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Abstract
This paper introduces an extension of the well-known Morley element for the biharmonic
equation, extending its application from triangular elements to general polytopal elements
using the weak Galerkin finite element methods. By leveraging the Schur complement of
the weak Galerkin method, this extension not only preserves the same degrees of freedom
as the Morley element on triangular elements but also expands its applicability to general
polytopal elements. The numerical scheme is devised by locally constructing weak tangen-
tial derivatives and weak second-order partial derivatives. Error estimates for the numerical
approximation are established in both the energy norm and the L2 norm.A series of numerical
experiments are conducted to validate the theoretical developments.
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1 Introduction

This paper focuses on the development of the Morley element for the biharmonic equation
using the weak Galerkin (WG)method. For simplicity, we consider the following biharmonic
model equation

!2u = f , in ",

u = g, on ∂",

∂u
∂n

= ν, on ∂",

(1.1)

where " is a bounded polytopal domain in Rd(d = 2, 3) and the vector n is an unit outward
normal direction to ∂".

A weak formulation of (1.1) reads: Find u ∈ H2(") such that u|∂" = g and ∂u
∂n |∂" = ν

satisfying
d∑

i, j=1

(∂2i j u, ∂
2
i jv) = ( f , v), ∀v ∈ H2

0 ("), (1.2)

where H2
0 (") = {v ∈ H2(") : v|∂" = 0,∇v|∂" = 0}.

The construction of C1 continuous finite elements often necessitates higher order poly-
nomial functions, which can pose challenges in numerical implementation. To address this
issue, several nonconforming finite element methods have been proposed. Among them,
the Morley element [7] is a well-known nonconforming finite element that minimizes the
degrees of freedom but is limited to triangular partitions. In subsequent works [14, 16, 18],
the Morley element was extended to higher dimensions. Subsequently, [13, 17, 19, 28, 29]
explored the development of the Morley element for general polytopal partitions. In addition
to these studies, numerous numerical methods have been developed to solve the biharmonic
equation, including discontinuous Galerkin methods [5, 6, 12, 27], virtual element methods
[1, 3], and weak Galerkin methods [2, 9, 10, 22, 23, 26]. The weak Galerkin (WG) method,
first introduced by Wang and Ye for second-order elliptic problems [25], provides a natural
extension of the classical finite element method through a relaxed regularity of the approxi-
mating functions. This novelty provides a high flexibility in numerical approximations with
any needed accuracy and mesh generation being general polygonal or polyhedral partitions.
To the best of our knowledge, no existing numerical method combines the advantages of
minimal degrees of freedom and applicability to general polytopal partitions.

The objective of this paper is to present an extension of the Morley element to general
polytopal meshes utilizing the weak Galerkin (WG)method. Drawing inspiration from the de
Rham complexes [20], we propose a modification to the original weak finite element space
by incorporating additional approximating functions defined on the (d − 2)-dimensional
sub-polytopes of d-dimensional polytopal elements. Through the utilization of the Schur
complement within the WG method, this innovative approach introduces NE+NF degrees
of freedom on general polytopal partitions, where NE and NF represent the numbers of
(d−2)-dimensional sub-polytopes and (d−1)-dimensional sub-polytopes of d-dimensional
polytopal elements, respectively. The resulting numerical algorithm is designed based on
locally constructed weak tangential derivatives and weak second-order partial derivatives.
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Additionally, we establish error estimates for the numerical approximation in both the energy
norm and the L2 norm.

This paper makes several key contributions. Firstly, compared to the well-known Morley
element, the proposedWGmethod allows for the utilization of the local least degrees of free-
dom on general polytopal elements. This extension enhances the versatility of the Morley
element and expands its applicability to a wider range of problems. Secondly, in contrast to
existing results on weak Galerkin methods, we introduce a novel technique within the frame-
work of weak Galerkin, which effectively reduces the number of unknowns. This reduction
in unknowns improves computational efficiency without sacrificing accuracy. Lastly, our
numerical method can be applied to address various partial differential problems, including
model problems with weak formulations based on the Hessian operator. This broad appli-
cability demonstrates the effectiveness and potential of our proposed approach in tackling
diverse problem domains.

This paper is structured as follows. Section2 provides a review of the definitions of the
weak tangential derivative and theweak second-order partial derivatives. InSect. 3,wepresent
the weak Galerkin scheme and introduce the concept of its Schur complement. The existence
and uniqueness of the solution are investigated in Sect. 4. An error equation for the proposed
weak Galerkin scheme is derived in Sect. 5. Section6 focuses on deriving technical results to
support the analysis. The error estimates for the numerical approximation in the energy norm
and the L2 norm are established in Sect. 7. Finally, in Sect. 8, we present a series of numerical
results to validate the theoretical developments presented in the preceding sections.

The standard notations are adopted throughout this paper. Let D be any open bounded
domain with Lipschitz continuous boundary in Rd . We use (·, ·)s,D , | · |s,D and ‖ · ‖s,D to
denote the inner product, semi-norm and norm in the Sobolev space Hs(D) for any integer
s ≥ 0, respectively. For simplicity, the subscript D is dropped from the notations of the
inner product and norm when the domain D is chosen as D = ". For the case of s = 0, the
notations (·, ·)0,D , |·|0,D and ‖·‖0,D are simplified as (·, ·)D , |·|D and ‖·‖D , respectively. The
notation “A ! B” refers to the inequality “A ≤ CB” where C presents a generic constant
independent of the meshsize or the functions appearing in the inequality.

2 DiscreteWeak Partial Derivatives

Let T h be a polygonal or polyhedral partition of the domain " that is shape regular as
specified in [21]. For each d-dimensional polytopal element T ∈ Th , let ∂T be the boundary
of T that is the set of (d − 1)-dimensional polytopal elements denoted by F (called “face"
for convenience). For each face F ⊂ ∂T , let ∂F be the boundary of F that is the set of
(d − 2)-dimensional polytopal elements denoted by e (called “edge" for convenience). Let
Fh be the set of all faces in Th and denote by F0

h = Fh \ ∂" the set of all interior faces,
respectively. Similarly, let Eh be the set of all edges in Th and denote by E0

h = Eh \ ∂" the set
of all interior edges, respectively. Moreover, we denote by hT the diameter of T ∈ Th and
h = maxT∈Th hT the meshsize of Th , respectively. For any given integer r ≥ 0, let Pr (T ) and
Pr (∂T ) be the sets of polynomials on T and ∂T with degrees no greater than r , respectively.

