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Abstract. We prove sharp spectral transition in the arithmetics of phase between localization and
singular continuous spectrum for Diophantine almost Mathieu operators. We also determine exact
exponential asymptotics of eigenfunctions and of corresponding transfer matrices throughout the
localization region. This uncovers a universal structure in their behavior governed by the exponential
phase resonances. The structure features a new type of hierarchy, where self-similarity holds upon
alternating reflections.

Keywords. Quasiperiodic operator, almost Mathieu operator, Anderson localization, hierarchical
structure

1. Introduction

Since this paper continues the program started in [36], we advise the readers less familiar
with the subject to start with the first section of [36] or recent reviews [31,32] for general
background and useful introductory remarks. To avoid repetitions, we focus here only on
the additional introductory considerations more directly relevant to the subject at hand.
Unlike random, one-dimensional quasiperiodic operators (3) feature spectral transi-
tions with changes of parameters. The transitions between absolutely continuous and
singular spectrum are governed by vanishing/non-vanishing of the Lyapunov exponent
[19,39,45]. In the regime of positive Lyapunov exponents (also called supercritical in the
analytic case, with the name inspired by the almost Mathieu operator) there are also more
delicate transitions: between localization (point spectrum with exponentially decaying
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eigenfunctions) and singular continuous spectrum. They are governed by the resonances:
eigenvalues of box restrictions that are too close to each other in relation to the distance
between the boxes, leading to small denominators in various expansions. All known
proofs of localization are based, in one way or another, on avoiding resonances and
removing resonance-producing parameters, while all known proofs of singular contin-
uous spectrum and even some of the absolutely continuous spectrum [2] are based on
showing their abundance.

For quasiperiodic operators, one category of resonances are the ones determined
entirely by the frequency. Indeed, for smooth potentials, large coefficients in the con-
tinued fraction expansion of the frequency lead to almost repetitions and thus resonances,
regardless of the values of other parameters. Such resonances were first understood and
exploited to show singular continuous spectrum for the Liouville frequencies in [9, 10],
based on [24]." The strength of frequency resonances is measured by the arithmetic

parameter
In|lkalr,z

B(a) = limsup — (1)

k—o00 |k |
where || x||r;z = infzez |x — £|. Another class of resonances, appearing for all even poten-
tials, was discovered in [38], where it was shown for the first time that the arithmetic
properties of the phase also play a role and may lead to singular continuous spectrum
even for the Diophantine frequencies. Indeed, for even potentials, phases with almost
symmetries lead to resonances, regardless of the values of other parameters. The strength
of phase resonances is measured by the arithmetic parameter

In|20 + k
§(a,0) = lim sup_w
k—>+o0 |k

2

In both these cases, the strength of the resonances is in competition with the exponen-
tial growth controlled by the Lyapunov exponent. It was conjectured in 1994 [28] that for
the almost Mathieu family — the prototypical quasiperiodic operator — the above two types
of resonances are the only ones that appear and the competition between the Lyapunov
growth and resonance strength resolves, in both cases, in a sharp way.

Namely, separating frequency and phase resonances, the frequency conjecture was that
for the a-Diophantine phases, there is a transition from singular continuous to pure point
spectrum precisely at () = L, where L is the Lyapunov exponent. The phase conjecture
was that for Diophantine frequencies, there is a transition from singular continuous to pure
point spectrum precisely at §(«, 6) = L.

The frequency conjecture was recently proved [8,36]. In this paper, we prove the phase
conjecture (Theorem 1.1). Moreover, our proof of the pure point part of the conjecture
uncovers a universal structure of the eigenfunctions throughout the entire pure point spec-
trum regime (Theorem 1.2), which, in the presence of exponentially strong resonances,

! According to [46], the fact that the Diophantine properties of the frequencies should play a
role was first observed in [44].
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demonstrates a new phenomenon that we call a reflective hierarchy, when the eigenfunc-
tions feature self-similarity upon proper reflections (Theorem 1.3). While the existence
of the continued fraction based hierarchy in the behavior of eigenfunctions was predicted
already in [11], the phenomenon of reflective hierarchy was not even previously described
in the (vast) physics literature, presumably because the dependence on the phase is still
underappreciated by the physics community, and in particular numerical experiments tend
to be performed for phase zero only.

This paper is both dual and complementary to the recent work [36]. There we found
a sharp way to deal with frequency resonances, leading to both the discovery of a uni-
versal hierarchical structure of eigenfunctions driven by the continued fraction expansion
of o and the sharp spectral transition in frequency. We note that the sharp transition in
frequency for a.e. phase was first proved in [8], with pure point part being based on dual
reducibility, without the analysis of the eigenfunctions. In contrast, sharp transition in
phase that we prove here is not currently approachable by any other means. While several
results approaching the transition in frequency have been obtained in the last 15 years,
e.g. [6], there have been no results on the transition in phase for 0 < § < co. Moreover,
the palindromic nature of phase resonances is fundamentally different from the repetition
nature of the frequency ones, requiring very different technical and conceptual solutions
in order to go sharp, and leading to a completely different, reflective, hierarchy.

The universality of the hierarchical structure described in Theorem 1.3 is twofold:
not only the same universal function governs the behavior around each exponential phase
resonance upon reflection and renormalization, it is the same structure for all the param-
eters involved: Diophantine frequency «, phase 6 with §(c, ) < L and eigenvalue E.
Moreover, we expect this picture to be universal for a large class of potentials with
symmetry-based resonances. While the hierarchical structure governed by the frequency
resonances in [36] is conjectured to hold, for a.e. phase, throughout the entire class
of analytic potentials, the structure discovered here requires evenness of the function
defining the potential, and moreover, in general, resonances of other types may also be
present. However, we conjecture that for general even analytic potentials for a.e. fre-
quency only finitely many other exponentially strong resonances will appear, thus the
structure described in this paper will hold for the corresponding class, with In A replaced
by the Lyapunov exponent L (E) throughout.

The almost Mathieu operator (AMO) is the (discrete) quasiperiodic Schrodinger oper-
ator on £2(Z):

(Hyaouw)(n) =um+1) +u@m—1) + 2Av(0 + no)u(n), 3)

with v(6) = cos 276, where A is the coupling, « is the frequency, and 6 is the phase.

It is the central quasiperiodic model for a multitude of reasons (see, e.g., [31]). In
particular, it comes from physics and attracts continued interest there. It first appeared in
Peierls [43], and arises as related, in two different ways, to a two-dimensional electron
subject to a perpendicular magnetic field. It plays the central role in the Thouless et al.
theory of the integer quantum Hall effect. For further background, history, and surveys of
results see [16, 18,30-32,40,42] and references therein.
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The frequency « is called Diophantine if there exist k, T > 0 such that for k # 0,

“4)

T
lket||R/z = "
From now on, unless otherwise noted, we will always assume « is Diophantine. When we
need to refer to (4) in a non-quantitative way, we will sometimes call it the Diophantine
condition (DC) on «.>

The operator H = H} g ¢ is said to have Anderson localization if it has pure point
spectrum with exponentially decaying eigenfunctions.
We have

Theorem 1.1. (1) H) o has Anderson localization if |A| > e8(@.0),

(2) Hj 4.0 has purely singular continuous spectrum if 1 < |A| < eS80

(3) Hj 4.0 has purely absolutely continuous spectrum if |A| < 1.

Remark. (1) We will prove part (2) for all irrational «, and general even Lipschitz v
in (3); see Theorem 4.2.

(2) Part (3) is known for all &, 6 [3] and is included here for completeness.

(3) Parts (1) and (2) of Theorem 1.1 verify the phase part of the conjecture in [28], as
stated there. The frequency part was recently proved in [8, 36].

Singular continuous spectrum was first established for 1 < [A| < e¢¥@®) for suffi-
ciently small ¢ [38]. One can see that even with tight upper semicontinuity bounds the
argument of [38] does not work for ¢ > 1/2. Here we introduce new ideas to remove the
factor of 2 and approach the actual threshold.

Anderson localization for Diophantine « and §(c, ) = 0 was proved in [29]. The
argument was theoretically extendable to [A| > ¢€%@9) for a large C but not beyond.
Therefore, the case of §(«, 8) > 0 was completely open before. In fact, the localiza-
tion method of [29] could not deal with exponentially strong resonances. The first way
to handle exponentially strong frequency resonances was developed in [6]. That method
however could not approach the threshold. An important technical achievement of [36]
was to develop a way to handle frequency resonances that works up to the very transition
and leads to sharp bounds. In this paper we develop the first, and at the same time the
sharp, way to treat exponential phase resonances.

Recently, it became possible to prove pure point spectrum in a non-constructive way,
avoiding the localization method, using instead reducibility for the dual model [8] (see
also [33]), as was first done, in the perturbative regime, in [12]. Coupled with recent
arguments [4, 5,27, 49] that allow one to conjugate the global transfer-matrix cocycle
into the local almost reducibility regime® and proceed by almost reducibility, this offers a

21t is rather straightforward to extend all the results to the case S(a) = 0, without any changes
in formulations. We present the proof under condition (4) just for a slight simplification of some
arguments.

3For the Diophantine case this is Eliasson’s regime [20].
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powerful technique that led to a solution of the measure-theoretic version of the frequency
part of the conjecture of [28] by Avila—You—Zhou [8] and a corresponding sharp result for
the supercritical regime in the extended Harper model [25]. However, those methods lose
control on phases, thus are not applicable to study transitions in phase. More recently, after
the appearance of an earlier version of this paper, there has been an important achievement
in the work of Ge—You [22] who developed arithmetic Aubry duality, allowing one to
obtain localization statements for arithmetically specific sets of phases based on structural
reducibility estimates for dual operators, a method that works also in the multidimensional
case. It seems to have the potential for an alternative proof of localization in the regime
|A] > %@ which would be quite interesting. Conversely, the current analysis has the
potential for making certain deeper reducibility-related conclusions based on duality in
the opposite direction, as in e.g. [7].

