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Abstract

This work presents an integrated solution for head orientation estimation, which is a critical component for applications
of virtual and augmented reality systems. The proposed solution builds upon the measurements from the inertial sensors
and magnetometer added to an instrumented helmet, and an orientation estimation algorithm is developed to mitigate
the effect of bias introduced by noise in the gyroscope signal. Convolutional Neural Network (CNN) techniques are
introduced to develop a dynamic orientation estimation algorithm with a structure motivated by complementary filters
and trained on data collected to represent a wide range of head motion profiles. The proposed orientation estimation
method is evaluated experimentally and compared to both learning and non-learning-based orientation estimation algo-
rithms found in the literature for comparable applications. Test results support the advantage of the proposed CNN-
based solution, particularly for motion profiles with high acceleration disturbance that are characteristic of head motion.
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Introduction uncertain environments. Recently, advances in micro-
electromechanical systems (MEMS) have led to the
development of miniaturized Inertial Measurement
Units (IMUs), and their accessibility and packaging
have made them a popular solution for orientation esti-
mation systems in VR and AR applications with high
mobility requirement.** A standard 9-axis IMU pro-
vides measurements of the magnetic field, angular velo-
city, and acceleration from the integrated
magnetometer, gyroscope and accelerometer sensors,
respectively.

Measurement noise represents a recurring challenge
in all sensor implementations, and IMUs are also sus-
ceptible to these external disturbances. For example,
measurement noise from a gyroscope can accumulate
to cause a drift in the orientation estimate away from

Accurate measurement of head orientation plays a crit-
ical role in providing seamless experiences in virtual
reality (VR) and augmented reality (AR) applications.'
Accurate tracking of head motion and orientation is
needed in VR and AR systems to correctly place digital
objects relative to the real physical world. For example,
AR technology incorporated to the equipment for first
responders, such as goggles and helmets, can be used to
deliver safety-critical information in real-time, with
digital markers that are anchored to physical objects in
a person’s field of vision. Head orientation data is also
used in health and safety applications, which include
the monitoring of fatigue levels and other mental/phys-
ical changes in workers that may lead to accidents and
injuries.” The study presented in the current paper is
motivated by the goal of achieving accurate and precise
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the true values. Solutions to mitigate this long-standing
challenge in orientation estimation include methods
that leverage multiple vector measurements in the iner-
tial and the body frame to estimate orientation.’ In the
case of satellites, these vector measurements can be the
direction vectors of the sun and other stars,® while in
robotics and consumer electronics the gravity vector
and magnetic north vector may be used.”® By combin-
ing and fusing two or more estimates of orientation, the
objective of these solutions is to mitigate the sensitivity
to noise of individual sensor units and to provide a
more accurate estimation of orientation. A small sam-
ple of the different orientation estimation algorithms
found in the literature is discussed in the next section.

Related works

Orientation estimation algorithms can be broadly
divided into two groups based on whether learning-
based approaches were used during their design or the
design was purely based on a model-based approach.

Non-learning-based methods

Non-learning-based orientation estimation methods
can be divided into two categories: Bayes filter and
complementary filter. Bayes filter leverages the dynamic
model of the moving rigid body and the probability
characteristics of the measurement noise to iteratively
calculate the most likely orientation. The simplest form
of the Bayes filter under a linear observable dynamic
model and additive Gaussian measurement noise is the
Kalman Filter,” while the Extended Kalman Filter
(EKF) and the Unscented Kalman Filter (UKF)'? offer
approximated solutions to applications with nonlinear
models. Error State Kalman Filter (ESKF) offers an
improved alternative to EKF in certain applications by
estimating the expected error in orientation calculation.
In particular, ESKF has been shown to provide better
results than EKF in estimating aircraft attitude'' and
mobile robot actuator orientation.'?

