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Abstract
This article is a brief introduction to quantum algorithms for the eigenvalue problem
in quantum many-body systems. Rather than a broad survey of topics, we focus on
providing a conceptual understanding of several quantum algorithms that cover the essen-
tials of adiabatic evolution, variational methods, phase detection algorithms, and several
other approaches. For each method, we discuss the potential advantages and remaining
challenges.
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1 Introduction

Quantum computing has the potential to address many of the unsolved problems of quan-
tum many-body physics. By allowing for arbitrary linear combinations of tensor products
of qubits, one can store exponentially more information than classical bits. This opens the
possibility of calculations of strongly-interacting systems with many degrees of freedom with-
out the need for Monte Carlo methods and their accompanying problems associated with
sign oscillations [1-6]. Furthermore, qubits naturally evolve with unitary real-time dynam-
ics, providing access to non-equilibrium processes, which are often well beyond the reach of
first-principles calculations using classical computers. But there are also great challenges to
realizing the promise of quantum computing. One of the main problems is the fact that the
quantum computing devices available today have significant limitations due to gate errors,
qubit decoherence, faulty measurement readout, small numbers of qubits, and limited qubit
connectivity. These problems severely limit the class of problems that one can address at
present. Nevertheless, significant advances are being made in quantum hardware performance
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and scale [7-9], and it is useful to consider the design and performance of quantum algorithms
as quantum resources grow and become more reliable.

There is an excellent and comprehensive review on quantum computing and quantum
many-body systems in Ref. [10]. Instead of writing another review with similarly broad scope,
in this article we instead focus on several algorithms of interest for eigenvalue problems. The
aim is to provide a readable introduction for novice readers with enough detail to demon-
strate the concepts and execution of each method. We should note that there are many useful
algorithms of relevance to eigenvalue problems that we do not cover here. These include
cooling algorithms [11-15], coupled heat bath approaches [16, 17], dissipative open sys-
tem methods [18-20], spectral combing [21], symmetry projection techniques [22-26], linear
combinations of unitaries [27-31], and imaginary time evolution [32-36].

In the following, we start with a review of the adiabatic theorem and the performance
of adiabatic evolution for the preparation of eigenstates. After this, we cover the broad class
of variational methods. We discuss gradient calculation techniques for optimization and sev-
eral specific variational algorithms. Thereafter we present several phase detection algorithms.
These include phase estimation, iterative phase estimation, and the rodeo algorithm. We then
conclude with a summary and outlook for the future.

2 Adiabatic Evolution

The adiabatic theorem states that if a quantum state is an eigenstate of an initial Hamiltonian
H(0) = Hy, then the quantum state will remain trapped in an exact eigenstate of the instan-
taneous Hamiltonian H (¢) in the limit that the time dependence of H (¢) is infinitely slow
[37, 38]. If this evolution has only finite duration, then the error will scale inversely with the
total time evolution, 7". We can use quantum adiabatic evolution to prepare the eigenstates of
any Hamiltonian H; by preparing an exact eigenstate of some simple initial Hamiltonian Hy.
For the purpose of analysis, it is convenient to scale out the dependence on the total duration
of time 7" and work with the rescaled variable s = ¢/T". We then make a smooth interpolation
H (s) with s ranging from s = 0 to s = 1, with H(0) = Hy and H(1) = H; [39-50]. Let us
define the adiabatic evolution operator

U(s) = T exp {—iT/OS H(s’)ds’] : (1)

where T indicates time ordering where operators at later times are placed on the left. In the
limit of large time T, the unitary transformation U (1) will map any eigenstate of Hy to an
eigenstate of H;. In Ref. [51], it is observed that the unitarily-transformed Hamiltonian,

H'(1) =U'(1)H,U(1), )

is a Hamiltonian whose eigenvalues are equal to H; but whose eigenvectors are equal to Hy.
For this reason, the term ‘“Hamiltonian translator” was used to describe the unitary transfor-
mation U (1). Suppose we start from the Hamiltonian H (0) and perform a perturbation theory
expansion in the difference, H'(1) — H(0),

H'(1) = H(0) + [H'(1) — H(0)]. 3)



Since H(0) and H'(1) share the same eigenvectors, we find that first-order perturbation for
the energy is exact and all other terms in perturbation theory for the energy or wave function
vanish.

