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ABSTRACT

We introduce a new approach for solving quantum many-body systems called wave function matching. Wave function matching
transforms the interaction between particles so that the wave functions at short distances match that of an easily computable
interaction. This allows for calculations of systems that would otherwise be impossible due to problems such as Monte Carlo
sign cancellations. We apply the method to lattice Monte Carlo simulations of light nuclei, medium-mass nuclei, neutron matter,
and nuclear matter. We use interactions at next-to-next-to-next-to-leading order in the framework of chiral effective field theory
and find good agreement with empirical data. These results are accompanied by new insights on the nuclear interactions that
may help to resolve long-standing challenges in accurately reproducing nuclear binding energies, charge radii, and nuclear
matter saturation in ab initio calculations.

Quantum Monte Carlo simulations are a powerful and efficient method that can describe strong correlations in quantum
many-body systems. No assumptions about the nature of the system are necessary, and the computational effort grows only as a
low power of the number of particles. For many problems of interest, a simple Hamiltonian HS can be found that describes the
energies and other observables of the many-body system in fair agreement with empirical data and is easily computable using
Monte Carlo methods. On the other hand, realistic high-fidelity Hamiltonians usually suffer from severe sign problems with
positive and negative contributions to the averages cancelling each other, so that Monte Carlo calculations become impractical.
In this work, we solve this problem using a new approach called wave function matching. While keeping the observable physics
unchanged, wave function matching creates a new high-fidelity Hamiltonian H ′ such that wave functions at short distances
match that of a simple Hamiltonian HS which is easily computed. This allows for a rapidly converging expansion in powers
of the difference H ′−HS. Wave function matching can be used with any computational scheme. In the following analysis,
we focus on the case of quantum Monte Carlo simulations, where the method presents a promising and practical strategy for
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evading the sign problem in realistic calculations of nuclear quantum many-body systems.
A unitary transformation U is a linear transformation that maps normalized orthogonal states to other normalized orthogonal

states. Starting from a realistic high-fidelity Hamiltonian H, wave function matching defines a new Hamiltonian H ′ =U†HU ,
where U† is the Hermitian conjugate of U . In each two-body angular momentum channel, the unitary transformation U is
active only when the separation distance between two particles is less than some chosen distance R. Let us write ψ0(r), ψ ′0(r),
and ψS

0 (r) for the ground state wave functions of H, H ′, and the simple Hamiltonian HS, respectively. The transformation
U is defined such that ψ ′0(r) is proportional to ψS

0 (r) for r < R. The simple Hamiltonian is chosen so that the constant of
proportionality is close to 1. For r > R, however, U is not active and so ψ ′0(r) remains equal ψ0(r). This is illustrated in the left
panel of Fig. 1.
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Figure 1. Left Panel: Pictoral representation of wave function matching. The simple Hamiltonian HS is an easily
computable Hamiltonian while the high-fidelity Hamiltonian H is not. A unitary transformation on the two-nucleon interaction
with finite range R is used to produce a new Hamiltonian H ′ that is close to HS. In each two-body channel, the ground state
wave function of H ′ matches the ground state wave function of H for r > R and is proportional to the ground state wave
function of HS for r < R. Right Panel: The Tjon band correlation between the binding energies of 3H and 4He. The gray
band is the predicted result from Ref.1 The black open box shows the empirical point. The green-diamond, blue-circle, and
read-square points show the results at LO, NLO, and N3LO in chiral effective field theory, respectively. The open points show
the results from the first-order perturbative calculations using the Hamiltonian H, while the filled points are the results of the
first-order perturbative calculations using the Hamiltonian H ′.

Wave function matching will now be applied to ab initio Monte Carlo nuclear lattice simulations2–6 using the framework
of chiral effective field theory (χEFT).7, 8 For our realistic Hamiltonian H, we use χEFT at next-to-next-to-next-to-leading
order (N3LO) with lattice spacing a = 1.32 fm. For our simple Hamiltonian HS, we employ a χEFT interaction at leading
order. Details of the interactions can be found in Methods. In the following, we use the term “local” for interactions that do not
change the positions of particles while “nonlocal” refers to interactions that do change the relative positions of particles. The
“range” of the interaction refers to the separation distance at which the interaction between particles becomes negligible.

We calculate all quantities up to first order in perturbation theory, which corresponds to one power in the difference H ′−HS.
As a first test, we consider the energy of the deuteron, 2H. The wave function matching calculation gives a binding energy
of 2.02 MeV, in comparison with 2.21 MeV for the true binding energy of H and 2.22 MeV for the experimentally observed
value. The residual error of 0.1 MeV per nucleon is due to corrections beyond first order in powers of H ′−HS. If one does not
use wave function matching and instead performs the analogous calculation to first order in H−HS, the result is a much less
accurate binding energy of 0.68 MeV.

As a second test of wave function matching, we calculate the binding energies of 3H and 4He. The Tjon band describes the
universal correlations between the 3H and 4He binding energies.1, 9 Provided that there are no long-range nonlocal interactions,
any realistic two-nucleon interaction produces binding energies that lie on the Tjon band. The inclusion of any short-range
three-nucleon interaction also preserves this universal relation. In Fig. 1 we show wave function matching calculations using
two-nucleon interactions only. At leading order (LO) the calculated point falls outside the Tjon band since the Coulomb
interaction is not included, while the next-to-leading order (NLO) and N3LO results lie squarely in the middle of the band.
We are using a low-energy scheme where the two-nucleon interaction is the same at NLO and next-to-next-to-leading order
(NNLO)..10 The empirical point is also shown in Fig. 1. The good agreement with the Tjon band suggests a residual error of
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0.1 MeV per nucleon or less. This can be compared with the substantial deviation from the Tjon line if one does not use wave
function matching and performs the analogous calculation to first order in H−HS.

Before proceeding to larger nuclei and many-body systems, we first comment on the current status of ab initio calculations
of nuclear structure using χEFT. There has been tremendous progress in the last few years towards producing accurate results
for nuclear structure across much of the nuclear chart using a variety of different computational approaches.11–20 But there is
also ample evidence that the calculations are sensitive to the manner in which the short-distance features of the interactions
are regulated,21–24 a warning sign that systematic errors are not fully under control. Furthermore, no ab initio calculations
have been able to provide an accurate description of nuclear binding energies, charge radii, and the saturation properties of
symmetric nuclear matter with equal numbers of protons and neutrons. Our goal here is to identify the problem and point to a
viable solution.

The results in Ref.25, 26 showed that the range and locality of the nuclear interactions have a strong influence on nuclear
binding. The 4He nucleus, also called an α particle, is a spatially compact object whose radius is comparable to the range of the
interactions between nucleons. The central density of the α particle is about 50% greater than the saturation density of nuclear
matter. As a result, the αα interaction is highly sensitive to the range and locality of the nucleonic interactions. These same
arguments apply to other interactions involving α particles and nucleons, which we denote as N. Using the formalism of cluster
effective field theory (also called halo effective field theory)27–30 for α particles and nucleons, the two-cluster interactions are
αα and αN, and the three-cluster interactions are ααα , ααN, and αNN, with αNN having two possible isospin channels.
In addition to the αα interaction, there will be some dependence on short-distance physics arising from these five cluster
interactions in their most attractive channels. While cluster effective field theory is not well suited for describing the structure
of heavy nuclei and nuclear matter, it does provides a useful framework for categorizing systematic errors in nuclear many-body
systems due to short-distance features of the interactions.

We will remove the unwanted dependence on short-distance features of the nucleonic interactions by fitting the binding
energies of several light and medium-mass nuclei using three-nucleon interactions that go beyond N3LO order. In χEFT,
three nucleon forces first appear at order NNLO. These include terms associated with the exchange of two pions and whose
coefficients are determined from pion-nucleon scattering. There are also two interactions with singular short-distance properties
that must be regulated and the corresponding couplings fitted to empirical data. As shown in Fig. 2, cD corresponds to the
short-range interaction of two nucleons linked to a third nucleon through the exchange of a pion, and cE corresponds to the
short-range interaction of all three nucleons. At order N3LO, there are additional terms associated with the exchange of two
pions as well as readjustments of the cD and cE coefficients at N3LO order.31–33 The higher-order three-nucleon interactions
we consider are short-range modifications to the cD and cE terms that are designed to be strongly correlated with the cluster
interactions described above. In Methods we present the details of these new interactions along with a detailed uncertainty
analysis. We find that with just one parameter, the root-mean-square-deviation (RMSD) for the energy per nucleon drops
from about 2 MeV down to 0.4 MeV. With the addition of five additional parameters, the RMSD per nucleon drops further to
0.1 MeV. These results are consistent with the hypothesis that the αα interaction plays a key role in nuclear binding and that
there are five additional cluster interactions that are sensitive to short distance physics.

In the right panel of Fig. 2, we present the results for the nuclear binding energies using wave function matching. We show
ground state and excited state energies of selected nuclei with up to A = 40 nucleons and comparison with experimental data.
The symbols with a black border indicate nuclei with unequal numbers of protons and neutrons. The nuclei used in the fit of the
higher-order three-nucleon interactions are labelled with open squares, while the other nuclei are predictions denoted with filled
diamonds. The one-standard-deviation error bars shown in Fig. 2 represent uncertainties due to computational uncertainties
from Monte Carlo errors, infinite volume extrapolation, and infinite projection time extrapolation. We estimate the additional
systematic errors due to truncation of the expansion of the H ′−HS to be approximately 0.1 MeV per nucleon. The theoretical
uncertainty due to the fitting of N3LO interactions have been empirically reduced by fitting the higher-order three-nucleon
interactions to the binding energies of several nuclei. We estimate the residual uncertainty due to the interactions to be less than
0.1 MeV per nucleon.

In the left panel of Fig. 3, we present the results for the charge radii of nuclei with up to A = 40 nucleons. No charge radii
data were used to fit any interaction parameters. The one-standard-deviation error bars shown in Fig. 3 represent computational
uncertainties due to Monte Carlo errors, infinite volume extrapolation, and infinite projection time extrapolation. The theoretical
systematic uncertainties for the charge radii calculations are more difficult to predict without a comprehensive study of the
dependence of charge radii upon the individual interactions. However, the agreement with empirical results is quite good, with
an RMSD of about 0.03 fm. Note that the larger errors for the heaviest nuclei are statistical and can be decreased by utilizing
greater computational resources.

In the right panel of Fig. 3, we present lattice results for the energy per nucleon versus density for pure neutron matter
and symmetric nuclear matter. None of the neutron matter and symmetric nuclear matter data were used to fit any interaction
parameters. The density is expressed as a fraction of the saturation density for nuclear matter, ρ0 = 0.16 fm−3. For the neutron
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Figure 2. Left Panel: Short-range three nucleon forces at NNLO. The first is the one-pion exchange term cD shown on
the left. The other is the purely short-range term cE shown on the right. At order N3LO there are additional three-nucleon
interactions associated with the exchange of two pions, as well as the corrections from the renormalization of the cD and cE
terms at N3LO order. Right Panel: Results for nuclear binding energies using wave function matching. Calculated
ground state and excited state energies of some selected nuclei with up to A = 40 at N3LO in chiral effective field theory and
comparison with experimental data. The symbols with a black border indicate nuclei with unequal numbers of protons and
neutrons. The nuclei used in the fit of the higher-order three-nucleon interactions are labelled with open squares, while the
other nuclei are predictions denoted with filled diamonds.

matter calculations, we consider 14 to 80 neutrons in periodic box lengths ranging from 6.58 fm to 13.2 fm. For the symmetric
nuclear matter calculations, we use system sizes from 12 to 160 nucleons in a periodic box of length 9.21 fm. The comparisons
with several other published work are shown and detailed in the figure caption. We see that the neutron matter calculations
are in good agreement with previous calculations, and the symmetric nuclear matter calculations pass through the empirical
saturation point. The one-standard-deviation error bars represent computational uncertainties due to Monte Carlo errors and
infinite projection time extrapolation. Uncertainties associated with extrapolation to large system size are not included here
and will be explored in future work. These lattice simulations of symmetric nuclear matter are qualitatively different from
other theoretical calculations that assume a homogeneous phase. The lattice simulations exhibit phase separation and cluster
formation, just as in the real physical system. Due to the finite number of nucleons in these calculations, some oscillations due
to nuclear shell effects can be seen in the energy per nucleon.

