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Abstract—Emerging persistent memory (PM) has the poten-
tial to substitute DRAM due to its near-DRAM performance
and durability similar to disks. However, hash tables designed
for DRAM cannot be directly adopted for PM. Moreover, prior
studies on hash tables using Optane DC PM modules (DCPMMs)
have shown suboptimal scalability and write performance due
to expensive lock-based concurrent control and massive data
movement caused by expansion. In this article, we propose
an opportunistic lock-free parallel multisplit extendible hash-
ing scheme (PMEH). First, PMEH achieves lock-free operations
for evenly distributed data by partitioning the hash table into
multiple zones and assigning each zone to one thread. Second,
PMEH employs an opportunistic lock-free parallel scheme to
effectively handle skewed data distribution, which maximizes the
utilization of lock-free operations by enabling dynamic switching
between lock-free and locking operations. Finally, PMEH uses
multisplit with gradual splitting, instead of 2-split, to reduce the
frequency of hash table expansion and, hence, reduce the data
movement during expansion. The experimental results under the
widely used YCSB workloads demonstrate that PMEH achieves
excellent scalability regardless of data distribution. Moreover,
PMEH significantly speeds up insertions by 1.44x-15.4x, and
deletion by 2.04x-18.07x compared to other state-of-the-art
hashing schemes. In addition, PMEH reduces at least 52% of
extra writes while providing instant recovery.

Index Terms—Data consistency, extendible hashing, instant
recovery, opportunistic lock-free, persistent memory (PM).

I. INTRODUCTION

MERGING persistent memory (PM) technologies, such
Eas phase change memory (PCM) [1], 3-D XPoint [2],
and spin-transfer torque memory (STT-RAM) [3], offer sev-
eral advantages, including byte addressability, high density,
near-zero standby power consumption, and instant recovery.
Therefore, PM has the potential to replace or supplement
DRAM in certain applications. In 2019, Intel released the first
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commercial PM product, the Intel Optane DC PM module
(DCPMM) [4]. DCPMM has three times the read latency and
one-third the read bandwidth compared to traditional DRAM,
but similar write latency and one-sixth the write bandwidth
[51, (61, [71, [8], [9], [10].

As emerging PM technologies change the DRAM-
dominated memory system, index structures originally
designed for DRAM should be revisited due to their sig-
nificant differences in characteristics. Consequently, many
indexing structures have been proposed for PM, such as trees
[11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21],
[22] and hash tables [23], [24], [25], [26], [27]. Trees have
an average lookup time complexity of O(log(N)), where N
is the size of the structure. Unlike tree-based index struc-
tures, hash tables, with a flat structure, have a constant-scale
lookup time complexity of O(1), making them widely used
as fundamental components in main memory databases [28],
[29], [30], [31], [32], [33] and in-memory key—value store
[34], [35], [36], [37], [38], [39], [40]. However, maintaining
hashing index structures in PM poses multiple nontrivial
challenges that are not yet solved by existing research.

A. Low Scalability for Expensive Lock-Based Overhead or
Inefficient Lock-Free Design

A scalable PM-based hashing scheme is necessary to
efficiently utilize the hardware resources and provide high
throughput since a server node may have tens of or even hun-
dreds of threads. However, prior studies have utilized expen-
sive locks for concurrent control. For instance, Level hash-
ing [24] employs a slot lock for read/write operations, while
dynamic hashing techniques like Dash [26] and CCEH [25]
use locks for buckets and slots, respectively. Moreover, during
directory expansion, both Dash and CCEH require a direc-
tory lock to update directory entries, further increasing the
overhead. However, even with a lock-free design, CLevel hash-
ing [27] demonstrates inferior scalability since it utilizes only a
single thread for background resizing, leading to a bottleneck.
Hence, existing hashing schemes suffer from low scalability.

B. Load Imbalance for Partition Design

Partition design, enabling each core to deal with different
data, is usually adopted to avoid the use of lock and reduce
the interthread interference [41], [42]. However, the partition
design has an inherent issue of potentially causing imbalanced
loads. Although hash functions can distribute inserted key—
value pairs into a nearly uniform distribution for skewed data
distribution, they cannot distribute key—value pairs evenly for
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search operations since these operations target specific posi-
tions. Therefore, hash tables with partition design can suffer
from load imbalance issues, leading to inferior performance
and scalability.

C. Excessive Data Movement During Resizing

Memory writes in PM will consume limited bandwidth
(1/6 of DRAM), as well as introduce extra memory barriers
and cache lines flushes overhead. Hence, reduce write mat-
ters in PM. Existing hashing tables [24], [25], [26], [27] have
taken measurements to reduce extra writes caused by dealing
with hash collisions (different keys are mapped into the same
location by hash functions), such as reducing the number of
kicking out and using spare buckets instead of linked lists to
store collision data. However, these hashing schemes do not
reduce extra writes caused by data movement during hash table
expansion.

To address these challenges, this article proposes PMEH, an
opportunistic lock-free parallel multisplit extendible hashing
index scheme designed for PM. Specifically, this article makes
the following contributions.

Partition Design in Hash Table: PMEH achieves lock-free
access to an extendible hash table through partitioning. In
an extendible hash table, two components: 1) the directory
and 2) the segment, are shared for thread-parallel access. To
eliminate segment locks, PMEH partitions the hash table into
different zones and binds each zone to a specific thread. This
partitioning approach eliminates segments as critical areas for
parallel access by multiple threads. Furthermore, on the basis
of partition, PMEH eliminates directory lock during directory
expansion by introducing an extra directory array that can
temporarily accommodate multiple directories. This approach
enables efficient and concurrent directory expansion with-
out locking the directory and impacting thread-parallel access
(Section III-B).

Opportunistic Lock-Free Parallel: PMEH employs an
opportunistic lock-free parallel scheme to effectively handle
load imbalances. This approach maximizes the utilization of
lock-free operations by enabling dynamic switching between
lock-free and locking operations. Since hash functions dis-
tribute data evenly, in the majority of cases, each zone
is accessed only by its designated thread with lock-free
operations. However, in rare cases of load imbalance, idle
threads are assigned to handle access to the busy zones with
lock-based concurrent control to improve performance and
scalability (Sections III-C and III-D).

Multisplit With Gradual Splitting: PMEH uses a multisplit
approach with gradual splitting, rather than the traditional
2-split method, to expand the hash table. By using multisplit,
the frequency of hash table expansions is reduced, which leads
to fewer data movements required during expansion. However,
using multisplit may cause the load factor (the number of
inserted items divided by the capacity) to decrease drasti-
cally since the hash table capacity increases x (x-split) times
that of the original table. To address this issue, PMEH adopts
gradual splitting to ensure a smoother split and avoid a signif-
icant decrease in the load factor (Section III-E). Additionally,
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Fig. 1. Extendible hashing before inserting key1.

PMEH achieves instant recovery by recording crash positions
and states with minimal metadata (Section III-F).

Real Implementation and Evaluation: PMEH is imple-
mented and evaluated on a Linux system with DCPMM.
Experimental results show that PMEH increases the
performance of insertion and deletion up to 1.44x-15.4x
and 2.04x-18.07x, respectively, compared to state-of-the-art
hashing schemes. Additionally, PMEH reduces extra writes by
at least 52% and achieves instant recovery.