For each element T ∈ Th , by a weak function on T we mean a triplet v = {v0, vb, vnn f },
where v0 and vb are intended for the values of v in the interior of T and on the edge e
respectively, and vn is used to represent the normal component of the gradient of v on the
face F along the direction n f being the assigned unit normal vector to F . Note that vb is

123



   27 Page 4 of 24 Journal of Scientific Computing           (2024) 100:27 

defined on edge e that is different from the case when vb is defined on face F as proposed in
[22–24].

We introduce the local discrete space of the weak functions given by

V (T ) = {v = {v0, vb, vnn f } : v0 ∈ P2(T ), vb ∈ P0(e), vn ∈ P0(F), F ⊂ ∂T , e ⊂ ∂F}.

For each face F ∈ Fh , denote by W0(F) the finite element space consisting of constant
vector-valued functions tangential to F given by

W0(F) = {ψψψ : ψψψ ∈ [P0(F)]d , ψψψ · n f = 0}.

Definition 2.1 [20](Discrete weak tangential derivative) The discrete weak tangential deriva-
tive operator, denoted by ∇w,0,F , is defined as the unique vector-valued polynomial
∇w,0,Fv ∈ W0(F) with d = 3 for any v ∈ V (T ) satisfying the following equation:

〈∇w,0,Fv,ψψψ × n f 〉F = 〈vb,ψψψ · τττ 〉∂F , ∀ψψψ ∈ W0(F). (2.1)

Here, τττ denotes the unit vector tangential to ∂F that is chosen such that τττ and nnn f obey the
right-hand rule, and × represents the standard vector product (cross product), respectively.

When it comes to the two dimensions, (2.1) can be rewritten as follows

〈∇w,0,Fv,ψψψ〉F = 〈vb,ψψψ · n∂ f 〉∂F , ∀ψψψ ∈ W0(F),

where n∂ f denotes the unit outward normal vector at the two end points of ∂F .

From the normal derivative vn and the discrete weak tangential derivative ∇w,0,Fv, the
discrete weak gradient of v on face F , denoted by vgvgvg , can be decomposed into its normal
and tangential components; i.e.,

vgvgvg = vnn f + ∇w,0,Fv. (2.2)

Definition 2.2 [22](Discrete weak second order partial derivative) The discrete weak second
order partial derivative operator, denoted by ∂2i j,w,0,T , is defined as the unique polynomial
∂2i j,w,0,T v ∈ P0(T ) for any v ∈ V (T ) satisfying the following equation:

(∂2i j,w,0,T v,ϕ)T = 〈vgi ,ϕn j 〉∂T , ∀ϕ ∈ P0(T ). (2.3)

Here, vgi is i-th component of the vector vgvgvg given by (2.2) and n = (n1, · · · , nd) is the unit
outward normal direction to ∂T , respectively.

Applying the integration by parts to (v0, ∂
2
j iϕ)T and combining (2.3) yield

(∂2i j,w,0,T v,ϕ)T = (∂2i jv0,ϕ)T − 〈(∂iv0 − vgi )n j ,ϕ〉∂T (2.4)

for any ϕ ∈ P0(T ).

Remark 2.1 Note that in Definitions 2.1–2.2, the discrete weak tangential derivative and the
discrete weak second order partial derivative are discretized by the lowest order polynomial
functions inW0(F) and P0(T ), respectively. When it comes to the higher order polynomial
approximations in Wr (F) and Pr (T ) for an integer r ≥ 1, Definitions 2.1–2.2 need to be
redesigned accordingly.
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3 Weak Galerkin Schemes

By patching the local finite element V (T ) over all the elements T ∈ Th through the common
values on the interior edges E0

h for vb and the interior faces F0
h for vnn f , we obtain a global

weak finite element space Vh as follows

Vh = {v = {v0, vb, vnn f } : v|T ∈ V (T ), T ∈ Th}.
Denote by V 0

h the subspace of Vh with homogeneous boundary conditions for vb and vn on
∂" given by

V 0
h = {v : v ∈ Vh, vb|e = 0, vn |F = 0, e ⊂ ∂",F ⊂ ∂"}.

For simplicity of notation, the discrete weak tangential derivative ∇w,0,Fv defined by
(2.1) and the discrete weak second order partial derivative ∂2i j,w,0,T v computed by (2.3) are
simplified as follows

(∇w,Fv)|T = ∇w,0,F (v|T ), (∂2i j,wv)|T = ∂2i j,w,0,T (v|T ), v ∈ Vh .

For any σ, v ∈ Vh , let us introduce the following bilinear forms:

(∂2wσ, ∂2wv)Th =
∑

T∈Th

d∑

i, j=1

(∂2i j,wσ, ∂2i j,wv)T ,

s(σ, v) =
∑

T∈Th

h−2
T 〈Qbσ0 − σb, Qbv0 − vb〉∂F

+
∑

T∈Th

h−1
T 〈Qn(∇σ0) · n f − σn, Qn(∇v0) · n f − vn〉∂T ,

a(σ, v) =(∂2wσ, ∂2wv)Th + s(σ, v),

where Qb and Qn represent the usual L2 projection operators onto P0(e) and P0(F), respec-
tively.