Complementary filters determine the orientation of
a rigid body by combining through a weighted average
multiple orientation estimates obtained from different
observations.'? In an IMU, these observations may ori-
ginate from the gyroscope’s angular velocity measure-
ment, or vector measurements of gravity and magnetic
field. TRIAD,” QUEST,” Fast Optimal Matrix
Algorithm (FOAM),'"* Optimal Linear Attitude
Estimator (OLAE),"> Fast Linear Attitude Estimator
(FLAE)'® are some examples of orientation estimation
solutions from vector measurements. The optimal
weights combining the observations in a complemen-
tary filter are selected heuristically based on the
observed noise levels and characteristics on the input
measurements.'>!” Lower weights are assigned to noisy
measurements within the time or frequency ranges
where the noise observations are predominant, while

the remaining input weights are adjusted to maintain
the weighted average of the filter output.

Learning-based methods

Learning-based approaches have been used to
improve the performance of traditional orientation
estimation filters. Support Vector Regression (SVR)'®
has been studied in combination with Kalman filters
in Yan et al.'” to detect the properties of motion pro-
files and tune the filter parameters for best perfor-
mance, while®®?? use Recurrent Neural Network
(RNN) for the filter tuning process. Artificial Neural
Network (ANN) is considered in Chiang et al.?® for
smoothing the output of Kalman filters and improv-
ing the accuracy of the orientation estimate.

In more recent works, neural networks have been
used to identify black box models for end-to-end orien-
tation estimation. It is shown in Weberet al.** that these
neural network models based on Recurrent Neural
Networks (RNNs) and Temporal Convolutional
Networks (TCNs) can outperform non-learning-based
methods in some applications. A simple Convolutional
Neural Network (CNN) model®® with reduced number
of layers and fast training time is evaluated for applica-
tions with quadcopters in Brossard et al.,>® where the
model is used to denoise gyroscope measurements. A
Long Short Term Memory (LSTM) based model is
proposed in Esfahani et al.?’ for estimating changes in
quadcopter orientation, where the model uses gyro-
scope measurements to estimate the change in orienta-
tion at a constant sampling time. For applications
where the sampling rates are varying over time,
Esfahani et al.?® proposes a modified LSTM-based
model that incorporates the sampling rate information
as an input to the model. Bidirectional-LSTM (Bi-
LSTM), which extracts information from the training
data in both the forward and backward direction, is
considered for vehicle odometry applications in Zhao
et al.,” where it is shown to improve the estimation
results when compared to the standard LSTM. Table 1
summarizes some of these recent works on learning-
based methods for orientation estimation and compares
them with our proposed method.

While the integration of machine learning models to
orientation estimation methods has been shown to
improve accuracy in many application domains, the
capabilities of these solutions in applications related to
head orientation estimation remain largely unknown.
Previous works on head orientation estimation using
neural networks, such as,*>*! have mainly focused on
solutions that rely on video and images data captured
by carefully configured cameras, which limit their
applicability in situations requiring high mobility and
outdoor usage. Head orientation in VR and AR appli-
cations also follow motion profiles that are unique to
the activities during which the head movement is mea-
sured, and the availability of sensor data varies from
comparable applications in which IMUs are used for
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Table |. Machine learning-based methods for orientation
estimation.

Paper Method Application Type
Proposed CNN Head O* E
Chiang et al. ANN Vehicle N® Al
Yan et al.'” SVR Pedestrian N A
Wagstaff and Kelly?' LSTM Pedestrian N E
Brossard et al.? LSTM Mobile robot N A
Esfahani et al.?® LSTM Quadcopter O E
Esfahani et al.”’ LSTM Quadcopter N E
Weber et al.>* RNN Quadcopter O E
Brossard et al.% CNN Quadcopter O E
Herath et al.* LSTM Pedestrian N E
Zhao et al.” Bi-LSTM  Vehicle N E

?Orientation is estimated.
bNavigation: Orientation and position are estimated.
“End-to-end: Standalone machine learning model is used.

dAugmented: Machine learning is used to enhance non-learning-based
methods.

attitude estimation. For example, much of the previous
works with neural network models have been trained
and evaluated using IMU datasets such as EuRoC??
and TUM VI,* which are catered to quadcopter flight
maneuvers and include motion profiles with lower peak
angular velocities than the head motions we consider in
our current work. Additionally, neural network models
intended for quadcopter applications do not use mag-
netometer measurements due to the high level of noise
that is injected by the motors. This noise can lead to
greater drift and error in estimation of yaw angle.