II. BACKGROUND
A. Extendible Hashing

Extendible hashing is a dynamic hash table that can incre-
mentally expand the hash table without requiring a full-table
rehashing at once [43]. As shown in Fig. 1, extendible hashing
consists of a set of buckets and an array called directory, which
stores bucket addresses. Buckets can be added or deleted
dynamically, and the directory is indexed using either the most
significant bits (MSBs) or least significant bits (LSBs) of the
hash values of keys. The number of entries in the directory
is defined as global depth, denoted as G, and equals 26, The
number of common bits in a bucket’s hash value is defined
as local depth, denoted as L. The number of directory entries
pointing to a bucket can be calculated by 26~L. When a bucket
becomes full, it is split to accommodate new key—value pairs.
If multiple directory entries point to the split bucket, i.e.,
L < G, the bucket can be split into two buckets directly.
Otherwise, the directory needs to be expanded first, and then
the bucket is split.

As shown in Fig. 1, the directory in extendible hashing is
indexed using the LSBs of the hash values, and each bucket
can store up to four key—value pairs. When inserting the key1
into the hash table, it should be inserted into bucketl since the
LSB of the hash value of keyl is 0. However, since bucketl
is full and is only pointed by one directory entry, the current
directory needs to be expanded to accommodate a new bucket
for keyl. Fig. 2 illustrates the expanded hash table with key1
inserted, where the global depth becomes two, and Bucket3,
which is split from bucket 1, is now pointed to by a new direc-
tory entry. Subsequently, When inserting key2 with LSB equal
to 01, it can be inserted directly into the bucket, which has
two spare slots. Although the introduction of the directory in
extendible hashing incurs additional access overhead, studies
have shown it has little impact on performance compared to
conventional hashing schemes [44], [45].
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TABLE 1
COMPARING PMEH WITH STATE-OF-THE-ART CONCURRENT HASHING SCHEMES DESIGNED FOR PM. (FOR MEMORY EFFICIENCY
AND CRASH CONSISTENCY, “v/,” “-” AND “X” INDICATE SUPERIOR, MODERATE, AND INFERIOR, RESPECTIVELY)
Concurrency control Reducing extra writes . .
Search Insertion/Deletion Resizing Insertion | Resizing Memory Efficiency | Crash Consistency
PMEH Lock-free Opportunistic Lock-free | Lock-free v v v v
Dash Lock-free Bucket writer lock Global directory lock v - v v
CLEVEL Lock-free Lock-free Lock-free, single thread v X v v
CCEH Segment reader lock Segment writer lock Global directory lock v v v
LEVEL Slot lock Slot lock Global metadata lock v X v v
key2 Bucket: B Stash Bucket: SB
[Bo [ B1 [ B2 | .. [sB1]sB2]| segment:
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Fig. 2. Extendible hashing after inserting keyl and key?2.

B. Hashing Index Schemes on PM

Recently, various hashing index schemes have been
proposed for emerging PM. These hashing schemes can be
broadly classified into two categories: 1) static hashing, such
as Level hashing and CLevel hashing and 2) dynamic hashing,
such as CCEH and Dash. Static hashing can achieve con-
stant lookup time with a flat structure. However, the size of
hash tables must be estimated in advance [25]. Otherwise, the
entire table or 1/3 of the table will need to be rehashed when
the table is full, which can result in significant performance
overhead. In contrast, dynamic hashing offers a robust ability
for on-demand expansion and shrinking, which is particularly
valuable for workloads that display high variability in data
access patterns. When the hash table needs to be expanded,
dynamic hashing only needs to rehash a small part of data
rather than the entire table, which minimizes the performance
overhead of resizing.

1) Static Hashing: Level hashing [24] contains two levels,
where each level is an array of 4-slot buckets, and each slot
can store one key—value pair. The capacity of the top level
is twice that of the bottom level. To reduce extra writes, the
top level is used to address items, while the bottom level is
used to store records suffering from hash collisions. Moreover,
only one kick-out operation is allowed to avoid cascading
writes. A bit, used as a token, is associated with each slot
to ensure data consistency. To improve memory efficiency,
two hash functions are used to address buckets. Therefore,
it has four buckets (16 slots in total for two levels) for data
insertion. Additionally, only 1/3 of the buckets, instead of the
entire table, need to be rehashed to expand the table. However,
Level hashing incurs the same rehashing cost as other hashing
schemes in practice [25]. For scalability, slot lock is imposed
for search, insertion, and deletion, and global metadata lock is
imposed for resizing, as shown in Table 1. Hence, Level hash-
ing has limited scalability since it suffers from severe lock
contention overhead. Furthermore, while Level hashing signif-
icantly reduces the number of extra writes during the insertion,

[ overflow bit
Stash bucket index IOverrow membershipl Overflow bit

Overflow fingerprint bitmap

unused

Fig. 3. Segment structure for dash.

it does not reduce the number of extra writes during the
resizing.

CLevel hashing [27] is a variant of Level hashing that uses a
lock-free scheme to eliminate the expensive overhead of lock
contention. To avoid blocking normal access, the rehashing
process of Clevel is put in a background thread. Although
Clevel eliminates the lock overhead, it still has limited scal-
ability, as shown in Section IV-C. The reason is that only a
single thread is used to perform the rehashing operation, which
can easily create a performance bottleneck. In addition, Clevel
may produce more duplicate keys due to background rehash-
ing and crashes during insertion, requiring additional checks
to prevent such duplicates. Furthermore, the number of extra
writes during resizing is also not reduced in Clevel hashing.

2) Dynamic Hashing: CCEH [25], based on extendible
hashing, adopts a cache line size bucket to improve cache effi-
ciency. A set of buckets is organized into an intermediate level,
called segment, to reduce the directory size. The crash consis-
tency of CCEH is guaranteed by an atomic write to the 8-byte
key. Only linear probing is used to deal with hash collision,
and the linear probing distance is four buckets. Therefore, the
space utilization of CCEH is inferior [26]. As summarized in
Table I, the scalability of CCEH is limited by the severe over-
head of lock contention. This is because the segment reader
lock is used for search operations, and segment writer lock
is used for insertion and deletion. Moreover, the resizing pro-
cess locks the entire directory. When a segment is split in
CCEH, the old segment’s split data is not directly deleted.
Instead, it will be overwritten by subsequent writes instead of
deleted directly. Although this lazy deletion method reduces
extra writes for deletion, CCEH does not reduce the number
of data movements from the old segment to the new segment.

Dash [26] is another variant of extendible hashing designed
for PM. Dash uses 256-byte buckets to match PM’s access
granularity and introduces an intermediate segment structure
similar to CCEH, as shown in Fig. 3. Each Dash segment
comprises a fixed number of normal buckets and two stash
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buckets, with an identical structure used for both normal and
stash buckets. Each bucket includes 32-byte metadata and 224-
byte key—value records, with a fingerprint introduced for each
record to reduce the probing distance and ensure that the
average probing distance is 1. Dash also includes an allo-
cation bitmap in each bucket to ensure data consistency by
indicating whether corresponding records have been fully per-
sisted. Balanced insertion, displacement, and stashing are used
to deal with hash collisions and improve memory efficiency,
with metadata recorded in the origin bucket. Hence, Dash has
superior space utilization. As shown in Table I, Dash adopts
a writer lock for insertion and deletion but does not require
a lock for the search operation. Besides, the entire directory
needs to be locked when it expands, leading to moderate scal-
ability. Like CCEH, Dash also does not reduce the number of
data movements from old to new segments.

