

1

2 **Research Note**

3

4

5 **On the Mechanism of Visible-Light Sensitized Photosulfoxidation of**
6 **Toluidine Blue O**

7

8

9 Jennifer Otero-González,^{1‡} Whitney Querini-Sanguillén,^{1‡} Daniel Torres-Mendoza,^{2,3,4} Ikhil
10 Yevdayev,⁵ Sharon Yunayev,⁵ Kamrun Nahar,^{5,6} Barney Yoo,⁷ Alexander Greer,^{5,6*} Denis
11 Fuentealba,^{8*} and José Robinson-Duggon^{1,9*}

12

13 ¹*Departamento de Bioquímica, Facultad de Ciencias Naturales, Exactas y Tecnología,*
14 *Universidad de Panamá, Panamá 0824, República de Panamá*

15 ²*Laboratorio de Bioorgánica Tropical, Facultad de Ciencias Naturales, Exactas y Tecnología,*
16 *Universidad de Panamá, Panamá 0824, República de Panamá.*

17 ³*Departamento de Química Orgánica, Facultad de Ciencias Naturales, Exactas y Tecnología,*
18 *Universidad de Panamá, Panamá 0824, República de Panamá.*

19 ⁴*Vicerrectoría de Investigación y Postgrado, Universidad de Panamá, Panamá 0824, República*
20 *de Panamá.*

21 ⁵*Department of Chemistry, Brooklyn College, City University of New York, Brooklyn, New York*
22 *11210, United States.*

23 ⁶*Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365*
24 *Fifth Avenue, New York, New York 10016, United States.*

25 ⁷*Department of Chemistry, Hunter College, City University of New York, New York 10065,*
26 *United States.*

27 ⁸*Laboratorio de Química Supramolecular y Fotobiología, Escuela de Química, Facultad de*
28 *Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860,*
29 *Macul, Santiago, Chile*

30 ⁹*Sistema Nacional de Investigación (SNI), Secretaría Nacional de Ciencia, Tecnología e*
31 *Innovación (SENACYT), Panamá, República de Panamá*

32

33

34

35

36

37

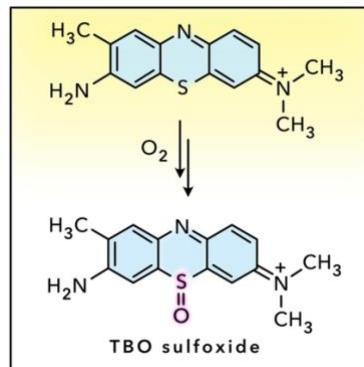
38

39

40 [‡]*Equal contribution of authors*

41 *Corresponding author e-mail: agreer@brooklyn.cuny.edu (Alexander Greer), dlfuente@uc.cl
42 (Denis Fuentealba), jose.robinson@up.ac.pa (José Robinson-Duggon)

43


44

45

46

47 **TABLE OF CONTENTS GRAPHIC**

48

49

50

51 **TOC SYNOPSIS:** Experimental and theoretical strategies for deducing mechanistic paths of
52 photobleaching are challenging. Progress has been made based with the self-sensitized
53 photooxidation toluidine blue O (TBO), leading to TBO sulfoxide and other products. This is a
54 unique albeit minor self-sensitized photooxidation path, where the TBO sulfoxide arises by a type
55 I process. Density functional theory results point to either peroxy radical or thiadioxirane
56 intermediate to reach the TBO sulfoxide.

57

58

59 **ABSTRACT**

60 We report on the formation of toluidine blue O (TBO) sulfoxide by a self-sensitized
61 photooxidation of TBO. Here, the *photosulfoxidation* process was studied by mass spectrometry
62 (MS) and discussed in the context of photodemethylation processes which both contribute to TBO

63 consumption over time. Analysis of solvent effects with D₂O, H₂O, and CH₃CN along with product
64 yields and MS fragmentation patterns provided mechanistic insight to TBO sulfoxide's formation.
65 The formation of TBO sulfoxide is minor and detectable up to 12% after irradiation of 3 h. The
66 photosulfoxidation process is dependent on oxygen wherein instead of a type II (singlet oxygen,
67 ¹O₂) reaction, a type I reaction involving TBO to reach the TBO sulfoxide is consistent with the
68 results. Density functional theory results point to the formation of the TBO sulfoxide by the
69 oxidation of TBO via transiently formed peroxy radical or thiadioxirane intermediates. We
70 discover that the TBO photosulfoxidation arises competitively with TBO photodemethylation with
71 the latter leading to formaldehyde formation.