Let us now consider the one-parameter eigenvector |¢)(s)), which is an instantaneous
eigenvector of H (s) for s in the interval [0, 1]. Let A(s) be the spectral gap between |i)(s))
and the rest of the energy spectrum of H (s). In computing the spectral gap, we can ignore
sectors that are orthogonal to |¢)(s)) due to symmetries that are respected by H (s). We note
that [¢(0)) is an eigenstate of Hy. Let us define |y (s)) as U(s) [¢(0)).

We use the symbol || - || to denote the operator norm. Building upon the work of Ref. [52—
54], Jansen et al. [55] derived the rigorous bound that
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is sufficient to satisfy the error bound

[ (W(s)lu(s)) | =19, ©)

where B is a boundary term that vanishes when 9, H(0) and 9; H (1) both equal zero [50].
We see from Eq. (4) that, for any fixed system, the required time 7" is scaling inversely with
the error 6.

The challenge with adiabatic state preparation for eigenstates of quantum many-body
systems is the fact that A(s) may be extremely small for large systems. This is especially true
when Hj and H; have very different eigenstates, and H (s) must pass through one or more
quantum phase transitions. This motivates the search for initial Hamiltonians Hy for which
the starting eigenstate can be prepared on a quantum computer, but the eigenstate structure of
Hy is not completely trivial and has some resemblance to that of H; [56]. Even in cases where
|t (1)) is not a good approximation to the eigenstate |¢)(1)) of Hy, the state |ty (1)) can still
be a useful starting vector for other state preparation algorithms which converge more rapidly.

In order to perform the time evolution in Eq. (1), one usually uses some version of the
Trotter approximation. The conceptual starting point for the Trotter approximation is the

Baker-Campbell-Hausdorff formula, which states that when edeP = e, we have the formal
series ) 1 1
C:A+B+§[A,B]+E[A,[A,B]]fE[B,[A,B]]er. (6)

If our Hamiltonian has two non-commuting pieces,
H=Hy+ Hp, (7
then, at first order in the Trotter-Suzuki expansion, we can use [57]

efiHAt — efiHAAtefiHBAt + O[(At)2]

_ e—iHBAte—iHAAt + O[(Af)Q] (8)



At second order we have

efiHAt _ efiHBAt/2efiHAAtefiHBAt/2 + O[(At)g]

— e—iHAAt/Qe—iHBAte—iHAAt/Q +O[(At)3]. 9)

The generalization to higher-order expressions can be found in Ref. [58]. The performance
of the Trotter-Suzuki expansion can be improved in numerous ways, such as using random
orderings [59, 60], sums of Trotter products at different orders [61-63], extrapolation methods
[64], and renormalization [65].

3 Variational Methods

Variational quantum algorithms encompass a broad class of methods that are among the most
popular approaches to the preparation of eigenstates using current and near-term quantum
hardware. While the examples we consider here are optimizing a single vector, there are
also many different variational methods that use subspaces [66—70]. The typical strategy is
a hybrid approach where the quantum device is used to prepare a parameterized family of
possible wave functions, and then a classical computation is performed to minimize the asso-
ciated cost function. Let 8 be an L-dimensional vector of parameters ¢;. The most common
example is the search for the ground state of a quantum Hamiltonian H by minimizing a cost
function C'(0) given by the energy expectation value C(0) = (0|H|0) [71, 72]. We consider
a general ansatz for the wave function |@) that is a product of unitary operators acting upon
some simple initial state |1;) [73, 74],

