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Abstract

This paper introduces an extension of the well-known Morley element for the biharmonic
equation, extending its application from triangular elements to general polytopal elements
using the weak Galerkin finite element methods. By leveraging the Schur complement of
the weak Galerkin method, this extension not only preserves the same degrees of freedom
as the Morley element on triangular elements but also expands its applicability to general
polytopal elements. The numerical scheme is devised by locally constructing weak tangen-
tial derivatives and weak second-order partial derivatives. Error estimates for the numerical
approximation are established in both the energy norm and the L? norm. A series of numerical
experiments are conducted to validate the theoretical developments.
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1 Introduction

This paper focuses on the development of the Morley element for the biharmonic equation
using the weak Galerkin (WG) method. For simplicity, we consider the following biharmonic
model equation

A’u=f, inQ,

u=g, on 9%, (1.1)
u
— =y, on 09,
on

where Q is a bounded polytopal domain in R?(d = 2, 3) and the vector n is an unit outward
normal direction to 9€2.
A weak formulation of (1.1) reads: Find u € H?(2) such that u|3q = g and g—ﬁlag =v
satisfying
d
> @5u, 95v) = (f.v), Vv e Hy(Q), (1.2)
i,j=1

where H3(Q) = {v € H*(Q) : v|sq = 0, Vv|yq = 0}

The construction of C! continuous finite elements often necessitates higher order poly-
nomial functions, which can pose challenges in numerical implementation. To address this
issue, several nonconforming finite element methods have been proposed. Among them,
the Morley element [7] is a well-known nonconforming finite element that minimizes the
degrees of freedom but is limited to triangular partitions. In subsequent works [14, 16, 18],
the Morley element was extended to higher dimensions. Subsequently, [13, 17, 19, 28, 29]
explored the development of the Morley element for general polytopal partitions. In addition
to these studies, numerous numerical methods have been developed to solve the biharmonic
equation, including discontinuous Galerkin methods [5, 6, 12, 27], virtual element methods
[1, 3], and weak Galerkin methods [2, 9, 10, 22, 23, 26]. The weak Galerkin (WG) method,
first introduced by Wang and Ye for second-order elliptic problems [25], provides a natural
extension of the classical finite element method through a relaxed regularity of the approxi-
mating functions. This novelty provides a high flexibility in numerical approximations with
any needed accuracy and mesh generation being general polygonal or polyhedral partitions.
To the best of our knowledge, no existing numerical method combines the advantages of
minimal degrees of freedom and applicability to general polytopal partitions.

The objective of this paper is to present an extension of the Morley element to general
polytopal meshes utilizing the weak Galerkin (WG) method. Drawing inspiration from the de
Rham complexes [20], we propose a modification to the original weak finite element space
by incorporating additional approximating functions defined on the (d — 2)-dimensional
sub-polytopes of d-dimensional polytopal elements. Through the utilization of the Schur
complement within the WG method, this innovative approach introduces NE+NF degrees
of freedom on general polytopal partitions, where NE and NF represent the numbers of
(d —2)-dimensional sub-polytopes and (d — 1)-dimensional sub-polytopes of d-dimensional
polytopal elements, respectively. The resulting numerical algorithm is designed based on
locally constructed weak tangential derivatives and weak second-order partial derivatives.
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Additionally, we establish error estimates for the numerical approximation in both the energy
norm and the L? norm.

This paper makes several key contributions. Firstly, compared to the well-known Morley
element, the proposed WG method allows for the utilization of the local least degrees of free-
dom on general polytopal elements. This extension enhances the versatility of the Morley
element and expands its applicability to a wider range of problems. Secondly, in contrast to
existing results on weak Galerkin methods, we introduce a novel technique within the frame-
work of weak Galerkin, which effectively reduces the number of unknowns. This reduction
in unknowns improves computational efficiency without sacrificing accuracy. Lastly, our
numerical method can be applied to address various partial differential problems, including
model problems with weak formulations based on the Hessian operator. This broad appli-
cability demonstrates the effectiveness and potential of our proposed approach in tackling
diverse problem domains.

This paper is structured as follows. Section?2 provides a review of the definitions of the
weak tangential derivative and the weak second-order partial derivatives. In Sect. 3, we present
the weak Galerkin scheme and introduce the concept of its Schur complement. The existence
and uniqueness of the solution are investigated in Sect.4. An error equation for the proposed
weak Galerkin scheme is derived in Sect. 5. Section 6 focuses on deriving technical results to
support the analysis. The error estimates for the numerical approximation in the energy norm
and the L? norm are established in Sect. 7. Finally, in Sect. 8, we present a series of numerical
results to validate the theoretical developments presented in the preceding sections.

