks number of pool*/

10: /*numblocks is the blocks number of plane*/
11: /*numpages is the pages number of block*/
12: if target_block == nullptr then
13: if bkpool < max_numblocks then
14: write RR-write data to wf
15: wf .index++
16: if wf .index == numpages then
17: wf = get_a_new_block()
18: check GC required
19: else if wf .index >= THrr ∗ numpages then
20: /*It will be a RR_block*/
21: wf .status = stateRR
22: pool.push(wf )
23: wf = get_a_new_block()
24: check GC required
25: end if
26: else
27: Find(target_block)
28: write RR-write data to target_block
29: target_block.index++
30: if target_block.index == numpages then
31: pool.remove(target_block)
32: end if
33: end if
34: else
35: write RR-write data to target_block
36: target_block.index++
37: end if

THrr, Cocktail will try to place it in the dynamic pool it the
pool is not full (see lines 35 and 13–25 in Algorithm 2). If the
pool is full of blocks prefilled with RR-write data, RR domi-
nates the data stream, causing a large number of data writes.
In order to avoid polluting too many blocks, Cocktail will
aggregate data into several blocks. Specifically, Cocktail picks
from the pool the block with the least number of reads, and
then fills it with the arriving RR-write data (see lines 27–32
in Algorithm 2).

E. Read Reclaim Count Factors

The principle of block replacement is to keep the blocks
with fewer future reads in the write pool. Though it is not
feasible to know the number of future reads for a block, we
observe that two key factors have significant impacts on RR
count. The two key factors are the total number of current
reads for a block and the number of valid pages in the block.

Authorized licensed use limited to: University of Maine. Downloaded on April 08,2024 at 16:07:17 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: COCKTAIL: MIXING DATA WITH DIFFERENT CHARACTERISTICS TO REDUCE RRs 2343

Fig. 8. Triggered RR count with respect to Ratio(BR/IP).

To facilitate predicting the number of RRs (or RR count),
we introduce an RR count factor, which expresses the joint
impacts of the above-mentioned two key factors

factor = ratio ∗ (RC/TH)

+ (1 − ratio) ∗ (Pv/Pa) (2)

where TH denotes the RR threshold; RC denotes the total
number of block reads; and Pv and Pa represent the number
of valid pages and the number of all pages in a block, respec-
tively. By calculating RC/TH and Pv/Pa, the two different
coefficients of read count and valid pages can be normal-
ized. The parameter ratio is an additional variable. By setting
the ratio, the factor of each block can be adjusted. This fac-
tor determines which block will be selected in the Cocktail
strategy.

To find out the best factor configuration to reduce RR count,
we conduct a group of experiments under ten real-world work-
load conditions. We investigate the impact of factor on RR
count by varying ratio from 0 to 1 with an increment of 0.25.

Fig. 8 reveals that among the five configurations (i.e., 1,
0.75, 0.5, 0.25, and 0), ratio 0.5 is the best configuration for
factor. This finding is reasonable. Fig. 8 shows that ratio 0.5
leads to the least RR count under most workload conditions.
Moreover, because both the number of block reads and the
number of invalid pages has significant impacts on reducing
RR count, it is judicious to consider these two factors equally.
As we mentioned before, different IO-traces have different
data distributions. Therefore, in a real production environment,
this parameter can be adjusted according to data characteris-
tics. In this study, we will set the ratio of the total number of
reads to the number of valid pages for a block to 0.5.

F. Proportions of User-Write Data and RR-Write Data

The proportions of user-write data and RR-write data in a
block play a role in reducing RR count and creating read-
balanced blocks. To gain the insights into the impact of the
data proportion, we carry out a set of experiments to obtain the
best data proportion for generating read-balanced blocks. As
mentioned in Section IV-A, assuming that a block is divided
into n parts, and each block consists of 1/n RR-write data
and (n − 1)/n user-writer data. We examine RR count with
respect to different n values under ten workload conditions
(see Fig. 9).

Fig. 9 indicates that as the proportion of RR-write data
decreases, RR count goes down as well, eventually showing

Fig. 9. Triggered RR count with respect to n.

a flat trend. When choosing the best configuration n, not only
the findings from Fig. 9 but also other factors are worthy of
considering. In particular, if very few blocks exist in the write
pool, we can derive that the current data stream has few user-
write data. A small n value helps Cocktail place the write
frontier block early into the write pool to combine with RR-
write data, creating read-balanced blocks. On the contrary, if
the pool is full, we can infer that user-write data is far more
than RR-write data in the current data stream. Accordingly,
we can use a relatively high n to select “high-quality” blocks
to combine RR-write data.