Contributions of this work

Driven by the above-described need for learning-based
solutions that can provide an accurate estimation of
head orientation, this paper presents a new CNN-based
solution that dynamically estimates head orientation
from the 9-axis IMU measurements of an instrumented
helmet. For the design and evaluation of our proposed
solution, a new IMU dataset specific to head motion
profiles is collected as part of this study. The new
dataset is leveraged in the design of the proposed esti-
mation solution to achieve a more accurate estimate of
orientation in applications with high angular velocities
and accelerations. A comprehensive evaluation of the
proposed solution is provided in this work, including
performance comparisons to benchmarks set by
non-learning and learning-based algorithms in the liter-
ature.”®?” The main contributions of this paper are
then summarized as follows.

e A new method for estimating head orientation is
proposed, which is inspired by complementary fil-
ters, and incorporates a CNN model that dynami-
cally estimates orientation from the 9-axis
measurements of IMUs.

Figure I. Helmet with vectorNav IMU and markers for the
motion capture system.

e A comprehensive evaluation of the proposed solu-
tion is presented here, and its performance in esti-
mating head orientation is compared to
benchmarks set by established learning and non-
learning solutions found in the literature.

e The HELMET dataset is introduced, which is
intended to capture how human head moves while
performing various physical activities. Test results
are presented to identify the unique characteristics
observed in the head motion data, and to verify the
effect that these characteristics have on the expected
performance of the orientation estimation methods.

Problem description

The objective of this work is to design an integrated
solution that can accurately estimate head orientation.
The measurements needed for the estimation come
from an IMU with a magnetometer rigidly attached to
a helmet as shown in Figure 1. The aim is to determine
the orientation of the helmet, which is measured by the
rotation of the body frame B (Figure 2) relative to the
inertial frame 7 (Figure 3), and in the presence of exter-
nal disturbances and sensor noise.

The orientation of the helmet can be obtained from
the gyroscope sensor of the IMU, which provides mea-
surements of angular velocities about the body frame.
By integrating the gyroscope’s angular velocity mea-
surements @, over time ¢, an estimate of orientation ¢, ,
at time 7 can be obtained. Another estimate of orienta-
tion gy, can be obtained by from the combined vector
i, = [a, m,] of accelerometer 4, and magnetometer
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Figure 2. The helmet coordinate frame B. Red is the x-axis,
Green is the y-axis and Blue is the z-axis.

Figure 3. Fixed inertial coordinate frame shown relative to the
test floor. A motion capture system consisting of the ground
station and infra-red cameras is used to record the orientation
of the helmet, which is used as the ground truth during training.

measurements 72, and using vector-based estimation
methods like QUEST.?

As the orientation estimate g, , is susceptible to high
bias error for noisy gyroscope measurements, while
high-frequency noise and disturbances in the acceler-
ometers and magnetometers measurements propagate
to the orientation estimate gv ;, a complementary filter
as shown in Figure 4 can be used to combine the two
estimates of orientation to improve accuracy,

qe,t = Ao, ¢ + (1 - a)Qv,z- (1)

The properties of the combined orientation estimate
q..: depend on the selection of «, which can be static or

Ut —{ Quest J4>(1 —a
‘e \

_____ ~o

=noise+disturbance

Figure 4. Schematic illustration of the complementary filter.
The quaternion obtained from integrating the gyroscope
measurements contains high bias, while the quaternion from
QUEST contains disturbances and noise. The two are combined
to decrease noise and bias.

noise high bias .
! ' lowI bias
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Figure 5. Schematic illustration of the proposed method.
Convolutional Neural Network is used to remove bias from
quaternion calculated by integrating gyroscope measurements.

time-varying. The function « is commonly selected
heuristically based on the motion profile of the target
body, as well as the levels of noise and disturbances
introduced to the sensor measurements.