Weak Galerkin Algorithm 1 A numerical approximation for (1.2) is as follows: Find uh =
{u0, ub, unn f } ∈ Vh such that ub = Qbg on e ⊂ ∂" and un = Qnν on F ⊂ ∂" satisfying

a(uh, v) = ( f , v0), ∀v ∈ V 0
h . (3.1)

As an effective approach, the Schur complement technique [8, 11] could be incorporated
into theWG scheme (3.1) to reduce the number of the unknowns.More precisely, a numerical
approximation of the Schur complement for (3.1) is to find uh = {D(ub, un, f ), ub, unn f } ∈
Vh satisfying ub = Qbg on e ⊂ ∂", un = Qnν on F ⊂ ∂" and the following equation:

a({D(ub, un, f ), ub, unn f }, v) = 0, ∀v = {0, vb, vnn f } ∈ V 0
h , (3.2)

where u0 = D(ub, un, f ) can be obtained by solving the equation as follows

a({u0, ub, unn f }, v) = ( f , v0), ∀v = {v0, 0, 0} ∈ V 0
h . (3.3)

Remark 3.1 The Schur complement of WG scheme (3.2)–(3.3) and the WG scheme (3.1)
have the same numerical approximation, for which the similar proof can be found in [8]. The
degrees of freedom of (3.2)–(3.3) are shown in Fig. 1 for two polygonal elements: a triangle
and a pentagon.
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Fig. 1 Local degrees of freedom on a triangular element (left) and a pentagonal element (right)

4 Solution Existence and Uniqueness

On each element T ∈ Th , let Q0 be the usual L2 projection operator onto P2(T ). Then for
any φ ∈ H2("), we define a projection Qhφ ∈ Vh such that on each element T ,

Qhφ = {Q0φ, Qbφ, Qn(∇φ · n f )n f }.
Moreover, let Qh be the locally defined L2 projection operator onto the space P0(T ).

Lemma 4.1 The aforementioned projection operators Qh, Qn and Qh satisfy the following
commutative properties:

∇w,FQhφ = Qn(n f × (∇φ × n f )), (4.1)

∂2i j,w(Qhφ) = Qh∂
2
i jφ, i, j = 1, . . . , d (4.2)

for any φ ∈ H2(T ).

Proof The proof of the identity (4.1) can be found in [20]. To derive the other identity (4.2),
from (2.2) and (4.1), we arrive at

(Qhφ)g = Qn(∇φ · n f )n f + Qn(n f × (∇φ × n f ))

= Qn(∇φ).
(4.3)

Next, using (2.3), (4.3), the definitions of Qn , Qh and the usual integration by parts gives

(∂2i j,w(Qhφ),ϕ)T

= 〈(Qn(∇φ))i ,ϕn j 〉∂T
= 〈(∇φ)i ,ϕn j 〉∂T
= 〈∂iφ,ϕn j 〉∂T + (φ, ∂2j iϕ)T − 〈φni , ∂ jϕ〉∂T
= (∂2i jφ,ϕ)T

= (Qh∂
2
i jφ,ϕ)T

for any ϕ ∈ P0(T ), which implies (4.2) holds true. This completes the proof.
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For any v ∈ Vh , we define a semi-norm induced by the WG scheme (3.1); i.e.,

|||v||| =
(
a(v, v)

)1/2
. (4.4)

Lemma 4.2 For any v ∈ V 0
h , the semi-norm |||v||| given by (4.4) defines a norm.

Proof It suffices to verify the positive property for |||v|||. To this end, we assume that |||v||| = 0
for some v ∈ V 0

h . It follows from (4.4) that ∂2wv = 0 and s(v, v) = 0, which indicates
∂2i j,wv = 0 for any i, j = 1, . . . , d on each T ∈ Th , Qbv0 = vb on each ∂F and Qn(∇v0) ·
n f = vn on each ∂T . This further leads to Qhv0 = v on each T . Using the definition of Qh
and (4.2) gives

∂2i jv0 = Qh∂
2
i jv0 = ∂2i j,w(Qhv0) = ∂2i j,wv = 0, i, j = 1, . . . , d.

Thus, we have ∇v0 = const on each T . It follows from (4.3) with φ = v0, (2.2), Qn(∇v0) ·
n f = vn on each ∂T and Qhv0 = v on each T that Qn(n f × (∇v0 ×n f )) = ∇w,Fv on each
∂T , which implies ∇v0 = vnn f + ∇w,Fv on each face F ∈ Fh and hence ∇v0 ∈ C0(").
Using vb = 0 on e ⊂ ∂" and (2.1), we have ∇w,Fv = 0 on each F ⊂ ∂". This, along with
vn = 0 on each F ⊂ ∂", gives rise to ∇v0 = 0 on each F ⊂ ∂". From ∇v0 ∈ C0(") and
∇v0 = 0 on F ⊂ ∂", we have ∇v0 = 0 in " and further v0 = const on each T . This yields
vn = 0 on each ∂T due to vn = Qn(∇v0) · n f on each ∂T . Furthermore, it follows from
Qbv0 = vb and Qbv0 = v0 on each ∂F that v0 ∈ C1(") and thus v0 = const in ". Using
vb = 0 on ∂", we have v0 = 0 in " and hence vb = 0 on each ∂F . This completes the proof
of the lemma.

Lemma 4.3 The WG scheme (3.1) has a unique numerical solution.

Proof It suffices to prove that zero is the unique solution of the WG scheme (3.1) with
homogeneous conditions f = 0, g = 0 and ν = 0. To this end, by setting v = uh in (3.1),
we arrive at

a(uh, uh) = 0,

which, together with Lemma 4.2, leads to uh ≡ 0. This completes the proof of the lemma.

5 Error Equations

Denote by u and uh ∈ Vh the solutions of the model problem (1.1) and theWG scheme (3.1),
respectively. We define the corresponding error as follows

eh = Qhu − uh . (5.1)

From the definition of the usual interpolation operator πh for the Raviart-Thomas element
RTk(T ), the interpolationπhqqq can be defined only for vector fieldsqqq with sufficient regularity.
For one thing, this interpolation may not be well defined under merely the assumption of
qqq ∈ H(div,"). Thus, we shall restrict it to a subspace of H(div,").

Lemma 5.1 Letqqq = ∇(∂2j j u) for j = 1, ..., d. If qqq ∈ H(div,")∩[L p(")]d for some p > 2,
then the error function eh given by (5.1) satisfies the following equation:

a(eh, v) = ζu(v), ∀v ∈ V 0
h , (5.2)
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where ζu(v) is defined by

ζu(v) =s(Qhu, v) −
∑

T∈Th

d∑

i, j=1

〈v0,πhqqq · n〉∂T

+
∑

T∈Th

d∑

i, j=1

〈(∂iv0 − vgi )n j , (I − Qh)∂
2
i j u〉∂T ,

(5.3)

where πh is the usual interpolation operator defined onto RT2(T ).

