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Abstract

We propose an ansatz for encoding the physics of nonlocal spacetime defects in the Green’s

functions for a scalar field theory defined on a causal set. This allows us to numerically study the

effects of nonlocal spacetime defects on the discrete Feynman propagator of the theory defined on

the causal set in 1+1 dimensions, and to compare to the defect-free limit. The latter approaches the

expected continuum result, on average, when the number of points becomes large. When defects

are present, two points with the same invariant spacetime interval can have different propagation

amplitudes, depending on whether the propagation is between two ordinary spacetime points, two

defects, or a defect and an ordinary point. We show that a coarse-grained description that is

only sensitive to the average effect of the defects can be interpreted as a defect-induced mass and

wave-function renormalization of the scalar theory.
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I. INTRODUCTION

Gravitational physics in four dimensions is characterized by the Planck scale, MPl ≈

1.2 × 1019 GeV, where Newton’s gravitational constant is given by GN = 1/M2
Pl, in units

where ℏ = c = 1. From a phenomenological perspective, this energy scale is frustratingly

high. The effects of physical states with Planck-scale masses, particularly in the absence of

the violation of any fundamental symmetries, are far outside the reach of direct collider tests.

Cosmological or multi-messenger observations may reveal hints of quantum gravitational

effects [1], though these approaches are still limited by the remoteness of the scale that is

being probed.

It is therefore worthwhile to consider physics that may be implied by an underlying theory

of quantum gravity, but that is not characterized by the same length scale. Spacetime defects

are such an example. In models of quantum gravity that are based on the assumption that

spacetime is discrete, it has been argued that spacetime defects are generic [2–4]. Defects may

be local [3] or nonlocal [4] depending on how a particle behaves when its world line intersects

the location of a defect. Nonlocal defects may translate an incident particle to another

point on the spacetime manifold, potentially a macroscopic distance away. For example,

in modeling particle kinematics in the presence of nonlocal defects on a flat background, it

was assumed in Ref. [4] that relativistic particles are translated between nonlocal defects

and emerge with their four-momenta unchanged; both timelike and spacelike separations of

the entry and exit points were considered and bounds on the spacetime density of nonlocal

defects were obtained.

Here, we focus instead on a quantum field theory formulation of nonlocal defects. We

define defects, in general, as points on a spacetime manifold that are distinguished by their

nontrivial interaction with, or effect on the propagation of, quantum fields. The defect points

are thus distinguished from the other points in the manifold, which we will assume form a

discrete set. Spacetime translation invariance is broken when taking the continuum limit of

the ordinary (i.e., non-defective) points on a locally flat patch that contains a defect. The

literature on quantum field theories in the presence of local spacetime defects is small [5–7],

while that of nonlocal defects is virtually nonexistent. The aim of the present work is to

take some preliminary steps towards formulating quantum field theories in the presence of

nonlocal defects, a least in the setting of a toy scalar model in a two-dimensional discrete
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spacetime, where numerical calculations are tractable.

For modeling a discrete spacetime, we will adopt the well-known framework of causal

sets [8, 9]. We review this approach in the next section. We assume some fraction of

causal set elements are defect points (which we define precisely later) and that this fraction

persists as the continuum is approached so that we do not end up with a situation where

the probability of encountering a defect becomes vanishingly small. Crucially, our set up

assumes two different densities of points that can be separately adjusted, which provides

two different fundamental length scales. The hope is that this will allow the nonlocality

scale of the defects to be larger than the nonlocality that is expected with the causal set

construction of ordinary spacetime. We discuss this distinction later when we define our

models.

We will focus on the computation of the Feynman propagator for a real scalar field on the

set of ordinary and defect points, using a Green’s function approach to field quantization

that was originally proposed by Johnston [10, 11]. What is particularly convenient about

this approach in the present context is that the Green’s functions are derived by summing

over the trajectories of particles over discrete spacetime points, even though the resulting

discrete expression for the Green’s functions are subsequently used in quantizing a scalar

field theory. Johnston showed that this approach reproduces the expectation for position-

space Feynman propagator as the continuum limit is approached. Our ansatz is to encode

the physics of defects in the sum over particle trajectories that define the Green’s functions;

we then study the effect on the Feynman propagator that is obtained when those modified

Green’s functions are applied to the quantization of a scalar field on the causal set.