The standard notations are adopted throughout this paper. Let D be any open bounded
domain with Lipschitz continuous boundary in R?. We use (-, Js,0> | |s,p and || - ||s,p to
denote the inner product, semi-norm and norm in the Sobolev space H* (D) for any integer
s > 0, respectively. For simplicity, the subscript D is dropped from the notations of the
inner product and norm when the domain D is chosen as D = . For the case of s = 0, the
notations (-, -)o.p, ||o.p and || - |0, p are simplified as (-, ) p, |- | p and || -|| p, respectively. The
notation “A < B” refers to the inequality “A < CB” where C presents a generic constant
independent of the meshsize or the functions appearing in the inequality.

2 Discrete Weak Partial Derivatives

Let 7 be a polygonal or polyhedral partition of the domain 2 that is shape regular as
specified in [21]. For each d-dimensional polytopal element 7' € 7, let 3T be the boundary
of T that is the set of (d — 1)-dimensional polytopal elements denoted by F (called “face"
for convenience). For each face 7 C a7, let 0F be the boundary of F that is the set of
(d — 2)-dimensional polytopal elements denoted by e (called “edge" for convenience). Let
Fi, be the set of all faces in 7j, and denote by .7-',? = Fp, \ 02 the set of all interior faces,
respectively. Similarly, let £, be the set of all edges in 7, and denote by £0 = &, \ 92 the set
of all interior edges, respectively. Moreover, we denote by h7 the diameter of T € 7, and
h = maxre7;, hr the meshsize of 7j, respectively. For any given integer r > 0, let P-(T) and
P, (0T) be the sets of polynomials on T and 07 with degrees no greater than r, respectively.

For each element T' € 7j, by a weak function on 7" we mean a triplet v = {vg, vp, v,nf},
where vp and v are intended for the values of v in the interior of 7 and on the edge e
respectively, and v, is used to represent the normal component of the gradient of v on the
face F along the direction ny being the assigned unit normal vector to F. Note that vy, is
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defined on edge e that is different from the case when v}, is defined on face F as proposed in
[22-24].
We introduce the local discrete space of the weak functions given by

V(T) = {v ={vo, vp, vynyr} : vg € Po(T), vp € Po(e), v, € Po(F), F C 0T, e C 0F}.

For each face F € Fj, denote by Wy (F) the finite element space consisting of constant
vector-valued functions tangential to F given by

Wo(F) ={¥: ¥ € [Py(P], ¢-ny =0}

Definition 2.1 [20](Discrete weak tangential derivative) The discrete weak tangential deriva-
tive operator, denoted by V,, o r, is defined as the unique vector-valued polynomial
V0,7V € Wo(F) withd = 3 for any v € V(T') satisfying the following equation:

(Vu,0,70, ¥ xnp)r = (vp, ¥ - T)or, Y¥ € Wo(F). 2.1

Here, T denotes the unit vector tangential to 9 that is chosen such that T and n s obey the
right-hand rule, and x represents the standard vector product (cross product), respectively.
When it comes to the two dimensions, (2.1) can be rewritten as follows

(Vu,0,7v,¥)F = (vp, ¥ -Myplar, V¥ € Wo(F),

where nj ¢ denotes the unit outward normal vector at the two end points of 9.F.

From the normal derivative v, and the discrete weak tangential derivative V,, o, v, the
discrete weak gradient of v on face F, denoted by vg, can be decomposed into its normal
and tangential components; i.e.,

Vg = Uy + Vy 0, FV. 2.2)

Definition 2.2 [22](Discrete weak second order partial derivative) The discrete weak second
order partial derivative operator, denoted by a,?j'wm, is defined as the unique polynomial

Bizijyojv € Py(T) for any v € V(T) satisfying the following equation:
07 070> )T = (vgi» onj)ar, Vo € Po(T). (23)

Here, vg; is i-th component of the vector vg given by (2.2) and n = (ny, - - - , ng) is the unit
outward normal direction to d7, respectively.

Applying the integration by parts to (vo, 8%@)7 and combining (2.3) yield
07 0.7V ©)7 = 0700, )7 — ((Biv0 — vgiInj. @)o7 (2.4)
for any ¢ € Py(T).

Remark 2.1 Note that in Definitions 2.1-2.2, the discrete weak tangential derivative and the
discrete weak second order partial derivative are discretized by the lowest order polynomial
functions in Wy(F) and Py(T), respectively. When it comes to the higher order polynomial
approximations in W, (F) and P.(T) for an integer » > 1, Definitions 2.1-2.2 need to be
redesigned accordingly.
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3 Weak Galerkin Schemes

By patching the local finite element V (T') over all the elements 7 € 7}, through the common
values on the interior edges 5,? for v, and the interior faces f,? for v,ny, we obtain a global
weak finite element space V}, as follows

Vie={v ={vo, vp, vuny} 1 vlr € V(T), T € Tp}.

Denote by V,? the subspace of V}, with homogeneous boundary conditions for v and v,, on
d€2 given by

VP=1{v:veViuple=0v]r=0eCdQFCiu.

For simplicity of notation, the discrete weak tangential derivative V,, o, zv defined by
(2.1) and the discrete weak second order partial derivative ij’w,O,TU computed by (2.3) are
simplified as follows

(Va7 = Va7 0lr).  @F ,0Ir =87, 070IT). vE V.