72

73

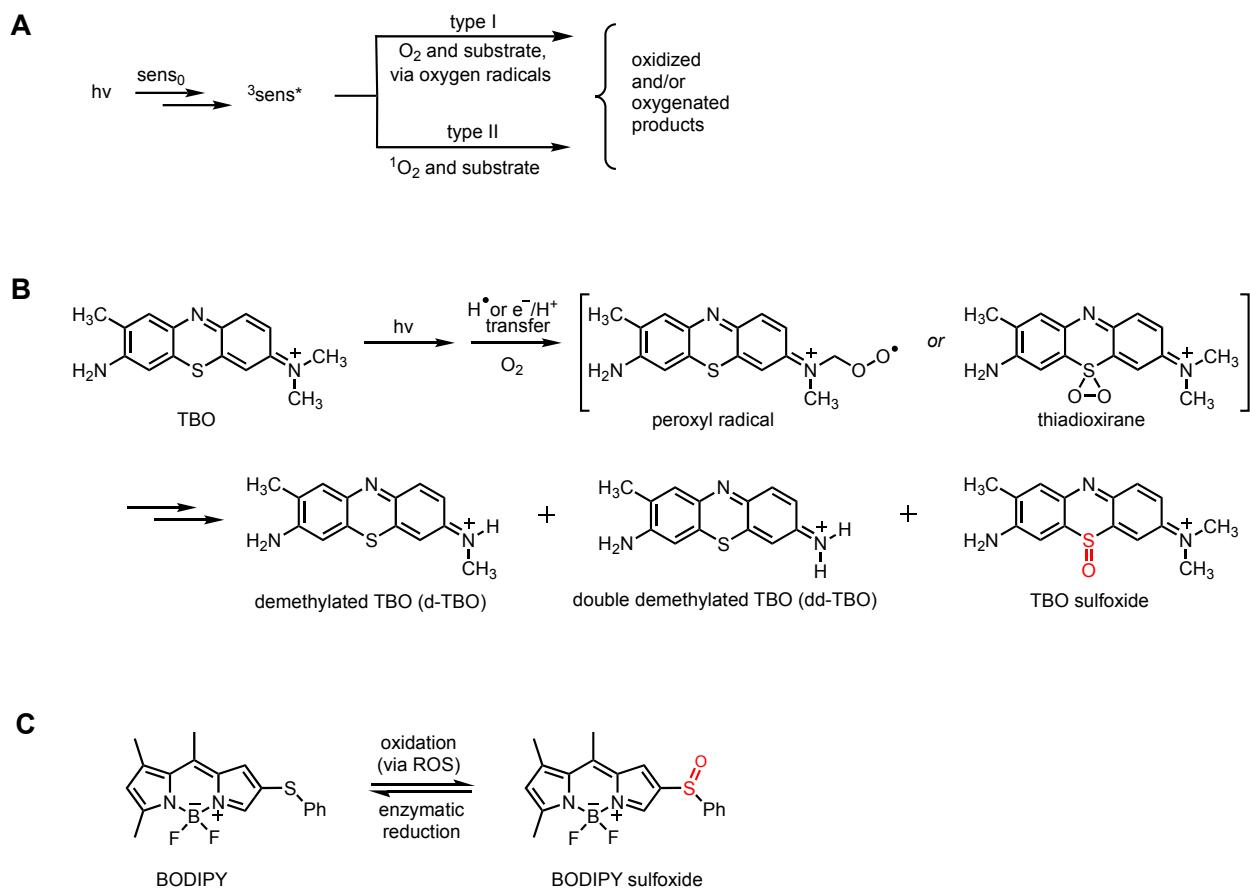
74 **INTRODUCTION**

75 Self-sensitized photooxidation reactions play a significant role in a variety of fields,
76 including organic synthesis and pollutant degradation (1,2). For this reason, several studies have
77 endeavored to better understand the mechanisms of self-sensitized photooxidation reactions in type
78 I and type II reactions (Figure 1A). Medical and other organic pollutants with intrinsically self-
79 sensitizing structures, often undergo type II photooxidation reactions. In 2021, a combined DFT
80 and experimental study (3), an application of the self-sensitized type I photooxidation of toluidine
81 blue O (TBO) was demonstrated. In that work, a synthetically significant demethylation was
82 shown to occur (Figure 1B).

83 While candidate photooxidation paths could be type I (oxygen radicals) or type II (¹O₂) (4-
84 6), for TBO the evidence pointed to the former. Here, methyl groups were shown to depart as
85 formaldehyde molecules. This single carbon atom loss process can be contrasted to two carbon

86 loss processes. For example, the self-sensitized photooxidation of heptamethine cyanine (7) and
87 rhodamine B (8) leads to the loss of ethene and ethyl groups, respectively. Loss processes are not
88 limited to carbon fragments, however. Sensitizers that bear sulfur groups can involve both sulfur
89 atom loss and oxidation processes. For example, a dimeric BODIPY sulfoxide was reported to
90 undergo an SO extrusion process (9). Figure 1C shows an example of a sulfur-substituted BODIPY
91 derivative that cycles reversibly as a redox sensor between the sulfide and sulfoxide forms (10).

92 How TBO self-sensitized photooxidation leads to not only demethylation, but also
93 sulfoxidation paths, remains to be clarified. In the present work, we consider TBO in the self-
94 sensitized photooxidative formation of TBO sulfoxide. In the present work, evidence points to the
95 sulfoxidation of TBO's sulfur by a type I reaction, with no evidence to support a type II reaction.
96 By comparison, organic sulfides such as diethyl sulfide and thietane undergo type II reactions that
97 form sulfoxide through a persulfoxide intermediate, $R_2S^+OO^-$ (11-15). TBO's sulfur site appears
98 similar to diaryl and diphenyl sulfide sites, which are usually unreactive with 1O_2 . Indeed, other
99 reports have appeared on type I photooxidations of dibutyl sulfide and dibenzothiophene (16-19),
100 as well as *N*-methyl phenothiazine in a type I reaction in homogeneous media and a type II reaction
101 in micellar media (20,21). Self-sensitized reactions of metal thiolanes (22-25) and thiochroman-
102 fused C₆₀ (26) have lead to type II reactions, where 1O_2 can react at the sulfide sites to produce
103 sulfoxides and sulfones. As we will see, experimental and theoretical evidence suggests that the
104 sulfoxidation of TBO occurs through a type I self-sensitized reaction.

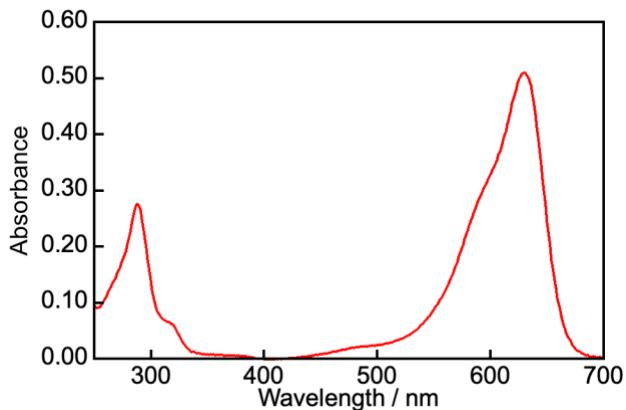

105

106

107

108

109



112 **Figure 1.** (A) An illustration of type I and type II photosensitized oxidation processes. (B) Self-
 113 sensitized type I TBO demethylation path described previously (see ref. 3) and formation of the
 114 TBO sulfoxide as a by-product, which is the subject of the current work. Candidate intermediates
 115 to reach the TBO sulfoxide include a peroxy radical or thiadioxirane. (C) Literature example of a
 116 BODIPY redox sensor that cycles between the corresponding sulfide with reactive oxygen species
 117 and the sulfoxide in a reversible enzymatic process (see ref. 10), bearing rough similarity to the
 118 formation of TBO sulfoxide.

122 **RESULTS AND DISCUSSION**

123 We report here an mass spectrometry (MS) study of the *photosulfoxidation* reaction of
124 TBO in three solvents (CH₃CN, H₂O and D₂O). Firstly, purification of TBO is needed as the
125 commercial TBO sample contains significant levels of impurities, especially when stored over
126 time in room light. The concentration of TBO used was ~12.5 μ M in all solvents (absorbance of
127 ~0.5) as it can be seen in Figure 2. TBO was irradiated in air-saturated solutions for 1-3 h and MS
128 spectra where TBO sulfoxide appears as a small peak at *m/z* 286.1. Due to the resolution of the
129 MS, TBO sulfoxide sometimes also appears as *m/z* 286.2. Upon irradiation in CH₃CN, TBO
130 sulfoxide increases from 9.8 \pm 1.2% at 1 h to 12.2 \pm 1.5% after 3 h (Table 1), whereas in H₂O, it
131 increases to 7.3 \pm 0.9% at 1 h, but decreases to 4.0 \pm 0.5% after 3 h. This suggests that at longer
132 irradiation times in H₂O lead to some TBO sulfoxide decomposition (Table 1).

133

134

135 **Figure 2.** UV-visible spectra of TBO in CH₃CN.

136

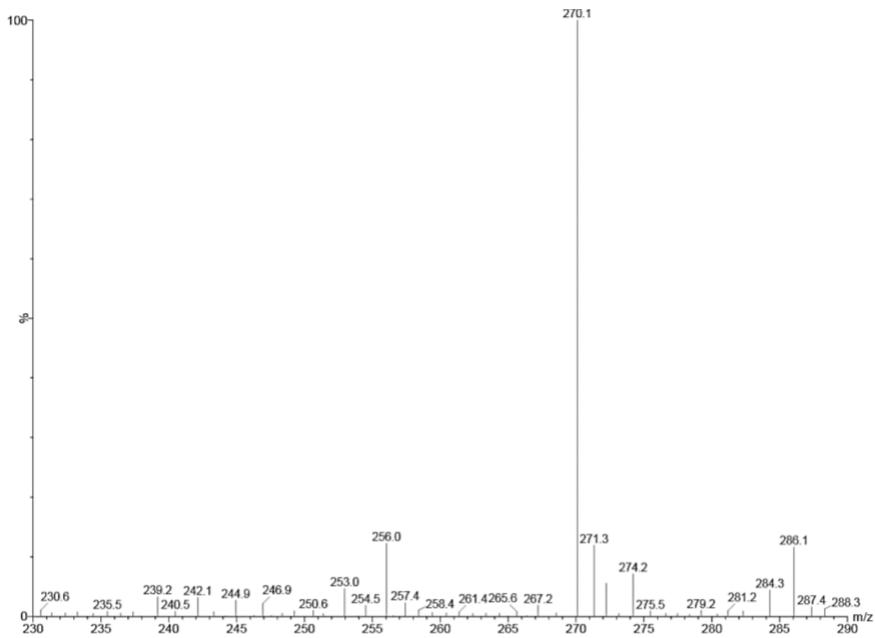
137 The observed MS/MS fragmentation pattern is consistent with the TBO sulfoxide at *m/z*
138 286.1 (Figure 3c). The mass spectra of the TBO samples were recorded in the 3 solvents with
139 irradiation times of 1-3 h (Figures S1-S14, Supporting Information). The photoformation of TBO