Our paper is organized as follows. In the next section, we review the approach to com-

puting the Feynman propagator for a real scalar field on a causal set. In Sec. III, we explain

how we modify the Green’s functions used in the scalar field quantization to take into ac-

count the presence of spacetime defects. In Sec. IV, we present our numerical results for

the models that we define, comparing to the limit where the density of spacetime defects is

taken to zero. In Sec. V we summarize our conclusions.
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II. SCALAR PROPAGATOR ON A CAUSAL SET

Before reviewing the approach of Refs. [10, 11] to scalar field quantization, we first recall

some basic definitions of causal set theory. A causal set is a locally finite, partially ordered

set, (C,¯), satisfying the following properties for any vi, vj, vk ∈ C:

1. Reflexive: vi ¯ vi.

2. Transitive: If vi ¯ vj and vj ¯ vk, then vi ¯ vk.

3. Antisymmetric: If vi ¯ vj and vj ¯ vi, then vi = vj.

4. Locally Finite: If vi ¯ vk, then the set {vl ∈ C|vi ¯ vl ¯ vk} has finite cardinality.

Physically, the elements of the causal set label spacetime events and the notation vi z vj

denotes that a spacetime event vi is in the causal past of an event vj. Conditions 1-3 are

needed to define a consistent causal structure and condition 4 ensures discreteness.

A straightforward method of obtaining a causal set which approximates a Lorentzian

manifold, called sprinkling, is to begin with the Lorentzian manifold and randomly select

a set of discrete points such that the number in any closed region of finite volume V is

given by a Poisson distribution, with mean Ä V . The causal relations amongst the Poisson

distributed points are then inherited from the Lorentzian manifold.

To study particle propagation, suppose we have a finite causal set Poisson sprinkled at

some density, Ä, in a 1+1 dimensional region of flat spacetime and we enumerate the events

in the causal set. Recall the definition of the causal matrix: Cij = 1 if vi z vj and Cij = 0

otherwise. Thus, the causal matrix encodes all of the causal structure of the causal set.

Define a chain of length k to be a subset of the causal set containing k elements which is

totally ordered. In other words, all k elements are causally related to each other. The causal

matrix has the useful property that [Cn]ij is the number of chains of length n from element

vi to vj in the causal set.

Lets explore these chains from the viewpoint of a particle propagating within the causal

set. To do so, we will follow the approach of Refs. [10, 11] and assign an amplitude, a,

for moving between two causally related elements as well as an amplitude, b, for stopping

at an intermediary element in a chain. Thus, the total amplitude for moving between two
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elements of the causal set in k-steps is bk−1ak Ck.1 If we define ϕ = aC, then this amplitude

can be expressed as bk−1ϕk. If we want to consider chains of all lengths, then we need to

perform the sum. Note that for finite causal sets, there exists a positive integer, ℓ, such that

[Cℓ ]ij = 0. Thus, the sum over chains of all possible lengths is a finite sum. If chains of

length zero are included, then, the total amplitude, K, is:2

K = I +
∞
∑

i=1

bi−1ϕi = I + ϕ [I − b ϕ]−1. (2.1)

From this, Johnston then defines, by analogy with the continuum, the retarded propagator,

KR, the advanced propagator, KA, and the Pauli-Jordan function, ∆, in this discretized

setting [11]:

KR = ϕ [I − b ϕ]−1 , (2.2)

KA = KT
R , (2.3)

∆ = KR −KA . (2.4)

The matrix i∆ is both hermitian and skew-symmetric which guarantees that its eigenvalues

come in positive and negative pairs. One can project i∆ onto its positive eigenvalue subspace

by performing the sum:

Q =
∑

i, ¼i>0

¼i ui u
†
i . (2.5)

Here, the index i labels elements in the spectrum of i∆ and ui is the eigenvector correspond-

ing to the eigenvalue ¼i.