Proof For each face F ⊂ ∂", using (2.1) and vb = 0 on e ⊂ ∂", we have

〈∇w,Fv,ψψψ × n f 〉F = 〈vb,ψψψ · τττ 〉∂F = 0, ∀ψψψ ∈ W0(F),

which implies ∇w,Fv = 0 on ∂" and hence vgvgvg = 0 on ∂" due to vn = 0 on each F ⊂ ∂"

and (2.2).
Testing the model equation (1.1) by v0 and using the usual integration by parts give

( f , v0)

=
∑

T∈Th

(!2u, v0)T

=
∑

T∈Th

d∑

i, j=1

(∂2i j u, ∂
2
i jv0)T − 〈∂2i j u, ∂iv0n j 〉∂T + 〈v0,πhqqq · n〉∂T

=
∑

T∈Th

d∑

i, j=1

(∂2i j u, ∂
2
i jv0)T − 〈∂2i j u, (∂iv0 − vgi )n j 〉∂T + 〈v0,πhqqq · n〉∂T ,

(5.4)

where on the last line we used the fact
∑

T∈Th

∑d
i, j=1〈∂2i j u, vgi n j 〉∂T = 0 due to vgvgvg = 0 on

∂".

Next, we deal with the first term on the right hand of (5.4). By takingϕ = Qh∂
2
i j u ∈ P0(T )

in (2.4) and using (4.2), we arrive at

(∂2i j u, ∂
2
i jv0)T = (Qh∂

2
i j u, ∂

2
i jv0)T

= (∂2i j,wv,Qh∂
2
i j u)T + 〈(∂iv0 − vgi )n j ,Qh∂

2
i j u〉∂T

= (∂2i j,wv, ∂
2
i j,w(Qhu))T + 〈(∂iv0 − vgi )n j ,Qh∂

2
i j u〉∂T .

(5.5)

Combining (5.5) with (5.4) yields

∑

T∈Th

d∑

i, j=1

(∂2i j,wv, ∂
2
i j,wQhu)T =( f , v0) −

∑

T∈Th

d∑

i, j=1

〈v0,πhqqq · n〉∂T

+
∑

T∈Th

d∑

i, j=1

〈(∂iv0 − vgi )n j , (I − Qh)∂
2
i j u〉∂T .

(5.6)

Finally, the difference of the WG scheme (3.1) and (5.6) gives rise to (5.2). This completes
the proof.

Remark 5.1 For any qqq ∈ H(div,") ∩ [L p(")]d for p > 2, 〈qqq · n,ψ〉F for ψ ∈ Pk(F) is
bounded and thus the usual interpolation function πhqqq is well defined in RTk(T ). When it
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comes to the d-dimensional polytopal element T ∈ Th , πhqqq is still well defined by dividing
each T into some sub-simplexes and then using the definition of πh on each d-simplex.

6 Technical Inequalities

For any T ∈ Th and φ ∈ H1(T ), we have the following trace inequality [21]:

‖φ‖2∂T ! h−1
T ‖φ‖2T + hT ‖∇φ‖2T . (6.1)

Moreover, if φ is a polynomial on T ∈ Th , using the standard inverse inequality, there holds

‖φ‖2∂T ! h−1
T ‖φ‖2T . (6.2)

Lemma 6.1 [21] Assume the finite element partition Th is shape regular as specified in [21].
Let 0 ≤ s ≤ 2. Then, for any φ ∈ H3("), we have

∑
T∈Th

h2sT ‖φ − Q0φ‖2s,T ! h6‖φ‖23, (6.3)
∑

T∈Th

∑d
i, j=1 h

2s
T ‖∂2i jφ − Qh∂

2
i jφ‖2s,T ! h2‖φ‖23. (6.4)

On each element T ∈ Th , letF ⊂ ∂T be a face consisting of edges em form = 1, . . . ,M .
We introduce a linear operatorSmappingvb fromapiecewise constant function to a piecewise
linear function on F through the least-squares approach to minimize

M∑

m=1

|S(vb)(Am) − vb(Am)|2, (6.5)

where {Am}Mm=1 are the two end points ofF when d = 2, and {Am}Mm=1 is the set of midpoints
of em for m = 1, . . . ,M when d = 3. Denote by |em | the length of edge em .

Lemma 6.2 For any v ∈ Vh, there holds
∑

F∈Fh

h−1
T ‖S(vb)‖2F !

∑

F∈Fh

‖vb‖2∂F . (6.6)

Proof It follows from (6.5) that
∑

F∈Fh

h−1
T ‖S(vb)‖2F

!
∑

F∈Fh

M∑

m=1

h−1
T |S(vb)(Am)|2hd−1

T

!
∑

F∈Fh

M∑

m=1

hd−2
T (|S(vb)(Am) − vb(Am)|2 + |vb(Am)|2)

!
∑

F∈Fh

M∑

m=1

hd−2
T (|vb(Am)|2 + |vb(Am)|2),

which gives rise to the desired inequality (6.6). This completes the proof of the lemma.
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Lemma 6.3 For any v ∈ Vh, we have the following estimate

( ∑

T∈Th

d∑

i=1

h−1
T ‖Qn(∂iv0) − vgi‖2∂T

) 1
2 ! |||v|||. (6.7)

Proof By using ∇v0 = (∇v0 · n f )n f + n f × (∇v0 × n f ), (2.2) and (4.4) gives

( ∑

T∈Th

d∑

i=1

h−1
T ‖Qn(∂iv0) − vgi‖2∂T

) 1
2

=
( ∑

T∈Th

h−1
T ‖Qn(∇v0) − vgvgvg‖2∂T

) 1
2

!
( ∑

T∈Th

h−1
T ‖Qn(∇v0 · n f ) − vn‖2∂T

+
∑

F∈Fh

h−1
T ‖Qn(n f × (∇v0 × n f )) − ∇w,Fv‖2F

) 1
2

!
(
|||v|||2 +

∑

F∈Fh

h−1
T ‖Qn(n f × (∇v0 × n f )) − ∇w,Fv‖2F

) 1
2
.