Our proof of localization is based on determining the exact asymptotics of the gen-
eralized eigenfunctions for |A| > €5 Namely, exponential phase resonances lead to
a certain reflection in the exponential shape of the eigenfunction, of magnitude and at
scales determined by the strength of the resonance. Clearly, the potential cos 27 (6 + na)
is symmetric with respect to xo € Z such that sin 7(26 + xoa) = 0 and “almost” sym-
metric if sin (26 + xoo) is small. It turns out that the asymptotics can be determined by
following such local minima.

Namely, for any £, let xo € Z (we can choose any one if x¢ is not unique) be such that

[sin (20 + xp)| = min |sin (20 + x&)|.
lx|<2[€]|

Let n = 0if 260 + xoa € Z, otherwise let 7 € (0, 0o0) be given by
|sin 77 (26 + xoa)| = e . 3)
Define f : Z — R™ as follows:

e~ |tmIAl if xo-¢ <0,
e~ (xol+l=xoDInfAlgnlél 4 o=IIIAl jf x 0. ¢ > 0.

f(€)={

We say that ¢ # 0 is a generalized eigenfunction of H with generalized eigenvalue E
if for some C < ocoand all k € Z,

Hp =E¢ and |p(k)| < C(1+Ik]). (6)

For a fixed generalized eigenvalue E and corresponding generalized eigenfunction ¢
of Hj 4.9, let U({) = (¢‘&(f)l)). We have
Theorem 1.2. Assume In|A| > §(«, 0). Then for any € > 0, there exists K such that for
any |€| = K, U({) satisfies

F@Oe™ ¥ < uE)| < £y, )

In particular, the eigenfunctions decay at the rate In |A| — §(«, 0).
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Remark. e For § = 0 we have, for any ¢ > 0,

e~ IR < £(p) < e~(nlAl-olt],

This implies that the eigenfunctions decay precisely at the rate of the Lyapunov expo-
nent In |A|.

e For § > 0, by the definition of § and f we have, for any ¢ > 0,
£(t) < e~nlAl=s=o)ltl ®)
e By the definition of § again, there exists a subsequence {¢; } such that
|sin (20 + £;a)| < e~ GOl
By the DC on «, one has

[sin (20 + ;)| = min |sinw(20 4+ x)].
Ix|<2[¢;
Then
f(el) > e—(lnM|—8+5)|Z,'|. (9)

This implies the eigenfunctions decay precisely at the rate In |[A| — §(«, 6).

o If x¢ is not unique, then by the DC on «, 7 in (5) is necessarily smaller than any € for

{ large. Then
e~ 1) < e~ OnIA-ol,

The behavior described in Theorem 1.2 happens around every point.* This, coupled
with effective control of parameters at the local maxima, allows us to uncover the self-
similar nature of the eigenfunctions. Hierarchical behavior of solutions, despite significant
numerical studies and even a discovery of Bethe Ansatz solutions [1,48], has remained
an important open challenge even at the physics level. In [36] we obtained universal hier-
archical structure of the eigenfunctions for all frequencies « and phases with §(a, 8) = 0.
In studying the eigenfunctions of H) 4 ¢ for §(c, 8) > 0 we obtain a different kind of
universality throughout the pure point spectrum regime, which features a self-similar hier-
archical structure upon proper reflections.

Assume the phase 6 satisfies 0 < §(«, 6) < In|A|. Fix 0 < ¢ < §(, 0).

Let ko be the position of a global maximum point of |¢|.° Let K; be the positions of
exponential resonances of the phase 8’ = 6 + koo defined by

126 + (2ko + Ki)et||r/z < e S'Kil. (10)

This means that [v(68’ + £a) — v(8’ + (K; — £)ar)| < Ce~S!Kil uniformly in £, or, in
other words, the potential v, = v(# + na) is e~SKil-almost symmetric with respect to
(ko + Ki)/2.

4While the required largeness K in Theorem 1.2 depends on E, the more technically relevant
local version, Theorem 5.1, only requires largeness bigger than a constant that depends only on &, A.
3One can take any one if there are several.
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Since « is Diophantine, we have
|Kl| Z CeclKiflly (ll)

where ¢ depends on ¢ and « through the Diophantine constants «, t. On the other hand,
K; is necessarily an infinite sequence.

Let ¢ be an eigenfunction, and U(k) = ( ¢‘(7’k(li)1) ). We say k is a local K-maximum
if |UK)|| = |U(k + s)| for all s — k € [-K, K]. We emphasize that by a “local K-
maximum” we mean, from now on, its position in Z, not the value.

We first describe the hierarchical structure of local maxima informally. There exists a
constant K such that there is a local cK j-maximum b; within distance K of each reso-
nance K;. The exponential behavior of the eigenfunction in the local ¢ Kj-neighborhood
of each such local maximum, normalized by the value at the local maximum, is given
by the reflection of f. Moreover, this describes the entire collection of local maxima of
depth 1, that is, K such that K is a local ¢K-maximum. Then we have a similar pic-
ture in the vicinity of bj: there are local ¢K;-maxima b ji» 1 < j, within distance K2
of each K; — K;. The exponential (on the K; scale) behavior of the eigenfunction in
the local cK;-neighborhood of each such local maximum, normalized by the value at
the local maximum, is given by f. Then we get the next level maxima b;;,, s < i,
in the K 3-neighborhood of K; — K; + K, and reflected behavior around each, and so
on, with reflections alternating with steps. At the end we obtain a complete hierarchical
structure of local maxima that we denote by bj,_;,.....;,,» With each “depth s 4 1" local
maximum bj,_j, ..., ;, being in the corresponding vicinity of the “depth s” local maximum
Diositomio_s = ko + Zf;(l)(—l)iK j; and with universal behavior at the corresponding
scale around each. The quality of the approximation of the position of the next maximum
gets lower with each level of depth, with bj, ;, ... j,_, determined with K* precision, thus
it presents an accurate picture as long as K;, > K°.

We now describe the hierarchical structure precisely.

Theorem 1.3. Assume the sequence K; satisfies (10) for some ¢ > 0. Then there exists

I%(a,)k,@, §) < o° such that for any jo > ji > -+ > ji > 0 with K;, > Iekﬂ,for

S

. 7 .
si Kjg-maximum’ bjq j, . such that the following

each 0 < s <k there exists a local
holds:

D) 1Bjoj1vvenss =Ko = 2i—o (1K), | < K5F.
() Foranye > 0, if CKFT! < |x —bjojrric) < 7571 Kji |, where C is a large con-
stant depending on o, A, 0, ¢ and ¢, then for each s = 0,1, ...k,

—1 s+1 X —e|xs| ||U(X)|| —1 s+1 ; elxs\’ 12
S(=D)" x5)e S—”U(bjo,j],...,js)” = (=D xg)e (12)

where xg = x —bj j,.....js-

6K depends on 6 through 26 + ka; see (2).
7 Actually, it can be a local (ﬁ — &) K -maximum for any & > 0.
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Remark 1.4. Actually (12) holds for x with C Kk+1 Sx=bjojroin| < (ﬁ—sﬂKjk |
for any € > 0.

Thus the behavior of ¢(x) is described by the same universal f in each 72— Kj
window around the corresponding local maximum b, ;, ..., ;, after alternating reflections.
The positions of the local maxima in the hierarchy are determined up to errors that at all
but possibly the last step are superlogarithmically small in K . We call such a structure
reflective hierarchy.

We are not aware of previous results describing the structure of eigenfunctions for
Diophantine « (the structure in the regime 8 > 0 is described in [36]). Certain results indi-
cating the hierarchical structure in the corresponding semiclassical/perturbative regimes
were previously obtained in the works of Sinai, Helffer—Sjostrand, and Buslaev—Fedotov

(see [21,26,47], and also [51] for another model).

Reflective self-similarity of an eigenfunction

1
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Fig. 1. This depicts reflective self-similarity of an eigenfunction with global maximum at 0. The
self-similarity: I’ is obtained from I by scaling the x-axis proportional to the ratio of the heights of
the maxima in I and I. I’ is obtained from II by scaling the x-axis proportional to the ratio of the
heights of the maxima in II and II'. The behavior in the regions I, II' mirrors the behavior in I, IT
upon reflection and corresponding dilation.

Our final main result is the asymptotics of the transfer matrices. Let A9 = I and for

k>1, 0

Ac0) = ] A6+ je) = A6 + (k — D) A + (k — 2)a) --- A(6).
j=k—1
A (0) = AN (0 — ka),

where

A(8) = (E—Z)LCOSZJIG —1).

1 0
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Ay is called the (k-step) transfer matrix. As is clear from the definition, it also depends
on 0, A and E, but since those parameters will usually be fixed, we omit them from the
notation.

We define a new function g : Z — R as follows:

eltlnlAl if xo - £ < 0or |xo| > |£],
g(l) = { eMIA=mitl 4 pl2xo=tmIAl i xo . ¢ > 0 and |xo| < |£] < 2|x0],
e(nlAl=mit] if xo - £ > 0 and [€£] > 2|xo].

We have
Theorem 1.5. Under the conditions of Theorem 1.2, we have
g0 < 4]l < g(©)e. (13)

Let v (£) denote any solution to H 4% = E that is linearly independent of ¢ (£).

Let U(¢) = ( w’fe(f)l) ) An immediate counterpart of (13) is the following

Corollary 1.6. Under the conditions of Theorem 1.2, the vectors U (£) satisfy
g™ < U] = g(0)e . (14)
Our analysis also gives

Corollary 1.7. Under the conditions of Theorem 1.2, we have

@)
In||A —In||Uk
lim su M = lim su M =In|A|,
k—o0 k—o00 k
(ii)
In|lA —In || Uk
timing PR e TR s,
k—o00 k—o00 k
(iii) outside a sequence of lower density 1/2,
_ —In[[UK)|
lim ———— =In|A|, 15
koo k| nlA ()
(iv) outside a sequence of lower density 0,
In||A
tim A (16)
k—o00 |k|

Thus our analysis presents the second, after [36], study of the dynamics of Lyapunov—
Perron non-regular points, in a natural setting. It is interesting to remark that (16) also
holds throughout the pure point regime of [36]. As in [36], the fact that g is not always
the reciprocal of f leads to exponential tangencies between contracted and expanded
directions with the rate approaching —4 along a subsequence. Tangencies are an attribute
of non-uniform hyperbolicity and are usually viewed as a difficulty to avoid through e.g.
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the parameter exclusion (e.g. [13, 15, 50]). Our analysis allows studying them in detail
and uncovers the hierarchical structure of exponential tangencies positioned precisely at
resonances. This will be explored in future work.