For any o, v € Vj,, let us introduce the following bilinear forms:

d
@50, dpv), = Y Y (3,0, 95 ,0),

TeT)i,j=1
s(o,v) = Y h72(Qp00 — 0, Qpvo — Vh)aF
TeTy
-1
+ Z hT (Qn(Voo) - ng — oy, 0n (Vo) ‘N — Un)arT
TeT),

a(o, v) =(050, 05v)7;, + 5(0, v),
where QO and Q,, represent the usual L? projection operators onto Py(e) and Py(F), respec-

tively.

Weak Galerkin Algorithm 1 A numerical approximation for (1.2) is as follows: Find up =
{uo, up, upny} € Vy such that up = Qpg one C 02 and u, = Q,v on F C 02 satisfying

a(up,v) = (f,v0), YveV (3.1)

As an effective approach, the Schur complement technique [8, 11] could be incorporated
into the WG scheme (3.1) to reduce the number of the unknowns. More precisely, a numerical
approximation of the Schur complement for (3.1) is to find u, = {D(up, un, f), up, upny} €
Vi, satisfying up, = Qpgone C 92, u, = Quv on F C 92 and the following equation:

a({D@p. un, f).up.ugng},v) =0, Yo ={0,vp, vyns} €V, (3.2)
where ug = D(up, u,, f) can be obtained by solving the equation as follows
a({uo, up, unnys}, v) = (f,vo),  Yv = {v0,0,0} € V. (3.3)

Remark 3.1 The Schur complement of WG scheme (3.2)—(3.3) and the WG scheme (3.1)
have the same numerical approximation, for which the similar proof can be found in [8]. The
degrees of freedom of (3.2)—(3.3) are shown in Fig. 1 for two polygonal elements: a triangle
and a pentagon.
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Fig.1 Local degrees of freedom on a triangular element (left) and a pentagonal element (right)

4 Solution Existence and Uniqueness

On each element T € 7j, let Q¢ be the usual L? projection operator onto P> (7). Then for
anyp € H 2(Q), we define a projection Qp¢ € Vj, such that on each element T,

0nr¢ = {00, Opd, On(Ve -nyp)ny}.
Moreover, let Qy, be the locally defined L2 projection operator onto the space Po(T).

Lemma 4.1 The aforementioned projection operators Qn, Q, and Qy, satisfy the following
commutative properties:

Vu,7On¢ = Qn(ny x (V¢ x ny)), “.1
l]w (Ono) = Qhaqub i,j=1,...,d 4.2)
forany ¢ € H*(T).

Proof The proof of the identity (4.1) can be found in [20]. To derive the other identity (4.2),
from (2.2) and (4.1), we arrive at

(OnP)g = On(Vo -np)ny + On(ny x (Vo x ny))
= 0, (V).
Next, using (2.3), (4.3), the definitions of Q,,, Q; and the usual integration by parts gives

(07, (Ond). @)1
= ((Qu (V)i pnj)ar
= ((V@)i, pnj)ar
= (i, onj)ar + (¢, 07;0)1 — (Pni. 0;@)ar
=050, o)1
= (@36, o)1
for any ¢ € Po(T), which implies (4.2) holds true. This completes the proof.

4.3)
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For any v € Vj,, we define a semi-norm induced by the WG scheme (3.1); i.e.,
1/2
ol = (ate, ) . (“4)

Lemma4.2 Foranyv € V,?, the semi-norm ||v|| given by (4.4) defines a norm.

Proof Tt suffices to verify the positive property for [|v]|. To this end, we assume that [|v|| = 0
for some v € V}?. It follows from (4.4) that 85)11 = 0 and s(v,v) = 0, which indicates
Bl-zj’wv =O0foranyi,j=1,...,doneach T € 7;, Qpvg = vp on each dF and Q, (V) -
n; = v, on each d7'. This further leads to Q;v9 = v on each T'. Using the definition of Q,
and (4.2) gives

95v0 = Qudjjvo = 875, (Qnvo) = 355 ,v =0, i, j=1,....d.

Thus, we have Vvg = const on each T'. It follows from (4.3) with ¢ = vy, (2.2), Q,,(Vvg) -
ny = v, oneachd7 and Qpvp = voneach T that Q,(ny x (Vvg xny)) =V, v oneach
dT, which implies Vvg = v,ny + V,, zv on each face 7 € Fj, and hence Vv € co(Q).
Using v, =0one C 92 and (2.1), we have V,, 7v = 0 on each F C 9. This, along with
v, = 0 on each F C 9%, gives rise to Vvy = 0 on each F C d2. From Vv € C%) and
Vug = 0on F C 92, we have Vuvg = 0 in Q and further vy = const on each T'. This yields
v, = 0 on each 9T due to v, = 0,(Vvp) - ny on each d7. Furthermore, it follows from
Opvg = vp and Qpvo = vg on each dF that vy € CY(Q) and thus vy = const in . Using
vp = 0 on 9€2, we have vp = 0in 2 and hence v, = 0 on each d.F. This completes the proof
of the lemma.