Another interesting feature of the lattice results is that symmetric nuclear matter without three-nucleon forces is underbound
rather than overbound. This is opposite to what is found in other calculations using renormalization group (RG) methods
to “soften” the nucleonic interactions.38–40 The term “soft” refers to the reduction of the strength of the interaction at large
momentum values. The difference arises from the fact that wave function matching produces a two-nucleon interaction that is
more nonlocal and also less “soft” when compared with two-nucleon interactions produced using RG flow equations. While
there are some parallels in design, wave function matching is qualitatively different from RG methods. Wave function matching
implements a unitary transformation that has finite range, and so the transformation can be viewed as redefining the χEFT
two-nucleon interaction. One does not need to explicitly compute the many-body forces induced by the unitary transformation
and needs only to determine the new coefficients of the short-range χEFT three-nucleon and higher-nucleon forces. The
induced forces have been investigated in a toy model.41 The approach used in wave function matching is similar to that of
the Unitary Correlation Operator Method (UCOM),42–44 though the operator-based unitary transformations in UCOM are
significantly different in nature and purpose.

In summary, we have presented a new approach for solving quantum many-body systems called wave function matching.
Wave function matching uses a transformation of the particle interactions to allow for calculations of systems that would
otherwise be difficult or impossible. We have applied the method to lattice Monte Carlo simulations of light nuclei, medium-
mass nuclei, neutron matter, and nuclear matter at N3LO in χEFT and found good agreement with empirical data. We have
discussed the connection between systematic errors in nuclear many-body systems at short distances and interactions of α

particles with themselves and nucleons. These new developments may help resolve long-standing challenges in accurately
reproducing nuclear binding energies, charge radii, and nuclear matter saturation in ab initio calculations. While we have
focused on Monte Carlo simulations for nuclear physics here, wave function matching can be used with any computational
method applied to any quantum many-body system. This also includes quantum computing algorithms where wave function
matching can be used to reduce the number of quantum gates required. All that is needed is a simple Hamiltonian HS that
produces fair agreement with empirical data for the many-body system of interest and is easily computable using the method of
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Fi g ur e 3. L eft P a n el: P r e di cti o ns f o r c h a r g e r a dii of n u cl ei u p t o A = 4 0 at N 3 L O i n c hi r al eff e cti v e fi el d t h e o r y a n d
c o m p a ris o n wit h e x p e ri m e nt al d at a. T h e s y m b ols wit h a bl a c k b or d er i n di c at e n u cl ei wit h u n e q u al n u m b ers of pr ot o ns a n d
n e utr o ns. Ri g ht P a n el: P r e di cti o ns f o r p u r e n e ut r o n m att e r e n e r g y p e r n e ut r o n a n d s y m m et ri c n u cl e a r m att e r e n e r g y
p e r n u cl e o n as a f u n cti o n of d e nsit y at N 3 L O i n c hi r al eff e cti v e fi el d t h e o r y. F or t h e p ur e n e utr o n m att er e n er g y w e us e
t h e n u m b er of n e utr o ns fr o m 1 4 t o 8 0 a n d v ari o us b o x si z es fr o m 6.5 8 f m t o 1 3 .2 f m, a n d f or t h e s y m m etri c n u cl e ar m att er
e n er g y w e us e t h e n u m b er of n u cl e o ns fr o m 1 2 t o 1 6 0 a n d a p eri o di c b o x of l e n gt h 9 .2 1 f m. F or c o m p aris o n w e s h o w t h e
r es ults fr o m v ari ati o n al ( A P R),3 4 A u xili ar y Fi el d Diff usi o n M C c al c ul ati o ns ( G C R), 3 5 c al c ul at e d wit h N 3 L O/ N N L O
(t w o- n u cl e o n/t hr e e- n u cl e o n) c hir al i nt er a cti o ns ( E M 5 0 0 M e V, E G M 4 5 0/ 5 0 0 M e V a n d E G M 4 5 0/ 7 0 0 M e V) 3 6 a n d N N L O
c hir al i nt er a cti o ns wit h e x pli cit d elt a d e gr e es of fr e e d o m ( ∆ N N L O). 3 7

c h oi c e. F urt h er d et ails o n t h e i m pl e m e nt ati o n of w a v e f u n cti o n m at c hi n g ar e gi v e n i n M et h o ds.

We ar e gr at ef ul f or dis c ussi o ns wit h m e m b ers a n d p art n ers of t h e N u cl e ar L atti c e Eff e cti v e Fi el d T h e or y C oll a b or ati o n
( J o a q uı́ n D r ut, G ust a v J a ns e n, St ef a n Kri e g, Z h e n g x u e R e n, Avi k S ar k ar, a n d Qi a n W a n g) as w ell as S c ott B o g n er, A n dr e as
E kstr ö m, H ei k o H er g ert, M ort e n Hj ort h- J e ns e n, D a ni el P hilli ps, A c hi m S c h w e n k, a n d Wit e k N az ar e wi cz. We a c k n o wl e d g e
f u n di n g b y t h e D e uts c h e F ors c h u n gs g e m ei ns c h aft ( D F G, G er m a n R es e ar c h F o u n d ati o n) a n d t h e N S F C t hr o u g h t h e f u n ds
pr o vi d e d t o t h e Si n o- G er m a n C oll a b or ati v e R es e ar c h C e nt er T R R 1 1 0 “ S y m m etri es a n d t h e E m er g e n c e of Str u ct ur e i n Q C D ”
( D F G Pr oj e ct I D 1 9 6 2 5 3 0 7 6 - T R R 1 1 0, N S F C Gr a nt N o. 1 2 0 7 0 1 3 1 0 0 1), t h e C hi n es e A c a d e m y of S ci e n c es ( C A S) Pr esi d e nt’s
I nt er n ati o n al Fell o ws hi p I niti ati v e ( PI FI) ( Gr a nt N o. 2 0 1 8 D M 0 0 3 4), Vol ks w a g e n Stift u n g ( Gr a nt N o. 9 3 5 6 2), t h e E ur o p e a n
R es e ar c h C o u n cil ( E R C) u n d er t h e E ur o p e a n U ni o n’s H oriz o n 2 0 2 0 r es e ar c h a n d i n n o v ati o n pr o gr a m m e ( E R C A d G E X O TI C,
gr a nt a gr e e m e nt N o. 1 0 1 0 1 8 1 7 0, a n d E R C A d G N u cl e ar T h e or y, gr a nt a gr e e m e nt N o. 8 8 5 1 5 0), t h e S ci e nti fi c a n d Te c h n ol o gi c al
R es e ar c h C o u n cil of T ur k e y ( T U BI T A K pr oj e ct n o. 1 2 0 F 3 4 1), t h e N ati o n al N at ur al S ci e n c e F o u n d ati o n of C hi n a ( Gr a nts N o.
1 2 1 0 5 1 0 6 a n d N o. 1 2 2 7 5 2 5 9), U. S. N ati o n al S ci e n c e F o u n d ati o n ( P H Y- 1 9 1 3 6 2 0 a n d P H Y- 2 2 0 9 1 8 4), U. S. D e p art m e nt of
E n er g y ( D E- S C 0 0 1 3 3 6 5 a n d D E- S C 0 0 2 1 1 5 2), t h e N u cl e ar C o m p ut ati o n al L o w- E n er g y I niti ati v e ( N U C L EI) S ci D A C- 4 pr oj e ct
( D E- S C 0 0 1 8 0 8 3), t h e R ar e Is ot o p e S ci e n c e Pr oj e ct of t h e I nstit ut e f or B asi c S ci e n c e f u n d e d b y t h e Mi nistr y of S ci e n c e a n d I C T
( M SI C T) a n d b y t h e N ati o n al R es e ar c h F o u n d ati o n of K or e a ( 2 0 1 3 M 7 A 1 A 1 0 7 5 7 6 4 a n d R S- 2 0 2 2- 0 0 1 6 5 1 6 8), a n d t h e I nstit ut e
f or B asi c S ci e n c e (I B S- R 0 3 1- D 1- 2 0 2 2- a 0 0 a n d I B S-I 0 0 1- D 1). C o m p ut ati o n al r es o ur c es pr o vi d e d b y t h e G a uss C e ntr e f or
S u p er c o m p uti n g e. V. ( w w w. g a uss- c e ntr e. e u) f or c o m p uti n g ti m e o n t h e G C S S u p er c o m p ut er J U W E L S at J üli c h S u p er c o m p uti n g
C e ntr e ( J S C) a n d s p e ci al G P U ti m e all o c at e d o n J U R E C A- D C as w ell as t h e O a k Ri d g e L e a d ers hi p C o m p uti n g F a cilit y t hr o u g h
t h e I N CI T E a w ar d “ A b-i niti o n u cl e ar str u ct ur e a n d n u cl e ar r e a cti o ns ”, a n d p arti all y pr o vi d e d b y T U BI T A K U L A K BI M Hi g h
Perf or m a n c e a n d Gri d C o m p uti n g C e nt er ( T R U B A r es o ur c es). C o m p ut ati o n al r es o ur c es w er e als o p artl y pr o vi d e d b y t h e
N ati o n al S u p er c o m p uti n g C e nt er of K or e a wit h s u p er c o m p uti n g r es o ur c es i n cl u di n g t e c h ni c al s u p p ort ( K S C- 2 0 2 1- C R E- 0 4 2 9,
K S C- 2 0 2 2- C H A- 0 0 0 3).

A ut h o r C o nt ri b uti o ns C o d e d e v el o p m e nt, t esti n g, o pti mi z ati o n, a n d pr o d u cti o n r u ns w er e l e d b y S. E. wit h c o ntri-
b uti o ns b y F. H., M. K., T. L., D. L., N. L., B.- N. L., Y. M., G. R., S. S., a n d Y.- H. S. C o n c e pt u al w or k a n d t ests w er e l e d b y
L. B. wit h c o ntri b uti o ns b y S. E., E. E., D. F., H. K., D. L., a n d S. E., T. L., D. L., U.- G. M., a n d Y. K. s u p er vis e d t h e r es e ar c h
eff ort. G. S. l e d t h e lit er at ur e s e ar c h, a n d all a ut h ors c o ntri b ut e d t o t h e writi n g, e diti n g, a n d r e vi e w of t his w or k.

A ut h o r I nf o r m ati o n T h e a ut h ors d e cl ar e n o c o m p eti n g fi n a n ci al i nt er ests.