(6.8)

To estimate the second term on the last line in (6.8), it follows from (2.1), the Stokes theorem
and (6.2) that

|〈Qn(n f × (∇v0 × n f )) − ∇w,Fv,ψψψ × n f 〉F | =|〈Qbv0 − vb,ψψψ · τττ 〉∂F |
!‖Qbv0 − vb‖∂F‖ψψψ‖∂F

!h
− 1

2
T ‖Qbv0 − vb‖∂F‖ψψψ‖F

for anyψψψ ∈ W0(F), and thus

‖Qn(n f × (∇v0 × n f )) − ∇w,Fv‖F ! h
− 1

2
T ‖Qbv0 − vb‖∂F . (6.9)

Combining (6.9) with (6.8) and (4.4) leads to the desired estimate (6.7). ./

Lemma 6.4 For any v ∈ Vh, the following estimate holds true:

∑

T∈Th

|v0|22,T ! |||v|||2. (6.10)

Proof It follows from (2.4) with ϕ = ∂2i jv0 that

(∂2i jv0, ∂
2
i jv0)T =(∂2i j,wv, ∂

2
i jv0)T + 〈(∂iv0 − vgi )n j , ∂

2
i jv0〉∂T

=(∂2i j,wv, ∂
2
i jv0)T + 〈(Qn(∂iv0) − vgi )n j , ∂

2
i jv0〉∂T .
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Using the Cauchy-Schwarz inequality, (6.7) and (6.2), we have

∑

T∈Th

|v0|22,T !
( ∑

T∈Th

d∑

i, j=1

‖∂2i j,wv‖2T
) 1

2
( ∑

T∈Th

d∑

i, j=1

‖∂2i jv0‖2T
) 1

2

+
( ∑

T∈Th

d∑

i=1

h−1
T ‖Qn(∂iv0) − vgi‖2∂T

) 1
2
( ∑

T∈Th

d∑

i, j=1

hT ‖∂2i jv0‖2∂T
) 1

2

!|||v|||
( ∑

T∈Th

|v0|22,T
) 1

2
,

which gives rise to (6.10). This completes the proof of the lemma. ./

7 Error Estimates

We start this section by establishing the error estimate for the numerical approximation in
the energy norm.

Theorem 7.1 Let u and uh ∈ Vh be the exact solution of the model problem (1.1) and the
numerical approximation of the WG scheme (3.1), respectively. Let 0 < γ ≤ 1. Assume that
qqq = ∇(∂2j j u) ∈ H(div,") ∩ [L p(")]d for j = 1, ..., d and p > 2 holds true. Then, we
have the following error estimate:

|||eh ||| ! h‖u‖3+γ . (7.1)

Proof It follows from (5.2) with v = eh ∈ V 0
h that

|||eh |||2 =s(Qhu, eh) −
∑

T∈Th

d∑

i, j=1

〈e0,πhqqq · n〉∂T

+
∑

T∈Th

d∑

i, j=1

〈(∂i e0 − egi )n j , (I − Qh)∂
2
i j u〉∂T

=J1 + J2 + J3.

(7.2)

To analyze J1, by using the Cauchy-Schwarz inequality, (6.1) and (6.3) yields

|J1| ≤|
∑

T∈Th

h−2
T 〈Qb(Q0u) − Qbu, Qbe0 − eb〉∂F |

+ |
∑

T∈Th

h−1
T 〈Qn(∇Q0u) · n f − Qn(∇u · n f ), Qn(∇e0) · n f − en〉∂T |

!
( ∑

T∈Th

h−2
T ‖Q0u − u‖2∂F

) 1
2
( ∑

T∈Th

h−2
T ‖Qbe0 − eb‖2∂F

) 1
2

+
( ∑

T∈Th

h−1
T ‖∇Q0u − ∇u‖2∂T

) 1
2
( ∑

T∈Th

h−1
T ‖Qn(∇e0) · n f − en‖2∂T

) 1
2

!
( ∑

T∈Th

h−4
T ‖Q0u − u‖2T + h−2

T ‖∇(Q0u − u)‖2T + |Q0u − u|22,T
) 1

2 |||eh |||
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+
( ∑

T∈Th

h−2
T ‖∇Q0u − ∇u‖2T + |Q0u − u|22,T

) 1
2 |||eh |||

!h‖u‖3|||eh |||. (7.3)

To deal with J2, from (6.5) and eb = 0 on ∂", we arrive at

|J2| =|
∑

T∈Th

d∑

i, j=1

〈e0,πhqqq · n〉∂T |

=|
∑

T∈Th

d∑

i, j=1

〈e0 − S(eb),πhqqq · n〉∂T |

=|
∑

T∈Th

d∑

i, j=1

〈(e0 − S(e0))+ (S(e0) − S(Qbe0))+ S(Qbe0 − eb),πhqqq · n〉∂T |.

Now using the Cauchy-Schwarz inequality, (6.6), (6.1) and (6.2) yields

|J2| !
( ∑

F∈Fh

h−3
T ‖e0 − S(e0)‖2F + h−3

T ‖S(e0) − S(Qbe0)‖2F + h−3
T ‖S(Qbe0 − eb)‖2F

) 1
2

·
( ∑

T∈Th

d∑

i, j=1

h3T ‖πhqqq‖2∂T
) 1

2

!
( ∑

F∈Fh

hT ‖Dττττττ e0‖2F +
M∑

m=1

h−2
T ‖e0(Am) − Qbe0‖2em + h−2

T ‖Qbe0 − eb‖2∂F
) 1

2

·
( ∑

T∈Th

d∑

i, j=1

h2T ‖πhqqq‖2T
) 1

2

!
( ∑

T∈Th

|e0|22,T +
∑

F∈Fh

M∑

m=1

h−2
T ‖e0(Am) − Qbe0‖2em + |||eh |||2

) 1
2
( d∑

i, j=1

h2‖qqq‖2γ
) 1

2

!
( ∑

T∈Th

|e0|22,T +
∑

F∈Fh

M∑

m=1

h−2
T ‖e0(Am) − Qbe0‖2em + |||eh |||2

) 1
2
h‖u‖3+γ ,

where Dττττττ e0 represents the second tangential derivative on F .
For the case of two dimensions, from the definition of Qb, we arrive at

∑

F∈Fh

M∑

m=1

h−2
T ‖e0(Am) − Qbe0‖2em = 0.