140 sulfoxide was found to depend on the presence of oxygen. Sparging of the solution with air (21%
141 O₂) led to an increased TBO sulfoxide signal by 29% compared to an N₂-sparged acetonitrile
142 solution. Indeed, under N₂ atmosphere, no increase in the TBO sulfoxide signal was observed.
143 Thus, while TBO sulfoxide is a minor product that can conceivably arise by either a type I or type
144 II oxidation mechanism. We have reported previously that TBO undergoes mainly a type I
145 photosensitized degradation (3), in which TBO also produces ¹O₂ with a quantum yield (Φ_Δ) of
146 0.14-0.18 (27,28). Thus, we examined the reaction to probe whether TBO sulfoxide arises by the
147 self-sensitized formation ¹O₂. When CH₃CN was exchanged for H₂O, the ¹O₂ lifetime (τ_Δ)
148 decreases from 55 μ s (29) to 3.5 μ s (30), and the amount of TBO sulfoxide formed would be
149 expected to decrease significantly. However, TBO sulfoxide yield only varied by ~3-fold after 3 h
150 of irradiation. Moreover, in D₂O the TBO sulfoxide yield did not increase significantly compared
151 to H₂O; the yield was 4.6 \pm 0.6% in D₂O and 4.0 \pm 0.5% in H₂O after 3 h of irradiation. This result
152 is inconsistent with a type II mechanism. Because the τ_Δ in D₂O is some 19-fold greater than in
153 H₂O, if the type II mechanism was operative, TBO sulfoxidation would have been greater yielding
154 in D₂O than H₂O (31). TBO sulfoxide is one of several compounds formed in the reaction.

155 In the reaction, TBO sulfoxide is formed in minor amounts, and itself decomposes over
156 time, particularly in H₂O after 2 h of irradiation. In addition to the TBO sulfoxide formed, TBO
157 photodegradation occurs through the loss of the methyl groups from the dimethylammonium ion
158 moiety (Figure 3b). In the dark, the MS signal for TBO is prominent at *m/z* 270.1 (Figure 3a),
159 whereas after 2 h of irradiation mono-demethylated TBO (d-TBO) appears at *m/z* 256.0 and is the
160 main product (Figure S4, Supporting Information). After 3 h irradiation, double-demethylated
161 TBO (dd-TBO) appears at *m/z* 242.0 and becomes the main product (Figure 3b). These MS data
162 are consistent with previous results on the formation of d-TBO and dd-TBO (3). The current

163 observed MS/MS fragmentation patterns obtained are consistent with TBO at m/z 270.1, d-TBO
164 at m/z 255.9, and dd-TBO at m/z 242.1. Not detected was the photosulfoxidation of the d-TBO and
165 dd-TBO to reach d-TBO sulfoxide at m/z 272 and dd-TBO sulfoxide at m/z 258, respectively.

166 Table 1 shows MS data that the self-photooxidation of TBO led to TBO sulfoxide in about
167 0.6% greater amounts in D_2O than H_2O (cf. 4.6% to 4.0%). Table 2 shows GCMS relative
168 abundance data that were collected for quenching studies carried out with the 1O_2 quencher sodium
169 azide (2 mM) in CH_3CN leading to only a modest reduction in the production of TBO sulfoxide
170 (cf. 10% to 9%). A more substantial 4% reduction in the TBO sulfoxide relative abundance (cf.
171 10% to 6%) was observed when the photoreaction carried out in the presence of the radical
172 scavenger D-mannitol (15 mM). In the presence of D-mannitol, the relative abundance of d-TBO
173 also declined (cf. 72% to 12%), and the relative abundance of dd-TBO declined as well from 18%
174 to 5%. Thus, the relative abundance of TBO sulfoxide, d-TBO, and dd-TBO were less effected by
175 the presence of the 1O_2 quencher sodium azide and more effected by the presence of the radical
176 scavenger D-mannitol. Experiments were also carried out to assess whether superoxide radical
177 anion was formed in the TBO photoreaction. Figure S15 (Supporting Information) shows that the
178 appearance of a prominent absorption band for reduced cytochrome C at 550 nm did not
179 materialize. That no changes were observed in the presence or absence of superoxide dismutase
180 (SOD) points to a lack of evidence for superoxide radical anion under our experimental conditions
181 (32,33).