C o d e A v ail a bilit y All of t h e c o d es pr o d u c e d i n ass o ci ati o n wit h t his w or k h a v e b e e n st or e d a n d c a n b e o bt ai n e d u p o n
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Methods

Hamiltonian Translators
Before describing how wave function matching is implemented in practice, we first discuss a class of transformations called
Hamiltonian translators. Let HA and HB be two Hamiltonians acting on the same linear space. Suppose that UAB is a unitary
transformation mapping eigenvectors of HB to the eigenvectors of HA. We then call UAB a Hamiltonian translator from HB to
HA. Clearly, UBA =U†

AB is then a Hamiltonian translator from HA to HB. We note the curious fact that H ′A =UBAHAUAB is a
Hamiltonian with energy eigenvalues the same as HA but with eigenvectors corresponding to HB. Likewise, H ′B =UABHBUBA is
a Hamiltonian with energy eigenvalues the same as HB but with the eigenvectors corresponding to HA.

Since H ′A and HB share the same eigenvectors, H ′A and HB commute with each other. In order to compute any energy
eigenvalue of H ′A, it suffices to prepare the corresponding eigenvector of HB and compute the energy expectation value of H ′A.
We can express these facts using the language of perturbation theory. If we write H ′A = HB +(H ′A−HB), then the zeroth-order
expansion of the eigenvectors is exact and the first-order expansion of the energies is exact.

We can construct Hamiltonian translators using quantum adiabatic evolution.45 Let f (t) be a smooth function such that
f (0) = 0 and f (1) = 1. Then for any T > 0, we can define the time-dependent Hamiltonian HT (t) = f ( t

T )HA +[1− f ( t
T )]HB.

We also define the unitary transformation

UT =
←−
T exp

[
−i
∫ T

0
HT (t)dt

]
, (S1)

where
←−
T is the time ordering symbol placing operators at later times on the left. In the limit of large T , UT is a Hamiltonian

translator from HB to HA. In the limit of large T , UT maps every eigenvector of HB to an eigenvector of HA. Within each
symmetry subspace that is invariant under both Hamiltonians HA and HB, the mapping UT preserves the ordering of energy
eigenvalues.

Wave Function Matching
As discussed in the main text, we let HS be a simple Hamiltonian that is easily computable and H be a Hamiltonian with
realistic interactions. Wave function matching can be viewed as an approximate Hamiltonian translator from HS to H. It is
only an approximate translator because the unitary transformation U will be restricted to the space of two nucleons up to
some maximum separation distance R and will only map the lowest eigenvector of HS to the lowest eigenvector of H in each
scattering channel.

In the following, we restrict our focus to the space of two nucleons in some angular-momentum scattering channel. We
impose hard wall boundary conditions at some very large separation distance Rwall. The energy eigenstates of H for our chosen
two-nucleon scattering channel will be denoted |ψn〉 for n = 0,1, · · · , and En will be the corresponding energy eigenvalues. We
let the corresponding energy eigenstates for HS be denoted |ψS

n 〉. We now define a short-distance projection operator PR that
projects out the portion of the two-nucleon state with separation distance less than or equal to R. We let |m〉 for m = 1, · · · ,mR
be an orthogonal basis spanning the set of two-nucleon channel states at short distances so that PR = ∑

mR
m=1 |m〉〈m|. In the

lattice calculations presented here, we take |m〉 to be radial position eigenstates, sorted according to increasing radial distance.
See, for example, Ref.46 for a discussion of radial position eigenstates on the lattice. For continuum space calculations, it
is more convenient to work with smooth basis functions. For example, one can take |m〉 to be energy eigenstates sorted in
order of increasing energy for a steep harmonic oscillator potential. The projection operator PR = ∑

mR
m=1 |m〉〈m| does not have

strictly finite range, but nevertheless diminishes very rapidly as a function of distance. We take R to be the distance at which the
interaction is negligible.

Let |ψ0〉R and |ψS
0 〉R be the normalized short-distance portions of the ground states of H and HS respectively,

|ψ0〉R =
PR |ψ0〉
‖PR |ψ0〉‖

, |ψS
0 〉R =

PR |ψS
0 〉

‖PR |ψS
0 〉‖

. (S2)

Let us define a unitary transformation U such that |ψS
0 〉R is mapped to |ψ0〉R. There are several ways to define the remaining

properties of U . In this work, we use Gram-Schmidt orthogonalization to define an ordered sequence of orthonormal basis
states, {|ψ0〉R , |1〉⊥ , · · · , |mR−1〉⊥} and, similarly, {|ψS

0 〉R , |1〉
S
⊥ , · · · , |mR−1〉S⊥}. We require that U maps each basis vector

| j〉S⊥ to the corresponding basis vector | j〉⊥ for each j = 1, · · · ,mR−1.
We proceed by defining the transformed Hamiltonian H ′ =U†HU . Let |ψ ′0〉 be the ground state of H ′ and let

|ψ ′0〉R =
PR |ψ ′0〉
‖PR |ψ ′0〉‖

. (S3)
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We note that |ψ ′0〉 =U† |ψ0〉, ignoring any irrelevant overall phases. Since U is negligible at distances greater than R, |ψ ′0〉
must equal |ψ0〉 at distances greater than R. At distances less than R, |ψ ′0〉R must equal |ψS

0 〉R. Hence the short distance
behavior of |ψ ′0〉 must be proportional to |ψS

0 〉, with constant of proportionality κ . If |ψ0〉 and |ψS
0 〉 have approximately equal

normalizations at distances greater than R, then κ will be numerically close to 1, ignoring any irrelevant overall phases.
We note that wave function matching introduces some nonlocality to the two-nucleon interactions in H ′. In principle, the

process of wave function matching could increase the range of the interactions up to a distance scale equal to R. In practice,
however, the range of interactions in H ′ is determined by the radial distances for which the difference between the wave
functions |ψ0〉 and |ψS

0 〉 is significant. For the lattice calculations presented here we take R to be 3.7 fm, while the difference
between |ψ0〉 and |ψS

0 〉 is appreciable at distances less than 1.9 fm.

Lattice Operators
Simple Hamiltonian
We now present the details of our simple Hamiltonian HS. We construct the Hamiltonian using a χEFT interaction at leading
order,

HS = K +
cSU(4)

2 ∑
~n

:
[
ρ̃
(1)(~n)

]2
: +

cI

2 ∑
I,~n

:
[
ρ̃
(1)
I (~n)

]2
: +V Λπ

OPE, (S4)

where K is the kinetic energy term with nucleon mass m = 938.92 MeV, the :: symbol indicates normal ordering, and ρ̃(d) and
ρ̃
(d)
I are density operators that are smeared both locally and non-locally,

ρ̃
(d)(~n) = ∑

i, j=0,1
ã†

i, j(~n) ãi, j(~n)+ sL

d

∑
|~n−~n′|2=1

∑
i, j=0,1

ã†
i, j(~n

′) ãi, j(~n
′) , (S5)

ρ̃
(d)
I (~n) = ∑

i, j, j′=0,1
ã†

i, j(~n) [τI ] j, j′ ãi, j′(~n)+ sL

d

∑
|~n−~n′|2=1

∑
i, j, j′=0,1

ã†
i, j(~n

′) [τI ] j, j′ ãi, j′(~n
′). (S6)

The smeared annihilation and creation operators, ã and ã†, have with spin i = 0,1 (up, down) and isospin j = 0,1 (proton,
neutron) indices,

ãi, j(~n) = ai, j(~n)+ sNL ∑
|~n′−~n|=1

ai, j(~n′). (S7)

Through our calculations we use local smearing parameter sL = 0.07 and nonlocal smearing parameter sNL = 0.5. In addition
to the short-range SU(4) symmetric interaction, we also have a long-range one-pion-exchange (OPE) potential at leading order
χEFT interaction. We define our one-pion-exchange potential following a recently developed regularization method,47

V Λπ

OPE =− g2
A

8 f 2
π

∑
n′,n,S′,S,I

: ρ
(0)
S′,I(~n

′) fS′,S(~n
′−~n)ρ(0)

S,I (~n) : , (S8)

V Λπ

Cπ
=−Cπ

g2
A

8 f 2
π

∑
n′,n,S,I

: ρ
(0)
S,I (~n

′) f π(~n′−~n)ρ(0)
S,I (~n) : . (S9)

Here f π is a local regulator in momentum space defined as

f π(~n′−~n) = 1
L3 ∑

~q
e−i~q·(~n′−~n)−(~q2+M2

π )/Λ2
π , (S10)

fS′,S is the locally-regulated pion correlation function,

fS′,S(~n
′−~n) = 1

L3 ∑
~q

qS′qS e−i~q·(~n′−~n)−(~q2+M2
π )/Λ2

π

~q2 +M2
π

, (S11)

and

Cπ =− Λπ(Λ
2
π −2M2

π)+2
√

πM3
π exp(M2

π/Λ2
π)erfc(M2

π/Λ2
π)

3Λ3
π

, (S12)
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with gA = 1.287 the axial-vector coupling constant, fπ = 92.2 MeV the pion decay constant and Mπ = 134.98 MeV the pion
mass. The term given in Eq. (S9) is a counterterm introduced to remove the short-distance admixture in the one-pion-exchange
potential.47 In our simple Hamiltonian, we set Λπ = 180 MeV and Cπ = 0, and we compute the difference V Λπ=300

OPE −V Λπ=180
OPE

and the OPEP counterterm V Λπ

Cπ
perturbatively. Here we use the notation

ρ
(d)(~n) = ∑

i, j=0,1
a†

i, j(~n)ai, j(~n)+ sL

d

∑
|~n−~n′|2=1

∑
i, j=0,1

a†
i, j(~n

′)ai, j(~n
′). (S13)

and

ρ
(d)
S,I (~n) = ∑

i, j,i′, j′=0,1
a†

i, j(~n) [σS]ii′ [σI ] j j′ ai′, j′(~n)

+ sL

d

∑
|~n−~n′|2=1

∑
i, j,i′, j′=0,1

a†
i, j(~n

′) [σS]ii′ [σI ] j j′ ai′, j′(~n
′) (S14)

for the density operators.