For the case of three dimensions, it is clear that

∑

F∈Fh

M∑

m=1

h−2
T ‖e0(Am) − Qbe0‖2em

!
∑

F∈Fh

M∑

m=1

h−2
T ‖e0(Am) − 1

2
(e0(Asm)+ e0(Adm))‖2em + h−2

T |e j |4‖D̂ττττττ e0‖2em .
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We apply (6.2) and (6.10) to obtain

|J2| !
( ∑

T∈Th

|e0|22,T +
∑

F∈Fh

M∑

m=1

h−2
T |e j |4‖D̂ττττττ e0‖2em + |||eh |||2

) 1
2
h‖u‖3+γ

!
(
|||eh |||2 +

∑

T∈Th

|e0|22,T
) 1

2
h‖u‖3+γ

!h‖u‖3+γ |||eh |||,

(7.4)

where D̂ττττττ e0 denotes the second tangential derivative on em , Asm and Adm stand for the
starting point and ending point of edge em , respectively.

To estimate the term J3, by using the Cauchy-Schwarz inequality, (6.7), (6.1), (6.2) and
(6.10) gives

|J3| =|
∑

T∈Th

d∑

i, j=1

〈(∂i e0 − egi )n j , (I − Qh)∂
2
i j u〉∂T |

!
( ∑

T∈Th

d∑

i=1

h−1
T ‖∂i e0 − Qn(∂i e0)‖2∂T + h−1

T ‖Qn(∂i e0) − egi‖2∂T
) 1

2

·
( ∑

T∈Th

d∑

i, j=1

hT ‖(I − Qh)∂
2
i j u‖2∂T

) 1
2

!
( ∑

F∈Fh

h−1
T ‖∇e0 − Qn(∇e0)‖2F + |||eh |||2

) 1
2

·
( ∑

T∈Th

d∑

i, j=1

‖(I − Qh)∂
2
i j u‖2T + h2T |(I − Qh)∂

2
i j u|21,T

) 1
2

!
( ∑

F∈Fh

hT ‖Dτττ (∇e0)‖2F + |||eh |||2
) 1

2
( ∑

T∈Th

h2T ‖u‖23,T + h2T ‖u‖23,T
) 1

2

!
( ∑

T∈Th

|e0|22,T + |||eh |||2
) 1

2
h‖u‖3

!h‖u‖3|||eh |||,

(7.5)

where Dτττ (∇e0) represents the tangential components of ∇e0 on F .
Finally, combining (7.3)–(7.5) with (7.2) leads to (7.1). This completes the proof of the

theorem.

We shall establish the error estimate for the numerical approximation in the usual L2

norm. To this end, let us consider the following dual problem

!2- = e0, in ",

- = 0, on ∂",

∂-

∂n
= 0, on ∂".

(7.6)
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Assume that the dual problem (7.6) has the H3+γ -regularity property in the sense that the
solution - satisfies - ∈ H3+γ (") and the following priori estimate:

‖-‖3+γ ≤ C‖e0‖γ−1,

which, together with ‖e0‖γ−1 ≤ ‖e0‖, leads to
‖-‖3+γ ≤ C‖e0‖. (7.7)

Theorem 7.2 Let u and uh ∈ Vh be the exact solution of the model problem (1.1) and
the numerical approximation of the WG scheme (3.1), respectively. Let 0 < γ ≤ 1 and
qqq = ∇(∂2j j u) for j = 1, ..., d. Assume that qqq ∈ H(div,") ∩ [L p(")]d for p > 2 and the
H3+γ -regularity property (7.7) hold true. Then, the following error estimate holds true:

‖e0‖ ! h2‖u‖3+γ . (7.8)

Proof On each face F ⊂ ∂", it follows from (2.1) and eb = 0 on e ⊂ ∂" that ∇w,Feh = 0
on ∂", which together with en = 0 on each F ⊂ ∂" and (2.2), leads to egegeg = 0 on ∂".

By testing the dual problem (7.6) by e0 and using the usual integration by parts gives

‖e0‖2 =(!2-, e0)

=
∑

T∈Th

d∑

i, j=1

(∂2i j-, ∂2i j e0)T − 〈∂2i j-, ∂i e0n j 〉∂T + 〈πhq̃qq · n, e0〉∂T

=
∑

T∈Th

d∑

i, j=1

(∂2i j-, ∂2i j e0)T − 〈∂2i j-, (∂i e0 − egi )n j 〉∂T

+ 〈πhq̃qq · n, e0〉∂T ,

(7.9)

where q̃qq = ∇(∂2j j-) for j = 1, ..., d and we also have used the fact
∑

T∈Th∑d
i, j=1〈∂2i j-, egi n j 〉∂T = 0 due to egegeg = 0 on ∂".

To deal with the first term on the third line in (7.9), it follows from (5.5) with u = -,
v = eh and (5.2) with v = Qh- ∈ V 0

h that

∑

T∈Th

d∑

i, j=1

(∂2i j-, ∂2i j e0)T

=
∑

T∈Th

d∑

i, j=1

(∂2i j,weh, ∂
2
i j,w(Qh-))T + 〈(∂i e0 − egi )n j ,Qh∂

2
i j-〉∂T

= −s(eh, Qh-)+ ζu(Qh-)+
∑

T∈Th

d∑

i, j=1

〈(∂i e0 − egi )n j ,Qh∂
2
i j-〉∂T .

(7.10)

By inserting (7.10) into (7.9) and then combining (5.3), we have

‖e0‖2 =ζu(Qh-) − ζ-(eh)

=
3∑

i=1

Ii − ζ-(eh),
(7.11)
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where Ii for i = 1, 2, 3 are given by (5.3) with v = Qh-.