Filter tuning through machine learning

One way to automate the selection of the function « in
complementary filters (1) is to use machine learning.
The value of such @ may be determined as a function of
the estimated rotation quaternions within a local win-
dow of size T as,

a(l) = g(qw,la ) qw,t—T: QV,ta T QV,t—T)» (2)

where g(.) can be identified using machine learning
methods such as CNN. Further integration of machine
learning can replace the QUEST algorithm to find the
rotation quaternion qv,,, and instead feed the acceler-
ometer and magnetometer measurements directly to
the CNN model. Therefore, a proposed CNN architec-
ture as shown in Figure 5 can combine the quaternions
obtained from the gyroscope with accelerometer and
magnetometer measurements to estimate the rotation
quaternion corresponding to the current head orienta-
tion as,

q[ :,ﬂqw,fa'"7q0),[7T9ﬂla"'ai’ll7T)9 (3)

where f{.) is the function implemented by the CNN.
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Neural network structure

CNN is used for the network architecture in Figure 5 as
it results in a less complex network compared to RNN
and LSTM, which facilitates training and implementa-
tion in practical applications. The sliding convolution
filters of the CNN also prevent the overfitting data in
the identification of the trained model (3) by taking
advantage of the time structure of the input data and
promoting connections between input data samples that
are closer in time.

As the performance of neural networks is highly
dependent on the hyper-parameters of the model, dif-
ferent combinations of hyper-parameters were evalu-
ated in this study for the application of interest. Some
of the hyper-parameters of the neural network like
learning rate, learning rate drop factor, number of neu-
rons in each layer, and depth of the network were
selected using Bayesian optimization,** which is a prob-
abilistic estimation method that models the hyper-
parameter function using Gaussian processes and then
finds the minimum of the estimated functions. Batch
normalization was used between linear layers, which
improves the trainability of deep neural networks with-
out overfitting the resulting model to the training
data.®> Other hyper-parameters of the neural network
such as the activation functions between layers, the loss
function, and the optimizer were selected by trial-and-
error as to be discussed in the next section. We also
used data augmentation to avoid over-fitting the neural
network on the training data.

Activation functions

Activation functions are used between linear layers to
introduce nonlinearities to the neural network model.
The accuracy and generalizability of the neural net-
work model depend on the activation functions used.
Sigmoid, Gaussian Error Linear Unit (GELU), recti-
fied linear (ReLU) and tanh are three of the most com-
monly used activation functions.*® Recently, activation
functions with learnable parameters like Parametric
Rectified Linear Unit (PReLU) have achieved better
results in different domains.>’ As the output of the
CNN in the current application is in quaternion with
elements that are bounded by [—1, 1], the tanh activa-
tion function is an intuitive choice for the last layer.
Different combinations of activation functions were
evaluated for the remaining layers to achieve the best
estimation performance, and the corresponding test
results are summarized in Section 5.

Loss function

The loss function is another hyper-parameter that
determines the performance of neural networks. In
the current application, the loss function quantifies
the closeness of the rotation quaternion estimated by
the CNN model to the quaternion corresponding to

the true orientation. In many artificial neural network
applications, mean square loss (MSL) is an effective
loss function, but for the current model MSL fails to
take into account the special structure of the rotation
quaternion and it was found to be inadequate. On the
other hand, Quaternion Angle Error (QAE)*® has
been shown to provide a more reliable quantification
of the closeness between two quaternions, and it is
broadly used to evaluate the accuracy of attitude esti-
mation algorithms. Considering rotation quaternions
as 4-dimensional unit vectors, QAE is calculated as

0. = cos~ ' (2(¢"g)* — 1), (4)

where ¢ is the true rotation quaternion and ¢ is the esti-
mated rotation quaternion. It is noted that 6, is zero
when the two rotation quaternions are equal, and its
magnitude increases with the angle between the
quaternions.