Unlike existing hashing schemes, PMEH achieves excel-
lent scalability and performance by minimizing lock over-
head through its opportunistic lock-free parallel scheme.
Additionally, PMEH reduces data movement during expansion
by utilizing multisplit with gradual splitting.

C. Crash Consistency in Persistent Memory

To ensure crash consistency when storing data in PM, it
is necessary to prevent data from being lost or being in a
semi-updated status. Since the maximum size of an atomic
write supported by the CPU is small or does not exceed the
width of the memory bus, data larger than 8 bytes for a 64-bit
CPU may be only partially updated when written to PM [46].
While the logging or COW (copy-on-write) method can ensure
consistency, they also incur extra writes. Hence, Most hashing
schemes based on PM do not use logging or similar methods to
ensure data consistency. Instead, They generally ensure crash
consistency by limiting the key to 8 bytes or adding a one-
bit bitmap flag, since the key and the bitmap can be written
atomically.

On the other hand, memory barrier instructions and cache-
line flush instructions are necessary to enforce memory order
since the CPU and the memory controller may reorder memory
instructions to optimize performance. The CPU provides
memory barrier instructions (e.g., sfence, [fence, and mfence)
and cacheline flush instructions (e.g., clflush, clflushopt, and
clwb) [47]. These memory barrier instructions can prevent
instructions from being reordered crossing the barrier. For
instance, mfence ensures that memory instructions in front of
the barrier are executed before the memory those behind the
barrier, while clflush invalidates and flushes the corresponding
dirty cache line back to the PM. However, those instructions
incur expensive overhead, so their use should be minimized.
This article uses the memory barrier instructions and cache-
line flush instructions provided by PMDK [48] to ensure crash
consistency.

D. Compare and Swap Primitive

Compare and swap (CAS) is a synchronization primitive
used to realize uninterrupted data exchange operations in
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Fig. 4. PMEH overall architecture.

multithread programming. It is available in most modern pro-
cessors. When multiple threads attempt to modify the same
data simultaneously, CAS can guarantee data consistency even
in the face of the uncertainty of execution order or the
unpredictability of interruption. CAS takes three parameters:
memory address, expected value, and new value. CAS first
checks whether the expected value matches the data stored in
the memory address. If they are equal, the new value is written
to the memory address, overwriting the old value. Otherwise,
CAS reads the current value stored in the memory address is
read or does nothing else.

III. DESIGN AND IMPLEMENTATION

We propose PMEH, an opportunistic lock-free and
multisplit hashing scheme, with excellent scalability and
performance. In this section, we first present the overall
structure of PMEH, which aims to deliver high scalability
and reduce extra write (Section III-A). Next, we present a
lock-free design for PMEH to eliminate the lock overhead
for even data distribution (Section III-B). We then intro-
duce lock-based concurrent control, which is used to assist
the lock-free design to deal with skewed data distribution
(Section III-C). After that, PMEH introduces an opportunistic
lock-free scheme to maximize the use of lock-free operation by
efficiently dynamically switching between lock-free and lock-
ing operation (Section III-D). We then present multisplit with
gradual split to reduce extra write during hash table expan-
sion (Section III-E). Finally, The crash recovery is present to
guarantee data consistency on PM (Section III-F).

A. Structure of PMEH

PMEH consists of three main components: 1) the direc-
tory array; 2) directories; and 3) segments, as illustrated in
Fig. 4. The directory array is an array of directory addresses
that is used to avoid locking the directory during directory
expansion (Section III-B). The directory itself is an array of
segment addresses, and the segment is an intermediate layer
that contains a fixed number of buckets. By using the MSBs to
locate the segment and the LSBs to locate the bucket, PMEH
reduces the overhead of the directory. The structure of the seg-
ment is illustrated in Fig. 5. The first 8 bytes of the segment
represent its metadata. The first 6 bits of the metadata store
the local depth (L), which records the number of common bits
in the segment. The next 42 bits (pattern) record the value of
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Fig. 5. Segment structure in PMEH.

common bits in the segment. The remaining 16 bits in the
metadata represent the splitting bitmap. The splitting bitmap
is used to track the newly allocated segments during segment
gradual splitting. Specifically, each bit in the bitmap represents
a new segment, and the bit is set to 1 if the corresponding
segment has been split out during the splitting process (see
Section III-E).

Furthermore, PMEH uses the same bucket structure and
collision handling methods as Dash to achieve good load fac-
tor and search performance [26]. A bucket is composed of
32-byte metadata and 224-byte key—value records. A 4-bytes
version lock is used for optimistic concurrent control, and a
4-bit counter is employed to record the number of records
stored in the buckets. The membership indicates whether the
record is hashed into this bucket or moved to this bucket by
collision handling. The allocation bitmap indicates whether
the slot holds a valid record by reserving one bit per slot.
The fingerprints are used to speed up the search, with the
front 14 fingerprints for normal records and the tail four fin-
gerprints for overflowed records. When the records overflow,
they are inserted into the stash buckets. The overflow fin-
gerprint bitmap indicates whether the overflowed records are
valid. The stash bucket index records which bucket the over-
flowed record is inserted into. The overflow membership field
is similar to membership, indicating whether the record hashed
into this bucket or moved to this bucket by collision handling.
Finally, the overflow field represents the number of records
that overflowed but do not record fingerprints.

B. Lock-Free Operations in PMEH

1) Lock-Free for Segments: PMEH eliminates lock over-
head when each thread only deals with its own task. The hash
table is divided into multiple zones, with each zone guaran-
teed to have at least one segment, as shown in Fig. 6. Each
zone in PMEH is bound to a single thread, ensuring that each
zone belongs to only one thread. The thread bound to a par-
ticular zone is referred to as the local thread for that zone,
while all other threads are nonlocal. Therefore, before the hash
table expands, each thread can access one segment in the zone
bound to itself without a lock. This is because the segment is
not the critical section for parallel access by multiple threads.
The detail segment insert procedure is shown as Algorithm 1.