Rather than using a fixed n, we dynamically adjust the
proportions of user-write data and RR-write data in a block.
Assuming that the write pool can store m blocks at most, when
an RR triggers and the pages in the block where the RR trig-
gers are all valid, in order to make sure all RR-write data have
a place to be written in the write pool, each block in the write
pool needs to reserve 1/m of space, i.e., n = m. As mentioned
in Section IV-D, the capacity of the write pool changes dynam-
ically. When n = m, the value of n can dynamically change
with the capacity of the write pool. For example, if there are
20 blocks in the write pool, the proportion of user-write data
in each block is 19/20, while the proportion of RR-write data
is 1/20. That is, the proportion of RR-write data is the recip-
rocal of write pool capacity. The final experimental results in
Section V show that Cocktail performs well with ten different
traces.

G. Analysis

Our trace observations (800 traces in Alibaba center in
2020 [18]) reveal that real-world traces are comprised of
both read and write requests. Traces in many other scenar-
ios [19], [20], [21], [22] also contain a large proportion of
write requests. In these scenarios, Cocktail can adequately pre-
serve relatively cold data from written data. These preserved
cold data can be combined with the hot read data produced by
RR. Though Cocktail may not work in the read-only request
scenario (a rare scenario), this can be solved by other algo-
rithms chosen via a selection mechanism in FTL. In short,
Cocktail focuses on scenarios where read and write requests
coexist.

We analyze the overhead of Cocktail in terms of computa-
tion cost and memory requirement. The main computation cost
in Cocktail is to find the most suitable block in the pool when a
request of user-write data arrives. Since the size of the pool is
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TABLE I
CONFIGURATION OF THE SIMULATED SSD

set to be relatively small (such as 2% of the number of blocks
in a plane), the search can be completed very quickly. Note
that regardless of the FTL design, a counter update/check must
be performed for each read request. The above operations are
typically performed in nanoseconds, while NAND-related oper-
ations are typically performed in microseconds [23], [24], [25].
As a result, the proposed design only incurs negligible compu-
tation overhead since those essential NAND-related operations
(i.e., moving unreliable pages due to read disturbance) require
much longer time.

Cocktail does not consume extra SSD storage space. The
write pool in Cocktail is a simple implementation of an array
of pointers. Because of this, Cocktail can even reduce the
length of the pointer array to 0 when the SSD storage space
is not enough to store data. For the memory requirement, the
write pool in Cocktail exists logically (simply pointing to the
actual block through the pointer), which means that the design
of the pool does not take up additional memory overhead.

V. EXPERIMENTAL RESULTS

We implement Cocktail within simulator MQSim [26].
MQSim is a well-known open source SSD simulator that
accurately simulates modern 3-D NAND flash memory. We
set the RR threshold per block to 40*Numpages [3]. Table I
summarizes the configuration details of our simulated SSD.

Workloads: We conduct experiments on ten real-world
workload traces of various read/write ratios (see Table II).
Among these ten traces, alibaba_188 and alibaba_206 are
one-month access behaviors of two different virtual machines
in Alibaba center in 2020 [18]. systor1 and systor2 record the
data access behaviors of an enterprise virtual desktop infras-
tructure in two different months of 2017 [19]. nexus5 is a trace
of data accesses on smart phones [20]. ads1 and ads2 are from
Microsoft’s Ads Platform [21]. usr1 and msr_web are from an
enterprise cluster [22]. websearch is from the trace repository
of UMass.

Since RR is only triggered in read-intensive tasks, work-
load traces collected in small devices or short collection times
may not trigger sufficient RR operations. To address this issue,
we increase the execution time on such traces by a factor of
N times, where N is the repeat times shown in Table II. We
also increase the density of read requests per trace accord-
ing to the data popularity of the ten traces shown in Fig. 4.

TABLE II
CHARACTERISTICS AND PROCESSING METHODS OF WORKLOADS

In addition, we utilize the number of repeated times for a
read request—RAF—to ensure each trace has a relatively sim-
ilar frequency of reading requests. We configure the number
of times an amplified trace is run (Repeated Times) to set a
relatively similar amount of data for the ten traces.

Comparison of Methods: We evaluate the performance of
Cocktail by comparing it with three different solutions. We
set the double write frontier method as a baseline solu-
tion. Besides, we evaluate our Cocktail against another two
disturbance management solutions redFTL and IPR [7], [9].