A simpler approximation of the QAE can be
obtained by noting that the angle between two unit vec-
tors ¢ and ¢ is given by cos™! (¢'§), which quantifies
the angular separation between the vectors. Therefore,
a loss function L may be defined as,

L0 = cos™ (479 (5)

for a pair of estimated rotation quaternions ¢ and the
corresponding true rotation quaternion ¢. The gradient
of the above function grows to infinity as the vector
product approaches one (e.g. for parallel and anti-
parallel quaternions).”* To avoid this, the first or
second-order Taylor approximations of the inverse
cosine function, given as

cos ! (x)=7/2 — x, (6)

and

cos ! (x)=m/2 — x — x7/6, (7)

may be used to implement the loss function (5).

The proximity of two rotation quaternions can also
be quantified by the quaternion product. The product
of a quaternion and its conjugate is equal to the unit
quaternion, and thus alternative loss functions quanti-
fying the difference between a pair of estimated and
true rotation quaternions can be defined as

LP=lgoq—[1 0 0 0], (8)

where | e | is the £; vector norm and ® is the quater-
nion product operator, or using the £, vector norm
e[l as

L= |lg®g—[1 0 0 0]"|. (9
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Let LE’;, be the loss of the i sample of the estimated
quaternion calculated using the loss function LY as
defined in (5), (8), or (9). The total loss corresponding
to N quaternion extimate samples is defined in the cur-

rent application as,

(10)

N

i=1

or alternatively by

Combinations of the loss functions (5), (8), (9) and the
total loss (10), (11), are implemented in training of the
CNN model for the current application, and a compari-
son of the trained models’ performances is presented in
Section 5.

Optimizer

Optimizers are algorithms used in the training of neural
networks to aid in the selection of model parameters
that minimize the values of the loss functions. A combi-
nation of RAdam®® and Lookahead* was used to train
the proposed neural network model. Both RAdam and
Lookahead methods have been proven to be effective
at optimizing the learning process in machine learning
methods, including in applications of orientation
estimation.”*

Data augmentation

Data augmentation*! is a technique used in machine
learning to significantly increase the amount of avail-
able training data. The augmented data also acts as a
regularizer and helps to avoid overfitting the trained
model. For orientation estimation, some methods of
data augmentation are adding Gaussian noise, adding
static bias, and rotating the IMU and magnetic mea-
surements.”*?® The first method is used commonly in
machine learning applications and involves adding
Gaussian noise to the input data which helps avoid
overfitting by forcing the neural network to learn a
more general relation between the input and the output
training data. Static bias in the accelerometer and mag-
netometer measurements can appear due to different
operating conditions of the IMU like temperature and
calibration errors. As this should not cause the orienta-
tion estimate to be affected, we can generate acceler-
ometer and magnetometer data with different biases to
improve the robustness of the neural network to sensor
bias. Similarly, rotating the IMU measurements and
the corresponding ground truth orientation provides
additional data for training.

The CNN-based model proposed in Figure 5
requires an initial quaternion value for the integration
step. This initial value of the integrator is calculated
using the QUEST algorithm, which is sensitive to accel-
eration and magnetic disturbances. As part of the data
augmentation process, we can add small variations to
this initial quaternion estimate to account for these
type of disturbances.