Lemma 4.3 The WG scheme (3.1) has a unique numerical solution.

Proof Tt suffices to prove that zero is the unique solution of the WG scheme (3.1) with
homogeneous conditions f = 0, g = 0 and v = 0. To this end, by setting v = uy, in (3.1),
we arrive at

a(up, up) =0,

which, together with Lemma 4.2, leads to uj;, = 0. This completes the proof of the lemma.

5 Error Equations

Denote by u and uj, € V), the solutions of the model problem (1.1) and the WG scheme (3.1),
respectively. We define the corresponding error as follows

en = Qpu — uy. 6D

From the definition of the usual interpolation operator 7, for the Raviart-Thomas element
RTy(T), the interpolation r;,q can be defined only for vector fields g with sufficient regularity.
For one thing, this interpolation may not be well defined under merely the assumption of
q € H(div, Q). Thus, we shall restrict it to a subspace of H (div, 2).

Lemma5.1 Letg = V(a}ju)forj =1,...d. Ifq € H(div, QN[L"(Q)) for some p > 2,
then the error function ey given by (5.1) satisfies the following equation:

alep,v) = ¢, (v), YveVY, (5.2)
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where &, (v) is defined by

d
Gu(v) =s(Qnit, v) = D > (vo, Thg - M1

Thi,j=1
Temnt (5.3)

d
+ ) Y {@ivo = vgnj, (I = Qu)djuar,

TeTi,j=1

where 1y, is the usual interpolation operator defined onto RT>(T).

Proof For each face F C 9%, using (2.1) and v, = 0 on e C <2, we have

(V. 70, ¥ xngp)r = (vp, ¥ - T)or =0, Vi € Wo(F),

which implies V,, zv = 0 on 92 and hence vg = 0 on 9<2 due to v, = 0 on each F C 92
and (2.2).
Testing the model equation (1.1) by vg and using the usual integration by parts give

(f vo)

= Y (A, v)r

TeT),

d
=Y > @Fu 05vo)r — (97u, dvonar + (v0. Thq - M)ar 54
TeTi,j=1

d
=Y > @BFu 05vo)r — (97u, (Bivo — veiInjdar + (vo, Tag - Mar,
TeTyi,j=1

where on the last line we used the fact } 77, p = 1(8 U, Vginj)gr = 0 due tovg = 0 on
092.

Next, we deal with the first term on the right hand of (5.4). By taking ¢ = Q, 8i2ju € Py(T)
in (2.4) and using (4.2), we arrive at

(07u, 35v0)7 = (Qudju, 07 v0) 7
= (8., v, Qudju)7 + ((Bvo — veiInj. Qudjudar (5.5)
= (07,0, 977, (Qnu) T + (B0 — vei)nj, Qudju)ar.
Combining (5.5) with (5.4) yields

d
> Z (0 0, 975, QnidT =(f,00) = Y Y (v0, g - m)ar

TeTyi,j=1 TeThi j=1
(5.6)

+> Z {(@ivo — vgi)nj, (I — Q)d3u)

TeTyi,j=1

Finally, the difference of the WG scheme (3.1) and (5.6) gives rise to (5.2). This completes
the proof.

Remark 5.1 For any q € H(div, Q) N [LP($)]¢ for p>2,(q -ny)rfory € Pr(F)is
bounded and thus the usual interpolation function ;g is well defined in R7 (7). When it
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comes to the d-dimensional polytopal element T € 7, mpq is still well defined by dividing
each T into some sub-simplexes and then using the definition of 7, on each d-simplex.

6 Technical Inequalities

Forany T € 7;, and ¢ € H'(T), we have the following trace inequality [21]:

19137 < hz' 19117 +hrVPII7- (6.1)
Moreover, if ¢ is a polynomial on 7 € 7}, using the standard inverse inequality, there holds
I¢157 S 1917 (62)

Lemma 6.1 [21] Assume the finite element partition Ty, is shape regular as specified in [21].
Let O < s < 2. Then, for any ¢ € H3(Q), we have

Yoren, M7l — Qodlls 1 < hlal3, (6.3)
Yren 2o o BE10%6 — Quddel2 1 S h1Ig113. 6.4)
Oneachelement T € 7;,,let 7 C oT be a face consisting of edges ¢, form = 1,..., M.

We introduce a linear operator S mapping v, from a piecewise constant function to a piecewise
linear function on F through the least-squares approach to minimize

M
3 1S (Am) — vp(An) 2, (6.5)
m=1

where {A,, } %:1 are the two end points of ¥ whend = 2, and {A,,} %:1 is the set of midpoints
of e, form = 1,..., M when d = 3. Denote by |e,,| the length of edge ¢,,.

Lemma 6.2 For any v € Vj, there holds

D hFIS@IFES Y vl (6.6)

FeFy FeFy

Proof It follows from (6.5) that

> ISl

FeFy

M
< D0 Y IS (A Phg!