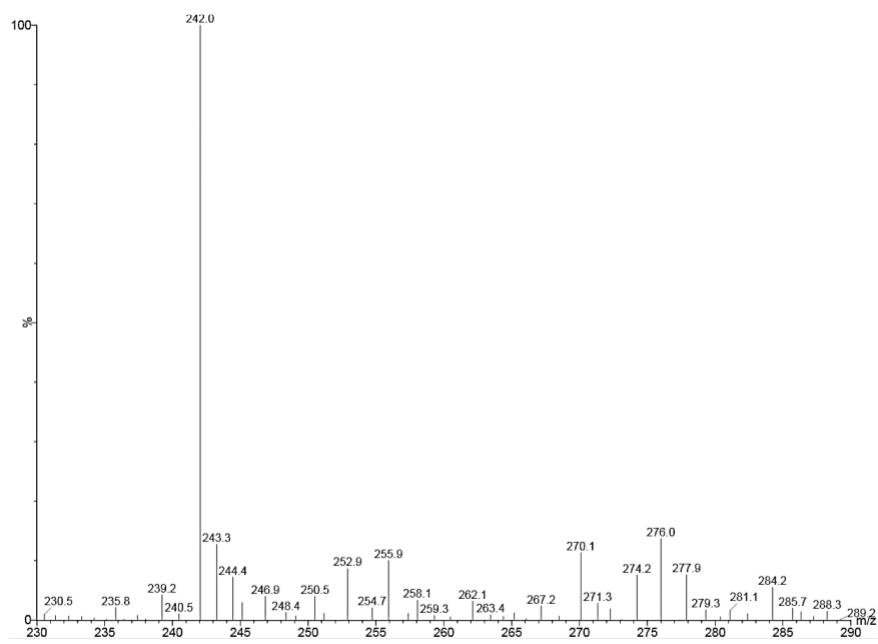

182

183

184

185

186


187

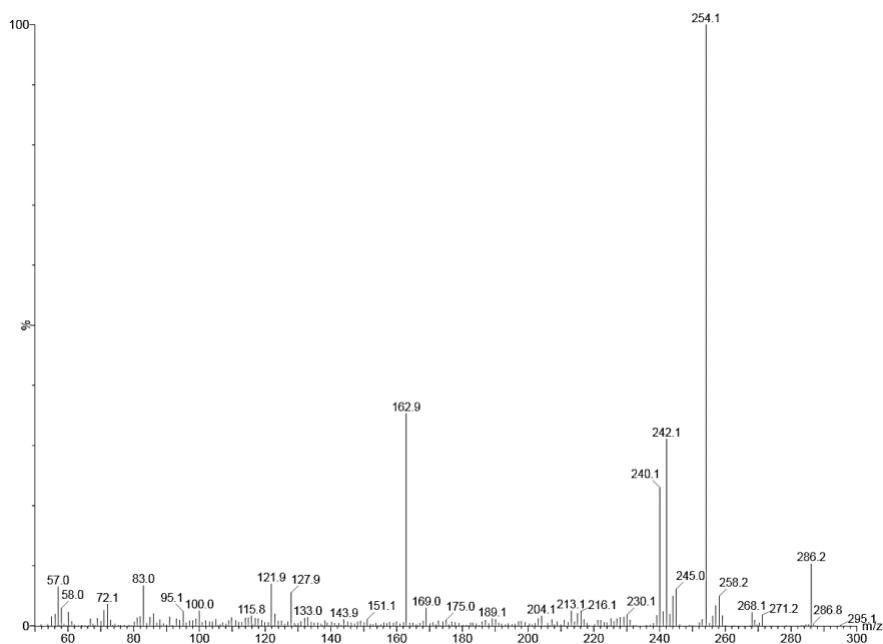
188

(a)

189

190

191


192

(b)

193

(c)

198 **Figure 3.** MS spectra of TBO sample in CH₃CN: (a) in the dark containing mainly TBO (*m/z*
 199 270.1) and trace TBO sulfoxide (*m/z* 286.1), (b) after irradiation for 3 h showing an increase in
 200 TBO sulfoxide relative to TBO, in the presence of mono-demethylated TBO (d-TBO, *m/z* 255.9)
 201 and double-demethylated TBO (dd-TBO, *m/z* 242.0), and (c) MS/MS spectrum of TBO sulfoxide
 202 after 3 h irradiation for further evidence that the *m/z* 286.2 is the sulfoxide and comes from TBO
 203 sulfoxide.

Table 1. LCMS detection of the visible-light degradation of TBO in different solvents yielding dd-TBO, d-TBO, and TBO sulfoxide ^a

Solvent	Ion	<i>m/z</i> ^b	1 h	2 h	3 h
			Relative abundance		
CH ₃ CN	TBO	270.1	100.0	67.5	11.3
	TBO sulfoxide	286.1	9.8 (9.8%) ^c	6.3 (9.4%) ^c	1.4 (12.2%) ^c
	d-TBO	256.0	72.0	100.0	10.0
	dd-TBO	242.1	18.3	45.1	100.0
H ₂ O	TBO	270.1	100.0	100.0	100.0
	TBO sulfoxide	286.2	7.3 (7.3%) ^c	6.6 (6.6%) ^c	4.0 (4.0%) ^c
	d-TBO	256.1	9.1	9.3	9.9
	dd-TBO	242.2	1.0	0.2	0.1
D ₂ O	TBO	270.1			68.2
	TBO sulfoxide	286.2			3.2 (4.6%) ^c
	d-TBO	256.1			64.1
	dd-TBO	242.2			12.0

209 ^a Abbreviations: mono-demethylated TBO is d-TBO, and double-demethylated TBO is dd-TBO. ^b The *m/z*
 210 values have errors of ± 0.2 amu; for example, the d-TBO can appear at 255.9, 256.0, and 256.1 amu in the
 211 spectra. ^c The % yield of TBO sulfoxide is shown in parentheses and is calculated from its relative
 212 abundance with respect to TBO. The reaction was carried out at room temperature (26 °C) where 12.5 μ M
 213 TBO was irradiated for 1 h, 2 h and 3 h with a white light-emitting diode (LED) lamp, temperature color

214 6500 K and 2100 Lumens (Lm). Samples were irradiated with an illuminance of approximately 32,400 lux
215 in the presence of oxygen. Samples were not sparged with air or O₂ during the course of the photoreaction.
216 Solvents were CH₃CN LCMS hypergrade, H₂O LCMS grade, and D₂O NMR-grade.

217
218
219

Table 2. GCMS detection of the visible-light degradation of TBO in in CH₃CN yielding
TBO sulfoxide, d-TBO, and dd-TBO ^a

Solvent	Ion	<i>m/z</i> ^b	Relative abundance ^c		
			no additive	azide ion	D-mannitol
CH ₃ CN	TBO	269–271	100	100	100
	TBO sulfoxide	285–287	10	9	6
	d-TBO	255–257	72	70	12
	dd-TBO	241–243	18	16	5

220 ^a Abbreviations: mono-demethylated TBO is d-TBO, and double-demethylated TBO is dd-TBO. ^b Ion
221 extracted mass ranges (*m/z*) were analyzed for each compound. ^c The relative ion abundances are provided
222 with respect to TBO. Reaction was carried out at room temperature where 2 mM TBO was irradiated for 1
223 h with (400 < λ < 700 nm) light. Samples were not sparged with air or O₂ over the course of the
224 photoreaction.

225
226

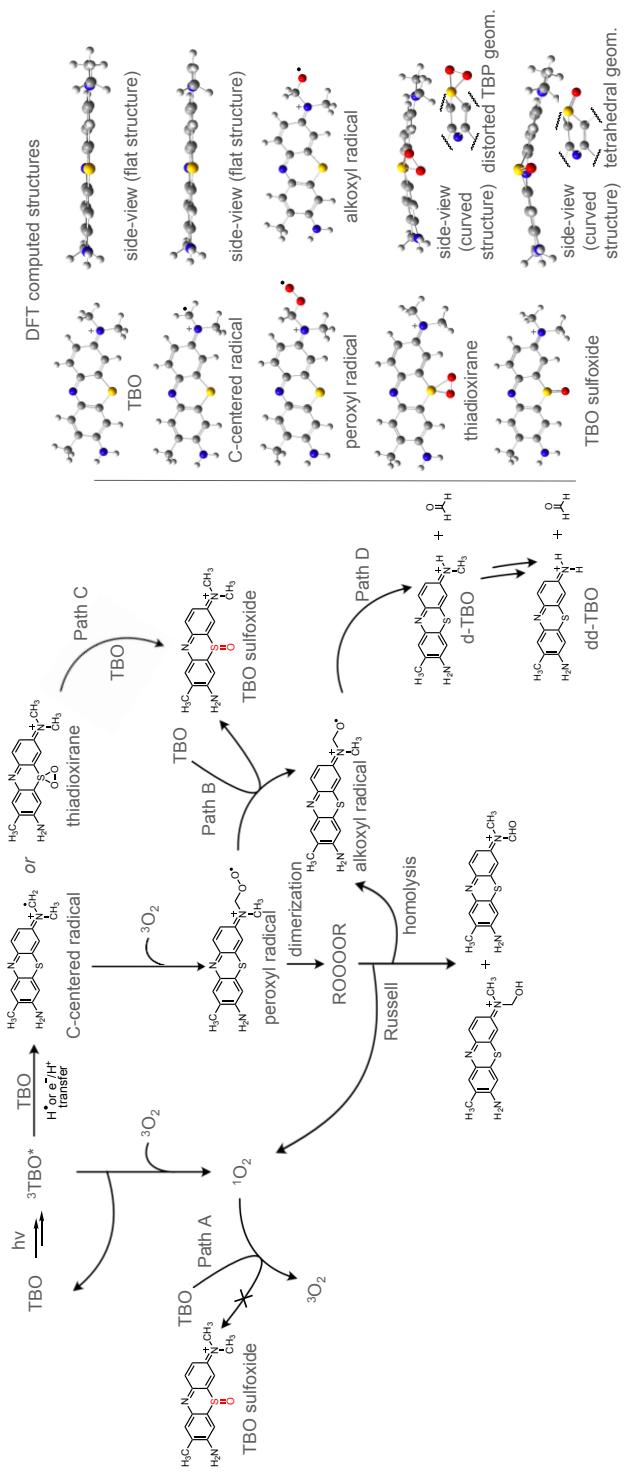
227 **MECHANISM AND SUMMARY**

228 The proposed mechanism for a self-sensitized photosulfoxidation of TBO is shown in
229 Figure 4. Path A shows that ³TBO* sensitizes the formation of ¹O₂, which converts back to ground-