In the continuum quantum field theory, canonical quantization implies the commutator

[ϕ(x), ϕ(y)] = i∆(y − x); by analogy, one requires

[ϕx, ϕy] = i∆xy (2.6)

in the causal set theory, with the right-hand-side following from Eq. (2.4). This connects

the Green’s functions defined on the causal set to the algebra of scalar field operators. It

is shown in Ref. [11] that this algebra can be used to derive an expression for the Feynman

propagator, a vacuum-to-vacuum matrix element of the time-ordered product of fields

(KF )xy = i ï0|T ϕx ϕy |0ð . (2.7)

1 For an alternative formulation, see Ref. [12]
2 It may be better to think of the product ab as a weighting factor associated with steps taken between

causal set points, and 1/b an overall weighting factor for the sum over non-zero length paths. This avoids

the necessity of explaining what it means to move to a point without stopping.
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Here, the factor of i follows the convention of Ref. [11], where one can also find the definition

of the vacuum states. The real and imaginary parts of KF can be expressed in terms of the

quantities already defined:

Im(KF ) = Re(Q) , (2.8)

Re(KF ) =
1

2
(KR +KA). (2.9)

Averaging over possible Poisson sprinklings, one recovers the position space continuum Feyn-

man propagator for a real scalar field with mass M , provided one chooses a = 1/2 and

b = −M2/Ä in 1+1 dimensions [10, 11]. For the purposes of comparison, the continuum

position-space Feynman propagator in 1+1 dimensions is given by

GF (x) =
1

4
H

(2)
0 (Ms) , (2.10)

where H
(2)
0 is the zeroth order Hankel function of the second kind. Here, s =

√

(x0)2 − (x1)2

when (x0)2 g (x1)2, and s = −i
√

(x1)2 − (x0)2 when (x0)2 f (x1)2.

The way we identify defects in the construction that we have just reviewed is twofold:

(1) we may assign a weighting factor for moving to or from defect points that differs from

the value of a that is associated with hopping between ordinary spacetime points, and (2)

we may restrict movement to or from defect points. For example, in the first model that we

consider in the next section, a particle encountering a defect may not be allowed to propagate

to any spacetime point in the forward light cone, but only to one specified point. We will

refer to this type of propagation as “beaming,” to distinguish it from the unrestricted case.

We will also separately Poisson sprinkle ordinary and defect points, so that we can control

their spacetime density separately. This gives us two fundamental length scales that can be

separately adjusted while maintaining the Lorentz invariance of the theory [13, 14].

III. MODELS OF DEFECTS

The expressions for the Feynman propagator in discrete spacetime, Eqs. (2.8) and (2.9),

depend on the causal matrix C, as well as the constants a and b. The models we consider for

defects are encoded in the detailed form of C, with the values of a and b chosen so that the

model reproduces the expected results in the absence of defects. We consider five scenarios,

that we label A though E, which we study in two-dimensional Minkowski spacetime. Raising
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FIG. 1: Left: Poisson sprinkling of 400 spacetime points in two dimensions, in unit

spacetime volume. Right: The same with the addition of 25 pairs of linked, “in” and “out”

defects, as in Model A, indicated by timelike dashed line segments.

the modified causal matrix to a suitably high power in each model below will return the

zero matrix, the property assumed in deriving Eq. (2.2).

Model A. Conceptually the simplest scenario we can imagine is that we Poisson sprinkle

two sets of defect points, for “in” and “out” defects. In summing over all possible particle

trajectories, we assume that a trajectory incident on an “in” defect is beamed exclusively to

a specific “out” defect. We implement the one-to-one pairing on the “in” and “out” defects

randomly, with the “out” defect always identified with the point in the pair with the larger

time coordinate. This ordering will remain the same in any frame if we build our in-out sets

so that all pairs have timelike separation, which is the case in Model A. One might think of

these paired defects as the entrance and exit points of a wormhole, though that would only

be a convenient metaphor; there are no spacetime points traversed between these points

and nothing analogous to a nontrivial spacetime topology between them. To give a pictorial

representation of this model, we show in Fig. 1, the Poisson sprinkling of 400 spacetime points

in a causal diamond of unit volume, compared to the same with an additional sprinkling of