Experimental results

The training and evaluation of the head orientation
estimation method proposed in Section 4 are presented
here. The CNN model is trained using a dataset of head
motion profiles collected as part of this study, and dif-
ferent combinations of training hyper-parameters are
evaluated. The performance of the proposed CNN
model is also compared to established learning and
non-learning-based algorithms proposed in the litera-
ture for orientation estimation using 9-axis IMUs, such
as the ESKF with magnetic angular rate update** and
complementary filter with gyroscope bias tracking and
disturbance estimation (to be referred as Mahony
et al.)."® We also compared our method to the CNN-
based signal denoising method in Brossard et al.*

Datasets

In order to train and evaluate the CNN model with
motion profiles that are relevant to head motion, a
dataset (HELMET) of IMU measurements was col-
lected using the instrumented helmet in Figure 1. The
inertial and magnetic data is collected using a
VectorNav IMU module,*® which contains a 3-axis
accelerometer, a 3-axis gyroscope, and a 3-axis magnet-
ometer. The VectorNav module is rigidly attached to
the helmet, which also has eight reflective markers dis-
tributed on its outer surface as shown in Figure 1. The
position of the markers allows an OptiTrack infrared
motion capture system** shown in Figure 3 to track the
motion and orientation of the helmet with high preci-
sion. The measured helmet orientation by the
OptiTrack system defines the true rotation between the
helmet frame in Figure 2 and the inertial frame in
Figure 3. The inertial (acceleration, angular velocity)
and magnetic data collected from the IMU serve as the
input to the CNN model during training and testing,
and the orientation determined by the motion capture
system is used as the ground truth.

Twelve sets of motion profile data were collected for
the dataset, each of which is 300 s in length and sampled
at 250 Hz. The helmet motion data was collected while
performing different dynamic activities to cover a wide
range of possible motions. Sets numbered 1-4 were
recorded for head movements in a sitting position, sets
5-8 were recorded while walking at a slow and medium
pace and sets 9—12 were recorded while running with
sudden stops. An example of head motion trajectories
captured during the recording of the data sets is given
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Figure 6. Examples of motion path capture by the OptiTrack
system during the recording of the HELMET dataset. Figure
shows the trajectories for the first 100s of Sets 2 (top-left), 7
(top-right), 9 (bottom left) and 12 (bottom right).
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Figure 7. Inertial properties of the HELMET dataset. Top Left:
Variance in acceleration measurements, Top Right: Maximum
angular velocity along x-axis, Middle Left: Maximum angular
velocity along y-axis, Middle Right: Maximum angular velocity
along z-axis, Bottom Left: Mean angular velocity magnitude,
Bottom Left: Maximum angular velocity magnitude.

in Figure 6. The variance of the accelerometer measure-
ment, and maximum and mean values of the gyroscope
measurements are shown in Figure 7. Variance in the
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Figure 8. Comparison of EuRoC, TUM VI, and HELMET
datasets. Top left: variance in acceleration; top right: maximum
angular velocity along the x-axis, middle left: maximum angular
velocity along the y-axis; middle right: maximum angular velocity
along the z-axis; bottom left: mean angular velocity magnitude;
bottom right: maximum angular velocity magnitude.

accelerometer data quantifies the acceleration due to
non-gravitational forces on the helmet, which act as a
disturbance during orientation estimation. Sets 1-4
have the lowest variance, while sets 9-12 have the high-
est variance caused by high acceleration forces during
the sprints and the sudden stops. The sets also have dif-
ferent angular velocity profiles. A higher angular velo-
city results in a greater error during the integration
step.

Compared to common IMU datasets considered in
the literature that are based on quadcopter flight
motion, such as EuRoC** and TUM VL* the
HELMET dataset demonstrates that head motion is
subject to higher angular velocities and accelerations.
This is illustrated in Figure 8, which compares the
angular velocity and acceleration data between
EuRoC, TUM VI, and HELMET. Compared to the
quadcopter-based datasets, the HELMET dataset has a
higher yaw angular rate, which can result in high bias
in the estimation and may require the use of magnet-
ometer measurements for correcting the bias error. It is
also noted that most neural network models in the liter-
ature developed using the EuRoC and TUM VI data-
sets do not use magnetometer measurements as input,
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Table 2. Activation layer and loss. Table 3. Loss function and QAE.