Hamiltonian at N3LO (next-to-next-to-next-to-leading order)
We now give the details of our realistic Hamiltonian H. Let us define the functions

f π
S (~n

′−~n) = 1
L3 ∑

~q
e−i~q·(~n′−~n)−(~q2+M2

π )/Λ2
π qS (S15)

and

f ππ
S (~n′−~n) = 1

L3 ∑
~q

e−i~q·(~n′−~n)−(~q2+M2
π )/Λ2

π

~q2 +M2
π

qS . (S16)

We define the Hamiltonian H using χEFT interactions at N3LO,

H = K +V Λπ

OPE +V Λπ

Cπ
+VCoulomb +V Q3

3N +V Q4

2N +W Q4

2N +V Q4

2N,WFM +W Q4

2N,WFM, (S17)

where K is the kinetic energy term. V Λπ

OPE and V Λπ

Cπ
are defined in Eqs. (S8) and (S9) with Λπ = 300 MeV. VCoulomb is the

Coulomb interaction, V Q3

3N is the 3N potential, V Q4

2N is the 2N short-range interaction at N3LO of χEFT, W Q4

2N is the 2N Galilean

invariance restoration (GIR) interaction at N3LO of χEFT, V Q4

2N,WFM is the wave function matching interaction defined as

H ′−H, and W Q4

2N,WFM is the GIR correction of the wave function matching interaction.
For the details of the Coulomb interaction and the 2N short-range interactions we refer the reader to Ref.10 The three-

nucleon interactions at Q3 consists of a contact potential, one-pion exchange potential, and two-pion exchange potential,48–50

and in this work we defined two additional SU(4) symmetric potentials denoted by V (l)
cE and V (t)

cE . Therefore, the three-nucleon
interactions at Q3 has the form

V Q3

3N =V (l)
cE +V (t)

cE +V (d)
cE +V (d)

cD +V (TPE)
3N , (S18)

where

V (d)
cE =

1
6

c(d)E
2 f 4

π Λχ

: ∑
~n

[
ρ
(d)(~n)

]3
: , (S19)

V (d)
cD =− c(d)D gA

4 f 4
π Λχ

∑
~n,S,I

∑
~n′,S′

: ρ
(0)
S′,I(~n

′) fS′,S(~n
′−~n)ρ(d)

S,I (~n)ρ
(d)(~n) : , (S20)

V (l)
cE = c(l)E ∑

~n,~n′,~n′′
ρ
(0)(~n)ρ

(0)(~n′)ρ
(0)(~n′′)δ|~n−~n′|,1 δ|~n−~n′′|,1 δ|~n′−~n′′|,2, (S21)
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V (t)
cE = c(t)E ∑

~n,~n′,~n′′
ρ
(0)(~n)ρ

(0)(~n′)ρ
(0)(~n′′)δ|~n−~n′|,

√
2 δ|~n−~n′′|,

√
2 δ|~n′−~n′′|,

√
2. (S22)

The V (TPE)
3N potential can be separated into the following three parts,

V (TPE1)
3N =

c3

f 2
π

g2
A

4 f 2
π

∑
S,S′,S′′,I

∑
~n,~n′,~n′′

× : ρ
(0)
S′,I(~n

′) fS′,S(~n
′−~n) fS′′,S(~n

′′−~n)ρ(0)
S′′,I(~n

′′)ρ
(0)(~n) : (S23)

V (TPE2)
3N =− 2c1

f 2
π

g2
A M2

π

4 f 2
π

∑
S,S′,I

∑
~n,~n′,~n′′

× : ρ
(0)
S′,I(~n

′) f ππ

S′ (~n
′−~n) f ππ

S (~n′′−~n)ρ(0)
S,I (~n

′′)ρ
(0)(~n) : , (S24)

V (TPE3)
3N =

c4

2 f 2
π

(
gA

2 fπ

)2

∑
S1,S2,S3

∑
I1,I2,I3

∑
S′,S′′

∑
~n,~n′,~n′′

εS1,S2,S3εI1,I2,I3

× : ρ
(0)
S′,I1

(~n′) fS′,S1(~n
′−~n) fS′′,S2(~n

′′−~n)ρ(0)
S′′,I2

(~n′′)ρ
(0)
S3,I3

(~n) : . (S25)

We perform our calculations using lattice spacing a = 1.32 fm, and we determine the low-energy constants (LECs) of the
2N short-range interaction up to N3LO of χEFT by reproducing the neutron-proton scattering phase shifts and mixing angles
of the Nijmegen partial wave analysis (PWA).51 The lattice spacing of a = 1.32 fm corresponds to the momentum space cut-off
of 470 MeV, which corresponds to the resolution scale, at which the hidden spin-isospin symmetry of the NN interactions is
best fulfilled.52 In Fig. S1 we plot the calculated neutron-proton scattering phase shifts up to N3LO of χEFT as functions of
relative momenta with comparison to the Nijmegen PWA. Only the statistical errors and not systematic errors are included in
the Nijmegen PWA. In the next subsection we discuss the approach used to estimate the uncertainties in our calculations and
the determination of the LECs of the three-nucleon interactions.

Uncertainty Analysis
We discuss the analysis and quantify the errors which include relevant sources of uncertainty in the calculations presented in
this paper. To perform such a complete analysis to estimate the uncertainties for the calculations using chiral interactions, a
global parameter search for the LECs of the chiral interactions is required. This task could be extremely difficult as one has to
perform a search over a high-dimensional parameter space. Nevertheless, by performing some prior analyses we can reduce
both the dimension and the volume of the parameter space to be searched. For instance, the LECs of the two-pion exchange
three-body potentials are already fixed from pion–nucleon scattering data, c1 = −1.10(3), c3 = −5.54(6) and c4 = 4.17(4)
all in GeV−1,53 and the LECs of two-nucleon potentials can be constrained using the empirical partial wave phase shifts and
mixing angles, which help to shrink the parameter space. However, the main difficulty is the determination of the unknown
LECs of the three–nucleon forces. As we discuss in the following, we treat these LECs as unknown regression coefficients of
an emulator employed with history matching, which has been shown to be an effective approach for parameter searches.54–56

In our calculations we determine the LECs of the 2N chiral interactions by fitting the calculated neutron-proton scattering
phase shifts and mixing angles on the lattice to the Nijmegen PWA.51 To estimate the systematic theoretical uncertainties, we
use the method introduced in Refs.57, 58 and calculate the theoretical errors for the neutron-proton scattering phase shifts and
mixing angles as a function of the relative momenta, and the results are shown in Fig. S2. One can find detailed discussions
about the convergence of the chiral effective field theory expansion on the lattice and theoretical errors in Ref.10 As seen in
Fig. S2 the theoretical error bands at N3LO give a considerable-sized parameter space of LECs. Therefore, we use history
matching together with an emulator to filter the 2N LECs as well as to identify the 3N LECs which provide an acceptable
matching between ab initio calculations and the experimental data for some selected nuclei.

The first step in our analysis is to use the theoretical errors shown in Fig. S2 and get posterior distributions of the 2N
LECs sampling with Markov Chain Monte Carlo (MCMC) and the results are shown in Fig. S3. For each interaction, we
approximately collect 103 samples. Now we can use 2N LECs from these distributions as inputs into our ab-initio model, f (x),
for which we define the emulator equation given by

fo(x) = ∑
i

xi

(
∂E
∂x

)
io
+∑

k
βk

(
∂E
∂β

)
ko
. (S26)
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Figure S1. Plots of the neutron-proton scattering phase shifts as functions of relative momenta with lattice spacing
a = 1.32 fm. For comparison we also plot the phase shifts extracted from the Nijmegen partial wave analysis.51

The first term on the right hand side is the model output of only 2N interactions using 2N inputs, which is denoted by the vector
x, from the distributions shown in Fig. S3. The second term on the right hand side is the output of only 3N interactions and it is a
calibration term where βk are unknown regression coefficients which will correspond to the 3N LECs at the end of the analysis.
For this term we consider the SU(4) symmetric three-nucleon forces V (0)

cE , V (1)
cE , V (2)

cE , V (l)
cE , V (t)

cE given in Eqs. (S19),(S21),(S22),
and the one-pion-exchange three-nucleon forces V (0)

cD , V (1)
cD and V (2)

cD defined in Eq. (S20). In the emulator Eq. (S26), the
derivatives of the energies with respect to x and β stand for the calculated operators on the lattice using first-order perturbation
theory. Also, in the emulator equation all inputs are active variables, therefore, we do not make any such distinction. The
emulator works for any number of outputs, fo(x) with o = 1,2, . . . ,q. When we emulate our model’s behavior for xi inputs,
with i = 1, · · · ,d, we use the experimental data corresponding to the outputs and the calibration coefficients βk so that there is
acceptable agreement between our model and the experimental data. Therefore, the calibration coefficients βk are obtained
from a nonlinear least-squares fitting by minimizing the expression for each input set in the vector x,

rn(x) =
[
min( fn(x)− zn)

2
]1/2

, (S27)

where zn is the experimental data. When we evaluate Eq. (S27), we impose a constraint on the least square problem so that only
natural sized parameters are allowed for the coefficient βk.

In the second step, we use Eq. (S27) to link our model to reality by evaluating inputs from the distributions shown in
Fig. S3 and determining the 3N LECs. To achieve this, we use history matching to perform an efficient parameter search.
History matching is an iterative process that identifies and eliminates implausible parts of the input space by measuring
implausibility of inputs, shrinks the input space in every iteration, and repeats the non-implausible input search in the smaller
input space. Here we use Qw to denote the volume of non-implausible input space. The implausibility measure of a given d
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Figure S2. The plot of the theoretical error bands for the neutron-proton scattering phase shifts and mixing angles versus the
relative momenta.

inputs x = (x1,x2, · · · ,xd) for an nth output is written as,

In(x) =
rn(x)√

Var [rn(x)]+Var [εn]
, (S28)

where the numerator is the distance between the experimental data zn and the calculated output fn(x), and the denominator is the
square root of the sum of the variance of the distance rn(x) and the variance of the errors of prediction εn. Any particular value
of x, say xi, that give a large value of In(x) can be considered as implausible which means that for this input it is unlikely to get
an acceptable match between the calculated outputs and the experimental data. Therefore, we can use a maximum implausibility
measure IM(x) and discard the input from the input space provided that IM(x)> c where c is a cutoff for non-implausibility. In
our analysis we define the maximum implausibility measure by maximizing over all outputs,

IM(x) = max
o∈Zw

Io(x) , (S29)

where Zw is the set of outputs that we consider in the wth iteration, known as wave, and we use c = 3 by appealing to
Pukelsheim’s 3–sigma rule59 which indicates that 95% of the all population lies within ±3σ . Even though the maximum
implausibility measure is defined by Eq. (S29), in our analysis we look at the first three maximum implausibilities in every
iteration, and it provides us a tool to select three-nucleon forces which work as a calibrator in Eq. (S28). This is a crucial step
both as it gives the information about three-nucleon forces which are inevitable to obtain an acceptable agreement between the
calculated outputs and the experimental data with some reasonable credibility and as it guides us to not discard any useful
information in the input space in early iterations.

For the lattice Monte Carlo simulations, the general strategy is to use the expansion H ′ = HS +(H ′−HS) and apply
corrections up to first order in perturbation theory. In order to accelerate the convergence of perturbation theory further, we find
it helpful to consider the more general partition H ′ = H ′S +(H ′−H ′S). The modified simple Hamiltonian H ′S has the same
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Figure S3. The plot of the posterior distribution of the 2N LECs at N3LO sampled using MCMC method.

form as HS in Eq. (S4), but we allow for different coupling strengths cSU(4) and cI . We then minimize the energy and use the
variational principle to optimize the parameters.

We refer the readers to Ref.60 for a general description of and a recipe for history matching and to Ref.56 for a nuclear
physics application. In the following we discuss history matching method and outline the detailed procedure of its application
to our model.

WAVE 1 In the first wave, the implausibility measure is run over outputs Z1 = {3H, 4He} and inputs x = x1S0
⊗ x3S1−3D1

.
Our choice for the collection of inputs in the volume Q0 is based on the fact that only interactions with zero angular
momentum are giving significant contributions to the nuclei used as informative observables for this first wave. Therefore,
we define the current sets of non-implausible inputs x from the distributions shown in Fig. S3, and we calculate the model
outputs from Eq. (S26) by performing a calibration using least square regression over the second term on the right hand
side with the simplest 3N interactions V (0)

cE and V (0)
cD . Then, the implausibility measures IM(x) are calculated using the

first maximum implausibility over outputs, and implausibility cutoffs are imposed to define the new non-implausible
volume denoted by Q1. The results of the fitted (predicted) observables are shown by black open (filled) down-triangle
points in Fig. S4 where we plots the deviations between the model outputs and experimental data given in percentage.
From Fig. S4 it can be seen clearly that when we run the emulator for outputs Z1, deviations for all predicted outputs are
negative, which is important information for choosing outputs to be included in the emulator in the next iteration.