FeF, m=1

M
S Y0 DT RS @e) (Am) — ve(A) I + [0p(Am) D)

FeF,m=1

M
<Y R (oA P+ [op (A1),

FeF,m=1

which gives rise to the desired inequality (6.6). This completes the proof of the lemma.
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Lemma 6.3 For any v € Vy,, we have the following estimate

d 1
(2 27" 10uGiv0) = valiiy)* S ol ©7)

TeT) i=1

Proof By using Vvg = (Vvg -ng)ny +ny x (Vug x ny), (2.2) and (4.4) gives

- 1
( Z Zl’l;IHQn(aivo) — vgi”%T)Z

TeT), i=1
1
= (X 17" 10n(Vv0) — vl )
TeTy
< (32 w10 (Tuo mp) = vl 68)
T€771

+ 2 B 1Quy x (Vug xmp)) = Vi rol3)
FeFy

S (12 + Y 57 1Qamy x (Vvo xmp) = Vuevl)
FeFn

To estimate the second term on the last line in (6.8), it follows from (2.1), the Stokes theorem
and (6.2) that

(On(ny x (Vvg x ny)) — Vy 70, ¥ x ny) 7| =[{(Qpvo — Vb, ¥ - T)yF|
SIQpvo — vpllaF W llar

_1
Shy? 11Qpvo — vpllar ¥l 7

for any ¥ € Wy(F), and thus
_1
1Qn(my x (Vvo x 0p)) = Vi 70l 7 S hy? [[Qpv0 — v oz (6.9)
Combining (6.9) with (6.8) and (4.4) leads to the desired estimate (6.7). ]

Lemma 6.4 For any v € Vy, the following estimate holds true:

> ol < lIvll>. (6.10)

TeTy
Proof Tt follows from (2.4) with ¢ = 8l.2j vg that

(0700, 97v0) 7 =9 v, 9500)7 + ((Bivo — vgidn, 35v0)a7

=07 ,,v, 9590)7 + ((Qn(B;v0) — vgi)nj, 07 v0)at-
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Using the Cauchy-Schwarz inequality, (6.7) and (6.2), we have

> B s()X Z ||a,,wv||T) (> Z 02 voIIT)

TeTy, TeTyi,j=1 TeTyi,j=1
d 1 d 1
—1 2 )2 2. 12 )2
+ (20 D h 1) —vallr) (D2 X hrllaFvolidy)
TeT, i=1 TeT,i,j=1
1
2 2
Shon( Y- ol ),
TeTy
which gives rise to (6.10). This completes the proof of the lemma. O

7 Error Estimates

We start this section by establishing the error estimate for the numerical approximation in
the energy norm.

Theorem 7.1 Let u and uy, € V), be the exact solution of the model problem (1.1) and the
numerical approximation of the WG scheme (3.1), respectively. Let 0 < y < 1. Assume that
q = V(82 u) € H(div, Q) N[LP ()¢ 1“ for j =1,....d and p > 2 holds true. Then, we
have the followmg error estimate:

llenll < Allullz+y . (7.1)

Proof 1t follows from (5.2) withv = ¢, € V,? that

d
lenll* =s(Qnu.en) = > Y (0. 7hq - Mot

TeTyi,j=1
d (7.2)
+ )Y ((Bieo — egidnj, (I = Qu)dju)or

TeTyi,j=1
=+ L+ 5.
To analyze Ji, by using the Cauchy-Schwarz inequality, (6.1) and (6.3) yields

11l <1 Y 77 (Qp(Qou) — Qpt, Qveo — en)arl

TeTy
+1 ) h7(Qu(VQou) mf — Qn(Vi-mp), Qu(Veo) -y — en)or|
TeTy
! !
(X n 100 —uldz) " (2 ArICue — enliz)
TeT, TeT,
2 2
+ (X2 nr' v oou = Valy)* (X2 A7t 1Qa(Ve) - ns — enlidr )
TeTy TeTy

1
5( > ht1Qou — ullF + h? 1V (Qou — w)ll7 + | Qou — u|%ﬁT)2 el

TeT,
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1
— 2
+ (X2 h7219 Qou = Vully + 1o — ul ) el
TeTy

Shllulislienll.

To deal with J;, from (6.5) and ¢, = 0 on €2, we arrive at

d
[l =1 Y Y (eo, hg - myar |

TeTyi,j=1
d

DD feo — Stew), mag - mar |

TeTyi

N

I
M=~ T

TeT)i,j

S
Il

Now using the Cauchy-Schwarz inequality, (6.6), (6.1) and (6.2) yields

120 S( X h7leo = Sl + 7 IS (o) = S(Queo)ll% + IS (Qpe0 — en)ll)

FeFy
d 1
3 2 2
(X mimaly)
TeTyi,j=1
M
2 -2 2 -2 2
S( X ArlDeceol + Y- htleotAn) — Qoeoll?, + 721 Qveo = eollr)
FeF m=1
d 1
2 22
OIDIALTI
TeTyi,j=1

M
(Xt + Y0 D hrlleotAn) — Qveol, +llenll?) (

TeT), FeF, m=1
M
2 -2 2 2
(X teoBr + D2 D h7leoAm) — Qeoll?, + llewll?)
TeT), FeF,m=1

where Dy, eq represents the second tangential derivative on F.

ij=1

2
hlluli3+y

For the case of two dimensions, from the definition of Oy, we arrive at

M
> 3 hPlleotAn) — Cneol?, =0.