No. Activation QAE No. Total Loss Loss Function Train QAE Test QAE
First Hidden Last | L, LM, (6) 0.3278 0.3542

2 L, LM, (6) 0.4634 0.4703

| tanh tanh tanh 021678 3 L, L0, (7) 0.466| 0.4844

3 PReLU PReLU tanh 0.19255 L, L@ 06163 06325

4 GELU GELU GELU 0.17178 5 L L) 02369 02545

5 GELU GELU tanh 0.16484 8 L2 L(3) 0.2557 0.2669

as magnetic field measurements are not reliable around

the noise generated. by the propeller motors. Therefore, qwa—» | \ D D (D G J—

models that are built on only the gyroscope and accel- : L:L”e‘;tr layer layer Layer Layer | .'P¥

erometer signals experience a more pronounced drift in qu,t —{ Layer - g 146 L 342 L ;1 L *s::;il: |

their estimate of yaw rotation due to the integration of =T 80 2 4 16 S

the gyroscope noise. The HELMET dataset has been w - OV GELL(GEWU (GEWU (GEWU | tanh

made available online at.**

From the 12 experiments recorded in the HELMET
dataset, 12 individual CNN model samples can be
trained and evaluated using the leave-one-out cross-
validation method. This method splits the set of
recorded motion profile data into 11 training sets and
one testing set. A CNN model is then trained on the
training set data and tested on the one remaining set
left out. This procedure is repeated until every set has
been included in the testing set. The leave-one-out
cross-validation method is used in the training of CNN
models for the performance analysis to be discussed in
Section 5.3. This procedure is time-consuming but pro-
vides better view of the generalizability of the network.

Activation functions and loss

The HELMET data is used to train and evaluate the
proposed CNN-based head orientation estimation solu-
tion. Different combinations of the activation functions
discussed in Section 4.2 were implemented for training
the CNN model, and the average QAE (4) of the esti-
mate from the testing data is presented in Table 2. As
described in the table, all the hidden layers use the same
activation function, while the activation function for
the input and output layers were selected indepen-
dently. A lower QAE value represents a more accurate
estimation, and the best results were obtained with the
GELU activation function in the first and the hidden
layers and the tanh activation function in the output
layer. The results in Table 2 are compiled using sets 2,
5,9, and 12 from HELMET for testing and leaving the
rest for training. This distribution of the dataset
includes sets from different activities in the testing set
and the resulting testing error is more representative of
the expected error during deployment of the CNN
model.

The loss function, as discussed in Section 4.3, is
another hyper-parameter in training CNN models that
influence the accuracy of the learned orientation esti-
mation solution. A comparison of the average QAE for

Figure 9. Convolutional Neural Network architecture used
for orientation estimation. The parameters of the input and
output layer from top to bottom are the output layer size and
the activation function. The parameters of the CNN layer from
top to bottom are the filter size, the number of filters, the
dilation gap and the activation function.

models trained with different loss functions is presented
in Table 3. The small differences between Train QAE
and Test QAE for most of the tests in Table 3 show
that the trained CNN model is not over-fitted to the
training data and generalizes well for the testing data.
For the total loss we used either L; or L,. In several
applications, the loss L; is shown to be more robust to
outliers in the data compared to L,.*® This is also con-
firmed in our tests as L; produces less testing error
compared to L,. The lowest average QAE for the test-
ing data was obtained with L; as the total loss function
and L® as the sample loss function.

The remaining hyper-parameters for the training of
the CNN model, such as the dilation gap, filter size,
and number of hidden layers, were chosen using a com-
bination of Bayesian optimization®* and trial and error.
The final CNN model used for orientation estimation is
shown in Figure 9. The inputs of the neural network
are the accelerometer and magnetometer measurements
and the quaternions obtained by integrating the gyro-
scope measurements. The number of past measurement
samples used at the input were set to 32, which corre-
sponds to 0.128 s of inertial data. Each inertial measure-
ment is of size 10, which makes the total input features
to equal 320.