Next, it suffices to estimate each of four terms on the second line of (7.11). As to the term
I1, using the definitions of Qb and Qn , we have

|I1| =|
∑

T∈Th

h−2
T 〈Qb(Q0u) − Qbu, Qb(Q0-) − Qb-〉∂F

+ h−1
T 〈Qn(∇Q0u) · n f − Qn(∇u · n f ), Qn(∇Q0-) · n f − Qn(∇- · n f )〉∂T |

=|
∑

T∈Th

h−2
T 〈Q0u − u, Q0- − -〉∂F + h−1

T 〈∇Q0u · n f − ∇u · n f ,∇Q0- · n f

− ∇- · n f 〉∂T |,

which, together with the Cauchy-Schwarz inequality, (6.1), (6.3) and (7.7), gives

|I1| !
( ∑

T∈Th

h−2
T ‖Q0u − u‖2∂F

) 1
2
( ∑

T∈Th

h−2
T ‖Q0- − -‖2∂F

) 1
2

+
( ∑

T∈Th

h−1
T ‖∇Q0u − ∇u‖2∂T

) 1
2
( ∑

T∈Th

h−1
T ‖∇Q0- − ∇-‖2∂T

) 1
2

!
( ∑

T∈Th

h−3
T ‖Q0u − u‖2F + h−1

T ‖∇(Q0u − u)‖2F
) 1

2

·
( ∑

T∈Th

h−3
T ‖Q0- − -‖2F + h−1

T ‖∇(Q0- − -)‖2F
) 1

2 + h2‖u‖3‖-‖3

!
( ∑

T∈Th

h−4
T ‖Q0u − u‖2T + h−2

T ‖∇(Q0u − u)‖2T + |Q0u − u|22,T
) 1

2

·
( ∑

T∈Th

h−4
T ‖Q0- − -‖2T + h−2

T ‖∇(Q0- − -)‖2T + |Q0- − -|22,T
) 1

2

+ h2‖u‖3‖-‖3
!h2‖u‖3‖-‖3
!h2‖u‖3‖e0‖.

(7.12)

To estimate the term I2, from the fact that- = 0 on ∂" and
∑

T∈Th

∑d
i, j=1〈-,πhqqq · n〉∂T

= 0, we arrive at

I2 = −
∑

T∈Th

d∑

i, j=1

〈Q0-,πhqqq · n〉∂T

= −
∑

T∈Th

d∑

i, j=1

〈(Q0- − -)+ -,πhqqq · n〉∂T

=
∑

T∈Th

d∑

i, j=1

〈- − Q0-,πhqqq · n〉∂T .
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By using the Cauchy-Schwarz inequality, (6.1), (6.2), (6.3) and (7.7) gives

|I2| !
( ∑

T∈Th

‖- − Q0-‖2∂T
) 1

2
( ∑

T∈Th

d∑

i, j=1

‖πhqqq‖2∂T
) 1

2

!
( ∑

T∈Th

h−1
T ‖- − Q0-‖2T + hT |- − Q0-|21,T

) 1
2
( ∑

T∈Th

d∑

i, j=1

h−1
T ‖πhqqq‖2T

) 1
2

!h
5
2

( d∑

i, j=1

h−1‖qqq‖2γ
) 1

2 ‖-‖3

!h2‖u‖3+γ ‖e0‖.

(7.13)

To deal with the term I3, from (4.3), the Cauchy-Schwarz inequality, (6.1), (6.3), (6.4)
and (7.7), we obtain

|I3| =|
∑

T∈Th

d∑

i, j=1

〈(∂i Q0- − (Qn∇-)i )n j , (I − Qh)∂
2
i j u〉∂T |

!
( ∑

T∈Th

‖∇Q0- − ∇-‖2∂T
) 1

2
( ∑

T∈Th

d∑

i, j=1

‖(I − Qh)∂
2
i j u‖2∂T

) 1
2

!
( ∑

T∈Th

h−1
T ‖∇Q0- − ∇-‖2T + hT |Q0- − -|22,T

) 1
2

·
( ∑

T∈Th

d∑

i, j=1

h−1
T ‖(I − Qh)∂

2
i j u‖2T + hT |(I − Qh)∂

2
i j u|21,T

) 1
2

!h2‖u‖3‖-‖3
!h2‖u‖3‖e0‖.

(7.14)

For the last term ζ-(eh), we apply the similar arguments as in (7.3)-(7.5) with u = -,
(7.1) and (7.7) to obtain

|ζ-(eh)| !h|||eh |||‖-‖3+γ

!h2‖u‖3+γ ‖e0‖.
(7.15)

Finally, combining (7.12)-(7.15) with (7.11) verifies (7.8). This completes the proof of the
theorem.

To establish the error estimates for the numerical approximations defined on the faces Fh
and edges Eh , we introduce

‖eb‖Eh =
( ∑

T∈Th

h2T ‖eb‖2∂F
) 1

2
, ‖en‖Fh =

( ∑

T∈Th

hT ‖en‖2∂T
) 1

2
.

Theorem 7.3 Under the assumptions of Theorem 7.2, the following error estimates hold true:

‖eb‖Eh ! h2‖u‖3+γ ,

‖en‖Fh ! h‖u‖3+γ .
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Proof By using the triangular inequality, (6.2), (7.1) and (7.8), we obtain

‖eb‖Eh !
( ∑

T∈Th

h2T ‖Qbe0‖2∂F + h2T ‖eb − Qbe0‖2∂F
) 1

2

!
( ∑

T∈Th

hT ‖e0‖2∂T + h4T |||eh |||2
) 1

2

!
( ∑

T∈Th

‖e0‖2T + h6‖u‖23+γ

) 1
2

!h2‖u‖3+γ ,

which leads to the first estimate for eb. The similar argument can be applied to derive the
error estimate for en . This completes the proof.

8 Numerical Experiments

Several numerical experiments will be implemented to verify the convergence theory estab-
lished in previous sections. In our numerical examples, the randomised quadrilateral partition,
the hexagonal partition, and the non-convex octagonal partition are generated by PolyMesher
package [15](see Fig. 2(a–c) for initial partitions) and the next level of the partitions are
refined by the Lloyd iteration [15] (see Fig. 2(d–f)). The uniform cubic partition is gener-
ated by uniformly refining the initial 2 × 2 × 2 cubic partition of domain " = (0, 1)3 into
2N × 2N × 2N cubes for N = 2, . . . , 5. The uniform triangular partition and the uniform
rectangular partition are obtained similarly.