230 state $^3\text{O}_2$ without TBO sulfoxide formation. TBO sulfoxide formation can arise by a type I (oxygen
231 radicals) process involving a C-centered radical and formation of a peroxy radical ($\text{ROO}\cdot$)
232 followed by reaction with TBO to give the TBO sulfoxide (Path B) or alternatively by formation
233 of thiadioxirane by electron transfer photooxidation (18,19) with a subsequent reaction with TBO
234 to give the TBO sulfoxide (Path C). $\text{ROO}\cdot$ radicals display high electrophilicity in which their O-
235 atom transfer is consistent with TBO's nucleophilic sulfide "S" site. As an aside, the $\text{ROO}\cdot$ can
236 also dimerize and proceed by a Russell reaction or homolyze to reach an alkoxy radical ($\text{RO}\cdot$),
237 which demethylates to d-TBO and eventually dd-TBO (Path D). The native TBO can conceivably
238 change its philicity from trapping of electrophilic oxidants (at the sulfide "S" site) to trapping of
239 nucleophilic oxidants (at the sulfoxide "SO" site) similar to that reported for thianthrene 5-oxide
240 (34). In our case, the conversion of TBO sulfoxide to TBO sulfone was not detected. While the
241 experimental results point to a type I mechanism, we sought theoretical insight on the process
242 leading to the TBO sulfoxide. In Figure 4, density functional theoretical (DFT) optimized
243 structures show flat thiazines for TBO, C-centered radical, peroxy radical, and alkoxy radical, and
244 curved thiazines for the thiadioxirane and TBO sulfoxide. The reaction of C-centered radical with
245 triplet ground-state oxygen can readily form the peroxy radical, although its predicted
246 exothermicity for O-atom to TBO is less than the thiadioxirane, which itself may arise from a type
247 I process with TBO.

248 The data are consistent with a type I process and inconsistent with a type II process. The
249 TBO demethylation process is oxygen dependent, forming the $\text{ROO}\cdot$ and then $\text{RO}\cdot$ with
250 formaldehyde departure (Path D) (3), and is reminiscent of other reports of amine demethylations
251 via photooxidation (35). As mentioned above, TBO produces $^1\text{O}_2$, which is similar to sensitizers,

252 such as pterins that produce $^1\text{O}_2$ as well as $\text{ROO}\cdot$, $\text{RO}\cdot$, $\text{HO}\cdot$, and $\text{O}_2^{\cdot-}$ (36,37). Again, the data point
253 to a self-sensitized conversion of TBO to TBO sulfoxide by type I and not by $^1\text{O}_2$ (type II).


254 If a type II ($^1\text{O}_2$) mechanism were operating, solvent proticity would be expected to lead to
255 much greater TBO sulfoxide yields. For example, for diethyl sulfide (Et_2S) in CH_3OH , the
256 chemical quenching to the corresponding sulfoxide, Et_2SO , is $\sim 100\%$, whereas in C_6H_6 it is only
257 5% (38-40). In CH_3OH , inhibition of physical quenching (conversion of $^1\text{O}_2$ to ground-state $^3\text{O}_2$)
258 is thought to initially form $\text{R}_2\text{S}^+\text{OO}^-$, and then convert to H-bonded or solvent stabilized sulfurane
259 (41). Indeed, sulfides with intramolecular OH groups yield products corresponding to transfer of
260 the alcohol oxygen to the sulfur (42).

261 It is known that aryl sulfides and dibenzothiophenes react very slowly if at all with $^1\text{O}_2$.
262 Indeed, Ph_2S has been used as a trapping agent for intermediates produced in sulfide/ $^1\text{O}_2$ reaction
263 to react with hydroperoxysulfonium ylides (electrophilic oxidants) yielding Ph_2SO (43,44). Other
264 reports also point to type I photooxidation of dibenzothiophene (DBT) and 4,6-
265 dimethyldibenzothiophene (DMDBT) sensitized by *N*-methylquinolinium tetrafluoborate in
266 CH_3CN (18,19). DBT was selected as it contains no α -CH groups that could lead to S-
267 hydroperoxysulfonium ylide, an intermediate often found in reactions of sulfides with $^1\text{O}_2$ (19). In
268 refs. 18 and 19, evidence showed that the formation of DBT sulfoxide and DMDBT sulfoxide is
269 from the reaction between the $\text{O}_2^{\cdot-}$ and the R_2S^+ . The results in ref. 18 also showed that the
270 sulfoxide formation was suppressed in the presence of benzoquinone, further bolstering the
271 assignment of a type I mechanism (18).

272 We find a solvent dependence in the percent yield of the TBO sulfoxide, which we attribute
273 to TBO aggregation. The TBO sulfoxide is higher yielding in CH_3CN ($\tau_\Delta = 55 \mu\text{s}$) at 12.2% yield,
274 compared to D_2O ($\tau_\Delta = 65 \mu\text{s}$) at 4.6% or H_2O ($\tau_\Delta = 3.5 \mu\text{s}$) at 4.0%. Because CH_3CN facilitates

275 higher yields, we surmise that some aggregation of TBO arises in D₂O and H₂O. Indeed, in H₂O
276 when TBO concentrations were raised from 2.0 μM to 12.5 μM, there was evidence for
277 aggregation. Whereas, in CH₃CN a TBO concentration of 12.5 μM appeared to be fully solvated,
278 although experiments required elevated TBO concentrations of 2 mM for GCMS detection of TBO
279 sulfoxide, d-TBO, and dd-TBO (Table 2). Somewhat similarly, a report of a phenothiazine-boron
280 dipyrromethene (BODIPY) dyad showed reduced aggregation and increased water solubility upon
281 *N*-conjugation to a tri(ethylene glycol) chain [CH₃(OCH₂CH₂)₃–] (45).

282

285 **Figure 4.** Proposed mechanism for the formation of TBO sulfoxide, d-TBO, dd-TBO and other
 286 species by the self-sensitized photooxidation of TBO. The formation of the TBO sulfoxide can

287 arise by the oxidation of TBO with candidate peroxy radical or thiadioxirane intermediates. The
288 formation of products is dominated by oxygen radicals and radical ions (type I process) instead of
289 by $^1\text{O}_2$ (type II process). The DFT calculations were carried out with M06-2X/6-31+G(d,p).

290

291

292 As was mentioned in the Introduction, a dimeric BODIPY sulfoxide was reported to
293 undergo SO extrusion (9). However, in our case with TBO sulfoxide, inspection of decomposition
294 products did not suggest an SO extrusion reaction. Furthermore, subsequent decomposition
295 reactions of d-TBO and dd-TBO, or formation of TBO sulfone were not readily detected.