The double write frontier method makes use of write fron-
tiers to write user-write data and RR-write data to different
blocks. redFTL records the number of page reads by adding
one byte to the LPA of each page. Based on this extra
information, redFTL combines RR-write data with the block
with least read count to create read-balanced blocks when
performing RR. redFTL increases the RR threshold of read-
balanced blocks to twice the normal RR threshold by changing
the read voltage of read-balanced blocks, aiming to avoid
read-balanced blocks from second-time RR. When RR trig-
gers again in read-balanced blocks, the RR-write data will be
written to blocks whose RR threshold is five times the normal
RR threshold.

IPR strives to create read-balanced blocks by monitor-
blocks and IPR-blocks. Monitor-blocks keep monitoring the
read count of each page. When performing RR, if the read
count of a page is higher than the average read count, the
page will be rewritten to an IPR-block; otherwise, the page
will be written back to an ordinary block. Similar to redFTL,
IPR also increases the RR threshold of IPR-blocks to ten times
the normal RR threshold by changing the read voltage of these
blocks. Monitor-blocks account for 10% of the capacity, and
IPR-blocks account for 15% of the capacity.

Our Cocktail is distinctly different from redFTL and IPR in
that Cocktail preserves a small portion of each block for future
combination with hot RR-write data to create read-balanced
blocks, thereby distributing hot RR-write data across a wide
range of blocks. Unlike redFTL and IPR that may centralize
all hot data in a small number of blocks, Cocktail is conducive
to reducing the number of RRs. Such a reduction cuts back
not only SSD response time but also the number of erase
operations. It is well known that the time required for a read
request mainly lies in the read speed of the storage medium.
Reducing the number of block-erases can minimize the impact
of write amplification on user requests. Besides, alleviating
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Fig. 10. Normalized RR count.

read disturbance can also reduce the number of ECC retry
times, which further improves I/O efficiency.

The experimental results can be found in the following three
sections. In particular, we evaluate Cocktail in terms of three
aspects: 1) RR count; 2) response time of SSD; and 3) write
amplification and GC count.

A. RR Count

In this group of experiments, we focus on the impact of
Cocktail on service life of SSD. We compare Cocktail with
the baseline solution (i.e., double write frontier), redFTL, and
IPR under ten workload conditions in terms of RR count.
Because the experimental results of the four algorithms scatter
on different scales. We normalize RR count results to a com-
mon scale by setting the baseline solution’s results to 1 and
proportionally scale the results of redFTL, IPR, and Cocktail.

Fig. 10 plots the normalized RR counts of the four algo-
rithms under ten workload conditions. Compared to the other
three algorithms, Cocktail performs better under many work-
load conditions. Under workload condition usr1, Cocktail
reduces the RR count of the other three solutions by more than
80%. The superiority of Cocktail is expected. The centralized
placement strategy for RR-write data used by existing solu-
tions such as redFTL and IPR may trigger a second RR. Unlike
these solutions, Cocktail judiciously distributes RR-write data
across a broad range of blocks by combing RR-write data with
user-write data, thereby remarkably avoiding occurrences of
the second RRs. Moreover, the decentralized RR-write-data
placement strategy in Cocktail also reduces the overall block
reads. But in the scenario of only read requests, Cocktail does
not have enough user-write data to combine with RR-write
data. While Cocktail has a mechanism for dealing with this
scenario (case 2 in Section IV-D), although the effect is not as
dramatic as it normally does. Cocktail outperforms the base-
line and redFTL except IPR when dealing with the msr_web
trace and websearch trace.

In short, Cocktail reduces not only the chance of the second
RR caused by the centralized placement but also the overall
block reads. These salient features enable Cocktail to reduce
the average RR count of the baseline solution, redFTL, and
IPR by 40.77%, 36.06%, and 21.75%, respectively.

B. Response Time

We pay attention to the performance of Cocktail in terms of
SSD response time. We examine the normalized response time

Fig. 11. Normalized average response time.

and 99-percentile to 100-percentile tail latency of Cocktail,
the baseline solution, redFTL, and IPR under the ten work-
load conditions. A read frequently incurs multiple retry steps.
Under a 3-month data retention period for zero P/E cycles (i.e.,
at the beginning of SSD lifetime), every read requires more
than three retry steps [1]. Based on this finding, we retry ECC
once when a block’s read count reaches 70% of the RR thresh-
old, two times when it reaches 80%, and three times when
it reaches 90%. Fig. 11 depicts the experimental results. The
darker part of the histograms represents the average ECC-retry
time per request. It shows that in cases alibaba_206, systor1,
and systor2, the average ECC-retry time accounts for nearly
half of the average response time.