While many of our statements are on the surface parallel (in fact, dual) to those
of [36], the shape of the universal structure is completely different for phase vs frequency
resonances, and the treatment of symmetry-based resonances required development of
completely new techniques both for sharp small denominator analysis around the phase
resonances and sharp palindromic arguments for the lower bounds. In fact, the only two
technical ingredients that are similar to the arguments used in [36] to prove localization
in the presence of exponential frequency resonance are those presented, in universal ver-
sions, in Theorem 3.2 (a uniformity statement for any Diophantine «) and Theorem 3.3
(aresonant block expansion theorem for any one-dimensional operator), proved in Appen-
dices A and B respectively. Those statements can be of use for proving localization for
other models. The rest of the argument is based on new ideas specific to the phase reso-
nance situation.

Moreover, we mention that the methods developed in this paper have made it possible
to determine the exact exponent of the exponential decay rate in expectation for the two-
point function [35], the first result of this kind for any model. In particular, even despite a
remarkable progress in arguments based on quantitative dual reducibility, the lower bound
is not currently accessible by other means [23]. Methods of this paper have also recently
led to the first ever example of dynamical localization in absence of SULE [37].

The rest of this paper is organized as follows. We list the definitions and standard
preliminaries in Section 2. Section 3 is devoted to the upper bound on the generalized
eigenfunction in Theorem 1.2, establishing sharp upper bounds for any eigensolution in
the resonant case.

In Section 4 we prove the sharp transition in Theorem 1.1, and a lower bound on the
generalized eigenfunctions in Theorem 1.2. The part on the singular continuous spectrum,
in particular, requires a new approach to the palindromic argument in order to remove a
factor of 4 inherent in the previous proofs, and the sharp lower bound in the localization
regime requires an even more delicate approach. In Section 5, we use the local version
of Theorem 1.2 and establish reflective hierarchical structure of resonances to prove the
reflective hierarchical structure in Theorem 1.3. In Section 6, we study the growth of
transfer matrices and prove Theorem 1.5, and Corollaries 1.6 and 1.7. Except for the
(mostly standard) statements listed in the preliminaries and Lemma A.1, this paper is
entirely self-contained.

2. Preliminaries
Without loss of generality, we assume A > 1 and £ > 0.1f 260 € «Z + 7Z, then §(«, 0) = 0,

in which case Theorem 1.2 follows from [34] and Theorem 1.3 by vacuousness. Thus in
what follows we always assume 260 ¢ aZ + Z.
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For any solution of Hj o g¢ = E¢ we have, for any k, m,
¢(k 4 m) @(m)
= Ak (0 + ma . 17
(w(k+m—1)) KO )(qo(m—l) an

The Lyapunov exponent is given by
1
L(E) = lim —/ In || A% (0)] d6. (18)
k—oo k R/Z

The Lyapunov exponent can be computed precisely for £ in the spectrum of Hy 4 9. We
denote the spectrum by X, , (it does not depend on 6).

Lemma 2.1 ([17]). For E € ¥ o4 and A > 1, we have L(E) = InA.
Recall that we always assume E € X, o, so by upper semicontinuity and unique
ergodicity, one has

1
InA = lim sup —In|Ag(0)], (19)
k—>oogeR/Zk

that is, the convergence in (19) is uniform with respect to 8 € R. More precisely, for all
>0,
Ak (0)|| < eAT9K  for k large enough. (20)

We start with the basic setup going back to [29]. Let us denote

P (0) = det(Ryo k—1](Hp 0,06 — E) R0, k—11),

where R[, p is the coordinate restriction to [a, b] C Z.
It is easy to check that

Pe(0)  —Pr_y (0 + a)). 1)

Ar(0) =
{0 = (1) e
For any interval I C Z, define the Green’s function as
-1
Gr = (R1(Hj a0 — E)Rr)

if Ry(H — E) Ry is invertible. We remark that G; depends on E, A, « and 6.
By Cramer’s rule for given x; and x, = x; + k — 1, with y € [ = [x1, x2] C Z, one
has

| Py (0 + (v + Dav)

|Gr(x1,y)| = ‘ A (22)
| Py—x; (0 + xa)

|Gr(y, x2)| = ‘—Pk(e T+ ra) (23)

By (20) and (21), the numerators in (22) and (23) can be bounded uniformly with respect
to 6. Namely, for any ¢ > 0,
| P ()] < e A+ok (24)

for k large enough.
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Definition 2.2. Fix t > 0. A point y € Z will be called (z, k) regular if there exists an
interval [xy, x5] containing y, where x, = x; + k — 1, such that

1
1Glxy ] (7, xi)| < e™P=%iland v —xil 2 g5k fori =12,

It is easy to check that for any solution of Hj o g9 = E¢,
ﬁﬂ(x) = _G[xl,xz](xlax)(p(xl - 1) - G[xl,xz](x7x2)(p(x2 + 1)’ (25)
where x € I = [x1,x2] C Z.

Definition 2.3. We say that the set {01, ..., Ox4+1} is e-uniform if

s |x —cos2m ;| ke
max max H (26)
xe[-L1li=lok+1 o i |cos 27 60; — cos 20|
J=1,j#i

Let A, = {0 € R | Pi(6 + 2(k — Da)| < e®TV7} withk € N and r > 0. We have
the following lemma.

Lemma 2.4 ([6, Lemma 9.3]). Suppose {01, ..., 0,11} is €1-uniform. Then there exists
some 0; in {01, ..., 0,41} such that 0; € Ay na—c if € > €1 and k is sufficiently large.

3. Localization

Let o be Diophantine and §(«, 8) be given by (2).
Recall that for ¢ a generalized eigenfunction and E the corresponding generalized
eigenvalue of H) 4,9, we denote U({) = ( ¢?e(f)1) ) In this part we will prove the localiza-

tion part of Theorem 1.1 and the upper bound of Theorem 1.2.

Theorem 3.1. Suppose InA > §(«, 0). For any & > 0 and any generalized eigenfunction ¢
there exists K such that for any |£| > K, U({) satisfies

U@ < f)es. 27)

In particular, Hy, o ¢ satisfies Anderson localization, and the following upper bound holds
for the generalized eigenfunction:

U@ < emMnA=d=oldl, (28)

By Schnol’s Theorem [14] if every generalized eigenfunction of H decays exponen-
tially, then H satisfies Anderson localization. Therefore, in order to prove Theorem 3.1,
it suffices to prove only its first part.

Without loss of generality assume |¢(0)|? + |¢(—1)|?> = 1. Let ¥ be any solution of
Hj 4.0¥ = EV linearly independent of ¢, i.e., [ (0)|*> + |¢/(=1)|*> = 1 and

¢(=Dy(0) —p(0)y(-1) =c,
where ¢ # 0.



Universal reflective-hierarchical structure of quasiperiodic eigenfunctions 2809

Then by the constancy of the Wronskian, one has

¢y =Dy () —dMVY(y—1) =c. (29)

We will also denote by ¢ an arbitrary solution, so either ¥ or ¢, and denote U%(y) =
(D)) Let U(y) = (,02 ) and T () = ().

Below, € > 0 is always sufficiently small and ;’—Z is the nth convergent of the continued
fraction expansion of «.

We will make repeated use of the following two theorems that can be useful also in
other situations. The first theorem is an arithmetic statement that holds for any Diophan-

tine .

Theorem 3.2 (Uniformity Theorem). Let Iy, I, be two disjoint intervals in Z such that
#11 = 51q, and #1, = 52y, where 51,5, € ZT. Suppose | j| < Csqn forany j € Iy U I,
and s < qf, where s = 51 + $2. Let y > 0 be such that
e V" = min [sinm(20 + (@ + j)a)]. (30)
i,jel{Ul
Then for any € > 0, {0; = 0 + ja}jer,ur, is v + e-uniform if n is large enough (not
depending on y).

The second theorem holds for any one-dimensional (not necessarily quasiperiodic or
even ergodic) Schrédinger operator. It is the technique to establish exponential decay with
respect to the distance to the resonances. Let H : £2(Z) — {*(Z) be given by

(Hu)(n) = u(n + 1) + u(n — 1) + vau(n), @31

Fix y > 0. For a generalized eigenfunction ¢ of H we set ry := maxq|<10y |¢(y + 0k)|.
We have

Theorem 3.3 (Block Expansion Theorem). Suppose y1, y, € Z are suchthat y,—y; = k.
Suppose there exists some T > 0 such that for any y € [y1 + vk, y» — vk], y is (v, k1) reg-
ular for some zlok <k < %min{|y —y1l, |y — y2|}. Then for large enough k (depending
on t and y),

r¢ <max {rf exp{—t(ly — y1| = 3yk)}.r%, exp{—t(ly — y2| = 3vk)}} (32

forall y € [y; + 10yk, y, — 10yk].

These two theorems are similar in spirit to the statements in [36], with the ones related
to Theorem 3.2 being in turn modifications of the ones appearing in [6]. While these
techniques were developed specifically to treat the non-Diophantine case, these ideas turn
out to be relevant for the case of phase resonances as well. Theorem 3.3 is essentially
the block-expansion technique of multiscale analysis, coupled with certain extremality
arguments, an idea used also in [36]. We expect Theorem 3.2 to be useful for various one-
frequency quasiperiodic problems, and Theorem 3.3 for general one-dimensional models.
We present the proofs in Appendices A and B respectively.
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Now we return to H) 4 ¢. The following lemma establishes the non-resonant decay
for any Diophantine « and any 6.