FeFpm=1

For the case of three dimensions, it is clear that

M
>0 > bl lleo(Am) — Opeoll3,

FeF, m=1

€m

M
_ 1 _ ~
S D0 D hrlleo(Am) = S (eoAsm) +eo(Aam) g, +h?lej* 1 Deceo]

FeFpm=1
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(7.3)

((eo — S(eo)) + (S(eo) — S(Qpeo)) + S(Qpeo — ep), g -M)a7|.

2

1
2

d 1
2 2\2
"lql?)

2

em”
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We apply (6.2) and (6.10) to obtain

12 S(X leoBr + Y Zhr lej1*1DeeeollZ, + llenll ) B3y

TeT, FeFp m=1

1
2 2 )2
S(enl? + > teol3.7) *hllullsy

TeT,

(7.4)

Shllullz1y leall,

where ﬁ,reo denotes the second tangential derivative on e;,, Ay, and Ay, stand for the
starting point and ending point of edge e,,, respectively.

To estimate the term J3, by using the Cauchy-Schwarz inequality, (6.7), (6.1), (6.2) and
(6.10) gives

d
Il =1 > > ((dieo — egidnj. (I — Qu)dju)ar|

TeTyi,j=1

d
5( > Dk oo — Qu(@ien) 3y + hr'11Qu(Bie0) — el )

TeT, i=1

(X S hrlt - @i 2ully)’

TeTyi,j=1

1
S( X n7'1Veo = Qu(Veo) % + llewll?)

Fer (7.5)

(X S 1 - @t} + 1 - ultr)’

TeTyi,j=1
1
2
ST DT+ ) (X 10l + 21wk )
FeFn TeT),
1
2
S(X teoB s + Hewll®) hiluls
Te’]’h
Shilulllen

where Dz (Ve) represents the tangential components of Veg on F.
Finally, combining (7.3)—(7.5) with (7.2) leads to (7.1). This completes the proof of the
theorem.

We shall establish the error estimate for the numerical approximation in the usual L?
norm. To this end, let us consider the following dual problem

AZD =¢g, in Q,

® =0, on 9%, (7.6)
00
— =0, on 02.

on
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Assume that the dual problem (7.6) has the H3-regularity property in the sense that the
solution ® satisfies ® € H3*7 () and the following priori estimate:
@134y = Clleolly—1,

which, together with |legll, —1 < [leol, leads to

P34+, < Clleoll. 7.7

Theorem 7.2 Let u and uy, € Vj, be the exact solution of the model problem (1.1) and
the numerical approximation of the WG scheme (3.1), respectively. Let 0 < y < 1 and
= V(sz.ju)forj =1,...,d. Assume thatq € H(div, 2) N [LP ()] for p > 2 and the

H 3Jr’”-regularity property (7.7) hold true. Then, the following error estimate holds true:
leoll < B> lullz+y- (7.8)

Proof On each face F C 9€2, it follows from (2.1) and ¢, = O on e C 92 that V,, rep, =0
on €2, which together with ¢, = 0 on each 7 C 92 and (2.2), leads to eg = 0 on 9<2.
By testing the dual problem (7.6) by eg and using the usual integration by parts gives
lleoll® =(A>®, eg)
d

=Y Y 05®. 0fe0)r — (97D, dieonjar + (g - M, eo)ar

Thij=
TeTyi,j=1 (79)

d
=Y > (359, 07 e0)r — (07, (dieo — egidn)ar

TeTyi,j=1
+ (ng - M, e)r,

where ¢ = V(BZ.GD) for j = 1,...,d and we also have used the fact } 7.7,

P = 1(8 D, eginj)yr = 0duetoeg = 0on Q.
To deal with the first term on the third line in (7.9), it follows from (5.5) with u = ©,
v = ey and (5.2) withv = 0, ® € V that

d
2. 2 @ deor

TeTyi,j=1

=Y Z(a,, weh> 05 QPN T + ((dieo — egidnj, Qud; Par (7.10)

TeTyi,j=1

d
= —s(en, Qn®) + &u(Qr®) + Y D ((dieo — egin;, Qudy; Phar

TeT) i j=1

By inserting (7.10) into (7.9) and then combining (5.3), we have
leoll* =2, (Qn®) — ¢a(en)

3 (7.11)
= "I — Calen),
i=1
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where [; fori = 1, 2, 3 are given by (5.3) with v = Q;, .
Next, it suffices to estimate each of four terms on the second line of (7.11). As to the term
I, using the definitions of Qj and Q,,, we have