0) = Vo UL(0r) - ViUL(61) [¢1) - (10)

where each V; is a fixed unitary operator. It is convenient to take each U () as an exponential
of a Hermitian operator 1,

Uj((gj) = exp(—iHjHj/Q), (]])
where we restrict H; to be its own inverse so that I j2 = I. This involutory condition is
satisfied by any product of Pauli matrices on any multi-qubit system. In such cases, we have
the simple trigonometric relation,

U](QJ) :COS(9]/2)17ZSIH(9]/2>HJ (12)
For any operator O, we find that

UT(0;)0U;(0;) = O1 + Ogin sin(6;) + Ocos cos(6;), (13)

for some operators O1, Ogin, and O independent of 6;. It follows that [74]

a—gU;(ej)on(ej) = Osin €08(0;) — Ocos sin(0;)
i



UN0; + 0;)0U;(0; + ;) — UL(0; — a;)OU;(0; — o) (14)
B 2sin(a;) ’

for any «; such that sin(ca;) # 0. We note that this parameter shift formula is exact and not
simply a finite-difference approximation. This allows values for «; of O(1), which is helpful
to measure gradient components in the presence of stochastic and systematic errors. One can
now compute the components of the gradient using

) OO0+ ) —C0—ay)
75.C(6) =

2sin(ay) ’ {as)

where the vector a; has components [a;];, = a0 ;5. These gradients can be used to minimize
the cost function C'(8).

Consider adiabatic evolution with initial Hamiltonian Hg, final Hamiltonian H7, and
interpolating Hamiltonian H (s) = sH; + (1 — s)Hy. We then have a string of exponentials
for our adiabatic evolution operator,

U(l) — e*iH(l)dS L. efiH(S)ds . ef’il‘](o)ds7 (16)

which we apply to the ground state of Hy. Let N + 1 be the number of time steps and let
ds = 1/(N 4 1). We note that the first time step with time evolution operator ¢~ *#(0)ds jg
usually skipped since the initial state is an eigenstate of Hy. We keep here only for notational
simplicity. If we now use the Trotter approximation to write

—iH(s)ds —i[sH14+(1—s)Holds ~ e—isHldse—i(l—s)Hods (]7)

€ =€

then the adiabatic evolution operator has the form

U(l) ~ e*i’yNHldsefiBNHgds . e*i'yjHldsefiﬁjHods . efimelclsefiﬁgHgds7 (]8)
for B; = 1 — jds and y; = jds. This structure provides the theoretical motivation for the
quantum approximate optimization algorithm (QAOA) [75]. Instead of using the values for
«v; and j3; as prescribed by adiabatic evolution, they are treated as free variational parameters
optimized to minimize the energy expectation of the Hamiltonian H; .

For large quantum systems, the required number of variational parameters will grow with
system size. The number of variational parameters needed as a function of the size of the
system with fixed error tolerance remains an open question. There are at least two major
challenges that arise in quantum variational algorithms for large systems. The first challenge is
the problem of barren plateaus. For parameterized random quantum circuits, the components
of the cost function gradient will become exponentially small in the number of qubits of the
quantum system [73].

The second challenge is the appearance of many local minima, making gradient descent
optimization difficult. In order to quantify the difficulty of quantum variational optimization
problems, we need to borrow some concepts from computational complexity theory. While
the following definitions are well known in the computer science literature, they may not be



familiar to researchers working on quantum many-body systems. We therefore make a brief
detour here to cover some basic definitions.

A decision problem is one where the two possible answers are yes or no. P refers to the set
of decision problems that can be solved using a deterministic Turing machine in polynomial
time. NP refers to the set of decision problems whose solution, once given, can be confirmed
by a deterministic Turing machine in polynomial time. Equivalently, NP refers to decision
problems that can be solved using a non-deterministic Turing machine in polynomial time,
where a general non-deterministic Turing machine is endowed with the ability to branch
over all possible outcomes in parallel. A problem p is NP-hard if all problems in NP can be
obtained in polynomial time from the solution of p. If a decision problem in NP is NP-hard,
then it is called NP-complete.