Lemma 3.4. Suppose ko € [-2Ck,2Ck] is such that

[sin (20 + akg)| = min |sin (26 + ax)|,
|x|<2Ck

where C > 1 is a constant. Let y, € be small positive constants. Let y; =0, y, = kg, y3 €
[-2Ck,2Ck]. Assume y € [y;, y;l with |y; — y;| > k and ys ¢ [yi, y;] fors # i, j. Sup-
pose |yi|,|yi| < Ck and |y — y;| > 10yk and |y — y;| = 10yk. Then for large enough k,

ry < max {rj exp{—(L —)(|y — yi| = 3yk)}. 1y, exp{—(L — )|y — y;| = 3vk)}}.
(33)

Remark 3.5. We note that this lemma establishes, in particular, almost localization in the
sense of [7] with decay rate InA — ¢ forany ¢ > 0,0 € R, A > 1, and « in DC.

Proof of Lemma 3.4. By the DC on «, there exist t/, k/ > 0 such that for any x # k¢ and
|x| <2Ck,
|sin (20 + xa)| > '/ k¥ . (34)

Fix y’. For any p satisfying |p — y’| > yk, |p| = yk and |p — ko| = yk, let
dp = ygmin{|pl.|p = kol.1p = ¥'I}.

Let Z—;’ be the nth convergent of the continued fraction expansion of «. Let n be the largest
integer such that
2qn < dp,

and let s be the largest positive integer such that 2sg, < d,. Notice that 2¢g,1 > d), and
by the Diophantine condition on &, we have s < qnc.

Case 1: 0 < kg < p. We define intervals
I = [-2sqn,—1], I =[p—2sqn, p+ 25q, — 1].
Case2:0 < p <ky. If p<ko/2, we set
Iy = [-25Gn. 25qn — 1], I = [p —25qn. p — 1].
If p > ko/2, we set
Iy = [-25qn.25qn — 1. L2 = [p. p + 25qn — 1].
Case 3: p < ko <0. We set
Iy =1[0.2sgp — 1], Iz =[p —25qn. p + 25qn — 1].
Case4: ko < p <0. If p <kgo/2, we set

Iy = [-2sqn,2sq, — 1], 1 =[p—2sqn, p—1].
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If p > ko/2, we set
Iy = [-25qn. 25qn — 1], L2 = [p. p + 25qn — 1].
Case 5: kg <0 < p. We set
I =1[0,25q, — 1], I =[p—2sqn, p + 25qn — 1].
Case 6: p <0 < kg. We set
Iy = [2sqn.—1]. Iz =[p —25qn. p + 25qn — 1].
Using the small divisor condition (34) and the construction of /7, /5, we have in any case

min  [sin7(20 + (i + j)a)| = 7' /k¥ .
i,jel{Ulp

By Theorem 3.2, for any ¢ > 0, we see that in each case {§; = 0 + jo}jer,ur,
is e-uniform. Hence by Lemma 2.4, there exists some jy € /; U I, such that 6;, ¢

Aésq,,—l,ln A—¢-
We have the following simple lemma, to be used repeatedly in the rest of the paper.

Lemma 3.6. Let a, — o0 and 0 < t < 1. Then for sufficiently large n and |j| < ta, we
have 9J =60+ ja € A2an—1,ln)k—s-

Proof. Assume 0; ¢ Az, —1,101—e fOr some |j| < tay.
Let/ =[j —a,+1,j +a, — 1] = [x1, x2]. We have x; < 0 < x, and

|xi] > (1 —t)a,. (35)
By (22)—(24), one has

|G1(0,xi)| < e(ln)H—a)(Zan—l—\x,-|)—(2a,,—1)(lnl—s)'

Using (25), we obtain
(=D 1pO)] < D e p(x])lelilnA, (36)

i=1,2

where x; = x; — 1 and x5, = x, + 1. Because of (35), the inequality (36) implies
lp(=1)],1¢(0)| < e~(1—t=®)InAan This contradicts |¢p(—1)|> + |$(0)]> = 1. n

Lemma 3.6 implies that j, must belong to /5.
Set I = [jo—3sqn + 1, jo + 35qn — 1] = [x1, x2]. By (22)—(24) again, one has

|G1(p,Xi)| < e(ln)u+6)(6sqn—l—|k—x,-|)—(6sqn—1)(ln/l—s) < essqne—lp—xilln/l.

Notice that |p — x1|, |p — x2| = sqn, — 1. Thus for any p € [y; + yk,y; — yk], p is
(6sg, — 1,1n A — &) regular. Block expansion (Theorem 3.3) now implies the lemma. =
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Remark 3.7. Recall that U%(y) = ( wfy({)l) ). By (17) and (20), we have

CemmMRNUL ()| < U (k) = CeMHHBNU o)) 37
Thus (33) implies
1T = max {|U® (yo) |l exp{—(n A — e)(|y — yi| — 14yk)},
IU° ()l exp{—(nA —e)(|y — y;| — 14yk)}}.  (38)
Lemma 3.8. Fix0 <t < InA. Suppose
sin 7 (20 + a.K)| = e~*1%I, (39)
Then for large | K| (depending on k, T and t),
U9 = max {JUCO)]|. [U* @)y =047 EL (40)
Proof. Without loss of generality assume KX > 0. By the DC on «, we have

|sinm(20 + a¢X)| = min |[sin7(20 + ax)]|.
[x|<8K

Furthermore, there exist 7/, k¢’ > 0 such that for any x # K and |x| < 8K,
|sin (260 + xa)| > ©// K*.

Let y be any small positive constant and define ry = max|q|<10y |¢(y + 0K)|. Let Z_:: be
the nth convergent of the continued fraction expansion of «. Let n be the largest integer

such that
( t+Ce

+1)g < X
Ini—7—Ce n =7

where C is a large constant depending on A, ¢. Let s be the largest positive integer such

that sq, < %JC Then s > ﬁ Since also (s + 1)g, > %JC we obtain

t
2s— > —+Ce. 4D
n
We define intervals
Iy = [—sqn,5qn — 1], I =[K —sqn, K + sqn — 1].

Let0; = 0 + ja for j € I; U I,. The set {0} };er,ur, consists of 4sg, elements.
By Theorem 3.2 and (39), the set {6;};er,ur, is (% + ¢&)-uniform. In view of
Lemma 2.4, there exists some jo € /; U I, such that 8, ¢ A

4sqn—1,InA— 43,‘2(” —&*
First assume jo € I5.
Set I = [jo —25qn + 1, jo + 25, — 1] = [x1, x2]. By (22)—(24), one has

G (K, xi)| < oUnA+e)(4sgn—1—|K—x; D—(4sgn—1)(In A— X —€)
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Using (25), we obtain

(K = D [o(FO] < Y e@HOK|p(x])|exilnA, 42)

i=1,2

where x; = x; — land x}, = x, + 1.

Fix small y = ¢/C, where C is a large constant depending on A, 7.

If x{ € [-10yX, 10y K], x; € [K — 10yX, K + 10yX] or x; € 2K — 10y K,
2K + 10y K], we bound ¢(x;) in (42) by ry, r% or r;’K respectively. In other cases,
we bound ¢(x}) in (42) with (33) using kg = K,y = x; and y’ = —K, 2K or 3. Then
we have

lp(K — DI, [p(K)]
< max {rf 5 exp{—Q2InA —t —Cy — &) K}, rg s exp{—(InA —1 — Cy — &) K},
ricexp{—(nA —&)2sq, + (t + Cy)K}}.

However, by (41), the inequality
(K = D] [@(JO| < rf exp{—(nL — £)2sg + (t + Cy) K} < e %r§

cannot happen, so we must have

(K =D, |p(K)| < exp{—(ln)&—t—Cy—S)JC}maX{r%ix,e_‘xln’\r}izx}. (43)

Notice that by (37), one has

[ (nA+Cy)XK ¢
Txo3 =€ "X+

Then (43) becomes
[U?(K)|| < exp{—(nA —t—Cy —e)K}max{ry.rys}.
By (37) again, one has

r)(f)ef(lnAJra)lOyJC < ”U(p(y)” < r;)e(lnAJrs)lOyJC'

Thus

1U? (X)) < max {[|U®(0)], |U? 2XK)|} e~ MnA=t=Cr=olX]
< max {[|UC(0)|, |UY RK) |} e~ A==l K], (44)

This implies (40). Thus in order to prove the lemma, it suffices to exclude the case jo € ;.
Suppose jo € I;. Notice that I} + K = I, (i.e., I can be obtained from /; by moving
by K units). Following the proof of (44), we get (move —JK units in (44))

1U#(0)]| < max {[|UY(=K)]|. [U*(K)]|} e~ A=1=o)K],

This contradicts |U?(0)| = 1. n
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Proof of Theorem 3.1. Without loss of generality, assume £ > 0.
For any ¢ > 0, let y = ¢/C > 0, where C is a large constant that may depend on A
and §. Let x{, (we can choose any one if x; is not unique) be such that

Isin(20 4+ xpa)| = min [sin7 (20 + x)|.
lx|<41€|

Let ' € (0, 00) be given by the equation
|sin (20 + xpa)| = e, (45)

Case 1: [sin (20 + xga)| # [sin (260 + xor)|. This implies |x;| > 2£. In this case for
any ¢ > 0, we have n < ¢ if £ is large enough by the Diophantine condition. Let y = £,
C =2,k =2 and y’ = 2{ in Lemma 3.4. Then k¢ = x;, and we obtain

lp(0)],|p (£ — 1)] < e~ InA=ENE,
This implies the right inequality of (7) in this case.