In addition to computing |||eh |||, ‖e0‖, ‖eb‖Eh and ‖en‖Fh , more metrics are employed

‖∇w,Feb‖Fh =
( ∑

T∈Th

hT ‖∇w,Feb‖2∂T
)1/2

,

‖∇(u − u0)‖ =
( ∑

T∈Th

‖∇(u − u0)‖2T
)1/2

.

Test Example 1.Table 1 shows some numerical results when the exact solution is given by u =
cos(x + 1) sin(2y − 1) in the domain " = (0, 1)2 on different types of polygonal partitions
shown in Fig. 2. For the uniform triangular partition and uniform rectangular partition, we can
see fromTable 1 that the convergence rates for |||eh |||, ‖e0‖, ‖eb‖Eh are consistentwithwhat our
theory predicts, and the convergence rate for ‖en‖Fh is higher than the theoretical prediction
ofO(h).Moreover, we observe the convergence rates for ‖∇w,Feb‖Fh and ‖∇(u−u0)‖ are of
orderO(h2) on the uniform triangular partition and uniform rectangular partition, for which
the theory has not been developed in this paper. In addition, note that the theory established
in previous sections does not cover the polygonal partitions shown in Fig. 2. However, we
compute the convergence rates in various norms on the polygonal partitions shown in Fig. 2
using the least-square methods [4] and the corresponding convergence rates in various norms
are illustrated in Table 1.

Test Example 2. Table 2 presents the numerical results on the uniform cubic partition in
" = (0, 1)3 for the exact solution u = exp(x+ y+ z). The convergence rates for |||eh |||, ‖e0‖
and ‖eb‖Eh are consistent with our theory. Similar to Test Example 1, we can see a super-
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Fig. 2 Level 1: Initial partitions (a–c); Level 2: Partitions after one refinement (d–f)

Table 2 Numerical errors and convergence rates for the exact solution u = exp(x + y + z) on the uniform
cubic partition in " = (0, 1)3

Level |||eh ||| Rate ‖e0‖ Rate ‖eb‖Eh Rate

1 1.79E−00 0.58 3.49E−02 3.27 4.69E−02 2.00

2 9.85E−01 0.86 5.52E−03 2.66 1.24E−02 1.92

3 5.07E−01 0.96 1.10E−03 2.33 3.11E−03 1.99

4 2.55E−01 0.99 2.50E−04 2.15 7.67E−04 2.02

Level ‖en‖Fh Rate ‖∇w,F eb‖Fh Rate ‖∇(u − u0)‖ Rate

1 3.15E−01 1.35 1.41E−01 1.22 2.58E−01 1.36

2 8.93E−02 1.82 5.26E−02 1.42 8.04E−02 1.68

3 2.30E−02 1.96 1.53E−02 1.79 2.18E−02 1.88

4 5.76E−03 2.00 4.00E−03 1.93 5.61E−03 1.96

convergence rate for ‖en‖Fh from Table 2. In addition, Table 2 presents the convergence rates
for ‖∇w,Feb‖Fh and ‖∇(u − u0)‖, for which no theory is available to support.

Test Example 3. Table 3 illustrates the numerical performance on the polygonal partitions
shown in Fig. 2 for a low regularity solution given by u = r5/3 sin( 53θ), where r =

√
x2 + y2

and θ = arctan(y/x). It is easy to check u ∈ H8/3−ε(") for arbitrary small ε > 0 does not
satisfy the regularity assumption∇(∂2j j u) ∈ H(div,")∩[L p(")]d for j = 1, ...d and p > 2.
We observe from these numerical results that on the uniform triangular partition and uniform
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Table 4 Numerical errors and convergence rates for the exact solution u = r3/2 sin( 32 θ) on the uniform cubic
partition in " = (0, 1)3

Level |||eh ||| Rate ‖e0‖ Rate ‖eb‖Eh Rate

1 1.43E−01 – 3.62E−03 – 1.26E−02 –

2 1.32E−01 0.12 1.52E−03 1.26 3.78E−03 1.74

3 9.65E−02 0.45 5.04E−04 1.59 1.04E−03 1.86

4 6.84E−02 0.50 1.39E−04 1.86 2.70E−04 1.95

Level ‖en‖Fh Rate ‖∇w,F eb‖Fh Rate ‖∇(u − u0)‖ Rate

1 3.27E−02 – 4.69E−02 – 4.13E−02 –

2 1.58E−02 1.05 2.55E−02 0.88 2.03E−02 1.03

3 5.65E−03 1.48 1.06E−02 1.26 8.09E−03 1.32

4 1.90E−03 1.57 3.99E−03 1.41 2.97E−03 1.45

rectangular partition, the convergence rates for |||eh |||, ‖e0‖, ‖eb‖Eh , ‖en‖Fh , ‖∇w,Feb‖Fh ,
‖∇(u − u0)‖ are of ordersO(h2/3),O(h2),O(h2),O(h5/3),O(h5/3),O(h5/3), respectively.
Moreover, the numerical performance of the WG solution on the polygonal partitions is
demonstrated in Table 3.

Test Example 4. Table 4 demonstrates the numerical performance on the uniform cubic
partition in " = (0, 1)3 for a low regularity solution given by u = r3/2 sin( 32θ), where
r =

√
x2 + y2 and θ = arctan(y/x). The exact solution satisfies u ∈ H5/2−ε(") for arbitrary

small ε > 0.We observe that the numerical errors |||eh |||, ‖e0‖, ‖eb‖Eh , ‖en‖Fh , ‖∇w,Feb‖Fh ,
‖∇(u − u0)‖ converge at the rates of O(h1/2), O(h2), O(h2), O(h3/2), O(h3/2), O(h3/2),
respectively. Therefore, we conclude that the numerical performance of the WG method for
the model equation (1.1) with the low regularity solution is good although the corresponding
mathematical theory has not been established in our paper.
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