WAVE 2 At this wave, we run the implausibility measure over outputs Z2 = Z1
⋃ {8Be, 12C, 16O} by considering the fact

that there exist strong evidences that the structures of these additional nuclei are in the form of distinct geometrical
configuration of alpha clusters, then we evaluate the inputs for all 2N interactions. The current non-implausible parameter
space for the 1S0 and 3S1− 3D1 channels are set by WAVE 1, while for the channels that have not been evaluated yet
the current sets of non-implausible parameter space is defined from the distributions shown in Fig. S3. At this wave we
perform the least square regression given in Eq. (S27) by using two additional 3N interactions. To make selection for
these additional 3N interactions we run the emulator for all possible sets of 3N interactions and compute the first three
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Figure S4. The plots of deviations between the model outputs and experimental data per nucleon at history matching
iterations from WAVE 1 to WAVE 5.

non-zero maximum implausibility measures. Sets of 3N interaction used as calibrators and the corresponding results for
the ratio of the non-implausible space volumes, Q2/Q1, are shown in Table 1.

As seen from the results, in the most cases one of the calculated outputs has a large deviation with small variance,
and as a result the first maximum implausibility measures are less than 1%, and in the cases where two additional 3N
interactions are V (l)

cE and V (t)
cE we obtain the largest non-implausible space volume. Therefore, from Table 1 we find the

most promising set of 3N interaction as V (0)
cE , V (0)

cD , V (l)
cE and V (t)

cE shown in the first row of Table 1. Therefore, we define
the new non-implausible space volume Q2 at this iteration.

WAVE 3 The results of the fitted (predicted) observables at WAVE 2 are shown by cyan open (filled) up-triangle points
in Fig. S4. We find that using four 3N interactions in WAVE 3 already gives a decent description for nuclei with
N = Z = 8, while deviations for neutron-rich nuclei with Z ≤ 8 are large. Therefore, at this wave we run the implausibility
measure over outputs Z3 = Z2

⋃ {13C, 14C, 17O, 18O} and we evaluate the inputs for all 2N interactions. The current
non-implausible input volume is set by WAVE 2, Q2. Also, we run Eq. (S27) by using two more 3N interactions in
addition to V (0)

cE , V (0)
cD , V (l)

cE and V (t)
cE . To select two additional 3N interactions out of four we run the emulator for all

possible sets of 3N interactions and compute the first three non-zero maximum implausibility measures. Sets of 3N
interaction used as calibrators and the corresponding results for the ratio of the non-implausible space volumes, Q3/Q2,
are shown in Table 2.

Reading the results from Table 2 we determine the most promising set of 3N interaction as V (0)
cE , V (0)

cD , V (1)
cE , V (1)

cD , V (l)
cE and

V (t)
cE , and we define new non-implausible volume for inputs denoted as Q3.

WAVE 4 We show the results of the fitted (predicted) observables at WAVE 3 in Fig. S4 by green open (filled) right-triangle
points. At this wave we use the same 3N interactions used in WAVE 3 we run the implausibility measure over outputs
Z4 = Z3

⋃ {7Li, 9Be, 10Be, 10B, 11B, 14N, 15N} where we included odd-odd nuclei with N = Z as well as neutron-rich
nuclei with Z ≤ 8. Therefore, we define new non-implausible volume for inputs denoted as Q4. The results of the fitted
(predicted) observables are shown by blue open (filled) circle points in Fig. S4.

WAVE 5 The results in Fig. S4 show that the agreements between the calculated and experimental data for light nuclei are
already in an acceptable level. Therefore, by taking into consideration the level of agreement for medium-mass nuclei
and the fact that we are left with two more additional 3N interactions to be used as a calibrator, at this iteration we
perform a numerical experiment to determine whether these additional 3N interactions have any considerable influence on
improving the agreement. To stabilize the calculated results for medium-mass nuclei at this wave we run the implausibility
measure over outputs Z5 = Z4

⋃ {40Ca} and run the emulator for all possible sets of 3N interactions to compute the
first three non-zero maximum implausibility measures. The results are shown in Table 3.
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Table 1. Results for the first three non-zero maximum implausibility measures at WAVE 2. We run the implausibility measure
over outputs 3H, 4He,8Be,12C, and 16O.

3N interactions ratio of non-implausible input volumes Q2/Q1 (%)
in addition to V (0)

cE , V (0)
cD I(1)M (x) I(2)M (x) I(3)M (x)

V (l)
cE , V (t)

cE 42 95 99
V (2)

cE , V (t)
cE 33 94 99

V (2)
cE , V (l)

cE 30 95 99
V (1)

cE , V (t)
cE < 1 37 97

V (1)
cE , V (l)

cE < 1 26 86
V (2)

cD , V (t)
cE < 1 20 97

V (1)
cD , V (l)

cE < 1 14 80
V (1)

cE , V (2)
cE < 1 11 88

V (2)
cD , V (l)

cE < 1 10 82
V (1)

cD , V (2)
cD < 1 10 70

V (2)
cE , V (1)

cD < 1 7 92
V (1)

cE , V (1)
cD < 1 2 39

V (1)
cE , V (2)

cD < 1 2 32
V (1)

cD , V (t)
cE < 1 1 97

V (2)
cE , V (2)

cD < 1 1 96

Table 2. Results for the first three non-zero maximum implausibility measures at WAVE 3. We run the implausibility measure
over outputs 3H, 4He, 8Be, 12C, 13C, 14C, 16O, 17O, and 18O.

3N interactions ratio of non-implausible input volumes Q3/Q2 (%)
in addition to V (0)

cE , V (0)
cD , V (l)

cE , V (t)
cE I(1)M (x) I(2)M (x) I(3)M (x)

V (1)
cE , V (1)

cD 16 49 90
V (1)

cE , V (2)
cD 7 30 92

V (2)
cE , V (1)

cD 2 80 93
V (2)

cE , V (2)
cD < 1 82 98

V (1)
cD , V (2)

cD < 1 53 76
V (1)

cE , V (2)
cE < 1 < 1 6

Based on the numerical results given in Table 3, at this iteration we run the implausibility measure over outputs Z5

using the 3N interactions V (0)
cE , V (0)

cD , V (1)
cE , V (1)

cD , V (l)
cE , V (t)

cE , V (2)
cE and V (2)

cD as calibrators. The results of the fitted (predicted)
observables are shown by red open (filled) square points in Fig. S4.

After performing five waves described above we discard implausible regions from the parameter spaces of the 2N LECs
and we determine the minimum number of 3N interaction needed to get a descent agreement between the calculated and
experimental data for the nuclear binding energies of nuclei with A≤ 40. Finally we use the final parameter spaces and perform
bootstrap re-sampling of the calculated results to quantify the systematic theoretical uncertainties due to the 2N LECs.

In the next step, using the calculated results with quantified uncertainties we perform a second analysis for the 3N
interactions to show the importance of regulators and the connection with cluster EFT as well as nuclear binding energies for
nuclei as discussed in the main text. To end this, we use the central values of the 2N LECs, which give the scattering phase
shifts shown by blue dashed-lines in Fig. S2, with the quantified uncertainties, then we fine-tune the 3N interactions using some
selected nuclear binding energies (to be explained below). In this analysis we calculate the RMSD (root mean square deviation)
over all calculated nuclear binding energies shown in Fig. S4, and we use these results to assess the extent to which set of 3N
interactions is the best for accurately describing some certain nuclear binding energies. The results are shown in Table 4-10
where we also present the energy differences E4

8 −2E2
4 , E6

12,0+1
−3E2

4 , E6
12,0+2

−3E2
4 , E8

16−4E2
4 , E2

6 −E2
4 , E4

9 −E4
8 , E6

13−E6
12,
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Table 3. Results for the first three non-zero maximum implausibility measures at WAVE 5. We run the implausibility measure
over outputs 3H, 4He, 7Li, 8Be, 9Be,10Be, 10B, 11B, 12C, 13C, 14C, 14N, 15N, 16O, 17O, 18O, and 40Ca.

3N interactions ratio of non-implausible input volumes Q5/Q4 (%)
in addition to V (0)

cE , V (0)
cD , V (1)

cE , V (1)
cD , V (l)

cE , V (t)
cE I(5)M (x) I(6)M (x) I(7)M (x)

none < 1 64 97
V (2)

cE 2 23 74
V (2)

cD < 1 16 97
V (2)

cE , V (2)
cD 13 57 91

E8
17−E8

16, E4
10−E4

8 , E6
14−E6

12, and E8
18−E8

16.
From the results shown in Tables 1, 2 and 3, it can be seen that nuclear binding energies are highly sensitive to the range

of the three-nucleon interactions. The first few rows of Table 1 clearly indicate that the nearest-neighbor smearing and the
next-to-nearest-neighbor smearing are playing significantly different roles in describing the light and α-like nuclei. Therefore,
we start the RMSD analysis using the simpliest two 3N interactions, V (0)

cE and V (0)
cD , and the nuclear binding energies for light

nuclei whose structure are in the form of distinct geometrical configuration of α clusters. The results are shown in Table 4.

Table 4. Results for the RMSD (root mean square deviation) over all calculated nuclear binding energies by using the simplest
3N interactions V (0)

cE and V (0)
cD to fit the nuclear binding energies for 4He,8Be,12C, and 16O. All energies are measured in MeV.

3N interactions RMSD E4
8 −2E2

4 E6
12,0+1

−3E2
4 E8

16−4E2
4 E2

6 −E2
4 E4

9 −E4
8 E6

13−E6
12 E8

17−E8
16

in addition to B/A E6
12,0+2

−3E2
4 E4

10−E4
8 E6

14−E6
12 E8

18−E8
16

V (0)
cE , V (0)

cD 0.10 −7.26 −14.42 −0.97 −1.67 −4.95 −4.14
0.39 −8.47 −13.12 −12.19

none 1.236 −0.42(50) −0.86(82) 7.64(76) 0.23(19) 1.47(48) 4.98(99) −0.32(58)
−0.19(92) −1.04(69) 1.33(86) −4.34(59)

As seen in Table 4, the RMSD of the binding energies per nucleon over all calculated nuclear binding energies is 1.236,
and it corresponds to 17.3 % of the average nuclear binding energy per nucleon over all calculated nuclear binding energies
1
N ∑

N
i=1 zi/Ai = 7.01, where N is the number of nuclei, zi is the binding energy of the ith nucleus and Ai is the number of nucleon

of the ith nucleus.
Now we use one more 3N interaction in addition to V (0)

cE and V (0)
cD and fit the nuclear binding energies for 4He,8Be,12C, and

16O. The results are given in Table 5. We compute the RMSD over all calculated nuclear binding energies, and we find the
lowest value as 0.403 MeV which corresponds to 5.6 % of the average nuclear binding energy per nucleon and is obtained
using the 3N interactions V (0)

cE , V (0)
cD and V (l)

cE .
In the next analysis, we use two additional 3N interactions and fit the nuclear binding energies for 4He,8Be,12C, and 16O.

We compute the RMSD over all calculated nuclear binding energies and the results are given in Table 6. By using V (0)
cE , V (0)

cD ,
V (l)

cE and V (t)
cE we find that the lowest value for the RMSD is 0.293 MeV, and this means that roughly we obtain the average

nuclear binding energy per nucleon of all calculated nuclei with 4.1 % errors. The RMSD analysis and the results shown in
Table 6 are consistent with results of history matching given in Table 1 and cyan-colored up-triangle points in FIG. S4.