Performance analysis

The proposed CNN-based method (3) is compared to
ESKF and Mahony for estimating orientation of head
motion. For the 12 trained model samples obtained
from HELMET, Figure 10 presents the average QAE
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quantifying the error between the orientation estimate
and the true orientation. Overall, the CNN models
show lower average estimation error compared to
ESKF and Mahony. We can see that CNN models per-
form better for all motion profiles, except in Exp. 2
and 3, where the Mahony method slightly outperforms
the proposed method. The proposed CNN-based solu-
tion significantly outperforms ESKF and Mahony
when the magnitude of the acceleration disturbance is
high (Exp. 9-12).

We also compared our method with the CNN-based
method in Brossard et al.,>® which removes noise from
gyroscope data before integrating it to obtain orienta-
tion, and the error distributions are presented in
Figure 11. For the comparison, models are trained and
tested using both the EUROC dataset and the
HELMET dataset. It is observed that the proposed
method shows a lower average estimation error on the

Figure 12. Comparison of QAE of Mahony and CNN for Exp. 3.

HELMET dataset while the denoising-based method
performs better on the EUROC dataset. The contrast
in performance is due to the difference in the motion
profiles that the two datasets capture, and it illustrates
the importance of application-specific orientation esti-
mation solutions. The HELMET dataset captures
faster yaw rotations and higher acceleration distur-
bance than the quadcopter-based EUROC database,
and the estimation of the yaw angle in the proposed
solution benefits from the corrections introduced by
the accelerometer and magnetometer measurements.

Robustness

To improve the robustness of the CNN estimator we
used sensor data that contained different levels of accel-
eration disturbances for training. As a result, CNN per-
forms better than other techniques when disturbances
are high at the cost of losing some accuracy under nor-
mal conditions. This can be seen in Figure 10 where the
accuracy of CNN is greater for experiments with high
acceleration disturbance (Exp. 9, 10, 11, and 12), while
the average error from Mahony is slightly lower in Exp.
2 and 3. We can see in Figures 12 to 14 that, when the
acceleration disturbance is low the QAE of our CNN-
based solution is comparable to other methods, while
under high disturbance the QAE of the proposed solu-
tion is significantly lower.

Conclusion

An integrated solution for head orientation estimation
was presented in this work. The proposed solution used
the inertial and magnetometer measurements from an
instrumented helmet, and a CNN-based estimation
algorithm was developed motivated by complementary
filters. The CNN model was trained and evaluated on
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data collected to represent a wide range of head motion
profiles. The selection of hyper-parameters for the
CNN model was discussed in detail, and the final selec-
tion was optimized for the application considered in
this work.

The proposed orientation estimation method was
evaluated experimentally and compared to both learn-
ing and non-learning-based orientation estimation
algorithms found in the literature for comparable appli-
cations. Test results prove the advantages of the pro-
posed CNN-based solution, particularly for motion
profiles with high acceleration disturbance that are
characteristic of head motion.

It should be noted that the IMU measurements in
the HELMET dataset capture a wide range of accelera-
tion disturbances that are characteristic of head motion,

but the dataset does not consider variations in the mag-
netic disturbance level that may result from external
sources of magnetic fields. Therefore, models trained
from HELMET may display sensitivity to magnetic dis-
turbances. Another possible limitation of HELMET is
that the collected data is sampled at a constant sam-
pling rate, and the effect of variable sampling rate is not
considered in this study.

Future work is planned to evaluate the proposed
solution in situations with intermittent periods of high
magnetic disturbance, and investigate solutions to
enhance the robustness of the estimation under these
noisy magnetometer measurements. A possible solution
may involve multiple CNN models that are trained to
carry out the estimation of orientation at different lev-
els of electromagnetic disturbance. New sensing sys-
tems and related algorithms could also be investigated
to improve head orientation estimation and enable tra-
jectory estimation. Finally, variable sampling frequency
of the IMU measurements, and extensions of the pro-
posed solution to accommodate for this change in the
input data, are also to be included in future work.
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