To ensure lock-free access even after the hash table expands,
it is necessary to expand the range of each zone. As illustrated
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Algorithm 1 Segment::Insert With Lock-Free

def Segment::InsertNoLock(key, value, bucket_id, finger):
2: bucket=GetBucket(bucket_id)
slot_id=bucket— GetEmptySlot()
4: if slot_id<SlotNumPerBucket then
slot=bucket[slot_id]

6: slot.key=key
slot.value=value
8: Allocate::Persist(&bucket[slot_id],sizeof(bucket[slot_id])
bucket.metadata.finger[slot_id]=finger
10: bucket.metadata.bitmap=bucket.bitmap|(1 <slot_id)

Allocate::Persist(&bucket.metadata,
sizeof(bucket.metadata))

12: return true
else
14: Normal bucket is full. Try to insert it into stash buckets
if succeed in inserting into stash buckets then
16: return true
else
18: # insert failure, need to expand the hash table
return -1
20: end if
end if

f thread1

v .
| threadx:

.: initial directory

: new directory

directory array

S0 S2

Fig. 6. Lock-free parallel accesses in PMEH.

in Fig. 6, directory O is the original directory and is indexed
by the 1st position of the directory array. In directory 0, each
segment is indexed by one directory entry, and each zone is
bound to one thread. Therefore, when a segment becomes full,
it needs to be split, resulting in the hash table expanding and
the old directory expanding as well. To complete the segment
splitting process, a new directory, directory 1, is allocated
and indexed by the directory array’s 2nd position. Meanwhile,
the zone range must also be expanded to accommodate eight
segments (8-split will split out seven new segments). This
ensures that segment splitting only occurs in one zone, and
ultimately eliminates the lock for a segment even if the hash
table expands.

2) Lock-Free for the Directory: In order to achieve lock-
free for the directory, PMEH allows for the existence of
multiple directories temporarily. Although the lock for seg-
ments can be eliminated, the lock for the directory still exists.
The reason is that generally, during the process of directory
expansion, the entire old directory is required to be locked
until the expansion process is finished. To eliminate this lock,
PMEH uses an array to manage all directories and allows for
the allocation of new directories directly without locking the
old directory during expansion. Other threads can still access
the old directory during this time. However, multiple threads
may attempt to allocate a new directory simultaneously since
they can access the old directory without blocking. To ensure
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Algorithm 2 PMEH::Allocate New Directory With Lock-Free

Algorithm 3 PMEH::Update Entries of New Directory

def PMEH::AllocateDir(thread_id, dir_depth, dir_id):
: # allocate a larger directory atomically by PMDK
Allocator::AllocDir(new_dir[thread_id], dir_depth)
4: new_dir_id=dir_id + 1
if CAS(dir[new_dir_id], nullptr, new_dir[thread_id]) then
6: # succeed in adding new directory into directory array,
# increase lastest_dir_id
latest_dir_id=new_dir_id
8: else
# other thread has allocated and added a new directory,
# free memory by the transaction of PMDK
10: TX_BEGIN(Allocator::pm_pool){
pmemobj_tx_add_range_direct(&new_dir[thread_id],
sizeof(new_dir[thread_id]))
12: Allocate::Free(new_dir[thread_id])
new_dir[thread_id]=nullptr

}
TX_ONABORT
16: TX_END

end if

that only one thread successfully allocates the new directory,
each thread uses the CAS primitive to add the new direc-
tory to the directory array. The CAS primitive ensures that
only one thread can successfully add the new directory to the
directory array, while the other threads that fail in the CAS
operation need to free the allocated directory. This process
is illustrated in Algorithm 2. In PMEH, the directory array
size is set to 12. This is because only 43 bits are available
(after subtracting the addressing bits of the initial directory
(6 bits) and segment (7 bits), and 8 bits for the fingerprint)
in the 64-bit space that can be used for directory expansion.
In addition, PMEH reduces the number of required directories
by using multisplit (Section III-E) and adopts 16-split as the
optimal configuration (Section IV-B). As a result, a maximum
of [43/4 + 17 = 12 directories can be generated.

To minimize the delay caused by expansion, PMEH amor-
tized entries updated for the new directory into subsequent
insertions rather than searches. This is because search opera-
tions are more sensitive to latency than insert operations. When
inserting a key—value record into the hash table, the entries
from the previous directory are searched to locate the valid
segment if the indexed entry in the latest directory is null.
Then, the directory entries in the latest directory are updated
to index the valid segment. To improve performance, directory
entries in the current zone, rather than the entire directory or a
single directory entry, are updated to point to valid segments.
Once all zones in the latest directory have been updated, all
previous old directories are freed. In fact, since the hash func-
tion aims to evenly distribute the inserted key—value pairs, each
segment is quickly indexed by the new directory, which results
in the old directories being released quickly. The entries update
process is illustrated in Algorithm 3. Algorithm 4 presents the
entire lock-free insert algorithm.

The following is an example of how the hash table is
expanded in the hash table. Initially, the directory 0 is indexed
by the Ist position in the directory array, as shown in Fig. 6.
Each segment is only indexed by one directory entry, and seg-
ment 0 belongs to thread 1 in directory 0. when segment 0
(S0) becomes full, thread 1 initiates the expansion process by
allocating a new larger directory and adding it to the direc-
tory array using CAS primitive. The new directory, directory

def PMEH::UpdateZoneEntries(zone_id, dir_id):
: tmp_id=dir_id - 1
# let pre_dir point to the previous directory
4: pre_dir=dir[tmp_id]
# find a directory that points to a valid segment
6: while pre_dir do
# calculate the start entry id of the zone

8: start_entry_id=GetZoneStartEntryID(pre_dir, zone_id)
if pre_dir->_[start_entry_id] then
10: break
else
12: tmp_id=tmp_id - 1
pre_dir=dir[tmp_id]
14: end if
end while
16: # current_dir point to the current directory that needs to update

current_dir=dir[dir_id]
18: start_entry_id=GetZoneStartEntryID(pre_dir, zone_id)
end_entry_id=GetZoneEndEntryID(pre_dir, zone_id)

20: start=start_entry_id
while start<end_entry_id do
22: update current_dir to point to the entry indexed by start
in pre_dir, if the entries point to empty
start=start + 1

24: end while
persist current_dir entries in zone[zone_id]
26: # increase the number of having been updated zones
old=current_dir—region_update_num
28: new=old+1
if CAS(&current_dir—region_update_num, old, new) then
30: pememobj_persist(&current_dir— region_update_num,
sizeof(current_dir—region_update_num));
# if all entries have been updated, delete old directories

32: if AllZoneUpdated(new) then
delete previous directories before current_dir
34: end if
else
36: new=old
end if
38:

Algorithm 4 PMEH::Insert With Lock-Free

def PMEH::InsertNoLock(key, value, segment, zone_id, dir_id,
segment_id, bucket_id, finger):

2: if segment==nullptr then
UpdateZoneEntries(zone_id, dir_id);
4 segment=current_dir— _[segment_id]
end if
6: result=segment— InsertNoLock(key, value,

bucket_id, finger)
if result!=-1 then

8: # insert success
return result
10: else
if not all segment has been split out then
12: do segment splitting
else
14: # allocate new directory,

# expand_shift is split multiple
dir_depth=current_dir—depth + expand_shift

16: AllocateDir(thread_id, current_dir_id, expand_shift)
end if
18: return -1 # need retry
end if

1, is then indexed by the 2nd position in the directory array.
When inserting a record into segment 0, Thread 1 will retrieve
empty entries from directory 1. Therefore, thread 1 will first
search directory O for a valid segment and update entries of the
current zone in directory 1 to index valid segments. Similarly,
entries of other zones in directory 1 will be updated after other
threads finish their normal access. After all entries in directory
1 have been updated, directory 0 will be deleted.
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Algorithm 5 PMEH::Get With Lock-Free

Algorithm 6 PMEH::Insert With Lock

def PMEH::Get(key):
2: hash_key=Hash(key)

finger=GetFinger(hash_key)
4: bucket_id=GetBucketld(hash_key)