25 “in” defects and 25 “out” defects that form timelike pairs, indicated by the dashed line
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segments. This can be encoded in a causal matrix that has the following blocks

C =











c11 0 c13

c21 0 c23

0 ϵ/a · 1 0











, (3.1)

where the basis we use corresponds to the set

{p1, p2, . . . pN |O1, O2, . . . , On | I1, I2, . . . , In} . (3.2)

Here, the pj represent ordinary spacetime points, the Ij are “in” defect points and the Oj are

“out” defect points, with the in-out pairing indicated by the common value of the index j.

The sub-matrices cij are causal matrices that are constructed in the usual way, but defined

over the particular subset of points. For example, c11 is the causal matrix that one constructs

over the set of ordinary spacetime points p1, . . . pN . The block proportional to the identity

matrix enforces that particles encountering “in” defects propagate only to a specific “out”

defect, potentially with a different weighting factor in the sum over all trajectories, given by

the parameter ϵ.

We assume the parameter values a = 1/2 and b = −M2/ÄT , where ÄT is the total density

of points and defects, ÄT = Ä + Äin + Äout. This assures that there is a limit where we

approach the correct continuum results when the defects are absent, i.e., when n → 0, so

that Äin → 0 and Äout → 0. We note that in this simple model, we require that ϵ ̸= 0; if

this weren’t the case, particles could propagate to an “in” defect and then become trapped

there. We exclude this possibility as pathological.

Model B. This model is the same as Model A, with the same form for C given in Eq. (3.1),

except that the paired “in” and “out” defects are spacelike separated. Spacelike separated

pairs of nonlocal defects were discussed in Ref. [4], though they may lead to a violation of

causality without additional assumptions. We include this case to illustrate the violation of

causality in the quantum field theory context: if the sum over particle trajectories includes

these spacelike pairs, then the resulting scalar field theory will reveal that there is a problem

if the commutator of fields for spacelike-separated points is nonvanishing. This commutator

is precisely the Pauli-Jordan function ∆, which we evaluate numerically for Model B in the

next section.

Model C. In Model A, a particle reaching an “in” defect could only propagate to a spec-

ified “out” defect, and no trajectories were included where an “out” defect could be reached
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by any other route. This presents a simple scenario, but one that might be overly restrictive.

For this reason, we consider a variation on Model A, where we allow the possibility that

particles may reach and travel from “in” and “out” defects via any causal trajectory, but

where travel between them is separately weighted. For example, a particle reaching an “in”

point may either beam preferentially to the exit point, or propagate to any other point in

the future light-cone, like it would at an ordinary spacetime point. We call this Model C;

its causal matrix is given by

C =











c11 c12 c13

c21 c22 c23

c31 c32 − (1− ϵ/a)1 c33











. . (3.3)

The 3-2 block of this matrix is the usual causal matrix, with each diagonal entry modified

from 1 to ϵ/a. Again we assume a = 1/2 and b = −M2/ÄT , where ÄT = Ä + Äin + Äout. We

note that there are now two ways in which Model C can approach the no-defect limit: either

one may take n to zero, so that there are just N ordinary spacetime points with ÄT = Ä,

or one may take ϵ = a, in which case one may compare to a theory with N + 2n ordinary

spacetime points.

Model D. In this model, we assume N ordinary points, with causal propagation to any

other ordinary point, and n defect points with causal propagation to any other defect point.

We allow these two sets to be coupled together causally, with the freedom to adjust the

strength of the coupling (i.e., how easy it is to enter the random lattice of defect points)

and the weighting of the defect-to-defect propagation relative to the propagation between

ordinary spacetime points. These are controlled by the parameters À and ϵ, respectively, in

the causal matrix for this scenario

C =





c11 À/a · c12

À/a · c21 ϵ/a · c22



 . (3.4)

Here, the basis corresponds to the set

{p1, p2, . . . pN |D1, D2, . . . , Dn} , (3.5)

where the pj are N ordinary points and the Dj represent n defect points. Rather than a

model of defects, Eq. (3.4) might be considered as a way of modeling discrete nonlocality, at

potentially a larger scale than might be expected in a minimal causal set model of spacetime
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at the Planck scale. Whatever the reader’s preferred interpretation, this case is included in

our numerical results.