Consider a graph with d vertices and an adjacency matrix A; ; marking the edges of the
graph that equal 0 or 1 for each pair of vertices {4, j }. The MaxCut problem poses the task of
finding the subset S of the vertices that maximizes the number of edges connecting .S and its

complement,
> A (19)
i€S j¢ s
The MaxCut problem was shown to be NP-complete [76]. The continuous MaxCut problem
consists of finding the d-dimensional vector ¢ = [0, 27)¢ that minimizes

4>I>—‘

d d
ZZ i,j[cos(¢s) cos(¢;) — 1]. (20)

In Ref. [77], the continuous MaxCut problem is shown to be equivalent to the MaxCut prob-
lem and therefore also NP-hard. Furthermore, the continuous MaxCut problem can also be
recast as a variational quantum optimization problem for the Ising model Hamiltonian,

d d
DD Aijloior - 1), 1)
i=1 j=1

A~ =

with variational wave function

710’d¢d/2 . 67i0§¢1/2 |0>®d . (22)

Although there is no proof that NP contains problems outside of P, there is much speculation
that this is true. NP-hard problems would then belong to the set of difficult problems outside
of P, and this would include the problem of minimizing the variational cost function for an
Ising Hamiltonian. This would imply that the variational minimization problem could not be
performed in polynomial time.

Although the general performance of variational methods for large quantum systems is
challenging, there are many cases in which major simplifications arise because of some sim-
plification, such as the emergence of a mean-field picture. There are many examples of such
approaches for fermionic quantum many-body systems [78—85]. One popular example is the
unitary coupled cluster (UCC) method. In the UCC method, one starts with an initial state



|11), which is a mean-field reference state. For the unitary transformation, U, we take the
form ,
U — eT(Q)*TT(Q)7 (23)

0)=> Tu(0), (24)

and T,,,(0) is an m-body operator that produces excitations. The singles excitation has the

form,
0) :ZZ@% ala;, (25)

where a! and a; and fermionic creation and annihilation operators for orbitals a and i
respectively. The doubles terms has the structure,

To( Z Z 9;’jbaT aja;a;. (26)

z<J a<b

where

For the general case, we have

T:n(0)

5 > Z 0wy - aja;. 27)

z<j< ca<b<-

There are several ways to encode ferimonic antisymmetrization properties on a quantum
computer. Although often not the most efficient, the simplest approach is the Jordan-Wigner
transformation [? ]. We define

J J
o; =(of —id¥)/2, (28)

and use the convention that |0) corresponds to occupation number 0, and |1) corresponds to
occupation number 1. We then have a faithful representation of the algebra of creation and
annihilation operators with the mapping

a} =0, ®o;_; Q- Qof,
aj:0j®of_1®~~®of. (29)

This gives the required anticommutation relations,
{ajval}zéj,ka {ajvak}:{al'val}:o' (30)

Many other antisymmetrization techniques [8§7-92] have been designed that are computation-
ally more efficient in cases where the products of creation and annihilation operators in the
Hamiltonian appear in combinations with some locality restriction with respect to the orbital
index.

A convenient choice for the mean-field reference state |t);) is a Hartree-Fock state, cor-
responding to a Slater determinant of single-particle orbitals achieving the lowest energy



expectation value. The Thouless theorem [93] shows how to prepare any desired Slater deter-
minant state starting from any other Slater determinant state. Let o, (r) label the original
orbitals and let 3,(r) label the new orbitals. We take a;;, ap to be the creation and annihila-
tion operators for ay,(r), and b, b, to be the creation and annihilation operators for 3, (r).
Let IV be the number of particles in our system of interest. The aim is to derive a simple rela-
tion between b, - - - bl [vac) and aly - - - a! [vac). Without loss of generality, we use a linear