After finding four 3N interactions which give a good description for light α-like nuclei, we include neutron-rich nuclei
in RMSD analyses. We use three 3N interactions in addition to V (0)

cE and V (0)
cD and fit the nuclear binding energies for

3H, 4He, 7Li, 8Be,9Be, 10Be, 10B, 11B, 12C, 13C, 14C, 14N, 15N, 16O, 17O, and 18O. We compute the RMSD over all calculated
nuclear binding energies and the results are given in Table 7. We find that the lowest value for the RMSD is 0.131 MeV and
is obtained by using V (0)

cE , V (0)
cD , V (l)

cE , V (t)
cE , and V (1)

cE , which means that the average nuclear binding energy per nucleon of all
calculated nuclei is computed roughly with 1.83 % errors. The RMSD analysis and the results shown in Table 7.

Now we fit the nuclear binding energies for 3H, 4He, 7Li, 8Be, 9Be,10Be, 10B, 11B, 12C, 13C, 14C, 14N, 15N, 16O, 17O, and 18O
using four and five 3N interactions in addition to V (0)

cE and V (0)
cD , and the results are shown in Table 8 and Table 9, respectively.

The lowest value for the RMSD is found as 0.109(0.102) MeV when six(seven) 3N interactions are used in the fit, and this
value corresponds to 1.54 %(1.43%) of the average nuclear binding energy per nucleon.

Finally, we fit the nuclear binding energies for 3H, 4He, 7Li, 8Be, 9Be,10Be, 10B, 11B, 12C, 13C, 14C, 14N, 15N, 16O, 17O, 18O,
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Table 5. Results for the RMSD over all calculated nuclear binding energies by using one additional 3N interaction as well as
V (0)

cE and V (0)
cD to fit the nuclear binding energies for 4He,8Be,12C, and 16O. All energies are measured in MeV.

3N interactions RMSD E4
8 −2E2

4 E6
12,0+1

−3E2
4 E8

16−4E2
4 E2

6 −E2
4 E4

9 −E4
8 E6

13−E6
12 E8

17−E8
16

in addition to B/A E6
12,0+2

−3E2
4 E4

10−E4
8 E6

14−E6
12 E8

18−E8
16

V (0)
cE , V (0)

cD 0.10 −7.26 −14.42 −0.97 −1.67 −4.95 −4.14
0.39 −8.47 −13.12 −12.19

V (l)
cE 0.403 −0.57(51) −6.16(82) −15.17(77) −0.17(19) 0.34(50) 0.85(98) −1.88(59)

−1.15(97) −3.23(71) −5.97(86) −7.10(60)

V (2)
cE 0.410 −0.53(52) −5.58(82) −15.07(76) −0.09(19) 0.46(51) 0.78(98) −1.86(58)

−0.46(109) −3.01(68) −6.19(86) −6.95(59)

V (t)
cE 0.415 −0.30(50) −4.04(82) −14.45(77) 0.07(19) 0.69(50) 0.34(98) −1.85(59)

0.45(96) −2.49(69) −6.65(86) −6.72(60)

V (2)
cD 0.419 −0.30(56) −2.28(82) −13.05(76) −0.12(19) 0.65(52) −1.97(98) −1.95(58)

3.20(121) −3.19(59) −8.90(85) −6.73(59)

V (1)
cE 0.465 −0.72(57) −5.36(82) −14.96(76) −0.18(19) 0.46(54) 1.66(98) −1.62(58)

−0.37(100) −3.25(60) −5.38(89) −6.72(59)

V (1)
cD 0.542 −0.09(63) 2.06(82) −7.17(76) 0.01(19) 1.22(63) −2.49(98) −1.82(58)

7.30(175) −2.84(87) −8.81(86) −6.29(59)

and 40Ca using six 3N interactions in addition to V (0)
cE and V (0)

cD , and the results are shown in Table 10. The lowest value for the
RMSD is found as 0.079 MeV, which corresponds to 1.11 % of the average nuclear binding energy per nucleon.

Results
In this subsection, we give numerical details of the results presented in the main text. We have calculated results for the ground
state and excited state energies as well as the charge radii of some selected nuclei up to A = 40, pure neutron matter, and
symmetric nuclear matter at N3LO in chiral effective field theory using wave function matching. In Table 11 we present the
numerical details of the results for the calculated ground state and excited state energies and charge radii as well as experimental
data for comparison. The quoted errors includes all the statistic and systematic uncertainties such as computational uncertainties
from Monte Carlo errors, infinite volume extrapolation, infinite projection time extrapolation, truncation error of the expansion
of the H ′−HS and the systematic uncertainty due to the fitting the 2N short-range interactions. The errors on the charge radii
grow for the heaviest nuclei, and the main sources of these errors are Monte Carlo statistics. Therefore, they can be reduced
by using larger computer resources. In Table 12 we show the calculated pure neutron matter energies for various numbers of
neutrons and box sizes as well as corresponding densities. Similarly, large scale calculations corresponding to high densities
have larger errors which can be reduced by larger computer resources. In Table 13 we show the results for symmetric nuclear
matter energies for various numbers of nucleons as well as corresponding densities. The large errors on the results with large
numbers of nucleon are the statistical errors of Monte Carlo calculations and can be reduced by more computer power.

Nuclear Lattice Effective Field Theory
Nuclear lattice effective field theory (NLEFT)2, 3 combines the frameworks of chiral effective field theory (χEFT) for the forces
between nucleons, lattice field theory, and stochastic Monte Carlo algorithms. Each of these forms a cornerstone of the modern
approach to strongly interacting many-fermion systems in many fields of study, notably nuclear, particle, condensed matter and
atomic physics. By a unique merger of these cornerstones, NLEFT has matured into a leading framework for the investigation
of nuclear structure properties.

Building upon the early developments,61 NLEFT has extended its reach to light and medium-mass nuclei, mostly of even-
even type. This has enabled detailed predictions62–64 of nuclear structure properties, in particular the binding energy for 3H and
4He at NNLO,65 as well as binding energies for isotopic chains with Z = 1,2,4,6 and 8,66 together with root-mean-square
radii and proton and neutron densities. Moreover, NLEFT has given further impulse to the investigation of α-clustering in
nuclear matter. The analyses of the Hoyle state67, 68 and further low-lying excited states6, 68 of 12C, as well as the study of the
structure and EM properties of the 0+1 , the 0+2 and 2+1 states of 16O,69 and the prediction of ground-state properties of even-even
self-conjugate nuclei with Z ≤ 14,70 are noteworthy in this respect.

An immediate strength of NLEFT is the favorable computational scaling with nucleon number A, as the A-body Hamiltonian
in NLEFT is diagonalized stochastically by means of an auxiliary field Monte Carlo (AFMC) algorithm. The two-body,
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three-body, and pion exchange interactions are described by auxiliary fields, which are sampled at each step in the AFMC
algorithm. Energy eigenvalues are obtained using the adiabatic projection method, whereby transition amplitudes mediated
by the Schrödinger time evolution operator between trial (Slater-determinant) states are constructed. In practical AFMC
calculations of NLEFT, the temporal evolution of the trial states is discretized into Lt equal steps, separated by a temporal lattice
spacing at . Hence, the time-evolution operator is subdivided into a sequence of Lt transfer matrices (Trotter decomposition).

On the one hand, NLEFT is firmly grounded in low-energy QCD, as the interactions between nucleons are described by
the NNLO or N3LO Lagrangians of χEFT. The resulting Hamiltonian is formulated with a finite cubic lattice regulator, and
avoids the need for pre-diagonalization techniques such as the similarity renormalization group (SRG).71 On the other hand,
it is known that the AFMC implementation of the full NNLO or N3LO χEFT Hamiltonian produces a severe sign problem,
which eventually compromises the effectiveness of the numerical technique.

A firmly-rooted remedy in the NLEFT literature2 entails the replacement of the χEFT transfer matrices in the initial and
the final Lto time steps by pionless SU(4)-symmetric transfer matrices. It follows that the full χEFT Hamiltonian acts only in
the middle Lti ≡ Lt −Lto time steps through the transfer matrices, whereas Wigner’s SU(4) one acts as a low-energy filter2 at
the boundaries of the time interval. This procedure extends to the expectation value of any operator representing a physical
observable, inserted in the midpoint of the chain of transfer-matrices. The positiveness of the transfer matrices, where Wigner’s
SU(4) action is used, is the major advantage of the method, and is guaranteed for systems with even number of nucleons and
either spin-singlet or isospin-singlet quantum numbers.2 However, distortions in the energy eigenvalues as a result of the usage
of an isospin-preserving SU(4) Lagrangian in the action do appear in the form of lower bounds.2 Although remedies such as
eigenvector continuation72 or symmetry-sign extrapolation73 would allow for a broader use of the χEFT transfer matrix, in this
work we tackle the problem by using the method of wave function matching.

Other ab initio methods
Over the past two decades, nuclear ab initio methods have had great success. The widespread adoption of nuclear forces from
Effective Field Theory (EFT)7, 74–80 laid the foundation for these developments. More specifically, the inclusion of chiral
two-nucleon to higher orders7, 77, 78, 81 and the leading three-nucleon18, 76, 82, 83 forces have shown to be key elements for high
quality calculations. The strong short-range repulsion in nuclear potentials is often soften by a renormalization procedure.40

Besides Nuclear Lattice Effective Field Theory (NLEFT), there are many other promising ab initio approaches being used to
calculate the properties of few- and many- nucleon systems. Full configuration methods like no-core shell model (NCSM),84–87

symmetry-adapted NCSM88, 89 and quantum Monte Carlo (QMC) in several different varieties90–94 were able to extend their
reach into the lower sd-shell.

With controlled truncations, a variety of computationally efficient techniques were developed, like self-consistent Green’s
Functions (SCGF),95 closed-shell many-body perturbation theory (MBPT),96, 97 coupled cluster (CC),98 in-medium SRG
(IMSRG),99 and ab initio no-core Monte Carlo shell model.100, 101 In the meantime, effective shell model Hamiltonians
can be constructed by open-shell MBPT,102–104 valence-space IMSRG (VS-IMSRG)21, 105 and shell model coupled cluster
(SMCC).106, 107 To include continuum effects in weakly bound nuclei, several methods were also well established, like the
no-core shell model with continuum (NCSMC),108 complex CC,109 no-core Gamow shell model (GSM),110, 111 Gamow
IMSRG112 and GSM with realistic forces.113, 114 It should be noted that the level of the approximation is not the same in all
these different approaches, but a detailed comparison goes beyond the scope of this paper.
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95. Somà, V. Self-consistent Green’s function theory for atomic nuclei. Front. in Phys. 8, 340 (2020). 2003.11321.
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Table 6. Results for the RMSD over all calculated nuclear binding energies by using two additional 3N interactions as well as
V (0)

cE and V (0)
cD to fit the nuclear binding energies for 4He,8Be,12C, and 16O. All energies are measured in MeV.