It should be noted that the exact relationship between the fundamental scale set by

the spacetime density of causal set points and the scale of nonlocality that appears in a

low-energy effective field theory description is somewhat uncertain. It was pointed out in

Ref. [15], that a possible generalization of the d’Alembertian operator that emerges from

a causal set description involves a free parameter that controls the nonlocality of the low-

energy theory. It was argued that this scale should be lower than the fundamental scale from

considerations of convergence, but that a large separation in scales would introduce a hier-

archy problem. We will assume these scales are not widely separated, based on naturalness;

in any case, our construction introduces two independent scales that need not be similar. It

would be interesting to see how this maps into a low-energy continuum description, though

that goes beyond the scope of the present work.

Model E. As a contrast to the other models that we have defined, we might interpret

the following causal matrix as a model of local defects (at least as local as they can be in a

model based on a causal set spacetime):

C =





c11 c12

»/a · c21 »/a · c22



 , (3.6)

again assuming the same basis as in Eq. (3.5). The adjustment in weighting given by the

parameter » implies that if a defect point is reached, there is a different weighting for hopping

away compared to hopping away from an ordinary spacetime point; there is no preferred

coupling to a paired defect as in Models A, B or C. Numerical results for the propagator in

this case are also presented in the next section.

IV. RESULTS

We plot our results for the discrete Feynman propagator as a function of the absolute

value of the proper time interval for pairs of elements in the causal set, as in Ref. [11]. We

work in units where the spacetime volume that contains the Poisson sprinkling of points is

unity. When defects are present, a generic feature that we see when we plot the propagator

as a function of the magnitude of the proper time interval is multivaluedness. By this, we

don’t mean scatter about the curve associated with the defect-free limit, but convergence of
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FIG. 2: Model A with M = 5 and ϵ = 0.75. Feynman propagator for a 600-element

causal set that includes 200 defect points in timelike in-out pairs, in 1+1 dimensions. (a)

and (b) show the imaginary and real parts of the propagator, respectively, for points that

are timelike separated; (c) shows the imaginary part for points that are spacelike separated

(the real part vanishes). The darker points (red in color) are the results; the lighter points

(orange in color) are the results in the absence of defects. The dashed curve (black in

color) is the continuum propagator without defects and the solid curve (green in color) is

the fitted curve to the average defective propagator; (d) is the same as (b) but only

displays the average points in the presence of defects.
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some of the points to a distinct curve. This feature could be anticipated: the value of the

propagator between pairs of points with identical proper time intervals can nonetheless differ

depending on whether the points in that pair are ordinary spacetime points, in-defects or

out-defects (in the cases where there is a distinction). This is guaranteed since the Green’s

functions used to define the theory are constructed assuming defect points have their own

set of hopping amplitudes as well as restricted connections to other elements of the causal

set. In principle, one could imagine that an experiment with sufficient resolution might

discern different results for a scattering amplitude depending, for example, on the location

of the reconstructed production and decay vertices of an s-channel resonance, which would be

sensitive this effect. In other words, with sufficient resolution, an experiment might discern

the breaking of translation invariance originating from the presence of the defects. On the

other hand, resolution might be insufficient. (This is easy to imagine; consider Planck-scale

discrete spacetime and a defect length scale that is, say, a thousand times larger.) In this

case, one might instead work with a coarse-grained low-energy effective theory involving

continuous quantities that are be defined by averaging over spacetime and defect points

within a volume determined by the coarse-graining scale. Averages of our results are also

included in the examples that follows.