296 In conclusion, organic sulfides such as Et_2S chemically react with $^1\text{O}_2$ (11-15), but TBO
297 and other aromatic sulfides like Ar_2S and DBT are chemically unreactive with $^1\text{O}_2$. As is evidenced
298 here, TBO undergoes *photosulfoxidation* by oxygen radicals in a proposed type I self-sensitized
299 reaction. Future work could examine whether the conversion of TBO to TBO sulfoxide leads to a
300 “turn on” fluorescence similar to a reaction of phenothiazine/BODIPY with ClO^- in reaching a
301 phenothiazine sulfoxide/BODIPY (46). Fluorescence increases have also been observed in the
302 conversion of dibenzothiophenes to dibenzothiophene sulfones (47).

303

304

305 METHODS

306 **Chemicals.** Toluidine blue O (TBO) was obtained from Sigma and purified to $\geq 95\%$ using
307 flash chromatography on silica gel with $\text{CH}_3\text{CH}_2\text{OH}:\text{HCl}$ (99:1 v/v) as eluent. Sodium azide and
308 D-mannitol were also purchased and used received from Sigma. Cytochrome C from equine heart
309 ($>95\%$ purity) and superoxide dismutase from bovine erythrocytes (4743 U/mg) were obtained

310 and used as received from Sigma. Solvents CH₃CN, D₂O, H₂O, and CH₃CH₂OH, as well as HCl
311 were used as received from Sigma-Aldrich. For column chromatography, 230-400 mesh silica gel
312 was used. Stock solution of TBO in CH₃CN was prepared and aliquots were diluted to an
313 absorbance of 0.5 at 626 nm for the irradiation experiments.

314 **UV-visible spectroscopy and irradiation measurements.** UV-visible spectra were
315 collected in a Cary 60 UV/Vis using 1 cm pathlength cuvette. Samples were subjected to irradiation
316 in a 1 cm pathlength cuvette for 1 h, 2 h, and 3 h in a custom-made irradiation chamber containing
317 a 150 mm × 27.2 mm × 150 mm 30 W white light-emitting diode (LED) lamp, temperature color
318 6500 K and 2100 Lumens (Lm). Samples were irradiated with an illuminance of approximately
319 32369 lux measure with a HOBO data logger. Samples were not sparged with air or O₂ during the
320 course of the photoreaction.

321 **Mass spectrometry experiments.** Two types of mass spectrometers were used. (1) UPLC-
322 MS/MS spectrometry data were collected on a Waters XEVO® TQD spectrometer (Waters
323 Corporation, Milford, MA, USA) supplied with an electrospray ionization (ESI) source. The
324 samples were dissolved in CH₃CN (LCMS grade) and measured in positive ESI mode. The
325 samples were filtered in a 0.22 μ m filters and analyzed with the following conditions: probe temp
326 150 °C, cone voltage of 30 V, corona capillary voltage of 3.70 kV, desolvation temp 450 °C,
327 desolvation gas flow 400 L/h, cone gas flow 30 L/h, infusion flow of 5.0 mL/min. Detection was
328 performed in full scan mode in the range from 50–1500 *m/z*. The percent yield of TBO sulfoxide
329 was assessed early in the photolysis (<2 h irradiation) relative to the parent TBO. After 2 h
330 irradiation, d-TBO is the main product, and after 3 h irradiation dd-TBO is the main product. (2)
331 GCMS spectrometry data was collected on a Varian Saturn 2000 GCMS (Varian Inc., Walnut
332 Creek, CA, USA). The column used was a Supelco Analytical SP-233 fumed silica capillary (30

333 m × 0.25 mm × 0.2 um film thickness, catalog #24019). Here, the samples were dissolved in
334 CH₃CN and measured in the electron impact (EI) mode. The TBO concentration was 2 mM, and
335 for the additives was 2 mM azide ion and 17 mM D-mannitol. The settings included an injection
336 temperature of 250 °C, a Helium flow of 1.2 mL/min, and a mass range from 35 to 650 *m/z*. An
337 ion extract mode was used in the range of 269–271 *m/z* for TBO, 285–287 *m/z* for TBO sulfoxide,
338 255–257 *m/z* for d-TBO, and 241–243 *m/z* for dd-TBO. The yields of TBO sulfoxide, d-TBO, and
339 dd-TBO were determined after photolysis (1 h irradiation) relative to the parent TBO. For these
340 samples, irradiation was carried out with two 400-W metal halide lamps through a longpass ≥ 400-
341 nm filter solution (1-cm 75 w/v% NaNO₂) at 26 °C.

342 **Superoxide radical anion detection.** Solutions containing cytochrome C (120 μM) and
343 TBO (aprox. 12 μM) in water in the presence or absence of 250 U mL⁻¹ of SOD were irradiated
344 for 30 min with a 630 nm LED. Absorption spectra for the samples were measured every 5 min.

345 **Theoretical section.** We conducted DFT calculations using Gaussian-16 (48), in which
346 compounds were optimized with M06-2X/6-31G(d,p) in the gas phase in a similar manner as
347 reported recently (49). Unrestricted M06-2X/6-31G(d,p) calculations were conducted for the
348 peroxy radical and ³O₂, where the latter value incorporated the experimentally known singlet-
349 triplet energy value of 22.5 kcal/mol, which was added to this calculated value of ³O₂. Harmonic
350 vibrational frequency calculations were also carried out on the stationary points on the potential
351 energy surface (PES).

352
353 **Acknowledgments.** J.O.-G., W.Q-S., and J.R.-D. thank Vicerrectoría de Investigación y
354 Postgrado of Universidad de Panamá CUFI-2021-P-CNET-018, Sistema Nacional de
355 Investigación (SNI) of SENACYT and Secretaría Nacional de Ciencia, Tecnología e Innovación

356 (SENACYT) of Panamá grant PFID-FID-2021-189 for financial support. D.T-M. thank
357 Vicerrectoría de Investigación y Postgrado of Universidad de Panamá. D.F. thank FONDECYT
358 Regular 1210583. I.Y, S.Y., K.M., and A.G. thank the National Science Foundation (CHE-
359 2154133) for funding. This work used Expanse in the Extreme Science and Engineering Discovery
360 Environment (XSEDE) cluster at the San Diego Supercomputer Center, which is supported by the
361 NSF (ACI-1548562) through allocation CHE-210052. We thank Leda Lee for the graphic arts
362 work.

363

364

365 **SUPPORTING INFORMATION**

366 Additional supporting information may be found online in the Supporting Information section at
367 the end of the article:

368 **Figure S1.** MS/MS spectrum of TBO sulfoxide in CH₃CN in the dark.

369 **Figure S2.** Mass spectrum of the TBO sample in CH₃CN after 1 h of irradiation.

370 **Figure S3.** MS/MS spectrum of TBO sulfoxide in CH₃CN after 1 h of irradiation.

371 **Figure S4.** Mass spectrum of the TBO sample in CH₃CN after 2 h of irradiation.

372 **Figure S5.** MS/MS spectrum of TBO sulfoxide in CH₃CN after 2 h of irradiation.

373 **Figure S6.** Mass spectrum of TBO in H₂O in the dark.

374 **Figure S7.** MS/MS spectrum of TBO sulfoxide in H₂O in the dark.

375 **Figure S8.** Mass spectrum of the TBO sample in H₂O after 1 h of irradiation.

376 **Figure S9.** MS/MS spectrum of TBO sulfoxide in H₂O after 1 h of irradiation.

377 **Figure S10.** Mass spectrum of the TBO sample in H₂O after 2 h of irradiation.

378 **Figure S11.** MS/MS spectrum of TBO sulfoxide in H₂O after 2 h of irradiation.