Case 2: [sin (20 + xgor)| = [sin (26 + xpr)|,so0n =1n'. Ifxg <0,lety ={,C =2,
k =2 and y’ = 2¢ in Lemma 3.4. Then Theorem 3.1 holds by (33).
Now we consider the case xo > 0. We split the proof into two subcases.

Subcase (i): n <y. Fixsome y € [y£,2£ — y{]. Let n be such that ¢, < %min{y,% —y}
< ¢n+1, and let s be the largest positive integer such that sq, < % min{y,2¢ — y}. We
set

I = [-25qn.25qn — 1], L2 =1[y —2sqn,y —1].

By the definition of ', n and of Iy, I, we have

min  [sin7(20 4 (j +i)a)| = e "t =7,
i,jelul,
By Theorem 3.2, the set {§; = 6 + ja}jer,ur, is 2y-uniform. As in the proof of
Lemma 3.4, there exists some jo € I such that 6;, ¢ Agsg,—1,mr—3y- Thus y is
(In A — 3y, 6sg,)-regular. By block expansion (Theorem 3.3 with y; =0, y, =2{,t =
InA — 3y), we get
)] [p(L — 1)] < e”MA=ENE,

This implies the right inequality of (7).
Subcase (ii): 1 > y. By the definition of §(c, 6) and the fact that 6(c, 8) < In A, we must

have

ﬁe < |xo| < 2¢. (46)

Applying Lemma 3.8 with X = x¢ to the generalized eigenfunction ¢ (k), we have

1U(xo) | = [U?(xo)]| < emIA=olxolent, (47)

Applying Lemma 3.4 with y = £,k =2¢,C =2,y =2{, kg = xo, ¢ = ¢, considering
£ > x¢ and £ < xg separately, and using (47), we obtain Theorem 3.1.
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Remark 3.9. By (20), we have
1U@] = AT U] = e~ A+,

This already implies the left inequality of (7), except for Subcase (ii).

4. Palindromic arguments

4.1. Singular continuous spectrum

We first show that if 0 < In |A| < §(«, 0), then H} 4 ¢ has purely singular continuous
spectrum, which is the second part of Theorem 1.1:

Theorem 4.1. Let H), ¢ be an almost Mathieu operator with |A| > 1. For any irrational
number o and 0 € R, define §(a, 0) € [0, 00] by (2). Then Hj, 49 has purely singular
continuous spectrum if In|A| < §(«, ).

Actually, we can prove a more general result.
Theorem 4.2. Let H, o g be a discrete Schrodinger operator,
(Hya,ow)(n) =u(mn + 1) +um—1)+ v + na)u(n),

where v : T — R is an even Lipschitz continuous function. For any irrational number o
and 0 € R, define §(at, 0) € [0, 00] by (2). Then H, 4,9 has no eigenvalues in the regime
{E eR: L(E) < (, 0)}, where L(E) is the Lyapunov exponent.

Theorem 4.1 follows directly from Theorem 4.2, Lemma 2.1 and Kotani theory
[39,41].
By the definition of §(c, #), for any & > 0 there exists a sequence {k; }7°, such that

126 + kia|lr/z < e @M, (48)
Without loss of generality assume k; > 0.

Proof of Theorem 4.2. Suppose not and let u be an £2(Z) solution, i.e., Hy 4 gu = Eu,
with L(E) < §(«, 8). Without loss of generality assume

2, = Jum))* = 1.
n
We let u; (n) = u(k; —n), V(n) = v(0 + na) and V; (n) = v(6 + (k; —n)a). Then
by (48), evenness and Lipschitz continuity of v one has, for alln € Z,
[V(n) = Vi(n)| < Ce”G2Mkil, (49)
We also have

um + 1) +un—1)+ Vn)un) = Eun), (50)
ui(n + 1) +uij(n —1) + Vi(m)u; (n) = Eu;(n). (51
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Let W(n) = W(f.g) = f(n + 1)g(n) — f(n)g(n + 1) be the Wronskian, as usual, and

let
O(n) = ( u(n) ) ®; (1) = ( ui(n) )
T \um-0) T T \uyn—1))

By a standard calculation using (49)—(51), we have
W, ui)(n) — W, ui)(n — 1)| < [V(n) = Vi) [u(n)u;(n)]

< Ce =MWl u(myu; (n)).

This implies, for any m > 0 and n,

m—1

WG, u3) (n + m) = W) (n = 1) < Ce™ OIS " un + jyui(n + j))
j=0
< Ce~G-0lkil (52)
where the second inequality holds because ||u||,2 = [Jui|,2 = 1.
Notice that ), |W(u,u;)(n)| < 2. Thus for some n,
W, ur) (n)] < CemG=9lkal,
By (52), we must have
W, ui)(n)] < Ce” =Ml (53)

for all n.
Now we split the discussion into the cases of k; odd or even.

Case I: k; is even. Letm; = k; /2. Then

_ | u(mi) ooy ulmi)
®lm:) = (u(mi - 1))’ i(mi) = (u(m,- + 1))'

Applying (53) withn = m; — 1, we have
lu(mi)| [u(m; + 1) —u(m; —1)| < Ce~Ekil,

This implies
ju(my)| < Ce~2@=olk (54)

or
[u(m; + 1) —u(m; —1)| < Cem2(-olkil, (55)

If (54) holds, by (50) we also have
u(m; + 1) + u(m; — 1)] < Ce™ 26k, (56)
Putting (54) and (56) together, we get

| (m;) + ®;(my)|| < Ce™2G-il, (57)
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If (55) holds, we have
|0 (m;) — ;i (my)|| < Ce™ 2@kl (58)
Thus in Case 1 there exists ¢ € {—1, 1} such that
|0m:) + 1@ (my)| < Ce2E=Ml,

Let Ti1 and Tl-2 be the transfer matrices with potentials V' and V; respectively, taking
®d(m;), ®; (m;) to ®(0), d;(0).
By (20), (49), the usual uniform upper semicontinuity and telescoping, one has

”Tvll ”, ”TlZ” < Ce(L(E)+8)mi, ”Tll _ 7—;2” < Ce(L(E)_28+8)mi.
Then
[D(0) + c®: (0) | = |IT; D(mi) + (T D; ()|
= | T, @(m;) + (T, @; (m;) — T, @; (m;) + (T2 i ()|

< T HI@0ms) + cPi(m)ll + 1T — T2 | i (mi) |
< e—(S—L(E)—e)ml- +e(L(E)—28+s)m,—

< 2¢”-LE)=eImi, (59)
This implies ||®(0)|| — ||®(2m; + 1)|| — 0, which is impossible because u € £2(Z).
Case 2: ki is odd. Letsi; = %1, Then

o= () e = ()

Applying (53) with n = m;, we have
lu(i;) 4+ u(i; + D] ulig) —u@m; +1)| < Ce” @kl

This implies
lu@n;) + u(m; + 1)] < Ceo—36—0)lki]

or
luGit + 1) — u(ig)| < Ce™2C¢=olkil,

Thus in Case 2, there also exists ¢ € {—1, 1} such that
@G + 1) + (®; (7 + 1)|| < Ce™2E=Olkil

and by the arguments of Case 1, we can also get a contradiction. ]

4.2. Lower bound on the eigenfunctions

Now we turn to the proof of the left inequality in (7). Our key argument for the lower
bound is
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Lemma 4.3. Suppose for some JX > 0and0 <t <InA,

120 + Ko|r/z = e 'K,
Then for any ¢ > 0 we must have, for large K,
UK = e~ tnAmreak, (60)

Proof. We define ¢(n) = ¢(K — n), V(n) = 2A cos 27( + na) and V(n) = 24
-cos2m(6 4+ (K — n)a). Then by the assumption one has, for all n € Z,

[V(n) = V(n)| < Ce™" . (61)

We also have
¢+ 1)+ ¢(n—1) + V(n)u(n) = E¢(n), (62)
¢+ 1)+ ¢(n— 1)+ V(n)p(n) = E¢(n). (63)

Let A
0(n) = (A ¢(n) )
p(n—1)
Suppose for some small o > 0,
” U(eK) ” < e—(lnl—l-i—U)JC.
By Lemma 3.4 and (37) (ko = K,y = n,y’ = 2n), forany X < |n| < C K we have
(U@ < e e U )| + em Ao
< e—(ln)t—s)\nle(t—o)JC.
By Lemma 3.4 again, for |n| < K we have
||U(}’l)|| < max {e—\n\ lnk, e—\n—JCHn)L”U(J{)l |} ee]( + e—(ln)t—&‘)|n|
< e—ln\ln)tesJC + e—(2J<—|n\)ln)Le(t—a+s)JC.
This implies, for |n| < C K,
) [¢(m)] = [¢(K —n)| [p(n)| < e~ MATIHE=IF 4 oAz
By a standard calculation using (61)—(63), for any |n| < C|X| we have
(W(@.$)(n) = W(g.)(n — D] < V() = V()| ()|
< e_"K|qb(n)¢A>(n)| < e—(ln/l-‘rcr’—é‘).?(7

where 6’ = min {o, t}. This implies, forany 0 < m < C K and |n| < CK,

m—1
|W(¢,(]§)(I’l + m) _ W(¢, (ﬁ)(l’l . 1)| < Z e—(ln/\+g/—s),7( < e—(ln/1+a’—g)e7<_ (64)
j=0
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By (28), for some ny = C K we must have
o). [p(n0 — )] < e~ (M43m0 < =nataDi

This implies
[W(g.$)(no)| < e~ InAFo%,

Combining this with (64), we must have
W(@, $)(n)] < e~ (nAto=9% (65)

forall n| < CK.
Now we split the discussion into the cases of odd or even K.