L1 =) hi(Qp(Qou) — Qpit. Qp(Qo®) — QpD)sr

TeT),
+ 07N 0n(VQou) - ny — Qn(Vu-my), 0u(VQo®) -ns — Qu(VO - np))or|

=| Y 7 {Qou —u, Qo® — ®)yr + h7' (VQou -nf — Vi -mp, VQo® -ng
TeTy

— V& - ng)yr|,

which, together with the Cauchy-Schwarz inequality, (6.1), (6.3) and (7.7), gives

1 5(Y2 n7210ou = uldz)” (32 h72100® — @l35)

TeT, TeT,
1 1
— 2 — 2
+ (X hr'1veou = vuld)* (X hr'IVQe® — Vi)
TeTy TeTy

1
(32 11 Qou — ullk + 171V (Qou — w13’
TeTy

1
(X h100® = @1+ A7 1V(Qo® — D)%) + A ulz] @5
TeTy,

(X2 i IQou — ulf + h72IV(Qou — w1 + Q0w — ul3 1)’
TeTy

(X2 H100® = @I + 172V (Qo® — B)F + Q0P — B3 1)’
TeTy,

+ R |ull3l®ll3
<h2(lull3 1 ®li3
<h2|ullslleoll-

To estimate the term I,, from the fact that ® = 0 on 92 and ZTET;, szzl (D, Thq - M)y7
= 0, we arrive at

d
L=—Y"% (Qo® mq - nar

TeTyi,j=1

d
=_ Z Z (Qo® — @) + @, m;q - m)y7

TeT, i, j=1
d
=Y D (D= QP g - Mr.
TeT,i,j=1
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By using the Cauchy-Schwarz inequality, (6.1), (6.2), (6.3) and (7.7) gives

(X 10— 00elz) (X Zdj maliy )’

TeT), TeT)i,j=1
! - i
SO n710 = 0ol + hrl® = 000 1) (0 Y A7 Imagll} )
TeT), TeT)i,j=1 (7.13)

<hz(Zh i) o,

i,j=1
2
Shellullz4y lleoll.

To deal with the term /3, from (4.3), the Cauchy-Schwarz inequality, (6.1), (6.3), (6.4)
and (7.7), we obtain

d
1= Y > (@ Qo — (QuV®)i)nj, (I — Qu)dju)ar|

TeT,i,j=1
1 1
(X 1veee - veld ) (X Z I = Qouldr)®
TeTy TeTyi,j=1
1
5( > h;lnvgocb—wn%+hT|ro1>—<1>|%,T)2 (7.14)
TeT),

1

103 Z h N = @Azl + el = QdZull )

TeTyi,j=1
2
Shllullz @l
2
Shellulilleoll-

For the last term ¢ (ep), we apply the similar arguments as in (7.3)-(7.5) with u = @,
(7.1) and (7.7) to obtain
1Co(en)] Shllenllll I3+,

(7.15)
<h2[ull34y leoll.

Finally, combining (7.12)-(7.15) with (7.11) verifies (7.8). This completes the proof of the
theorem.

To establish the error estimates for the numerical approximations defined on the faces F,
and edges &, we introduce

lesle, = (X B3lesls) . lenliz, = (3 hrllnlr)’.

TeTy TeTy,
Theorem 7.3 Under the assumptions of Theorem 7.2, the following error estimates hold true:
2
leplle, < h™llullz4y,

lenllz, S Rllullz4y
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Proof By using the triangular inequality, (6.2), (7.1) and (7.8), we obtain

1

2 2 2 2 2
leolley S( Y 1 @oeolz + i llew — Oveoll35)

TeT,
1
2 4 2\2
S( X hrlleolidr + i llenll®)
TeT,
1
2 61,112 2
(X Neol +°luli,,)
TeT,
2
<l

which leads to the first estimate for e;,. The similar argument can be applied to derive the
error estimate for e,. This completes the proof.

8 Numerical Experiments

Several numerical experiments will be implemented to verify the convergence theory estab-
lished in previous sections. In our numerical examples, the randomised quadrilateral partition,
the hexagonal partition, and the non-convex octagonal partition are generated by PolyMesher
package [15](see Fig.2(a—c) for initial partitions) and the next level of the partitions are
refined by the Lloyd iteration [15] (see Fig.2(d—f)). The uniform cubic partition is gener-
ated by uniformly refining the initial 2 x 2 x 2 cubic partition of domain Q = (0, 1)3 into
2N x 2N « 2N cubes for N = 2, ..., 5. The uniform triangular partition and the uniform
rectangular partition are obtained similarly.
In addition to computing [lex ], lleoll, lleslle, and |le, || 7,, more metrics are employed

1/2
2
1Vu.resllz, = (3 hrlVurelir)
T€771

1V —uo)l = (Y Ive—uoi3) .