379 **Figure S12.** Mass spectrum of the TBO sample in H₂O after 3 h of irradiation.

380 **Figure S13.** MS/MS spectrum of TBO sulfoxide in H₂O after 3 h of irradiation.

381 **Figure S14.** Mass spectrum of the TBO sample in D₂O buffer after 3 h of irradiation.

382 **Figure S15.** Assessing whether superoxide radical anion is formed in the photoreaction.

383 M062X/6-31G(d,p) computed structures and energetics.

384

385

386 **REFERENCES**

- 387 1. Ghogare, A. A. and A. Greer (2016) Using singlet oxygen to synthesize natural products
388 and drugs. *Chem. Rev.* **116**, 9994-10034.
- 389 2. Xie, X., Z. Zhang, Y. Hu, H. Cheng (2018) A mechanistic kinetic model for singlet oxygen
390 Mediated self-sensitized photo-oxidation of organic pollutants in water. *Chem. Eng. J.* **334**,
391 1242–1251.
- 392 3. Robinson-Duggon, J., N. Mariño Ocampo, P. Barriás, D. Zuñiga-Núñez, G. Günther, A.
393 Greer and D. Fuentealba (2019) Mechanism of visible-light photooxidative demethylation
394 of toluidine blue O. *J. Phys. Chem. A.* **123**, 4863-4872.
- 395 4. Baptista, M. S., J. Cadet, P. Di Mascio, A. A. Ghogare, A. Greer, M. R. Hamblin, C.
396 Lorente, S. C. Nunez, M. S. Ribeiro, A. H. Thomas, M. Vignoni and T. M. Yoshimura
397 (2017) Type I and type II photosensitized oxidation reactions: guidelines and mechanistic
398 pathways. *Photochem. Photobiol.* **93**, 912-919.
- 399 5. Baptista, M. S., J. Cadet, A. Greer and A. H. Thomas (2021) Photosensitization reactions of
400 biomolecules: definition, targets, and mechanisms. *Photochem. Photobiol.* **7**, 1456-1483.

401 6. Baptista, M. S., J. Cadet, A. Greer and A. H. Thomas (2023) Practical aspects in the study
402 of biological photosensitization including reaction mechanisms and product analyses: A
403 do's and don'ts guide. *Photochem. Photobiol.* **99**, 313-334.

404 7. Matikonda, S. S., D. A. Helmerich, M. Meub, G. Beliu, P. Kollmannsberger, A. Greer, M.
405 Sauer and M. J. Schnermann (2021) Defining the basis of cyanine phototruncation enables
406 a new approach to single molecule localization microscopy. *ACS Cent. Sci.* **7**, 1144-1155.

407 8. Butkevich, A. N., M. L. Bossi, G. V. Lukinavicius and S. W. Hell (2019) Triarylmethane
408 fluorophores resistant to oxidative photobleaching. *J. Am. Chem. Soc.* **141**, 981-989.

409 9. Gong, Q., X. Zhang, W. Li, X. Guo, Q. Wu, C. Yu, L. Jiao, Y. Xiao and E. Hao (2022)
410 Long-wavelength photoconvertible dimeric BODIPYs for super-resolution single-molecule
411 localization imaging in near-infrared emission. *J. Am. Chem. Soc.* **144**, 21992–21999.

412 10. Poljak, M., L. Wohlrabova, E. Palau, J. Nociarova, J. Misek, T. Slanina and P. Klán (2022)
413 Chalcogen-based ratiometric reversible BODIPY redox sensors for the determination of
414 enantioselective methionine sulfoxide reductase activity. *Chem. Commun.* **58**, 6389-6392.

415 11. Clennan, E. L. (2001) Persulfoxide: key intermediate in reactions of singlet oxygen with
416 sulfides. *Acc. Chem. Res.* **34**, 875-884

417 12. Jiang, S., L. Carroll, L. M. Rasmussen and M. J. Davies (2021) Oxidation of protein
418 disulfide bonds by singlet oxygen gives rise to glutathionylated proteins. *Redox Biol.* **38**,
419 101822.

420 13. Liu, F. and J. Liu, (2015) Oxidation dynamics of methionine with singlet oxygen: Effects
421 of methionine ionization and microsolvation. *J. Phys. Chem. B.* **119**, 8001–8012.

422 14. E. L. Clennan; P. Dobrowolski and A. Greer (1995) Reaction of singlet oxygen with
423 thietane. A novel example of a self-catalyzed reaction which provides evidence for a
424 thiadioxirane intermediate. *J. Am. Chem. Soc.* **117**, 9800-9803.

425 15. Liang, J. J., C. L. Gu, M. L. Kacher and C. S. Foote (1983) Chemistry of singlet oxygen.
426 45. Mechanism of the photooxidation of sulfides. *J. Am. Chem. Soc* **105**, 4717–4721.

427 16. Bonesi, S. M., I. Manet, M. Freccero, M. Fagnoni and A. Albini (2006) Photosensitized
428 oxidation of sulfides: Discriminating between the singlet oxygen mechanism and electron
429 transfer involving superoxide anion or molecular oxygen. *Chem. Eur. J.* **12**, 4844-4857.

430 17. Bonesi, S. M., M. Fagnoni, S. Monti and A. Albini (2004) Photosensitized oxidation of
431 phenyl and *tert*-butyl sulfides. *Photochem. Photobiol. Sci.* **3**, 489-493.

432 18. Yanke, C., M. WanHong, R. Yanjun, C. Chuncheng, Z. Xinzhi, Z. Jincai and Z. Ling
433 (2005) Photooxidation of dibenzothiophene and 4,6-dimethylbenzothiophene sensitized
434 by *N*-methylquinolinium tetrafluoborate: Mechanism and intermediates investigation. *J.*
435 *Phys. Chem. B* **109**, 8270-8276.

436 19. Baciocchi, E., T. D. Giacco, F. Eliesi, M. F. Gerini, M. Guerra, A. Lapi and P. J. Liberali
437 (2003) Electron transfer and singlet oxygen mechanisms in the photooxygenation of dibutyl
438 sulfide and thioanisole in MeCN sensitized by *N*-methylquinolinium tetrafluoborate and
439 9,10-dicyanoanthracene. The probable involvement of a thiadioxirane intermediate in
440 electron transfer photooxygenations. *J. Am. Chem. Soc.* **125**, 16444.

441 20. Manju, T., N. Manoj, J. L. Gejo, A. M. Braun and E. Oliveros (2014) Micellar control of
442 the photooxidation pathways of 10-methyl phenothiazine: Electron versus energy transfer
443 mechanisms. *Photochem. Photobiol. Sci.* **13**, 281-292.

444 21. Manju, T., N. Manoj, A. M. Braun and E. Oliveros (2012) Self sensitized photooxidation of
445 *N*-methyl phenothiazine: Acidity control of the competition between electron and energy
446 transfer mechanisms. *Photochem. Photobiol. Sci.* **11**, 1744-1755.

447 22. Zhang, D., Y. Bin, L. Tallorin, F. Tse, B. Hernandez, E. V. Mathias, T. Stewart, R. Bau and
448 M. Selke (2013) Sequential photooxidation of a Pt(II) (Diimine)cysteamine complex:
449 intermolecular oxygen atom transfer versus sulfinate formation. *Inor. Chem.* **52**, 1676-
450 1678.