Case 1: K iseven. Letm = K /2. Then

R RN
0 = (ylny) 0= (40"

Applying (65) withn = m — 1, we have
(G| [§(m +1) = (m — 1] < e~ A+,

This implies
[ (m)| < =2 At =K (66)

or
p(m + 1) — p(m — 1)| < e~ 3MA+o' =K (67)

If (66) holds, by (62) we also have
[pm + 1) + g — 1)] < 72 (AT, (68)
Putting (66) and (68) together, we get
|UGm) + O (m))| < em2 Ao, (69)
If (67) holds, we have
|UG) =0 )| < e 2nAto=0%, (70)
Thus in Case 1 there exists ¢ € {—1, 1} such that
|UGm) + 10 (m)]| < 72 A+

Let T and 7 be the transfer matrices associated to potentials V" and vV, taking U(m), U (m)
to U(0), U (0) respectively.
By (20), (61), the usual uniform upper semicontinuity and telescoping, one has

ITI AT < @A™ T — T < elraz2ekem,
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By the right inequality of (7) (£ = m, xo = K), it is easy to see that
1T (m)|| < e~ tnA=orm, 1)
Then, as in (59), we have
|U©) + O < ITIUGm) + 0 )l + T =T |10 m)]
< enA+e)m ,—3(nA+o'—e) X + onA=2t+e)m ,—mind

This implies |U(0)|| — [[U(2m + 1)|| — 0, which is impossible because ¢ € £2(Z).
Case 2: X is odd. Letsi = %31 Then

UG +1) = (‘MZ(’;;)I)), 06+ 1) = ( o) )
Combining this with (65), we have

¢ (1) + § 07 + D] |$ () — p(i + 1)] < e~ InA+T=I%,

This implies
|¢(l’l~1) +¢(I’;’l + 1)| < e—%(ln/\-i—a’—e)zx7

or
|¢(l’h + 1) _¢(n~,l)| < e—%(ln/\-ﬁ-o’—g)x.

Thus in Case 2, there also exists ¢ € {—1, 1} such that
IUGR + 1) + 0 (i + 1)|| < Cem2Mnito’ oK
As before, we also get a contradiction. n

Proof of the left inequality of (7). The left inequality of (7) already follows except for
Subcase (ii) in the proof of Theorem 3.1, by Remark 3.9.

Thus we only need to consider the case when n >y = ¢/C. Letting t = n|€|/|x| and
K = xo in Lemma 4.3, we obtain

1U(x0)|| > e~ (nA+e)lxol ,nlel

Together with (37), this completes the proof. ]

5. Universal reflective hierarchical structure

We first present the local version of Theorem 1.2. The definition of f(£) in Theorem 1.2
depends on 6 and «. Thus sometimes we will write f, ¢({) to make clear what 6 is used.
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Theorem 5.1. Fix § with 0 < § < In A. Suppose « is Diophantine. Let ¢ > 0 be small
enough. Then there exists Ly = Lo(A,, 6, é) 8 such that if for all k with L, < |k| < C|{]
we have

126 + 2500 + ka|g/z = e CTOIK] (72)

and the solution of Hp = E ¢ satisfies (6) for all k with |k — so| < C|£| and ||U(so)|| = 1,
where C = C(a, 8, A) is a large constant and Ly < Ly < |£|/C, then the following
statement holds:

Let xo (we can choose any one if xq is not unique) be such that

[sin 77 (26 + 250 + xoo)| = ‘ mir}l| |sin w (20 + 2sp0 + xat)|.
2

x|<

Then if |xo| = L1, we have
Jab+s00 (D™ <UD = faps00 (0. (73)
If |xo| < L1, we have
e—lnkl(le—slf\ < ||U(€)|| < e—ln/l\fleslﬁl. (74)

Proof. Case I1: |xo| > L;. In Sections 3 and 4, we completed the proof of Theorem 1.2.
It is immediate that if we shift the operator by so units’ and replace the definition of
the generalized eigenfunctions ¢ with the assumption of (6) only on the scale C|€|, our
arguments will hold for (73) directly. In order to avoid repetition, we omit the proof.

Case 2: |xo| < L;. In this case (74) follows directly from Lemma 3.4 by shifting the
operator by s units. ]

Remark 5.2. In order to obtain (73), we only need condition (72) for [£|/C < |k| < C|{]
and condition (6) for |k| < C|{|. Moreover, if we assume that condition (72) also holds
for |k| < L1, then (73) holds in both cases.

We will now prove Theorem 1.3.

Theorem 5.3. Fix¢; > 0,0 < § < InA and so € Z. Then there exists a constant Ly =
Lo(a, A, 6, c1) such that the following statement holds. Let Ly > Lg. Suppose K satisfies
|K| > CLy and

126 + 2500 + Kat||gyz < e~ 'K, (75)

and for all k with L1 < |k| < C|K]|,

120 + 2socc + kot||r/z > e~ GFolkl (76)

8We omit the dependence on & whenever ¢ is (implicitly) present in the statement.
9Given s € Z and an operator H1 on 02(Z), we call Hy = U1 HyU the sq shift of Hy, where
U is the unitary operator on £2(Z) given by (Uf)(n) = f(n — o), f € £3(Z).
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and sq is a CK-local maximum, where C = C(a, A, 8, ¢1) is a large constant. Then there

exists a K-local maximum'® bx such that

41 It
lbk — K —so| =2Ljy. (77)

Proof. By shifting the operator, we can assume sy = 0. Let € be such that

120 + 250 + Kot ||R/z = e~IKl,

Thenc¢; <e <6 +e.
By Theorem 5.1'" with £ = xo = K, one has

o—tni—erak| < MU+ B —nr—e—eyiiy, (78)
1Uso)l

By Theorem 5.1 again, one has

sup UK + k)| = sup UK + k). (79)
lk|<e| K| lkl<

41nA K|
Thus there exists a 41 2105 | K|-local maximum bk such that

lbx — K| < ¢|K]. (80)
Suppose (77) does not hold. Then there exists kg with 2L; < |ko| < &K such that

UK + ko)l = sup UK +K)[|l= sup UK +EK) (81)
Ikl=el K| lel< gk K|
where L is such that (75) and (76) hold.

—¢lkol

Case 1: minjg|<ajk,| 1120 + kat||r/z > e Let 22 be the nth convergent of the con-

tinued fraction expansion of «. For y > 0 (we will let y = ¢/C), let n be the largest
integer such that
2qn < ylkol,

and let s be the largest positive integer such that 2sg, < y|ko|.
We define intervals I; = [sqy,5q, — 1] and Ip = [K + ko — sqn, K + ko + sqn — 1].

Claim 1. We have

min |20 + (i +i")a||gyz > etk (82)
i,i’el1Ul,

and for any distinct i,i’ € Iy U I,

G —i"et||ryz > e elkol. (83)

103 /4 can be replaced with 1 — ¢ for any & > 0.

50 is a local maximum so that Cin (6) is 1, thus the largeness in Theorem 5.1 does not depend
on C.
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By Theorem 3.2 and the DC condition on o, {6;}icr,ur, is e-uniform. In view of
Lemma 2.4, there exists some i with ig € I; U I such that 6;, ¢ A4sg,—1,mr—c. BY
Lemma 3.6, ig cannot be in /1 so must be in /. Set I = [ig — 25¢, + 1,ip + 25q, — 1] =
[x1,x2]. By (22)—(24) again, one has

|G1(K + ko, x;)| < eUnAte)(san—1-|K;+ko—x;)~(4sgn=1)(InA~e)
< eSSlIne—|K+ko—xl-|1nA.
Notice that |K + ko — x1|,|K + ko — x2| > 5¢, — 1. By (25) and (81),
[¢(K + ko)l < ™A% (| (x1)| + [p(x0)]) < e "FTI UK + ko).

Similarly,
|B(K + ko — 1)| < ™A= | U(K + ko).

The last two inequalities imply that
IUK + ko)|| < e™™A=959n |U(K + ko). (84)
Since 2(s 4+ 1)qn > y|ko| and |ko| > 2L, (84) is impossible.

Case 2: minjk|<ajko| 120 + kat||r/z < e~*/%ol for some ¢ > 0. In this case we define, as
before, intervals I around 0 and I, around K + ko.
Suppose i € I,.Fori’ € I, we have

120 + (i +iNalr/z = IG +i' — K)a|r/z — 20 + Ke|lr/z
> || +i' = K)a|rsz — e~K! (85)

and
G —iellr/z = 20 + (@ —i" + K)e|r/z — [|-20 — Ka|r/z
> 126 + (i —i' + K)a|g/z — e K. (86)
Suppose i € I,. Fori’ € I, we have

120 + (i +iNalr/z = I — K +ia|r/z — 20 + Ke|lr/z
> || — K +i")allg/z — e K] (87)

and

1G —ielr/z = 11260 — (i — K —i")allr/z — 20 + Ka|lr/z
> 26 — (i — K — i")at|ryz — e K. (88)

Fori’ € I,, we have

20 + (i +i"allr/z = |20 + (i — K + i’ — K)a|r/z — 140 + 2Ko||r)z
> 120 — (i — K +i' — K)a||yz — 2e <Kl (89)
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and

IG —iNallr/z = I — K — (" = K))at|[r/z.- (90)

Conditions (85)—(90) imply that the small divisor conditions on 6; + 6; and 0; — 6;/ get
swapped upon shifting the elements in /5 by K units.
Let |xo| < 2|ko| be such that ||20 + xpa||r/z < e~elkol,

Case 2.1: |ko + xo| > €lko|. Inthis caselet [x1,x2] = [K + ko — ¢lko|, K + ko + €lko]].
By the small divisor conditions (85)—(90) and following the proof of (33), and (38), we
get
UK + ko)l < ™A= =K=kol )| 4 e~ (A=Kl oy |
< e A Y () | + e ATl U xy) |
< e” =N U(K + ko), o1
where the third inequality holds because K + kg is the local maximum. (91) is also impos-

sible for |ko| > 2L;.

Case 2.2: ko + xo| < elko|. Inthis case, |xo| > %|ko| > L so that condition (76) holds
for all |k| > |xo|. By the small divisor conditions (85)—-(90) again, and following the proof
of (40), we get (using (81))

IU(K + ko) || < U(K + ko)|le™ A==kl
This is also impossible. .