Figs. 11 and 12 show the average response time and 99-
percentile to 100-percentile tail latency of the four methods
on the ten workloads. It indicates that Cocktail is superior to
the baseline solution, redFTL, and IPR in terms of average
response time and tail latency under ali206, ali188, msr_web
and nexus5. When testing on traces ads1, ads2, systor1, and
systor2, Cocktail has no obvious advantage over the other
three methods. These observations are reasonable. This is
because SSDs have to transfer data from reclaimed block to
other blocks during RR. SSD’s endeavor to ensure the atom-
icity of operations causes an inevitably delay on subsequent
read requests. The delay becomes more serious when working
under read-intensive conditions. Unlike Cocktail, the tradi-
tional solutions fail to reduce RR count, which leads to the
longer response times under other workload conditions except
websearch. Under websearch, IPR’s performance is slightly
better than Cocktail.

C. Write Amplification and GC Count

Now, we are at the position of evaluating the performance of
Cocktail in terms of write amplification and GC count. Again,
we compare Cocktail with the other three solutions under the
ten workload conditions. The experiment results plotted in
Figs. 13 and 14 unveil that although Cocktail mainly focuses
on read-disturb management rather than GC optimization, yet
Cocktail reduces write amplification of erase operations and
the number of GCs. Figs. 13 and 14 also list the block-erase
counts of the four schemes with respect to the ten different
traces.

An important goal of GC algorithms is to reduce write
amplification. For this reason, a number of GC algorithms
have been proposed to archive this goal. For example, the
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(f) (g) (h) (i) (j)

Fig. 12. Worst case latency of ten different traces. (a) ads1. (b) ads2. (c) ali206. (d) ali188. (e) msr_web. (f) sys1. (g) sys2. (h) nexus5. (i) usr1. (j) websearch.

Fig. 13. Normalized GC count.

Fig. 14. Normalized write amplification.

FIFO GC algorithm [17], which selects blocks in a cyclic
manner, is easy to implement but delivers the worst write
amplification. Greedy GC algorithm [17] that selects the block
containing the least number of valid pages is designed to min-
imize write amplification in uniform random write scenarios.
Windowed GC algorithm [16] is devised to combine the sim-
plicity of the FIFO algorithm with Greedy algorithm’s the
superior performance. Van Houdt [27] developed d-choices
GC algorithm, aiming to select the block with the least num-
ber of valid pages from a set of d randomly chosen blocks.
Since even for moderate d values (e.g., d = 10), d-choices GC
algorithm performs slightly worse than the Greedy algorithm,
we adopt the Greedy algorithm in this study to effectively
reduce write amplification.

Fig. 13 depicts the GC count of the four compared solutions.
It can be seen from Fig. 13 that Cocktail surpasses the other
three solutions and generates fewer GCs in different work-
loads. For instance, the number of GCs triggered by Cocktail
is less than that of the baseline, redFTL, and IPR by an average
of 12.29%, 16.21%, and 22.40%, respectively. When testing
in workload usr1 IPR delivers the worst performance, causing
the highest GC count. The main cause is that IPR increases
its read threshold at the expense of partial block space and
only used to store hot read data. As a result, when writing the
same amount of data, IPR triggers more GCs because of its
small space.

Fig. 14 shows the write amplification of the four solu-
tions. It demonstrates that Cocktail outmatches the other three
solutions: the average number of transferred pages during era-
sure in Cocktail is less than that in other methods. Specify,
Cocktail reduces the write amplification by 49.57%, 45.99%,
and 29.93% compared with the baseline, redFTL, and IPR,
respectively.

In a nutshell, Cocktail effectively reduces write amplifica-
tion by slashing the number of RRs. In particular, most of the
data in a block that causes RR is hot data. These hot data
remain valid in their blocks until their blocks are reclaimed,
which causes more data to be transferred when performing
block erase operations. In other words, the write amplifica-
tion caused by RR is more severe than that caused by GC.
Therefore, our Cocktail advocates that reducing the number
of RRs can substantially alleviate write amplification.