451 23. Monsour, C. G., C. M. Decosto, B. J. Tafolla-Aguirre, L. A. Morales and M. Selke (2021)
452 Singlet oxygen generation, quenching and reactivity with metal thiolate. *Photochem.*
453 *Photobiol.* **97**, 1219-1240

454 24. Zhang, D., B. Hernandez and M. Selke (2008) Photooxidation of metal-bound thiolates:
455 reactivity of sulfur containing peroxidic intermediates. *J. Sulfur Chem.* **29**, 377–388.

456 25. Hernandez, B., Y. Wang, D. Zhang and M. Selke (2006) Photooxidation of co-thiolato
457 complexes in protic and aprotic solvents. *Chem. Comm.* 997–999.

458 26. Ohno, M., S. Kojima, Y. Shirakawa and S. Eguchi (1995) Hetero-diels-alder reaction of
459 fullerene: Synthesis of thiochroman-fused C₆₀ with *o*-thioquinone methide and oxidation to
460 its S-oxides. *Tetrahedron Lett.* **36**, 6899–6902.

461 27. Mariño-Ocampo, N., J. S. Reyes, G. Günther, B. Heyne and D. Fuentealba (2022) Thiol-
462 reacting toluidine blue derivatives: Synthesis, photophysical properties and covalent
463 conjugation with human serum albumin. *Dyes Pigm.* **201**, 110225.

464 28. Robinson-Duggon, J., F. Pérez-Mora, L. Valverde-Vasquez, D. Cortés-Arriagada, J. R. De
465 la Fuente, G. Günther and D. Fuentealba (2017) Supramolecular reversible on–off switch

466 for singlet oxygen using Cucurbit[n]uril inclusion complexes. *J. Phys. Chem. C.* **121**,
467 21782-21789.

468 29. Ogilby, P. R. and C. S. Foote (1983) Chemistry of singlet oxygen. 42. Effect of solvent,
469 solvent isotopic substitution, and temperature on the lifetime of singlet molecular oxygen
470 ($^1\Delta_g$). *J. Am. Chem. Soc.* **105**, 3423–3430.

471 30. Jensen, R. L., J. Arnbjerg and P. R. Ogilby (2010) Temperature effects on the solvent-
472 dependent deactivation of singlet oxygen. *J. Am. Chem. Soc.* **132**, 8098-8105.

473 31. Aebisher, D., N. S. Azar, M. Zamadar, H. D. Gafney, N. Gandra, R. Gao and A. Greer
474 (2008) Singlet oxygen chemistry in water. A porous Vycor glass-supported
475 photosensitizer. *J. Phys. Chem. B* **112**, 1913-1917.

476 32. Butler, J., G. G. Jayson, A. J. Swallow (1975) The reaction between the superoxide anion
477 radical and cytochrome c. *Biochim. Biophys. Acta Bioenerg.* **408**, 215-222.

478 33. Ortwerth, B. J., H. James, G. Simpson, M. Linetsky (1998) The generation of superoxide
479 anions in glycation reactions with sugars, osones, and 3-deoxyosones. *Biochem. Biophys.*
480 *Res. Comm.* **245**, 161-165.

481 34. Adam, W., W. Haas and B. B. Lohray (1991) Thianthrene 5-oxide as a mechanistic probe
482 for assessing the electronic character of oxygen-transfer agents. *J. Am. Chem. Soc.* **113**,
483 6202-6208.

484 35. Bartholomew, R. F. and R. S. Davidson (1971) The photosensitised oxidation of amines.
485 Part II. The use of dyes as photosensitisers: Evidence that singlet oxygen is not involved. *J.*
486 *Chem. Soc. C.* 2347–2351.

487 36. Dantola, M. L., L. O. Reid, C. Castano, C. Lorente, E. Oliveros and A. H. Thomas (2017)
488 Photosensitization of peptides and proteins by pterin derivatives. *Pteridines.* **28**, 105-114.

489 37. Alejandro, V., C. Layana, H. C. Junqueira, A. H. Thomas, R. Itri, M. S. Baptista and M.
490 Vignoni (2021) Alkylation of a hydrophilic photosensitizer enhances the contact-dependent
491 photo-induced oxidation of phospholipid membranes. *Dyes Pigm.* **187**, 109131.

492 38. Gu, C. L., C. S. Foote and M. L. Kacher (1981) Chemistry of singlet oxygen. 35. nature of
493 intermediates in the photooxygenation of sulfides. *J. Am. Chem. Soc.* **103**, 5949-5951.

494 39. Foote, C. S. and J. W. Peters (1971) Chemistry of singlet oxygen. XIV. Reactive
495 intermediate in sulfide photooxidation. *J. Am. Chem. Soc.* **93**, 3795–3796.

496 40. Jensen, F., A. Greer and E. L. Clennan (1998) Reaction of organic sulfides with singlet
497 oxygen: A revised mechanism. *J. Am. Chem. Soc.* **120**, 4439-4449.

498 41. Clennan, E. L. and A. Greer (1996) The effect of alcohols on the photooxidative behavior
499 of diethylsulfide. *J. Org. Chem.* **61**, 4793-4797.

500 42. Clennan, E. L. and K. Yang (1992) Remote Participation During Photooxidations at Sulfur.
501 Evidence for Sulfurane Intermediates. *J. Org. Chem.* **57**, 4477-4487.

502 43. Clennan, E. L. and D. Aebisher (2002) The first example of a singlet oxygen induced
503 double bond migration during sulfide photooxidation. Experimental evidence for sulfone
504 formation via a hydroperoxy sulfonium ylide. *J. Org. Chem.* **67**, 1036-1037.

505 44. Touthkine, A., E. L. Clennan (1999) The reactions of O₂ (1Δ_g) with anancomeric 1,3-
506 dithianes. The first experimental evidence in support of a hydroperoxy sulfonium ylide as a
507 precursor to sulfoxide on the sulfide singlet oxygen reaction surface. *J. Org. Chem.* **64**,
508 5620-5625.

509 45. Soni, D., N. Duvva, D. Badgurjar, T. K. Roy, S. Nimesh, G. Arya, L. Giribabu and R.
510 Chitta (2018) Hypochlorite-mediated modulation of photoinduced electron transfer in a

511 phenothiazine-boron dipyrromethene electron donor-acceptor dyad: A highly water soluble
512 "turn-on" fluorescent probe for hypochlorite. *Chem. Asian J.* **13**, 1594-1608.

513 46. Soni, D., S. Gangada, N. Duvva, T. K. Roy, S. Nimesh, G. Arya, L. Giribabu and R. Chitta
514 (2017) Hypochlorite-promoted inhibition of photo-induced electron transfer in
515 phenothiazine-borondipyrromethene donor-acceptor dyad: a cost-effective and metal-free
516 "turn-on" fluorescent chemosensor for hypochlorite. *New J. Chem.* **41**, 5322-5333.

517 47. Petroff, J. T., K. N. Skubic, C. K. Arnatt and R. D. McCulla (2018) Asymmetric
518 dibenzothiophene sulfones as fluorescent nuclear stains. *J. Org. Chem.* **83**, 14063-14068.

519 48. Frisch, M. J., G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman,
520 G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V.
521 Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V.
522 Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F.
523 Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J.
524 Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J.
525 Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell,
526 J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers,
527 K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari,
528 A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C.
529 Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B.
530 Foresman and D. J. Fox, *Gaussian 16*, Revision C.01; Gaussian, Inc.: Wallingford, CT,
531 2016.

532 49. Turque, O., R. M. O'Connor and A. Greer (2023) Singlet oxygen's potential role as a
533 nonoxidative facilitator of disulfide S–S bond rotation. *Photochem. Photobiol.* **99**, 652-660.

534

535