RETRY:
6: # locate segment

current_dir_id=latest_dir_id

8: current_dir=dir[current_dir_id]
segment_id=GetSegmentld(hash_key,current_dir— depth)

10: segment=current_dir—_[segment_id]
while segment==nullptr do
12: # find previous directory
current_dir_id—
14: current_dir=dir[current_dir_id]
segment_id=GetSegmentld(hash_key,current_dir— depth)
16: segment=current_dir—_[segment_id]
end while
18: result= segment— Get(key, finger, bucket_id)
if result==-1 then
20: # other thread change value
goto RETRY
22: else
# other thread updated zone entries
24: t=current_dir_id++
while t<latest_dir_id do
26: s=GetSegmentld(hash_key,dir[t]—depth)
if dir[t]—_[s]==segment then
28: goto RETRY
end if
30: end while
return result
32: end if

C. Lock in PMEH

1) Lock for Buckets: To handle skewed data access to the
hash table, locks are used to ensure parallel access safety,
except for search operations in the same zone. Each bucket is
associated with a 32-bit version lock, with the highest bit used
as the lock bit and the remaining bit used as the lock version.
Before a record is written, the bucket is first locked. After the
record is written, the bucket is unlocked, and the lock version
is incremented.

The read operation for the hash table does not require a
lock, but it needs to read the lock versions before and after the
read operation for a bucket. These two versions are compared,
and if they are not equal, the read operation is retried since
there may have been parallel writes to the bucket. It is worth
noting that the segment found by the search process may not
be indexed by the latest directory since the read operation does
not update entries of the new directory to reduce delay. If the
old directory indexes the segment, it needs to check whether
the newer directory has been updated to point to this segment
after the search is complete. If the newer directory has been
updated to point to this segment, the read operation needs to
be repeated because the segment may have been split in the
newer directory, and then the data may be missed or incorrect.
Algorithm 5 shows the read process used in PMEH.

2) Lock for Zones: In addition, locks for zones are required
to ensure data consistency during segment splitting and the
updating of entries in the new directory. If segment splitting
occurs while entries in the new directory are being updated in
one zone, data loss may occur. This is because the latest direc-
tory entries may point to the old segment if entries have been
updated before segment splitting. This can cause the new seg-
ment, which is split out by the old segment, not to be indexed
by the new directory. Therefore, zone locks are necessary to

def PMEH::InsertWithLock(key, value, segment, zone_id, dir_id,
segment_id, bucket_id, finger):

2: if segment==nullptr then
GetZoneLock(zone_id)
4. UpdateZoneEntries(zone_id, dir_id);
segment=current_dir— _[segment_id]
6: ReleaseZonelLock(zone_id)
end if
8: result=segment— InsertWithLock(key, value,
bucket_id, finger)
if result!=-1 then
10: # insert success
return result
12: else
if not all segment has been split out then
14: GetZoneLock(zone_id)
do segment splitting
16: ReleaseZoneLock(zone_id)
else
18: # allocate new directory. expand_shift represent split factor
# split multiple is equal to pow(2,expand_shift)
20: dir_depth=current_dir—depth + expand_shift
AllocateDir(thread_id, current_dir_id, expand_shift)
22: end if
return -1 # need retry
24: end if
exclusive other thread request
apply for
local thread
thread counter allow to share
change to 0
s: state
c: counter
Share
Fig. 7. State switch.

ensure that segment splitting and directory entries update can-
not occur simultaneously. It also avoids data loss between
parallel segment splitting operations. If two threads perform
segment splitting for the same segment simultaneously, the
new segment produced by the one thread may overlap with the
new segment produced by the other thread, leading to missing
data. The insert algorithm with lock is shown in Algorithm 6.

D. Opportunistic Lock-Free Parallel Operation in PMEH

To achieve good performance even with skewed data dis-
tribution, PMEH implements opportunistic lock-free parallel
operation. It only needs to impose write locks for a small
amount of write operation. The main idea is that PMEH first
assigns every thread to handle its work and then assigns idle
threads to assist busy threads. In other words. PMEH oper-
ates in a hybrid mode of lock-free and locking. To efficiently
switch between lock-free and locking operations, PMEH intro-
duces two variables for every zone: state and thread counter.
The state variable represents the state of the zone, and the
thread counter counts the number of threads that enter one
zone. There are three states for one zone, exclusive state,
request state, and shared state, as shown in Fig. 7. The ini-
tial state is exclusive, and each zone is only accessed by one
thread. Thus, access to the hash table in the exclusive state
is lock-free (Algorithm 7 lines 13-20). If some threads have
completed their work and intend to help other threads, they
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Algorithm 7 Insert With Opportunistic Lock-Free

def PMEH::Insert(key, value, thread_id, is_local):
: hash_key=Hash(key)

zone_id=GetZoneld(hash_key)

4: finger=GetFinger(hash_key)
RETRY :

6: current_dir_id=latest_dir_id
current_dir=dir[current_dir_id]

8: segment_id=GetSegmentld(hash_key,current_dir->depth)
bucket_id=GetBucketld(hash_key)

10: segment=current_dir—_[segment_id]
RETRY1:
12: state=zone_state[zone_id] # get zone state
if state==exclusive then
14: result=InsertNoLock(key, value, segment, zone_id, current_dir_id,

segment_id, bucket_id, finger)
if result=-1 then

16: goto RETRY
else
18: return result
end if
20: end if
if state==request then
22: if is_local then
state=share
24: else
wait until state==share
26: end if
goto RETRY1
28: end if
if state==share then
30: CAS increase zone[zone_id].thread_counter

result=InsertWithLock(key, value, segment, zone_id, dir_id,
segment_id, bucket_id, finger)

32: CAS decrease zone[zone_id].thread_counter
if zone[zone_id].thread_counter==0 then
34: state=exclusive
end if
36: if result=-1 then
goto RETRY
38: else
return result
40: end if
end if

first request to access the zone, which changes the state of the
zone to the request state. If the local thread finds that the zone
state has changed to the request state, it changes the state of
the zone to the shared state (Algorithm 7 lines 21-28). After
the state of the zone is changed to the shared state, subsequent
access to the zone needs to be locked, and the lock operation is
described in Section III-C. Additionally, the counter of threads
for the zone needs to be incremented or decremented after each
thread, including the local thread, enters or exits this zone in
the shared state. To maintain the exclusive state as much as
possible to improve parallelism, each thread checks whether
the thread counter is equal to zero after exiting the accessed
zone. If the counter of threads for the zone changes to zero, the
state of the zone changes to the exclusive state (Algorithm 7
lines 29-40). PMEH achieves strong scalability and excellent
performance by combining lock-free and locking operations,
as demonstrated in Sections I'V-C and IV-D.

E. Multiple Split

Expanding a hash table is necessary as data is continu-
ously inserted into it. The delay is a significant consideration
during the expansion process for the static hashing schemes.
This is because rehashing the entire table is time-consuming
and often blocks other access operations. In contrast, dynamic
hashing tables do not have this issue since they do not need
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Fig. 9. Hash table expansion in 8-split without gradual splitting.

to rehash the entire hash table. During the expansion of a
dynamic hashing table, the directory expansion is separated
from the segment splitting operation. Only the directory expan-
sion needs to be finished immediately, while the segment
splitting operation is amortized into subsequent insertion oper-
ations. The directory size is minimal compared to the entire
table and, hence, the overhead associated with directory expan-
sion is also small. Apart from the delay, reducing the number
of extra data movements during hash table expansion is also a
problem worth considering. However, almost all previous hash
tables have not taken this issue into account.