3N interactions RMSD E4
8 −2E2

4 E6
12,0+1

−3E2
4 E8

16−4E2
4 E2

6 −E2
4 E4

9 −E4
8 E6

13−E6
12 E8

17−E8
16

in addition to B/A E6
12,0+2

−3E2
4 E4

10−E4
8 E6

14−E6
12 E8

18−E8
16

V (0)
cE , V (0)

cD 0.10 −7.26 −14.42 −0.97 −1.67 −4.95 −4.14
0.39 −8.47 −13.12 −12.19

V (l)
cE , V (t)

cE 0.293 −0.75(49) −7.66(85) −15.25(76) −0.89(19) −0.56(48) −1.83(100) −2.50(58)
−1.09(90) −6.14(71) −8.19(88) −8.66(59)

V (2)
cE , V (l)

cE 0.342 −0.29(60) −7.49(84) −14.80(81) −0.92(19) −0.76(58) −2.19(100) −2.56(67)
−4.05(283) −6.08(66) −7.63(89) −8.80(66)

V (2)
cD , V (l)

cE 0.362 −0.25(58) −7.47(82) −14.76(78) −0.08(19) 0.15(55) 2.57(98) −2.13(60)
−4.34(155) −3.36(65) −3.83(86) −7.86(61)

V (1)
cD , V (l)

cE 0.384 −0.20(59) −7.40(82) −14.72(77) −0.11(19) 0.05(59) 1.05(98) −2.03(59)
−4.37(187) −3.25(87) −5.52(86) −7.41(60)

V (1)
cD , V (2)

cD 0.405 −0.24(49) −4.34(82) −14.29(76) −0.14(19) 0.32(48) −1.87(99) −1.96(58)
0.27(95) −3.23(72) −8.84(85) −6.80(59)

V (2)
cE , V (t)

cE 0.418 −0.89(54) −7.66(82) −15.38(76) −0.34(19) 0.15(52) 1.33(98) −1.87(58)
−1.49(134) −3.79(62) −5.54(85) −7.32(59)

V (2)
cE , V (1)

cD 0.423 −0.29(54) −7.45(82) −14.80(77) 0.02(19) 0.23(56) 1.85(98) −1.87(59)
−4.14(139) −2.72(90) −4.95(86) −7.08(60)

V (1)
cE , V (2)

cE 0.423 −0.60(53) −5.73(82) −15.04(76) −0.10(19) 0.47(51) 1.08(98) −1.81(58)
−0.58(108) −2.99(68) −5.89(86) −6.91(59)

V (2)
cE , V (2)

cD 0.423 −0.23(57) −7.46(82) −14.74(77) 0.24(19) 0.48(54) 4.38(98) −1.97(59)
−4.48(116) −2.33(64) −2.40(85) −7.50(60)

V (1)
cE , V (l)

cE 0.427 −0.67(52) −6.32(82) −15.24(77) −0.18(19) 0.36(52) 1.37(98) −1.78(59)
−1.29(99) −3.21(69) −5.50(86) −6.98(60)

V (1)
cD , V (t)

cE 0.430 0.10(59) −5.04(82) −14.18(78) 0.31(19) 0.61(64) 1.26(99) −1.84(61)
−2.90(178) −1.79(109) −5.61(86) −6.65(62)

V (1)
cE , V (1)

cD 0.525 −0.71(49) −7.65(83) −15.19(77) −0.18(19) 0.14(47) 3.87(99) −1.39(58)
−4.51(161) −3.26(57) −3.13(97) −6.65(60)

V (1)
cE , V (t)

cE 0.538 −1.23(73) −6.36(84) −15.48(76) −0.52(19) 0.18(71) 2.85(100) −1.37(58)
−0.66(104) −4.40(91) −4.29(99) −6.77(59)

V (1)
cE , V (2)

cD 0.545 −1.06(59) −7.80(82) −15.50(77) −0.21(19) 0.33(57) 4.91(98) −1.28(58)
−3.45(90) −3.21(63) −2.05(96) −6.60(60)

V (2)
cD , V (t)

cE 0.555 0.40(77) −5.45(84) −13.95(84) 1.01(20) 1.28(88) 6.95(100) −1.59(70)
−6.17(225) 0.48(147) 0.23(90) −6.37(68)

24/29



Table 7. Results for the RMSD over all calculated nuclear binding energies by using three additional 3N interactions as well
as V (0)

cE and V (0)
cD to fit the nuclear binding energies for 3H, 4He,7Li, 8Be, 9Be, 10Be, 10B, 11B, 12C, 13C, 14C, 14N, 15N, 16O, 17O,

and 18O. All energies are measured in MeV.

3N interactions RMSD E4
8 −2E2

4 E6
12,0+1

−3E2
4 E8

16−4E2
4 E2

6 −E2
4 E4

9 −E4
8 E6

13−E6
12 E8

17−E8
16

in addition to B/A E6
12,0+2

−3E2
4 E4

10−E4
8 E6

14−E6
12 E8

18−E8
16

V (0)
cE , V (0)

cD 0.10 −7.26 −14.42 −0.97 −1.67 −4.95 −4.14
0.39 −8.47 −13.12 −12.19

V (1)
cE , V (l)

cE 0.131 −0.52(51) −8.47(85) −17.40(76) −0.98(19) −0.86(50) −3.97(100) −3.07(58)
V (t)

cE −1.30(97) −6.69(66) −10.38(92) −9.56(59)

V (1)
cE , V (2)

cE 0.169 0.13(61) −5.55(82) −16.61(78) −0.25(19) −0.02(61) −3.96(98) −2.95(61)
V (l)

cE −0.44(107) −4.02(90) −10.56(92) −8.57(61)

V (1)
cE , V (2)

cD 0.184 0.11(61) −5.93(82) −16.52(78) −0.15(19) 0.07(63) −3.47(99) −2.92(60)
V (l)

cE −0.71(91) −3.59(102) −10.17(95) −8.46(61)

V (1)
cE , V (1)

cD 0.188 0.22(70) −6.09(82) −16.34(78) −0.13(19) 0.01(72) −3.58(99) −2.96(61)
V (l)

cE −1.38(117) −3.59(112) −10.20(95) −8.52(61)

V (2)
cE , V (1)

cD 0.204 −0.12(55) −5.83(83) −17.25(78) −0.39(19) −0.16(52) −2.01(99) −2.54(61)
V (l)

cE −1.60(185) −4.50(59) −8.88(87) −8.22(61)

V (1)
cE , V (2)

cE 0.215 −1.32(53) −11.54(82) −18.00(77) −0.81(19) −0.59(49) 0.24(98) −2.43(61)
V (t)

cE −2.80(202) −5.52(55) −6.86(90) −8.71(61)

V (2)
cE , V (l)

cE 0.217 −1.21(51) −10.95(85) −18.60(77) −1.20(19) −1.05(52) −1.30(101) −2.65(59)
V (t)

cE −2.77(95) −7.18(80) −8.02(89) −9.35(60)

V (2)
cE , V (2)

cD 0.230 −0.58(53) −5.69(82) −18.51(77) −0.60(19) −0.13(50) −2.95(99) −2.36(60)
V (l)

cE 0.51(89) −4.78(62) −10.06(86) −7.84(60)

V (1)
cD , V (l)

cE 0.236 −1.42(70) −9.45(86) −19.01(77) −1.41(19) −0.97(74) −2.68(102) −2.72(59)
V (t)

cE 0.47(194) −7.81(119) −9.40(90) −9.44(60)

V (1)
cE , V (2)

cE 0.240 −0.54(52) −5.42(82) −17.28(76) −0.21(19) 0.31(50) −1.09(98) −2.17(58)
V (2)

cD 0.56(122) −3.46(64) −8.53(85) −7.37(59)

V (1)
cD , V (2)

cD 0.249 −0.40(52) −7.48(82) −17.86(77) −0.26(19) −0.08(52) −0.38(99) −2.18(59)
V (l)

cE −3.13(134) −3.69(80) −7.67(86) −7.58(60)

V (1)
cE , V (2)

cE 0.250 −0.28(55) −7.37(82) −16.83(77) −0.03(19) 0.16(56) 0.11(99) −2.29(59)
V (1)

cD −2.96(98) −2.98(92) −7.08(86) −7.65(60)

V (2)
cE , V (1)

cD 0.252 −0.43(49) −5.99(82) −17.49(76) −0.26(19) 0.08(49) −1.66(99) −2.13(58)
V (2)

cD −0.92(96) −3.60(76) −9.14(85) −7.25(59)

V (2)
cD , V (l)

cE 0.255 −1.24(62) −8.95(88) −18.75(77) −1.47(19) −1.14(67) −4.83(103) −2.82(60)
V (t)

cE 0.73(128) −8.11(109) −11.61(91) −9.37(60)

V (1)
cE , V (1)

cD 0.263 −0.51(49) −6.28(82) −17.75(76) −0.29(19) 0.05(49) −1.27(99) −2.06(58)
V (2)

cD −1.21(95) −3.66(73) −8.78(86) −7.21(59)

V (2)
cE , V (2)

cD 0.264 −1.54(70) −10.22(83) −18.31(79) −1.07(19) −0.67(71) −0.88(99) −2.31(63)
V (t)

cE −0.60(232) −6.42(93) −8.19(88) −8.54(62)

V (2)
cE , V (1)

cD 0.265 −1.65(66) −11.56(83) −18.64(78) −0.99(19) −0.65(65) 1.05(99) −2.20(62)
V (t)

cE −2.36(229) −6.08(81) −6.21(87) −8.56(62)

V (1)
cD , V (2)

cD 0.267 −0.63(58) −4.90(82) −17.43(76) −0.59(19) −0.09(55) −4.51(99) −2.23(58)
V (t)

cE 2.13(108) −4.66(64) −12.07(85) −7.31(59)

V (1)
cE , V (2)

cD 0.320 −1.00(75) −4.62(85) −17.46(76) −0.64(19) 0.07(75) −1.05(100) −1.90(58)
V (t)

cE 2.40(132) −4.98(103) −8.75(93) −7.28(59)

V (1)
cE , V (1)

cD 0.343 −1.16(63) −7.97(82) −18.56(76) −0.47(19) −0.00(60) 2.78(98) −1.61(58)
V (t)

cE −2.36(98) −4.16(65) −4.84(94) −7.15(59)
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Table 8. Results for the RMSD over all calculated nuclear binding energies by using four additional 3N interactions as well as
V (0)

cE and V (0)
cD to fit the nuclear binding energies for 3H, 4He, 7Li, 8Be,9Be, 10Be, 10B, 11B, 12C, 13C, 14C, 14N, 15N, 16O, 17O, and

18O. All energies are measured in MeV.