transformation to redefine the orbitals 1 (r),- - , By (r) so that foreachp = 1,--- | N, we
have
oo
bh=ah+ X ajue 31
qg=N+1
for some coefficient matrix ug . The linear transformation on 51 (r), - - - , Bn(r) has no effect

on bj\, e b{ |vac) except for introducing an overall normalization factor. Our convention will

ensure that b}fv e bJ{ |vac) and a}LV .- al [vac) have the same normalization.
The Thouless theorem is based on the observation that foreachp =1,--- , N,

o0

a;f) + Z a:;uqyp F(no a;;) |vac)
q=N+1

1+ Z a:;uq,pap a;F(no a;) [vac) , (32)
qg=N+1

where F'(no a;) is an arbitrary function of the creation and annihilation operators where a;
does not appear. We then have

[e%S) [eS)
o) = [+ 3 g | (a3 el e
q=N+1 q=N+1

o0 [e.°]
1+ Z aj;uq,NaN a}LV el 14 Z a];uq,lal al [vac). (33)
qg=N+1 qg=N+1

This leads to the simple relation,

oo oo
b}LV~~~bI |vac) = [ 1+ Z a};uquaN e 1T+ Z aj;uq_,lal a}fv~~~al{ |vac)
g=N+1 g=N-+1
N o§]
= exp Z Z aguqmap aly - al |vac) . (34)
p=1g=N+1

Once the Hartree-Fock orbitals are determined using classical computing, one can prepare a
simple N-particle Slater determinant state with orbitals given by the computational basis of
the quantum computer and then apply the transformation in Eq. (34) [94].



4 Phase Detection Algorithms

Quantum phase estimation [95] is a well-known example of a phase detection algorithm that
can be used to find energy eigenvalues and prepare energy eigenstates of the quantum many-
body problem [24, 96-98]. Suppose for the moment that |) is an eigenstate of the unitary
operator U with eigenvalue e2™*. Of particular interest is the case where the unitary operator
U is the time evolution operator for some Hamiltonian H over some fixed time step At.
The goal is to efficiently determine the phase angle 6. Since U |¢)) = €™ |3)), we have
U? |)p) = €272’ |4)) for any nonnegative integer j. Together with the state [1)), we take n
ancilla qubits with each initialized as |0). The resulting state is [0)®" ® |¢). The Hadamard
gate is a single qubit gate that maps |0) to 1/+/2(|0) + |1)) and maps |1) to 1/+/2(|0) — [1)).
The action of the Hadamard gate for a general linear combination of |0) and |1) is determined
by linearity. We apply Hadamard gates to each of the ancilla qubits so that we get

1

7z (0 + 1) @ [). (35)

For each of the ancilla qubits j = 0,--- ,n — 1, we use the ancilla qubit to control the unitary
gate U?’. This means that U?’ is applied when the ancilla qubit j is in state |1), but no
operation is performed if the ancilla qubit is in state |0). The result we get is [99]

1 on—1 0
o7 (|o> + e2mif2 |1>) R ® (|0> + 7m0 |1>) ) =)y, 36
where
2" —1
1 . n—1 . 0
|f(9)> :W Z (6271'192 Mp—1 |mn—1>) Q- (627r192 mo |m0>)
m=0
1 2" —1 4
=7z D €T 1) @ -+ @ [mo) (37)
m=0

and m,,_1 - - - myg are the binary digits of the integer m.