To reduce the number of extra data movements during hash
table expansion, PMEH adopts multisplit instead of the tra-
ditional 2-split method. As depicted in Fig. 8, the original
hash table comprises only two segments: 1) segment 0 (S0)
and 2) segment 1 (S1), while the final hash table contains
16 segments to accommodate data. If PMEH uses the tradi-
tional 2-split method to expand the hash table, SO and S1
would need to be split three times, and the new segments
produced by the splitting operations would need to be split
eight times. Hence, PMEH would have to perform 14 seg-
ment splitting operations in total to expand the original hash
table to the final hash table. With the traditional 2-split method,
approximately 1/2 of data from the old segment needs to be
moved to the new segment for each segment splitting oper-
ation. This means that the traditional method would require
moving approximately 1/2 x 14 = 7 segments of data, which
accounts for 7/16 =~ 0.44 of the total data. Conversely, as
illustrated in Fig. 9, if PMEH uses the 8-split method, both
S0 and S1 would need to be split seven times, and the new
segments produced by splitting would not require any fur-
ther splitting. Although the total number of segment splitting
is still 14, only around 1/8 of the data in the old segment
needs to be moved to the new segment when using the 8-split
method. In conclusion, the extra data movements required for
the 8-split method are 1/8 % 14 = 7/4 segments, accounting
for approximately 7/64 = 0.11 of the total data. Compared to
the traditional 2-split method, the 8-split method reduces the
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Fig. 10. Hash table expansion in 8-split with gradual splitting. Red solid
lines indicate the newly split-out segments to accommodate the inserted value,
while the black dashed lines indicate the nodes that will be split out once the
current segment becomes full again.

number of extra data movements by about 33% of the entire
data.

To maintain high space utilization and prevent a sharp
increase in response latency caused by segment splitting,
PMEH uses a gradual splitting method, as illustrated in
Fig. 10. Instead of splitting a segment into multiple new seg-
ments, only one new segment is split out at a time for each
segment splitting operation. To avoid repeatedly splitting out
for the same new segment, a splitting bitmap is used to record
which new segments have been split out. The bitmap preserves
one bit for each new segment. Once a new segment has been
indexed by the directory, the corresponding bit in the splitting
bitmap of the origin segment is set. After the whole segments
have been split out, the splitting bitmap is reset, and the local
depth increases.

For instance, as depicted in Fig. 9, if seven new segments
are split out from the old segment in a single splitting opera-
tion, the space utilization will decrease to 1/8 of the original
space utilization. This is because the space increases by seven
times compared with the previous one, but the number of
records remains the same at this point. Conversely, the grad-
ual splitting method, as shown in Fig. 10, expands the space
only twice the original space. Therefore, the space utiliza-
tion decreases to only 1/2 of the original space utilization,
which is also demonstrated in Section IV-E. In addition, the
latency incurred by the gradual splitting method is lower than
complete splitting, as it has a lower overhead for memory
allocation and data flushing.

FE. Instant Recovery

Unlike DRAM, data structures designed for PM must ensure
crash consistency. PMEH uses PMDK [48] for data persistence
and memory allocation. Hence, PMEH only needs to consider
the crash recovery for its own program since PMDK has guar-
anteed its data consistency. For PMEH, there are five types of
crash recovery.

1) The first case is when a crash occurs during the insertion,
and there is no segment splitting and directory expan-
sion operation. In this scenario, the data consistency is
not affected by a partial update for the record. This is
because there is a bitmap that preserves one bit for one
slot in a bucket to record whether one record is inserted
completely or not.

2) The second case is when a crash occurs during seg-
ment splitting, and there is no directory expansion.
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In this situation, PMEH needs to record the splitting
metadata of the segment, which includes (directory_id,
old_entry_id, new_entry_id, flag) to ensure crash con-
sistency. The directory_id represents the directory in
which the old segment is. The old_entry_id indicates
the index of the old segment in the directory. The
new_entry_id is the index of the new segment in the
directory. The flag is used to determine whether the
new segment has been successfully inserted into the
hash table or not. During recovery, each thread first
checks the flag to determine whether the segment split-
ting has been completed or not. If the new segment
has not been inserted successfully, the thread redoes the
segment splitting operations according to the splitting
metadata. Of course, the segment splitting operation can
be undone.

3) The third case is a crash that occurs during directory
expansion, with no ongoing segment splitting. To ensure
correct recovery of the hash table, each thread has a
directory pointer to record the latest allocated directory.
When recovering, each thread checks whether its direc-
tory pointer points to a new or empty directory. If it is
empty, it is not processed. Otherwise, PMEH traverses
all threads’ directory pointers to check whether a larger
directory than the latest directory exists. If a larger direc-
tory is found, it is added to the directory array using
CAS primitive. The update of entries in the new direc-
tory is amortized to subsequent insertion operations to
speed up the recovery process.

4) The fourth case is when a crash occurs while segment
splitting and directory expansion occur. First, PMEH
recovers the segment-splitting operations according to
the second crash type. Then, the directory expansion
operations are recovered according to the third crash
type. Finally, PMEH can guarantee that the new seg-
ment produced by segment splitting is indexed by the
new directory allocated by directory expansion.

5) The fifth case is that locks are set when a crash occurs.
The recovery process for locks simply involves resetting
them. The recovery of locks in segments occurs when
the segment is first accessed, and the one-bit flag is used
to indicate whether the lock is recovered or not. The
zone locks are recovered during the recovery process,
as only a small number of them exist.

During the recovery process of PMEH, only the segment
splitting metadata and thread pointer needs to be checked,
rather than the entire table. Moreover, the recovery process
is executed by multiple threads in parallel, and the update
of entries is amortized to subsequent insertion operations.
Therefore, PMEH is able to achieve instant recovery.

IV. PERFORMANCE EVALUATION
A. Experimental Setup

Our evaluations are conducted on a server equipped with the
Intel Optane DCPMM in APP DIRECT Mode. The server runs
the Linux operating system with kernel version 5.4.0 and ext4-
DAX file system. The capacities of the Optane PM (DCPMM)
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and DRAM are 512 (4 x 128) and 128 GB (4 x 32), respec-
tively. The server was powered by two Intel Xeon Gold 6240
CPU @ 2.60 GHz, with 18 cores per CPU. Each core has a
32-kB L1d cache and a 32-kB L1i cache, while the L2 cache
is 1 MB per core, and the shared L3 cache is 25 MB.