VI. RELATED WORK

A lot of attention has been paid to solving the read-disturb
issue in SSDs. For example, Zambelli et al. [28] illustrated
different behaviors of TLC NAND flash-based SSDs under
uniform and concentrated read-disturb conditions. These find-
ings demonstrate the impacts of workload models on the
reliability of enterprise SSDs. Li et al. [29] built a model
to evaluate the read-disturb level of blocks, which facili-
ties migrating frequently read data to read-tolerant blocks.
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In addition, Li et al. [29] and Kang et al. [30] introduced
reinforcement learning into RR and GC scheduling, aiming to
perform data move and erase operations in the time intervals
between I/O requests. Zhao et al. [31] proposed a data real-
location scheme that distributes the data of RR blocks across
different blocks, thereby reducing read refresh operations and
raw bit errors. The rationale behind Zhao’s scheme is to make
each block reach its own optimal read count by considering
PE cycles and block read counts. In short, prior studies strive
to solve the read-disturb problem mainly from two aspects:
1) firmware-level correction and 2) read-disturb management.

Firmware-Level Correction: Many researchers attempt to
untangle the problem through internal correction methods
at the firmware level. Researchers have conducted a series
of firmware-level experiments, showing that the read-disturb
effect has a significant adverse impact on the SSD erase cycle,
data retention time, read response time, etc. [32], [33]. To
this end, Kang et al. [32] proposed a firmware-level tech-
nique that adds an extra virtual unit to each unit NAND string,
aiming to reduce the read disturbance during read operations.
Though this technique can mitigate the read-disturb problem
to some extent, the costly NAND flash modifications constrain
its applicability to a narrow range. Some other studies tried to
mitigate the read-disturb problem with a strategy of reducing
the pass-through voltage [7], [33]. However, this pass-through-
voltage-reducing is premised on a superior error correction
capability of ECC and obtains read-disturb alleviation at the
expense of increasing page errors. Specifically, reading pages
with the normal pass-through voltage leads to few page errors.
As the pass-through voltage reduces, the read-disturb problem
is alleviated, however, the number of page errors increases
considerably. In addition to this increasing number of page
errors, the pass-through-voltage-reducing strategy also relies
heavily on a powerful ECC engine, which may not always be
available. Moreover, the pass-through-voltage-reducing strat-
egy is conflicted with other optimization objectives, such as
improving SSD reliability and reducing SSD read latency [1].
In short, it is difficult to adopt the pass-through-voltage-
reducing strategy merely to alleviate the read-disturb problem
in the actual environment.

Device-Level Management: Since firmware-level correction
methods come with some negative impacts on other aspects
of SSDs, recent researchers embarked on read-disturb manage-
ment techniques to reduce the number of triggered RRs. For
example, Liu et al. [8] proposed a decentralized read-disturb
management method that distributes write-back data of RRs to
different blocks, striving to prevent hot read pages of a block
from being written back to the same block. Unfortunately, Liu
falls short on considering hot read pages from other blocks,
so the likelihood of aggregation of hot read pages is still very
high. Ha et al. [7], [34] developed a read-disturb manage-
ment technique called redFTL, which increases the maximum
readable count of some blocks, and then writes the RR data
back into these blocks. Wu et al. [9] built a read-disturb man-
agement approach named IPR that increases the maximum
readable count of blocks at the cost of some block capac-
ity. Similar to redFTL, IPR also writes all RR data back
into a small number of changed blocks. Although these two

similar methods have relatively good results in some applica-
tion scenarios, they are not very adaptable and versatile and
perform poorly in many scenarios. The main cause for their
poor performance is that making the hot-read-page prediction
based on the number of reads of read-reclaimed pages has
low accuracy. Therefore, hot read pages in these two methods
are still centralized in a small number of blocks, triggering
second-time RRs and giving birth to a high number of page
reads.

VII. CONCLUSION

In this article, we proposed an efficient and low-cost
read-disturb management technique called Cocktail. Cocktail
reduces the number of RRs, aiming to alleviate read-disturb
effects. In particular, Cocktail extracts cold data of user
requests and combines it with the write-back data caused by
RR. Cocktail distributes hot data in a wide range of blocks,
avoiding the centralization of hot data in a small number of
blocks.

To quantitatively evaluate the performance of Cocktail,
we conducted extensive experiments under ten real-world
workload conditions. We compared Cocktail with three other
schemes baseline, redFTL, and IPR in terms of SSD service
life, SSD response time, write amplification, and the num-
ber of GCs. The experimental results showed that Cocktail
outperforms the three compared schemes. In particular, com-
pared with the three alternative schemes, Cocktail reduces the
number of RRs, the average response time, the 99-percentile
tail latency, and the number of GCs by an average of 40.77%,
10.82%, 5.40%, and 12.29%, respectively. Cocktail also alle-
viates the write amplification of the three alternative schemes
by an average of 49.57%.
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