Let £ be an integer between 0 and 2™ — 1 with binary representation k,,_; - - - k9. We note
that when 6 equals & divided by 2", then | f(k/2™)) is the quantum Fourier transform of the
state [kn—1) ®@ - - ® |ko),

2" —1

f(k/2) = 5o > e g, 1) @ - @ |mo) . (38)
m=0

We can therefore extract information about the value of 6 by applying the inverse quantum
Fourier transform to | f(6)),

2n—12"—-1
- 1 —27i "—0)m
QETTMfO) =57 D Y e W20 k1) @ @ |ko) - (39)
k=0 m=0



We see that if 6 equals k/2" for some integer & in the summation, then QF'T~1 | f(6)) equals
|kn—1)®- - -®|ko). In the general case, we get a superposition of such states |k, —1)®- - -®|ko)
that is highly peaked for integers k, where k /2™ is close to §. We simply measure each ancilla
qubit and determine %k /2" to obtain an estimate of 6. This is repeated over several trials to
build a probability distribution and refine the estimate of 6.

Suppose now that |¢) is not an eigenstate of U but rather a general superposition of
eigenstates |1, ) with eigenvalues €270«

) = calta) - (40)

a

We can now apply phase estimation to the general state |¢) in exactly the same manner as
before. Let us assume that the separation between each 6, is large compared to 1/2™. This
ensures that the peaked distributions we get for each eigenvector have negligible overlap. The
outcome after measuring the n ancilla qubits will be

kn-1) ® -+ ® ko) ® [a) (41)

for some eigenstate |1, ). The probability of |1, ) being selected will equal |c,|?. The error
of quantum phase estimation in determining eigenvalues will scale inversely with 2”. This
arises from the discretization of energy values k /2™, where k is an integer from 0 to 2" — 1.
If we relate U to the time evolution of a Hamiltonian H for time step At, the error in the
energy scales inversely with the total time evolution required. This scaling of the uncertainty
matches the lower bound one expects from the Heisenberg uncertainty principle. The error of
phase estimation for eigenstate preparation arises from the admixture of terms from different
eigenstates,

2" —1

1 g
g D D Cae IO k1) @ @ ko) © ) 42)

a m=0

When the spacing between 6, is much larger than 1/2", then the contamination of other
eigenstates will be O(27"). For the case when U is the time evolution of a Hamiltonian H
for time duration At, then the error of eigenstate preparation scales inversely with the total
amount of time evolution needed.

We have mentioned the quantum Fourier transform, but have not yet discussed how it is
implemented. It suffices to describe its action on the state |k,—1) ® - - - ® |ko). We again use
the notation that k,,_; - - - ko are the binary digits of the integer k. The desired action of the
quantum Fourier transform upon |k,—1) ® - - ® | ko) is

1 I, , n
7 (|0> 4 2mik2 172 |1>) Q- ® (|0> + e2mk20/2 |1>)
1 2" —1 .
= 5oz 2 T m) @ @lmo) . (43)
m=0

10



The first few steps of the quantum Fourier transform algorithm will actually produce the
desired result with the tensor product in the reverse order,

1

75 (10 + 222 1)) @ (Jo) 4+ 2R ). (44)

But this can be fixed by pairwise swap gates between qubits 0 and n — 1, 1 and n — 2, etc.
The quantum Fourier transform begins with the state

kn—1) © |kn—2) ® - @ |ko) - 45)

We first act upon qubit 7 — 1 with a Hadamard gate and this gives

1

m (|0> + eQﬂ'ik’n,12n*1/2" |1>) ® |k/n72> R ® |k0> . (46)

The coefficient in front of |1) equals 1 if k,,—; = 0 and equals —1 if k,,_; = 1. We use qubit

n — 2 to apply a controlled phase rotation to qubit n — 1 by a phase ¢27ikn—22"""/2" The
result is

1

57 (|O> 4 2milkn 12" ok 527%) /2" |1>> ® |kn_2) ® - ® |ko) . (47)

We continue in this manner with qubit 5 applying a controlled phase rotation on qubitn — 1

by a phase ¢27i%i2’/2" | After doing this for all of the remaining qubits, we get
1 -
575 (100 + ™2 1)) @ ko) © - @ [ho) (48)
We perform the analogous process for qubits n — 2, - - - , 1. For the qubit 0, we simply apply

the Hadamard gate. In the end, we get the desired result,

1
on/2

(|0> 4 2k /2" |1>) ® - ® (|0> 4 2mik2n /2 |1>) . (49)

As described above, we now apply swap gates between pairs of qubits 0 and n — 1, 1 and
n — 2, etc. and then we obtain the desired quantum Fourier transform.