Proof of Claim 1. Without loss of generality assume i € I;. For i’ € I,, by the DC con-
dition on o we have
126 + (i + iNallrjz = 1G +i' — K)l|rsz — 126 + Ka|g/z = ¢!
and
IG = iYellr/z = 126 + (i =i’ + K)ellr/z — =20 — Katllryz = e~7¥l.
For i’ € Iy, the proof is trivial. n
Proof of Theorem 1.3. Without loss of generality, assume ko = 0. Let K = Lo(a, 1,8, ¢)
in Theorem 5.3.
By Theorem 5.3 with sg = 0, K = K}, ¢; = ¢ and L; = K, there exists a local
753 Kjo-maximum b j, such that |bj, — Kj,| < 2K. Letbj, — Kj, = b’ with |/, | <2K.
Shifting the operator Hj o9 by b}, units, we get H A.a,6+b,,a- BY the conditions of
Theorem 1.3, < § + & <In A, we have
1200 + bjye) + ketllr/z = 11260 — (20 o + k) |r/z — 146 + 2Ky ellr/z
> (120 — b & + ka)||g/z — 2¢~E 1Kol

> o~ G+ (k| +4K) > o~ @+e)lk| (92)
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forall $K? < |k| < %5|Kj,|. Similarly,

12(6 + bjoa) + (=K, —2b% )ellr/z < 120 + K} allr/z + 140 + 2K (|r/z
< 126 + Kj, a|[rjz — 2¢~ €+ K5l

3 __Kx. _24
<e_45| Kj; 2bj0|'

93)

By Theorem 5.3 with s = bj,, K = —Kj, —2b, . ¢1 = 3¢ and Ly = 3K, there

exists a local K;_1-maximum bKjo= K;, such that

161111

bjo,iv — bjo — (—Kjy — 20, )| < K2

Jo

This implies bj,;, = Kj, — b} — Kj, + b} with [, | < K2
Shifting the operator H) ¢ by bj,,j, units, we get H""’““”/‘o:h“' Thus
12(60 + bjo,jy &) + kellr/z
> 1|26 — Zb;o()l + Zb/ o+ ka)”]R/Z — 2|26 + Kjoa”]R/Z — 2120 + Kjla”R/Z
> 126 + (=26, + 2b}1 + K)a) |z — 4e K]

> o~ GOk T2K+2K2) o ~G+o)lk] 94)

forall 2(K + K?)K < |k| < :%|Kj—1]. Similarly,

1200 + bjg,jy @) + (Kj—a + 2b}, — 20 Jallrsz < 1120 + Kjrallr/z + 2¢ (S HIK, |

3K " _op
< o ASIK 2B —2b |

95)

By Theorem 5.3 with 5o = b,o,l, K = Kj, +2b) —2b,c1 = 35 and L; =

1(K? + K?), there exists a local Kj,-maximum b, j, i, such that

161n)L

_ ’
b.io,.il J2 = K + bjo

ll _b’“ + K12 + bl]z
with |p’, | < K2 4+ K°.

Define a, = K2(K + 1)" 2 forn > 2and a; = K. Then a,, = Kzl_l a;. Notice
that by (11),

N N
Z 126 + Kj,a||r/z < Ze*(erS)lKjﬂ < 2¢~(sHe)K sl (96)
i=0 i=0
We will prove that for any 1 < s < k there exists a local 5 61“ et Kjs-maximum b ;. j
such that
N
Biocjrenis = D I=D Ky + (=170} ] 97)
i=0

with |5’ | < aj41 by induction on s.
Assume that (97) holds for s. We will prove that it holds for s + 1.
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Shifting the operator Hj o ¢ by b}, j, ..., j, units, we get Hy o g4p;
as in (94) we have

«- Arguing

Jo-J1-

1206 + bjoji.....is®) + kellr/z

> Hz@ + (2&(—1)i+1b;.j)a n (—1)S+1kaHR/Z - 22S: 126 + Kj.o|r/z
i=0 i=0

S S
i+17./ +1 —(s+8)|K;. |
> Hze + (2 Z(—nl bjl,)a (1) ka HM - ZIZ_;e (98)
> e —@+e)(kl+251  ap)
> e—(5+8)\k| (99)

for all %aﬁ_z < k| < 5|Kj,l, since foll a; = %awz. Similarly to (93), we have

1

+e)|K;
< ||29+st+10!||R/Z+4e (s+e)l j1|
_%§|(_1)s+1st+l+2Zf=0(_1)s+i+lb-//i|.

<e (100)
By Theorem 5.3 with 5o = by j,...5c» K = ( 1)S+1st+, + 230 (D)
g1 = 4g and L, = zas+2, there exists a local 161n)L Kj, ,,-maximum bj, j, . ;.. such
that
bjo,j1,~-~,js+1 = bJo,h, o Js + (- 1)S+1KJ3+1 + 22( 1)s+l+1b/ + b;s+1
i=0
s—1
=Y (DK, + (=177} ]
i=0
with |b] +1| < dg42.
Since
s+1
‘ J0sJ1seees s Z( 'K, ’ ZW | < Zaz < (K + 1)+,
i=1
the proof of item (I) of Theorem 1.3 is complete
Now we start to prove (II). Fix some 0 < s < k. Let us consider a local ; 61n e Kis

maximum bj, ;... ;. and shift the operator by bj, ;... j, units. We get the operator
Hj o 0+bjg «- As in (98), we also have

12(6 + bjo, ji,....;s@) + ke|r/z
S S
<o+ (0™ Ja+ o ika] 23 e qon
i=0 i=

forall as42 < |k| < ﬁ|st|~
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Actually, the definition of f(£) in Theorems 1.2 and 5.1 depends on 6 and «. Thus
we will use fy g({) with |[£| > Cas4». Let £y be such that

..........

If [£g| < ag42, we have
e—slﬂe—lnﬁ.lll 5 f(x,e(e) S e—lnkleles\ﬁ\’ (103)

since [£] > Cagyp.
,,,,, js- If [xg] € [Cagya, & 25 1Kj, |1, assertion (II) of Theorem 1.3
follows from Theorem 5.1 and (102) and (103).

If |x] € [&:551K, | 755 |Kj, 1], (D) follows from Lemma 3.4 and the fact that

bjo.jy s 18 @local gep— K -maximum. Notice that in this case

e—slxsle—ln/l\xsl < fa,e((_l)s+1xs) < e—ln/\lxslee\xsl_ -

6. Asymptotics of the transfer matrices

Proof of Theorem 1.5. Without loss of generality, we consider £ > 0. First assume x¢ < 0
orn <y = ¢/C.By Theorem 1.2, in those cases, one has

U] < e (nA=o)t,

By (17), we have
1Al = U@ ! = eWr-ot,

Combining this with (20), the conclusion follows.
Now we turn to the case when xo > 0 and 7 > y. We will assume £ > 0 is large
enough. By (46), xo > 0 is large enough. Thus below we always assume x is large.

Theorem 6.1. Under the above assumptions, let k be such that jxo <k < (j 4+ 1)x¢
with k > x0/8, where j = 0, 1. Then

| Ag|l < max {eTkmixolnay g, 4 e=lk=GtDxolndy g il e, (104)

| Ay || = max {e~tk=rxollndy 4.y o=lk=G+DxolnAy g 00y e ek, (105)

Proof. Apply (38) with kg = x9,y =k y' = 2xpand ¢ = . For jxo <k < (j + 1)xo
with k > x¢/8, we have

|0 (k)|| < max {e~*=7xolmA G (jxo)|, e *k=G+DxlnA G ((j 4 1)xg)|[} . (106)
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By Last—Simon’s arguments [41, (8.6)], one has
14kl = 14U )] = ¢|| Ax |- (107)

Then (104) holds by (107) and (106).
(105) holds directly by (20). [

Lemma 6.2. For any 2xg < k < Cxy,
£ EX0 ||A2x0 ||eln)t|k—2)C0| < ”Ak” < £5%0 ”A2x0 ||eln)t|k—2XQ|.

Proof. The right inequality holds directly. It suffices to show the left inequality.
By (40) and noting t < § + &, we have

[T (x0)|| < max {e~1*==%0|| 7 (0) |, =" A=3=8)%0 || T (2x) ||}

Clearly, U (xo)|| < e=(n*=3=)%0 |7 (0)|| cannot happen: otherwise, since [|U(xo)|| <
e~(nA=8=)x0||1/(0)||, we must have

|6 (x0) ¥ (xo — 1) — ¢(x0 — )Y (x0)| < ™ (NP0,

contrary to (29).
Thus we must have

[T (xo)|| < e~ A=3=8%0 | 7 (2x) . (108)

The lemma holds directly if k& < 2xo + &xo. If kK —2x9 > &xo, by (38) again (ko =
X0,y = 2x0,y’ =k,y = ¢/C) one has

1T 2x0) | < max =790 (o). e AmIET200N T (k) ).
Combining this with (108), we must have
1T k)| = A= E=2200) T (2x0) .
In view of (107), we get the left inequality. ]
Lemma 6.3. The following holds:

e InA—e)xo < | Ax, |l < e(ln)n-‘rs)xoy (109)

e(ln/\—s)Zxoe—nZ < ||A2x0|| < e(ln/l+s)2xoe—n€. (110)

Proof. We first prove (109). The right inequality holds by (20) directly. Thus it suffices
to show the left one. By (38), for any x¢/8 < k < Xx¢, one has

[UK)|| < max {e7*m* e=lk=xolnd|1y(xo)||} eoF.

Clearly
Akl = UG~ (111)
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so by (104) we must have, for any x¢/8 < k < xo,

max {e—kln/l’e—lk—xoﬂn/l”Axo”}esk > (max {e—kln)u, e—\k—xo\lnA”U(xO)”})—l €_Ek.