3N interactions RMSD E4
8 −2E2

4 E6
12,0+1

−3E2
4 E8

16−4E2
4 E2

6 −E2
4 E4

9 −E4
8 E6

13−E6
12 E8

17−E8
16

in addition to B/A E6
12,0+2

−3E2
4 E4

10−E4
8 E6

14−E6
12 E8

18−E8
16

V (0)
cE , V (0)

cD 0.10 −7.26 −14.42 −0.97 −1.67 −4.95 −4.14
0.39 −8.47 −13.12 −12.19

V (1)
cE , V (2)

cE 0.109 −0.67(51) −9.63(84) −17.18(77) −1.08(19) −1.00(51) −4.27(100) −3.22(59)
V (l)

cE , V (t)
cE −1.34(92) −7.05(70) −10.64(97) −9.91(60)

V (1)
cE , V (1)

cD 0.159 −0.98(55) −8.13(84) −17.98(76) −1.27(19) −0.88(58) −4.83(100) −3.11(58)
V (l)

cE , V (t)
cE 1.58(163) −7.59(93) −11.30(92) −9.75(59)

V (1)
cE , V (2)

cE 0.165 −0.13(51) −5.61(82) −17.34(78) −0.38(19) −0.06(52) −4.11(99) −2.78(60)
V (2)

cD , V (l)
cE 0.18(89) −4.26(84) −10.87(89) −8.29(61)

V (1)
cE , V (2)

cE 0.169 0.13(62) −5.53(82) −16.60(78) −0.25(19) −0.03(61) −3.95(98) −2.95(61)
V (1)

cD , V (l)
cE −0.47(109) −4.03(89) −10.55(92) −8.56(61)

V (1)
cE , V (1)

cD 0.185 0.28(74) −6.09(82) −16.35(78) −0.14(19) −0.06(76) −3.84(99) −2.91(60)
V (2)

cD , V (l)
cE −1.80(153) −3.58(118) −10.57(93) −8.38(61)

V (1)
cE , V (2)

cE 0.202 −1.29(53) −11.38(82) −17.90(77) −0.77(19) −0.53(49) −0.12(98) −2.50(60)
V (1)

cD , V (t)
cE −2.41(227) −5.39(56) −7.17(93) −8.73(61)

V (2)
cE , V (1)

cD 0.214 −0.19(51) −5.64(82) −17.82(77) −0.52(19) −0.28(49) −3.76(99) −2.47(60)
V (2)

cD , V (l)
cE −0.88(168) −4.69(66) −10.79(86) −7.90(61)

V (1)
cE , V (2)

cE 0.228 −1.39(62) −10.34(82) −18.04(78) −0.97(19) −0.63(61) −1.30(98) −2.44(62)
V (2)

cD , V (t)
cE −0.83(236) −6.09(72) −8.51(89) −8.64(62)

V (1)
cE , V (2)

cD 0.236 −1.12(58) −8.74(87) −18.52(77) −1.43(19) −1.12(63) −5.11(102) −2.89(59)
V (l)

cE , V (t)
cE 0.76(120) −7.99(102) −11.83(91) −9.43(60)

V (2)
cE , V (1)

cD 0.244 −1.55(72) −10.31(86) −19.09(77) −1.45(19) −1.05(77) −2.21(102) −2.69(60)
V (l)

cE , V (t)
cE −0.09(211) −7.94(123) −8.96(90) −9.50(60)

V (1)
cD , V (2)

cD 0.245 −1.02(53) −8.98(87) −18.50(77) −1.39(19) −1.18(56) −5.03(102) −2.83(59)
V (l)

cE , V (t)
cE −0.18(90) −7.83(88) −11.80(91) −9.30(60)

V (2)
cE , V (2)

cD 0.258 −1.32(64) −9.56(88) −18.82(78) −1.49(19) −1.19(69) −4.37(103) −2.79(61)
V (l)

cE , V (t)
cE 0.31(141) −8.15(112) −11.17(92) −9.41(61)

V (1)
cE , V (2)

cE 0.294 −0.69(53) −6.18(82) −18.28(76) −0.41(19) 0.00(52) −1.19(99) −1.91(58)
V (1)

cD , V (2)
cD −0.76(90) −3.96(68) −8.83(88) −7.02(59)

V (2)
cE , V (1)

cD 0.298 −1.46(61) −11.06(82) −19.05(78) −1.09(19) −0.88(58) −1.80(99) −2.22(61)
V (2)

cD , V (t)
cE −2.19(150) −6.27(63) −9.16(86) −8.23(61)

V (1)
cE , V (1)

cD 0.367 −1.29(74) −7.65(85) −18.89(77) −0.93(19) −0.47(72) −1.20(101) −1.80(59)
V (2)

cD , V (t)
cE −0.36(100) −5.69(83) −8.92(95) −7.33(60)
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Table 9. Results for the RMSD over all calculated nuclear binding energies by using five additional 3N interactions as well as
V (0)

cE and V (0)
cD to fit the nuclear binding energies for 3H, 4He, 7Li, 8Be,9Be, 10Be, 10B, 11B, 12C, 13C, 14C, 14N, 15N, 16O, 17O, and

18O}. All energies are measured in MeV.

3N interactions RMSD E4
8 −2E2

4 E6
12,0+1

−3E2
4 E8

16−4E2
4 E2

6 −E2
4 E4

9 −E4
8 E6

13−E6
12 E8

17−E8
16

in addition to B/A E6
12,0+2

−3E2
4 E4

10−E4
8 E6

14−E6
12 E8

18−E8
16

V (0)
cE , V (0)

cD 0.10 −7.26 −14.42 −0.97 −1.67 −4.95 −4.14
0.39 −8.47 −13.12 −12.19

V (1)
cE , V (2)

cE , V (1)
cD 0.102 −0.73(51) −9.99(84) −17.60(77) −1.11(19) −1.05(51) −4.15(100) −3.24(59)

V (l)
cE , V (t)

cE −1.64(93) −7.14(69) −10.61(97) −9.98(59)

V (1)
cE , V (2)

cE , V (2)
cD 0.144 −0.91(49) −9.93(84) −17.80(77) −1.20(19) −1.06(49) −4.44(99) −3.10(59)

V (l)
cE , V (t)

cE −0.85(117) −7.30(67) −10.96(95) −9.73(60)

V (1)
cE , V (2)

cE , V (1)
cD 0.185 0.02(57) −5.59(82) −17.22(77) −0.40(19) −0.23(55) −3.80(99) −2.66(60)

V (2)
cD , V (l)

cE −1.24(179) −4.46(72) −10.67(86) −8.16(61)

V (2)
cE , V (1)

cD , V (2)
cD 0.260 −1.30(61) −9.63(87) −18.85(77) −1.48(19) −1.20(65) −4.39(102) −2.78(60)

V (l)
cE , V (t)

cE 0.09(130) −8.07(102) −11.20(91) −9.36(61)

V (1)
cE , V (1)

cD , V (2)
cD 0.270 −1.05(52) −9.43(87) −18.71(77) −1.39(19) −1.24(53) −4.70(102) −2.71(59)

V (l)
cE , V (t)

cE −1.03(92) −7.76(79) −11.57(91) −9.11(60)

V (1)
cE , V (2)

cE , V (1)
cD 0.337 −1.57(69) −10.88(84) −19.30(78) −1.18(19) −0.93(66) −1.32(99) −2.08(62)

V (2)
cD , V (t)

cE −2.02(147) −6.57(75) −8.79(87) −8.13(62)

Table 10. Results for the RMSD over all calculated nuclear binding energies by using six additional 3N interactions as well as
V (0)

cE and V (0)
cD to fit the nuclear binding energies for 3H, 4He,7Li, 8Be, 9Be, 10Be,10B, 11B, 12C, 13C, 14C, 14N, 15N, 16O, 17O, 18O,

and 40Ca. All energies are measured in MeV.

3N interactions RMSD E4
8 −2E2

4 E6
12,0+1

−3E2
4 E8

16−4E2
4 E2

6 −E2
4 E4

9 −E4
8 E6

13−E6
12 E8

17−E8
16

in addition to B/A E6
12,0+2

−3E2
4 E4

10−E4
8 E6

14−E6
12 E8

18−E8
16

V (0)
cE , V (0)

cD 0.10 −7.26 −14.42 −0.97 −1.67 −4.95 −4.14
0.39 −8.47 −13.12 −12.19

V (1)
cE , V (2)

cE , V (1)
cD 0.079 −0.65(49) −8.55(84) −17.45(77) −1.09(19) −0.85(53) −5.44(100) −3.48(59)

V (2)
cD , V (l)

cE , V (t)
cE 0.99(168) −7.19(83) −11.79(106) −10.23(60)
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Table 11. Results of calculated ground state and excited state energies of some selected nuclei at N3LO in chiral effective
field theory and comparison with experimental data.

Nuclei B (MeV) Experiment (MeV) Rc (fm) Experiment (fm)
2H 2.2102 2.2246 2.157 2.140
3H 8.35(22) 8.48 1.7641(22) 1.759

3He 7.64(14) 7.72 1.9064(84) 1.945
4He 28.24(16) 28.3 1.7244(29) 1.676
6He 29.04(13) 29.27 2.0399(228) 2.068(11)
6Li 32.82(12) 31.99 2.5484(248) 2.589(39)
7Li 39.61(13) 39.24 2.4496(191) 2.444(42)
8Be 56.73(38) 56.5
9Be 57.59(29) 58.17 2.5299(337) 2.518
10Be 63.72(30) 64.97
10B 64.46(59) 64.75 2.4852(348) 2.4278
11B 75.38(42) 76.2 2.4502(194) 2.4059

12C0+1
92.36(64) 92.16 2.4903(121) 2.470

12C0+2
84.88(143) 84.51

12C2+1
87.58(101) 87.72

13C 97.07(52) 97.11 2.5206(408) 2.4614
14C 104.87(69) 105.28 2.5647(396) 2.504
14N 106.25(94) 104.66 2.5748(216) 2.5579
15N 115.29(37) 115.49 2.6589(471) 2.6061
16O 129.99(38) 127.62 2.6935(180) 2.701
17O 132.47(36) 131.76 2.6866(756) 2.695
18O 140.37(45) 139.81 2.7656(498) 2.775
20O 151.90(29) 151.37
22O 160.7(17) 162.03
24O 166.9(12) 168.38
18F 135.52(61) 137.369

20Ne 164.6(06) 160.645 2.9971(319) 3.0053
24Mg 196.0(19) 198.257 3.0604(269) 3.0568
28Si 234.2(25) 236.537 3.0972(227) 3.1223
32S 266.8(24) 271.78 3.2450(703) 3.2608

36Ar 299.8(35) 306.72 3.4469(1075) 3.3902
40Ca 337.7(14) 342.052 3.4995(875) 3.4764
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Table 12. Results of calculated pure neutron matter energy using various number of neutrons and box sizes.

A(= N) L (fm) ρ (fm−3) E (MeV)

14 6.58 0.0492 102.9(1)
14 7.89 0.0285 66.84(92)
14 9.21 0.0179 51.41(76)
14 10.5 0.0120 41.41(85)
14 11.8 0.0084 34.11(65)
14 13.2 0.0062 28.71(50)
28 6.58 0.0984 341.5(99)
28 7.89 0.0570 220.8(64)
28 9.21 0.0359 169.9(35)
28 10.5 0.0240 136.0(24)
28 11.8 0.0169 112.8(21)
42 6.58 0.1477 607.4(70)
42 7.89 0.0855 359.9(42)
42 9.21 0.0538 267.3(43)
42 10.5 0.0361 211.1(10)
42 11.8 0.0253 175.7(10)
42 13.2 0.0185 149.6(22)
66 6.58 0.2320 1750(7)
66 7.89 0.1343 928.4(17)
66 9.21 0.0846 613.1(44)
66 10.5 0.0567 464.0(66)
66 11.8 0.0398 373(19)
80 6.58 0.2812 2429(10)
80 7.89 0.1628 1535(7)
80 9.21 0.1025 999(8)

Table 13. Results of calculated symmetric nuclear matter energy using various number of nucleons.

A(= 2N = 2Z) L (fm) ρ (fm−3) E at N3LO [2NFs only] (MeV) E at N3LO [2NFs+3NFs] (MeV)

12 9.21 0.0154 −101.4(2) −102.4(7)
16 9.21 0.0205 −137.3(3) −164(2)
24 9.21 0.0308 −219.9(1) −281(3)
36 9.21 0.0461 −328(1) −456(2)
48 9.21 0.0615 −453(1) −697(4)
60 9.21 0.0768 −569(2) −851(6)
72 9.21 0.0922 −699(1) −1067(5)
84 9.21 0.1076 −830(2) −1328(5)
96 9.21 0.1230 −965(3) −1642(6)

112 9.21 0.1435 −1090(2) −1945(8)
128 9.21 0.1640 −1060(2) −2078(7)
144 9.21 0.1845 −963(7) −2150(43)
160 9.21 0.2050 −850(39) −2437(317)
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