Iterative phase estimation performs the determination of the binary digits of # one at a time
[95, 100-104]. Let |¢)) again be an eigenstate of U with eigenvalue ¢>™*. We first consider
the case where 0 is equal to k/2™ where k is an integer between 0 and 2" — 1. We start with
|0) ® |¢) and apply a Hadamard gate to obtain

1
Sz (0) + 1) & [9). (50)

We now use the ancilla qubit to perform the controlled unitary operator U 2""" The result is
then

o(0)) @ [4) (51)

11



where

1 on—1
1£o0)) = 5175 (100 + 27" 1)) (52)
Applying a Hadamard gate to | fo(6)) gives
1+ e2m‘92"*1 1— 62m'92”*1
-5 |0) + 5 1) ) = 6ko,010) + Sko,1 [1) - (53)

Therefore, we can determine the digit ky. We note that in iterative phase estimation, the digit
ko is determined using controlled time evolution for U 2""" rather than U2’ . This is because
ko is the remainder we get when 02" is divided by 2. Therefore ¢27i02" "
ko =0or —1forky = 1.

Let us assume that we have determined the digits from Ko, - - - , k;_1. We can determine
k; by taking

is either 1 for

273 (10) + 1) ©19) (54)

and using the ancilla qubit to perform the controlled unitary operator U2 followed by
the phase gate

|0> <0| + e—27ri(kjf1272+ e ko277 |1> <1| , (535)
on the ancilla qubit. This phase gate removes the complex phase associated with the binary
digits Ko, - - - , k;—1 that have already been determined. The net result is

1150 © 1), (56)
where
1 non—j—1 . —2 L o—j—1
15(0)) = 575 (10) + 202 ™ w2 ) ()

Applying a Hadamard gate to | f;(6)) gives
0k;,0 |0) + 0n; 1 1) . (58)

For the general case where 6 is not equal to k/2™ for some integer k between 0 and
2™ — 1, there will be some distribution of values associated with the measurements of the
binary digits k,_1,- - , ko. As with regular phase estimation, the error in energy resolution
scales inversely with 2™ and is therefore inversely proportional to the number of operations of
U needed. If U is the time evolution of a Hamiltonian H over time step At, then the error in
the energy scales inversely with the total time evolution required. Iterative phase estimation is
not designed to perform eigenstate preparation. If we start from a general linear combination
of energy eigenstates, then the uncertainty in the sequential measurements of the binary digits
kn_1,--- , ko arising from the different eigenvalues e>™*%= will prevent the algorithm from
functioning as intended.

12



The rodeo algorithm is another phase detection algorithm [105-107] that shares some
structural similarities with iterative phase estimation. In contrast to iterative phase estimation,
however, the rodeo algorithm is efficient in preparing energy eigenstates starting from a gen-
eral initial state. Let H be the Hamiltonian for which we want to prepare energy eigenstates.
To explain the algorithm, we first consider the case where the initial state is an eigenstate of
H. We call it |¢;) with eigenvalue E;. We use one ancilla qubit and start with the state

10) @[5, (59)

and apply the Hadamard gate on the ancilla qubit,

1
77 (0) + 1) @ usy). (60)
We then use the ancilla to perform the controlled unitary for e~**1 and apply the phase gate

10} (0] + e 1) (1], (61)
on the ancilla. This produces

1

575 (100 + e B ) ) o Juy). (62)

We now apply a Hadamard gate to the ancilla qubit, which then gives

% [(1+ e ) joy + (1 - e B2 1) @ ). (63)