A. Model A

Model A introduced timelike in-out defect pairs in the sum over chains used in construct-

ing the Green’s functions for the theory. Figure 2 displays the real and imaginary parts of

(KF )xy, omitting the real part for spacelike separated points, which we find is vanishing. The

magnitude of the proper time interval between the points vx and vy is denoted
√

|ds2|. It is

easiest to discern three curves, which we will refer to as branches of the solution, in Fig. 2b.

Two are approximately constant, while one is similar to what is found in the no-defect case,

though with a different shape. The non-constant branch of (KF )xy gets its largest contribu-

tion when x and y are both ordinary spacetime points. Since the density of spacetime points

is greater than that of the defects, these propagator values give the dominant contribution

when averaging the results at fixed
√

|ds2|, shown as the solid curve in the figures.

For illustration, Fig. 2d shows the same case as Fig. 2b, but with points indicating the

average result at a given value of
√

|ds2|. The points roughly follow a curve that is of
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FIG. 3: Plot of the real part of the Feynman propagator (KF )ab in Model A over the

narrow timelike strip |x| f 0.05. The parameters are the same as those specified in Fig. 2.

The spacetime point vb is chosen to be the point in this region (and within the unit causal

diamond) with the largest t coordinate. This illustrates the discontinuities due to the

defects in a plot that is single-valued.

the same form as the position-space continuum propagator in a spacetime with no defects.

Hence, we fit these average points the same functional form, with two fit parameters

GF (x) =
Z

4
H

(2)
0 (Mr s) . (4.1)

The first parameter, Z, may be identified as a wavefunction renormalization factor while

the second, Mr, is a renormalized mass. The continuum theory with no defects corresponds

to Mr = M = 5 and Z = 1. In the presence of the defects, we find good agreement

between the average points and a continuum Feynman propagator with Mr = 4.08 and

Z = 0.47. Interestingly, the effective mass of the scalar particle is shifted downward in

the presence of defects. In an interacting quantum field theory, shifts in the mass and

wavefunction renormalization are a consequence of interactions, while in the present case,

spacetime defects have a similar impact on the Feynman propagator.

We can avoid the multivaluedness of plotting (KF )ab against the absolute value of the

proper time separation between two points va and vb, by plotting the propagator over a thin

slice of the sprinkling region and fixing vb so that the magnitude of the spacetime interval

varies monotonically as one moves through the subset of points. In Fig. 3, we consider

the slice |x| f 0.05, where x is the spatial coordinate, and fix vb to be the point within

this region (and within the unit causal diamond) that has the largest t coordinate. By
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considering a narrow strip where the points va have roughly the same spatial coordinate as

vb, but different time coordinate, we preclude having more than one pair having the same

magnitude of proper time separation. Since most of the elements in the band will be ordinary

spacetime points, we expect that the small number of defects in the band will show up as

discontinuous jumps in the result. Fig. 3 demonstrates this effect.

B. Model B

This model would be identical to Model A, except that we now choose the in-defects

and the out-defects to be spacelike separated. Thus, any path between spacelike separated

elements must pass through at least one pair of in and out defects. We obtain results that

are qualitatively similar to those of Model A, and we again provide a fit using the two-

parameter function in Eq. (4.1). For Model B, we find Mr = 4.22 and Z = 0.59. Thus, the

mass and wavefunction renormalization appear smaller in magnitude than the case with no

defects present, much like model A.

Recall in Sec. III, that the Pauli-Jordan matrix is related to the commutator of field

operators at each causal set element, [ϕx, ϕy] = ∆xy. For all models that do not lead to a

violation of causality, we expect the Pauli-Jordan function to vanish for spacelike-separated

elements of the causal set, a fact that we have verified numerically in models A, C, D and E.

However, in Model B we have in-defects connected to out-defects with spacelike separation,

which allows chains in the causal set to exist between spacelike separated events. Figure 5a

demonstrates that the Pauli-Jordan function in Model B is nonvanishing for points in the

causal set that are spacelike separated, but vanishing when the number of defects are taken

to zero. Hence, we expect causality to be violated in Model B.