PMEH is compared with state-of-the-art hashing schemes,
including Dash [26], CCEH [25], CLevel hashing [27], and
Level hashing [24]. All these schemes use the synchronization
primitives and memory management provided by PMDK [48]
to guarantee crash consistency. Besides, an epoch-based recla-
mation mechanism is used to reduce overhead [26]. Dash and
CCEH use the same parameters as those in their original paper
to ensure a fair comparison. Dash adopts 16-kB segments and
256-byte (four cachelines) buckets, with each segment having
two stash buckets for handling hashing collision. CCEH uses
64-byte buckets (one cacheline) and 16-kB segments, with a
linear probing distance of four buckets. CLevel hashing is
modified to store records directly rather than storing point-
ers to records in the hash table, and Level hashing is modified
to adopt bucket locks, like Dash and CCEH, instead of slot
locks. Both CLevel hashing and Level hashing use 128-byte
buckets (two cachelines). Besides, the widely used YCSB [49]
is adapted to generate the workloads, with both key and value
being a fixed size of 8 bytes. The size of the initial directory
for the hashing tables is set to 64, and the initial size for the
hashing tables is 1 MB.

B. Sensitivity Analysis of PMEH Design

PMEH has two sensitivity parameters: split multiple and
segment size. To determine the optimal values for these param-
eters, we evaluated the impact of different split multiples
ranging from 2 to 16 and different segment sizes ranging
from 4 to 128 kB. In PMEH, the bucket size is set to 256B
(four cachelines) to match the PM access granularity, and
each segment has two stash buckets. For the sensitivity test,
200 million records are first inserted into the hash table to
evaluate the insertion performance and calculate the load fac-
tor. Then, 200 million records are read from the hash table to
measure the search performance.

The results of the sensitivity are presented in Fig. 11.
Fig. 11(a) and (b) illustrate the insertion throughput with load
factor and the search throughput with load factor, respectively.
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Under the same split multiple, both insertion and search
throughput exhibit two trends as the segment size increases
gradually from 4 to 128 kB: 1) increasing first and then
decreasing; and 2) decreasing first and then increasing. The
reasons behind these trends are as follows. For insertion oper-
ation, frequent segment splitting occurs, leading to higher
overall overhead if the size of segments is too small, although
the delay for segment splitting is low. Conversely, if the size
of segments is too large, the delay for segment splitting is
long, even though segments are not split frequently. For search
operations, varying segment sizes lead to a different distri-
bution of records in the segment, resulting in changes in
probing distances for records. Additionally, the insertion and
search throughput vary for different splitting multiples under
the same segment size. This is because the splitting multiple
can affect the frequency of segment splitting, the number of
data movements, and the distribution of records. Moreover,
It is also observed that the load factor decreases as the seg-
ment size increases. This is because a segment is split once
one bucket is full. The larger the segment, the fewer buckets
become full when the segment is splitting.

The results from the sensitivity test indicate that the largest
insertion throughput is obtained when the segment size is 16
or 32 kB, as shown in Fig. 11. Meanwhile, the largest search
throughput is achieved when the segment size is 32 kB. It is
worth noting that the load factors for the 32 and 16-kB seg-
ments are the same. Besides, a larger split multiple can reduce
extra write (Srction IV-F). Hence, PMEH adopts the 32-kB
segment and a split multiple of 16 as the optimal configuration.
All subsequent experiments use this configuration.

C. Scalability

To test scalability under uniform workloads, the YCSB
benchmark is used to generate five uniform workloads: 100%
insert, 100% positive search, 100% negative search, 50% insert
and 50% search, and 100% delete. For insert-only operations
and mixed operations of 50% insertion and 50% search, ten
million records are first preloaded into the hash table, followed
by 190 million insertion or search operations. For search or
deletion operations, 200 million records are preloaded into the
hash table, and then 200 million search or delete operations
are executed.
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50% search, and (e) 100% delete.

The experimental results of 100% insertion operations are
presented in Fig. 12(a). The scalability of PMEH, Dash,
CCEH and Level hashing is almost linear until the number of
threads increases to 8. All hashing schemes achieve the max-
imum insert throughput when the number of threads is equal
to or greater than 16. However, CLevel hashing, which adopts
a lock-free mechanism, shows weaker scalability for insertion.
This is because CLevel hashing only uses a single thread to
perform the expanding process, causing extra multiple checks
during expansion. In addition, CLevel and Level hashing need
to check four buckets to find whether a key exists for a
unique insertion, resulting in inferior insert throughput. On the
Contrary, Dash shows good scalability since it uses fingerprints
to reduce the number of probes. PMEH outperforms Dash as
the number of threads increases due to eliminating most write
locks and reducing data movement. Under 32 threads, PMEH
outperforms Dash, CCEH, CLevel hashing, and Level hashing
by 1.44x, 1.89x%, 15.4x, and 9.6x for insert, respectively.

The experimental results of 100% positive search opera-
tions are shown in Fig. 12(b). All hashing schemes exhibit
nearly linear scalability when the number of threads is less
than 16, although there are performance gaps among them.
PMEH shows a similar search performance to Dash since it
also adopts a lock-free way to search records. However, PMEH
surpasses Dash under 32 threads, due to its use of 32-kB seg-
ments instead of 16-kB segments, which leads to improved
spatial locality. Additionally, PMEH does not amortize entries
update to read operations. Under 32 threads, PMEH outper-
forms Dash, CCEH, CLevel hashing, and Level hashing by
1.19x%, 3.34x, 1.86x%, and 2.47x, respectively.

Fig. 12(c) presents the experimental results of 100% neg-
ative search operations. Compared with the test of 100%
positive search, all hashing schemes exhibit similar scalability,
except that PMEH and Dash show higher performance, while
other hashing schemes exhibit lower performance. PMEH and
Dash perform better than the other hashing schemes because
they introduce one fingerprint for every record, thereby reduc-
ing the number of probes. Furthermore, in negative search,
PMEH and Dash almost do not need to read keys for com-
paring, except for the fingerprints. Hence, they show better
performance than their counterparts in positive search. Under
32 threads, PMEH outperforms Dash/CCEH/CLevel hash-
ing/Level hashing by 1.14x/4.13x/3.03x/4.53x for negative
search.

The experimental results for 50% insertion and 50% search
operations are shown in Fig. 12(d). With the exception of

CLevel, all hashing schemes demonstrate near-linear scal-
ability at smaller or equal to 16 threads. This is because
CLevel only adopts a single thread for resizing, leading to a
performance bottleneck. The performance of PMEH is bet-
ter than Dash’s since PMEH has better insertion and read
performance than Dash. For the mixed workload, PMEH
outperforms Dash/CCEH/CLevel hashing/Level hashing by
1.13%x/1.91x/8.41x/7.21 x under 32 threads.

The experimental results of 100% deletion operations are
presented in Fig. 12(e). When the number of threads is smaller
or equal to 16, PMEH and Level hashing show near-linear scal-
ability. This is because PMEH uses opportunistic lock-free
for write. Level hashing has a similar deletion performance
to Dash under 32 threads, as it has been modified to imple-
ment bucket locks like Dash. On the other hand, CCEH
shows worse deletion performance than PMEH, Dash, and
Level hashing because it adopts segment locks. CLevel hash-
ing exhibits the worst deletion performance because it only
adopts a single thread for background expansion and requires
checking multiple levels to search records. In terms of deletion
performance, PMEH outperforms Dash, CCEH, CLevel hash-
ing, and Level hashing by 2.04 %, 3.44x, 18.07x, and 2.05x%,
respectively, under 32 threads.