If we measure the ancilla qubit, the probability of measuring |0) is cos?[(E; — E)t1/2] and
the probability of measuring |1) is sin®[(E; — E)t;/2]. We call the measurement of |0) a
success and the measurement of |1) a failure. We repeat this process for n cycles with times

t1,--- ,tn. The probability of success for all n cycles is
[ cos®l(E; — B)ti/2]. (64)
k=1

If we take random times %1, - -- ,t, to be chosen from a Gaussian normal distribution with

zero mean and o standard deviation, then the success probability averaged over many trials
will equal
[1 n e—(Ej—Efﬁ/ﬂ"
P, (E) = (65)

n

We see that the peak value is equal to 1 when E; = FE and the width of the peak is
O(o~tn=1/2).
Let us now consider a general linear combination of energy eigenstates

) = ¢ lvy) - (66)

J
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For this case, the probability of success for n cycles is

{1 1 e~ (B=B)*0%/2]" e 2

Pn(E) :Z

5 (©67)

When scanning over the input parameter E, peaks in P, (E) will appear at places where
there are eigenvalues E; and the overlap with the initial state is not too small. For fixed n,
the error of the energy determination scales inversely with o. Similarly to phase estimation
and iterative phase estimation, the rodeo algorithm saturates the Heisenberg bound, where the
error in the energy scales inversely with the total duration of time evolution.

In contrast with both phase estimation and iterative phase estimation, the rodeo algorithm
is exponentially fast for eigenstate preparation. There are several other energy projection
and filtering methods with similar characteristics [108—110]. Once the peak of the eigenstate
energy in P, (F) is located approximately, we set F as the peak value. With E fixed and o
fixed, the error estimates for the eigenvector scale as 1/2" for small n and accelerate to 1/4"
for asymptotically large values of n [105]. The 1/2" comes from the fact that the arithmetic
mean of cos?(f) equals 1/2, while the 1/4™ comes from the fact that the geometric mean of
cos?(6) equals 1/4. In Ref. [111], it was shown that the use of progressive smaller values for
the time evolution parameters t; accelerates the convergence of the rodeo algorithm towards
1/4™. The main limitation of the rodeo algorithm for large quantum many-body systems is the
requirement that the initial state have non-negligible overlap with the eigenstate of interest.
This is a difficult problem that is common to nearly all eigenstate preparation algorithms that
use measurement projection. Nevertheless, one can use techniques such as adiabatic evolu-
tion, variational methods, or some other approach as a preconditioner to significantly increase
the overlap with the eigenstate of interest [105].

S Summary and Outlook

In this article, we have presented several methods that show the essential features of adiabatic
evolution, variational methods, and phase detection algorithms. All of the algorithms have
their strengths and limitations, and one common theme is that the techniques can be combined
with each other to produce something that is potentially greater than the sum of its parts.
For example, adiabatic evolution provides a theoretical foundation for the QAOA variational
method. In turn, the variational method can be used to find a good starting Hamiltonian for
adiabatic evolution. Both adiabatic evolution and variation methods can be used as an initial-
state preconditioner for phase detection algorithms.

There has been great interest by both scientists and the general public on the question
of quantum advantage, if and when quantum computers are able to perform tasks exceeding
the capabilities of classical computers. It is generally believed that calculations of real-time
dynamics and spectral functions of quantum many-body systems are areas ripe for possible
quantum advantage. However, the dynamics of some quantum many-body system starting
from a trivial initial state is not something that connects directly with real-world phenomena.
To make connections with real-world experiments and observations, one also needs the ability
to prepare energy eigenstates. It is not clear whether quantum advantage will be achievable
for the task of eigenstate preparation. However, this may not be necessary. It may be enough
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for quantum eigenstate preparation to be competitive with classical computing methods to
achieve quantum advantage for calculating the real-time dynamics or spectral functions for
real-world applications. The algorithms described in this article provide some of the tools
needed, but much more work is needed to address the remaining challenges.
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