We also include the plot of the real part of the Feynman propagator for spacelike separated

pairs in this model since it is non-trivial. In other models, where the interval between the in-

and out-defects was timelike, the real part of the propagator vanished for spacelike separated

points in the causal set. This can be understood by noting that chains between elements

of the causal set that are spacelike separated are nonexistent in these models; hence, the

elements of both KR and KA that correspond to spacelike separated points vanish, as do

their combination in ReKF = 1
2
(KR +KA).
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FIG. 4: Model B with M = 5 and ϵ = 1.0. Feynman propagator for a 600-element causal

set that includes 200 defect points in spacelike in-out pairs, in 1+1 dimensions. The darker

points (red in color) are the results; the lighter points (orange in color) are the results in

the absence of defects. The analogous plots shown for Model A in Fig. 2 are displayed

above.

C. Model C

Model C relaxes the assumptions of Model A that in-defects can only beam to out-defects,

and that no other trajectories can exit from in-defects or are incoming to out-defects. Since

all causal links between points are included, the defect-free limit can be obtained by either

eliminating the defects, or setting the parameter ϵ = a = 1/2, whereby the defects behave
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FIG. 5: (a) Plot of the Pauli-Jordan matrix for spacelike separated pairs of elements in

Model B, with the same parameter choices as in Fig. 4. The darker points (red in color)

are the results; the lighter points (orange in color) are the results in the absence of defects.

(b) Plot of the real part of the Feynman propagator for spacelike separated events.

no differently than ordinary points. One can see the dominant curves are not appreciably

different than the case of the defect-free propagator, except in Fig. 6b there is an additional

sparse curve above the main branch that corresponds to chains connecting an in-defect to an

out-defect. Fitting the average propagator result using Eq. (4.1), we find thatMr = 5.09 and

Z = 0.89. The fit is dominated by the main branch of the solution which has a significant

contribution from propagation between pairs of ordinary spacetime points and where the

effects of the defects for ϵ deviating from 0.5 are small.

D. Model D

In this model, it is easy to see at least two curves emerging that contribute to the

average Feynman propagator. The main branch correspond to propagation between ordinary

spacetime points while, for example, while the curve closest to the x-axis (most clearly visible

in Fig. 7b represents propagation between ordinary points and defects, or vice versa. The

fit of the average Feynman propagator to the propagator without defects in Fig. 7d gives

Mr = 4.59 and Z = 0.63. Again, we see that the effect of the defects is to lower the mass of

the particle and produce a smaller wavefunction renormalization.
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FIG. 6: Model C with M = 5 and ϵ = 0.75. Feynman propagator for a 600-element

causal set that includes 200 defect points in timelike in-out pairs, in 1+1 dimensions. (a)

and (b) show the imaginary and real parts of the propagator, respectively, for points that

are timelike separated; (c) shows the imaginary part for points that are spacelike separated

(the real part vanishes). The darker points (red in color) are the results; the lighter points

(orange in color) are the results in the absence of defects. The dashed curve (black in

color) is the continuum propagator without defects and the solid curve (green in color) is

the fitted curve to the average defective propagator; (d) is the same as (b) but only

displays the average points in the presence of defects.
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FIG. 7: Model D with M = 5, À = 0.1 and ϵ = 0.5. Feynman propagator for a

500-element causal set that includes 100 defect points, in 1+1 dimensions. (a) and (b)

show the imaginary and real parts of the propagator, respectively, for points that are

timelike separated; (c) shows the imaginary part for points that are spacelike separated

(the real part vanishes). The darker points (red in color) are the results; the lighter points

(orange in color) are the results in the absence of defects. The dashed curve (black in

color) is the continuum propagator without defects and the solid curve (green in color) is

the fitted curve to the average defective propagator; (d) is the same as (b) but only

displays the average points in the presence of defects.
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FIG. 8: Model E with M = 5 and » = 0.1: Feynman propagator for a 500-element causal

set that includes 100 defect points, in 1+1 dimensions. (a) and (b) show the imaginary

and real parts of the propagator, respectively, for points that are timelike separated; (c)

shows the imaginary part for points that are spacelike separated (the real part vanishes).