(112)
Recall that by (47) and (60),
e—(ln A—n'+8&)xo < ||U()C())|| < e—(ln }L—T]/—E)X()7 (1 13)
where ' = xin. Let
0 n/
ko = xo — Xo.
0 o7 2ma?
One has ko > x¢/2, so by (113),
max {e—ko lnk, e—lko—xO| InA ” U(XO) ”} < e—(ln/l—n//Z)ersko )
Combining this with (112), one has
max {e—ko ln/l’ e—lko—xo\ InA ”AxO ”} > e(lnA_n’/Z)xoe—eko.
This implies
14z, 2 €A%,
Now we prove (110). By (7) (£ = 2xy), one has
e—(lnl+s)2xoen’x0 < ”U(2x0)|| < e—(ln)k—s)Zxoen/XO. (114)

Combining this with (111), one has

_ i
”AZX()” 2 e(lnl s)Zer n xo.

Thus it remains to prove the right inequality of (110). By [41, (8.5) and (8.7)] we have

IAUO) 1> < || Ak|Pm(k)? + | Akl 72, (115)
where
> 1
mk)<C Y . (116)
= 1451

If kK > Cxo (C may depend on In A, §), by Theorem 1.2 we have
4kl = UG 7! = etrA=07ek (117)

and by (20) we have
||A2x0 ” < e(lnl+8)2x0.

Combining this with (117), we obtain

InA—§
n2 k

Akl = [[A2x,lle (118)

for k > Cxg, where C is large enough.
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If 2x¢ < k < Cxg, by Lemma 6.2 we have
1Ak || = (| Agyg e A Me2r0lgex0, (119)

Thus by (116), (118) and (119),

m(2x9) < || Aax, | 2. (120)
Let k = 2x¢ in (115). Then
£X0
[UQ2x0)|l < .
[ A2xo |l
Thus by (114), we obtain
||A2x0|| < e(21nl—r)’—s)x0. -

Theorem 1.5 for the remaining case (n > y = ¢/C and xo > 0) now follows directly
from Theorem 6.1 and Lemmas 6.2 and 6.3.

Proof of Corollary 1.6. The corollary follows from Theorem 1.5 and (107). ]

Proof of Corollary 1.7. (i) and (ii) follow from Theorem 1.5 and Corollary 1.6 directly.
Fix some small 1, &, > 0. By the definition of §, there exists a sequence 7; (assume
n; > 0 for simplicity) such that

e~ < 120+ njalgyz < e
By the Diophantine condition on «, we have
njy1 > e"/C.
We prove (15) first. By Theorem 1.2, for any |k| € [g27j41,1,+1/2] one has
U] < e trAmenlkl,

This implies (15) by the arbitrariness of €1, &5.
Now we turn to the proof of (16). By Theorem 1.5, for any |k| € [e2nj41,n;41] one
has
Al = e0A=eni,

This implies (16). [

Appendix A. Uniformity

The following lemma is critical when we prove Theorem 3.2.

Lemma A.1 ([6, Lemma 9.7]). Let € R\Q, x € R and 0 < k¢ < g, — 1 be such that
|sinm (x + koor)| = info<g<g,—1 |sinm(x 4 ka)|. Then for some absolute constant C > 0,

gn—1
—Clng, < Z In|sinw(x + ka)| + (¢gn — 1) In2 < C Ing,. 121)
k=0, k#ko
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Proof of Theorem 3.2. Let ig, jo € I1 U I, be such that [sin (20 + (ip + jo)a)| =
min; jes,ur, |sin w(20 + (i + j)a)|. By the Diophantine condition on «, there exist
t/,k’ > O such that forany i + j # ig + joand i, j € I; U I,
T/
[sinm(20 + (i + j)o)| > ——. (122)
(sqn)*
Also for all distinct i, j € I; U I, we have

P t’
[sinm(j —i)a| > W (123)

In (26), let x = cos2ma, k = sq, — 1 and take the logarithm. Then

cos2mwa — cos 2w b;
w /|

ielL 0k, joti |cos 27 60; — cos 20|

= Z In|cos 2wa — cos 2w 6;| — Z In [cos 27w 6; — cos 276 |.
jelUlo, j#i JEeNUIs, j#i

First, we estimate ) ;c;,y,, j£ In|cos 2ra — cos 2 6;|. Obviously,

Z In|cos2wa — cos 27 6|
JEN VI, j#i

= Y Infsinz@+6)|+ DY Infsinm(a—6;)|+ (s¢ —1)In2
jelUls, j#i JELUIL, j#i

=34+ 32X_+4(sgy —1)In2.
Both ¥ and X_ consist of s terms of the form of (121), plus s terms of the form

In min |sinz(x + jo)|,
J 1,....qn

,,,,,,

minus In [sin 7w (a £ 6;)|. Thus, using (121) s times for ¥ and X_ respectively, one has

Z In |cos 2wa — cos 2w6;| < —sg, In2 + Cslng,. (124)
JENUI, j#i

If a = 6;, we obtain

Z In [cos 27w 6; — cos 276 |

jelUl,, j#i
= Z In|sinm(6; + 6;)| + Z In[sinm(0; — 0;)| + (s¢n — 1)In2
jel Ul, j#i JEUIL, j#i
=3+ +2_+(sqgn — 1) 1n2, (125)
where
Sy= Y Iinr@0+ G+ ). So= > Infsinz(—j)al.

JELUIL, j#i JELUIL, j#i
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We will estimate X 4. Set J; =[1,s1] and J» = [s1 + 1, s], which are two adjacent disjoint
intervals of length s, s, respectively. Then /7 U I, can be represented as a disjoint union
of segments Bj, j € Ji U J,, each of length ¢,,. Applying (121) to each B;, we obtain

Y4 > —8qnIn2 + Z In |sin7réj| —Cslng, —In|sin27(0 + i®)|, (126)

jeJiUJy
where
|sin6;| = min [sinw (20 + (£ + i)a)|. 127)
(EB_/'
By (30) and (122), we have
Z In [sin T[éj| > —ysqn — Cslnsqy. (128)
jeJ1UJs

Putting (128) in (126), we get
Y4 > —8qnIn2 —ysq, — Cslnsqy. (129)
Similarly, replacing (30), (122) with (123), and arguing as in the proof of (129), we obtain
¥_>—sqpIn2—Cslnsqy,. (130)
From (125), (129) and (130), one has

Z In|cos276; —cos2nB;| > —sq, In2 — ysq, — Cslnsg,. 131)
JENUI, j#i

By (124) and (131), we have

1—[ |x — COS 27T9]| sqn(y+C]";;1")'

max <e
|cos 27w 6; — cos 270 |

iel1Ul, L.
JEhUIs, j#i

By the assumption s < qnc we get, for any ¢ > 0 and large 7,

|x —cos 20| < Sn(re)

max
ieUI, . |cos2w6; — cos2m0;|
JEN U, j#i

This completes the proof. ]

Appendix B. Block Expansion Theorem

Proof of Theorem 3.3. For any § € [y1 + yk, y2 — yk], by the assumption there exists
an interval I(y) = [x1, x2] C [y1, y2] such that y € I(§) with 5k < [I(P)| <
3 dist(y, {y1, y2}), and

A R 1 N 14
dist($,1($)) > —I(P)| > —k 132
ist(y,01(y)) = 40| 6] = 200 (132)
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and
1G5y (x| < el i = 1,2, (133)

where {x1, x,} = dI(p) is the boundary of I(y). For z € 91(y), let z’ be the neighbor
of z (i.e., |z — z’| = 1) not belonging to 1(7).

Ifx4+1<y,—ykorx; —1>y; + vk, we can expand ¢(x; + 1) or ¢p(x; — 1)
using (25). We can continue this process until we arrive at z such that z + 1 > y, — yk
orz — 1 < y; + yk, or the number of iterations reaches | 1600/y |. Then, by (25),

p(y) = Z Gr(y)(k, 21)G iy (21, 22) - Gy (2, Zs41)9(25 1), (134)
53z 41€01(z))

where in each term of the summation one has y; + yk + 1<z, <y, —yk—1,i =
1,...,s,andeither zs 1 ¢ [y1 + Yk + 1,y2 + yk —1]and s + 1 < [1600/y |, ors + 1 =
[ 1600/y |. We should mention that z;+1 € [y1, ¥2]-

If zg41 € [y1,y1 + yk] and s + 1 < [1600/y ], this implies

|€0(Z;+1)| = r;f’l.

By (133), for such terms we have

1G1(5) (v 200G (21 (21, 22) -+ G (25 Zs 1)@ (24|

< 1@ o tly—zil+Eioi Izf—zip1) < o p=t(y—zs41|=(s+D)
=Ty =Ty

—t(ly—y1l-vk—1600/y)
<rper Ty v, (135)
If zg41 € [y2 — vk, y2] and s + 1 < [1600/y |, by the same arguments we have
—t(ly=y2l-yk—1600/y)

(136)

1G1(y) (¥ 21)Gr(z) (2. 22) -+ Gy (250 Zs41)@(Zg )| S 1
If s + 1 = [1600/y ], using (132) and (133) we obtain
X
G160 (0 210G 12y (250 22) -+ Gy (24 2o 1) @(2h 4 )] < e T800KLI0M (27,

(137)

Notice that the total number of terms in (134) is at most 2L199%/v) and |y — y1|,|y — y2| >
10yk. By (135)—(137), we have

lo(y)| < max {rfle—r(ly—YI\—Byk)’ r;f’ze_t(‘y_yz'_wk), max e_tk|(p(p)|}. (138)
PEly1,y2]

Now we will show that for any p € [y1, y2], one has |p(p)| < max {ry,,ry,}. Then (138)

implies Theorem 3.3. Otherwise, by the definition of ry, and ry,, if |(p’)| is the largest

lp(z)| with z € [y1 + 10yk + 1, yo — 10yk — 1], then |@(p)| > max {ry, ., ry, }. Applying

(138) to ¢(p’) and noticing that | p’ — y1|, |p’ — y2| = 10yk, we get

lp(p)| < max{e”"VEre e TTVERL e p(p))]).

This is impossible because |¢(p’)| > max {ry,, rp,}. n
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