TeTy

Test Example 1. Table 1 shows some numerical results when the exact solution is given by u =
cos(x + 1) sin(2y — 1) in the domain = (0, 1)? on different types of polygonal partitions
shown in Fig. 2. For the uniform triangular partition and uniform rectangular partition, we can
see from Table 1 that the convergence rates for [|e. I, lleoll, lles || &, are consistent with what our
theory predicts, and the convergence rate for ||e, || 7, is higher than the theoretical prediction
of O(h). Moreover, we observe the convergence rates for ||V, rep || 7, and ||V (u—ug)|| are of
order O(h?) on the uniform triangular partition and uniform rectangular partition, for which
the theory has not been developed in this paper. In addition, note that the theory established
in previous sections does not cover the polygonal partitions shown in Fig.2. However, we
compute the convergence rates in various norms on the polygonal partitions shown in Fig. 2
using the least-square methods [4] and the corresponding convergence rates in various norms
are illustrated in Table 1.

Test Example 2. Table 2 presents the numerical results on the uniform cubic partition in
Q = (0, 1)? for the exact solution u = exp(x + y + z). The convergence rates for ||ez I, |leoll
and |lep|lg, are consistent with our theory. Similar to Test Example 1, we can see a super-
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(a) Level 1 (b) Level 1 (c) Level 1

(d) Level 2 (e) Level 2 (f) Level 2

Fig.2 Level 1: Initial partitions (a—c); Level 2: Partitions after one refinement (d—f)

Table 2 Numerical errors and convergence rates for the exact solution u = exp(x + y + z) on the uniform
cubic partition in € = (0, 1)3

Level llenll Rate lleoll Rate llep I & Rate
1 1.79E—00 0.58 3.49E—-02 3.27 4.69E—02 2.00
2 9.85E—01 0.86 5.52E-03 2.66 1.24E—02 1.92
3 5.07E-01 0.96 1.10E—03 2.33 3.11E-03 1.99
4 2.55E-01 0.99 2.50E—04 2.15 7.67E—04 2.02
Level llen ||_7:h Rate IV, Fep ||]:h Rate IV (u — ug)|| Rate
1 3.15E—01 1.35 1.41E-01 1.22 2.58E—01 1.36
2 8.93E—-02 1.82 5.26E—02 1.42 8.04E—02 1.68
3 2.30E—02 1.96 1.53E—02 1.79 2.18E—02 1.88
4 5.76E—03 2.00 4.00E—03 1.93 5.61E—03 1.96

convergence rate for ||e, || 7, from Table 2. In addition, Table 2 presents the convergence rates
for |V, Fepll 7, and ||V (4 — ug)||, for which no theory is available to support.

Test Example 3. Table 3 illustrates the numerical performance on the polygonal partitions
shown in Fig. 2 for a low regularity solution given by u = /3 sin(%@), where r = \/x2 + y2
and @ = arctan(y/x). It is easy to check u € H3/37¢(Q) for arbitrary small ¢ > 0 does not
satisfy the regularity assumption V(af.ju) e H(div, QN[LP(Q))¢ forj=1,..dand p > 2.
We observe from these numerical results that on the uniform triangular partition and uniform
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Table4 Numerical errors and convergence rates for the exact solution u = P

partition in 2 = (0, 1)3

/2 sin(%@) on the uniform cubic

Level llenll Rate lleoll Rate llepl & Rate
1 1.43E-01 - 3.62E—03 - 1.26E—-02 -

2 1.32E-01 0.12 1.52E—-03 1.26 3.78E—03 1.74
3 9.65E—02 0.45 5.04E—04 1.59 1.04E—-03 1.86
4 6.84E—02 0.50 1.39E—04 1.86 2.70E—04 1.95
Level llen ”7:h Rate ||Vw,]-‘€b||]-‘h Rate IV(u —ug)ll Rate
1 3.27E-02 - 4.69E—02 - 4.13E—-02 -

2 1.58E—02 1.05 2.55E—-02 0.88 2.03E—-02 1.03
3 5.65E—03 1.48 1.06E—02 1.26 8.09E—03 1.32
4 1.90E—-03 1.57 3.99E—-03 1.41 2.97E—-03 1.45

rectangular partition, the convergence rates for [lex |, lleoll, llexlle,, llexll 7, | Vw,Febll 7,
|V (u — up) || are of orders O(h%/3), O(h?), O(h?), O(h>/3), Oh>/3), O(h>/3), respectively.
Moreover, the numerical performance of the WG solution on the polygonal partitions is
demonstrated in Table 3.

Test Example 4. Table 4 demonstrates the numerical performance on the uniform cubic
partition in = (0, 1) for a low regularity solution given by u = 3/ sin( %9), where
r = /x2 + y2and @ = arctan(y/x). The exact solution satisfies u € H>/>~¢() for arbitrary
small ¢ > 0. We observe that the numerical errors [|ep [, leoll, lles |, lexll 7, | Vu, Febll 7,
[V (u — ug)|| converge at the rates of O(h'/?), O(h?), Oh?), Oh3?), Oh3/?), OH3/?),
respectively. Therefore, we conclude that the numerical performance of the WG method for
the model equation (1.1) with the low regularity solution is good although the corresponding
mathematical theory has not been established in our paper.
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