The darker points (red in color) are the results; the lighter points (orange in color) are the

results in the absence of defects. The dashed curve (black in color) is the continuum

propagator without defects and the solid curve (green in color) is the fitted curve to the

average defective propagator; (d) is the same as (b) but only displays the average points in

the presence of defects.
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E. Model E

The results of this model appear similar to model D which also has only one type of

defect point that is distinguished by the weighting of the chains that include those points.

Based on Figs. 8a and 8b, two curves dominate the contributions to the average propagator.

The first one, which is most similar to the defect-free result, corresponds propagating from a

spacetime point to any other point. The second, smaller curve, corresponds to propagating

from a defect to any other point. The average points are fit well by Eq. (4.1) with the

parameters Mr = 4.70 and Z = 0.67. In this model, we again observe both a smaller

effective mass and wavefunction renormalization.

To conclude this section, we present in Table I the wavefunction renormalization and

renormalized mass for each model, along with measures of the goodness of fit corresponding

to subfigures (a), (b) and (c) in Figs. 2, 4, 6, 7 and 8.

Model Mr/M Z R2
a R2

b R2
c

A 0.8151 0.4650 0.9214 0.9474 0.8104

B 0.8445 0.5859 0.9487 0.9775 0.8865

C 1.0171 0.8911 0.9765 0.9883 0.9786

D 0.9178 0.6284 0.9784 0.9727 0.9348

E 0.9409 0.6653 0.9692 0.9728 0.9325

TABLE I: Parameter values for the fitting function, Eq. (4.1), for Models A-E. The last

three columns shows the separate goodness of fit to the results shown in subfigures (a)

through (c) of Figs. 2, 4, 6, 7 and 8.

V. CONCLUSIONS

The difficulty of directly probing the Planck scale motivates considering the possibility of

remnants of the physics of quantum gravity that might survive in the infrared. Spacetime

defects are one such possibility, and their spacetime density (or the length scale given by

the fourth root of its reciprocal in 3+1 dimensions) may be substantially sub-Planckian.
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The possibility of nonlocal defects has been raised in the literature [2–4], but no compelling

descriptions in the context of quantum field theory have been proposed. The current work

is an attempt to model the effects of nonlocal defects within quantum field theory, working

within the framework of causal sets.

We have approached the problem by assuming that the effects of defects could be encoded

by modifying the Green’s functions used in the quantization of a field theory on a causal

set. In the case of a real scalar field, it has been shown in the literature on casual sets

that these discrete Green’s functions can be derived by summing chains or paths through

causal set points [10, 11]. Modifying the amplitude for particular particle chains that pass

through defect points allowed us to define a number of scenarios. For example, a defect

that “beams” an incident particle exclusively to a second specified defect point is one of

the possibilities we consider; we refer the reader to Sec. III for a summary of the others.

Working in two-dimensional Minkowski spacetime, we numerically study in each case how

the discrete propagator in position space differs from the defect-free limit, where the latter

is consistent, on average, with the continuum expectation as the number of points is taken

large. When defects are present, two points with the same invariant spacetime interval can

have different propagation amplitudes, depending on whether the propagation is between two

ordinary spacetime points, two defects, or a defect and an ordinary point. In principle, with

sufficient resolution, this breaking of translation invariance might be observable in scattering

amplitudes. Otherwise, the average effect is to deform the propagator one would extract in

a continuum effective field theory. By fitting our results, we find that this modification is

well described by a defect-induced mass and wavefunction renormalization. Shifts in particle

masses due to defects have also been discussed previously in Ref. [6].

Admittedly, the present work is far from realistic. We consider only a real scalar field

and work in two spacetime dimensions, where numerical study is tractable. We focus only

on the two-point function in position space. The value of this first study is that it gives a

concrete framework for modeling the physics of nonlocal defects that might be generalized

to more realistic theories, and in a more realistic number of spacetime dimensions. It is also

possible that other approaches to defining quantum field theories on causal sets may lead

to better formulations of the problem. It is our hope that the present work will stimulate

additional work in these directions.
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