D. Skew Distribution

To comprehensively evaluate the performance of PMEH,
five kinds of skewed (Zipfian) workloads are generated by the
YCSB benchmark: 100% insert, 100% positive search, 100%
negative search, 50% insert, and 50% search, and 100% delete.
The experimental results for the skew workload are presented
in Fig. 13. The insert throughput in the skewed workload, as
shown in Fig. 13(a), is similar to that in the uniform workload.
This is because PMEH uses efficient opportunistic lock-free
parallel operations to deal with skew records. The positive
search trends are similar, and the performance is better com-
pared to the counterparts in the uniform workload, as shown in
Fig. 13(b). The reason is that skewed data degrade the cache
missing rate, and data can be accessed directly from the cache.
However, the negative search performance does not improve,
as shown in Fig. 13(c), since the cache does not cache any
records useful for subsequent access. Fig. 13(d) shows simi-
lar trends and slightly higher performance for 50% insert and
50% search compared to the counterpart in uniform workload.
This is because the insert performance is inferior to the search
operation and, hence, the performance of 50% insert and 50%
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Fig. 14. Throughput of different access skewness under 32 threads.

search depends on the insert performance. The experimental
results of 100% deletion are presented in Fig. 13(e), which
has similar trends and higher performance than its counterpart
in the uniform workload. Moreover, the deletion performance
for PMEH is similar to negative search since many duplicate
records are presented in the skew workload. The subsequent
delete operation is similar to the negative search when one
record is deleted. On the other hand, Dash improves less than
PMEH due to the expensive lock overhead for deletion.

Moreover, we conducted an experiment to compare PMEH
with and without opportunistic lock-free parallel operation for
search operations. This is because while the hash function
can distribute inserted key—value pairs into a nearly uniform
distribution for skewed data distribution, they cannot dis-
tribute key—value pairs evenly for search operations as these
operations target specific positions. First, We generated dif-
ferent Zipfian distributions with varying 6 parameter ranging
from 0.6 to 1.22 [50]. A larger value of the parameter 6
indicates a more heavily skewed data distribution. Then, we
tested the throughput of PMEH with and without opportunis-
tic lock-free parallel schemes. The experimental results are
presented in Fig. 14. When the 6 value is 0.6 and 0.8, which
represent evenly distributed datasets, PMEH with and with-
out opportunistic lock-free parallel schemes exhibit similar
throughput. However, as 6 increases from 0.8, PMEH with
opportunistic lock-free parallel schemes shows excellent scala-
bility and performance, while PMEH without it shows inferior
scalability and performance. Therefore, our opportunistic lock-
free schemes achieve excellent scalability and performance
regardless of the data distribution.

E. Load Factor

200 million records are inserted into empty hashing tables
using a single thread to evaluate the maximum load factor.
Specifically, PMEH is evaluated by varying the split multiple
from 2 to 16. The load factor is measured for every insertion
operation. As shown in Fig. 15, PMEH maintains a consistent

Max load factor

plé p8 p4

p2 dash ccehclevellevel
Different hashing schemes.

Fig. 15. Load factor for different hashing schemes (P16: PMEH under
16-split, et al.)

maximum load factor regardless of the split multiple used. This
is because PMEH uses gradual splitting to split segments. In
addition, PMEH and Dash exhibit similar load factors due to
their similar segment organization structure. CCEH has the
worst load factor since it only uses linear probing to deal
with collision records and the probing distance is limited to
four buckets to obtain good search performance. Level hashing
and CLevel hashing have a similar organizational structure,
resulting in comparable load factors. However, CLevel hashing
is slightly inferior to Level hashing because it does not move
items and has a slightly larger slot number than Level hashing.
Furthermore, Level hashing and CLevel hashing have slightly
better load factors than PMEH and Dash due to their shared-
based two-level structure.

F. Extra Data Movements

To evaluate the number of extra data movements for various
hashing schemes, a total of 200 million records are inserted into
empty hash tables with a single thread, including PMEH, Dash,
CCEH, CLevel hashing, and Level hashing. PMEH is evaluated
while varying split multiple from 2 to 16. The experimental
results are shown in Fig. 16. PMEH has a similar number of
extra data movements as Dash under 2-split, which can be
attributed to the fact that Dash has a similar segment structure
as PMEH and uses 2-split to expand the hash table. The number
of extra data movements in PMEH under 2-split is slightly less
than in Dash since PMEH uses 32-kB segments to perform
segment splitting, resulting in fewer segment splits. The number
of extra data movements in PMEH increases as the split multiple
decreases. This is because a smaller split multiple leads to more
hash table expansion, which increases the number of extra data
movements. Compared with Dash, PMEH’s 16-split, 8-split,
4-split, and 2-split reduce the number of extra data movements
by 52%, 31%, 9%, and 4%, respectively. CCEH exhibits the
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Fig. 16. Extra data movements for different hashing schemes (P16: PMEH
under 16-split, et al.)

TABLE 11
RECOVERY TIME VERSUS DATA SIZE

Number of indexed records (million)
records (million) | 1 10 100 | 200 | 300 | 400
time (ms) 1.8 1819 |16 |15 |19

most significant amount of extra data movement since it has
the worst load factor, which results in frequent segment splits.
On the other hand, Clevel hashing shows the least amount of
extra data movement, since it only adopts a single thread to
expand the hash table in the background. Therefore, many data
movements are still in process, but Clevel hashing does not
count them. Besides, Level hashing shows the same amount of
extra data movement as dash and PMEH under 2-split, which
can be attributed to the fact that the expansion for level hashing
is double the size of hash table [26].

G. Recovery

For the recovery test, failures are deliberately introduced
into the code. The recovery time of different data sizes, rang-
ing from 1 million to 400 million records, is measured. The
results are shown in Table II. It can be observed that the recov-
ery time of PMEH remains consistently low, at around 2 ms,
regardless of the amount of data. This is because PMEH adopts
multiple threads to process the recovery simultaneously, and
each thread only processes a small amount of metadata related
to crashes. Besides, PMEH amortizes the heavy update of new
directory entries to subsequent insertion operations, enabling
it to achieve instant recovery.

V. CONCLUSION

This article introduces PMEH, a novel variant of extendible
hashing based on PM that offers excellent scalability and
write-optimized functionality. PMEH improves the scalability
and write performance of extendible hashing by incorporating
fine-grained and lock-free structures that support a significant
degree of parallelism and reduce extra write. PMEH divides
the directory into multiple zones, each associated with a single
thread, thereby eliminating the need to share segments among
multiple threads. The use of multiple directories allows for
lock-free updates during directory expansion, avoiding block-
ing other threads. To ensure good performance even in the
presence of skewed data distribution, PMEH adopts an oppor-
tunistic lock-free scheme that switches dynamically between
lock-free and locking operation. Furthermore, PMEH employs
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a multisplit with gradual splitting mechanism that minimizes
data movements during expansion, leading to fewer writes
to PM. Finally, PMEH offers instant recovery by record-
ing minimal metadata. Experimental results demonstrate that,
under the YCSB workloads, PMEH outperforms the existing
state-of-the-art hashing mechanisms, including Dash, CCEH,
CLevel hashing, and Level hashing in terms of scalability,
performance, and PM writes.
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