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Abstract—Information fusion is a procedure that merges in-
formation locally contained at the nodes of a network. Of high
interest in the field of distributed estimation is the fusion of local
probability distributions via a weighted geometrical average cri-
terion. In numerous practical settings, the local distributions are
only known through particle approximations, i.e., sets of samples
with associated weights, such as obtained via importance sam-
pling (IS) methods. Thus, prohibiting any closed-form solution
to the aforementioned fusion problem. This article proposes a
family of IS methods—called particle geometric–average fusion
(PGAF)—that lead to consistent estimators for the geometrically-
averaged density. The advantages of the proposed methods are
threefold. First, the methods are agnostic of the mechanisms used
to generate the local particle sets and, therefore, allow for the
fusion of heterogeneous nodes. Second, consistency of estimators
is guaranteed under generic conditions when the agents use IS-
generated particles. Third, a low-communication overhead and
agent privacy are achieved since local observations are not shared
with the fusion center. Even more remarkably, for a sub-family of
the proposed PGAF methods, the fusion center does not require the
knowledge of the local priors used by the nodes. Implementation
guidelines for the proposed methods are provided and theoretical
results are numerically verified.

Index Terms—Multiple importance sampling, information
fusion, Monte Carlo methods, Kullback–Leibler divergence, kernel
density estimate.

I. INTRODUCTION

INFORMATION fusion generally encompasses various sta-
tistical methods employed for merging several sources of
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information according to some criterion. In engineering, infor-
mation fusion is widely employed in multi-agent systems—such
as sensor networks—for enhanced performance. In particular,
complementary multi-modal sensor data is merged in order to
enhance detection and tracking performance [1], [2].

In general, distributed inference [3], [4] assumes that each
node (or agent) in an inference network constructs a local esti-
mator of an unknown parameter by relying on local observations,
and subsequently a fusion criterion is employed at a centralized
node to merge these local estimators. Furthermore, in Bayesian
settings [5], each node estimates a posterior distribution of the
parameter by updating a local prior with local data. In numer-
ous applications, due to non-linear an/or non-Gaussian sensing
modalities, closed-form expressions for these local posteriors
are unavailable and instead each agent evaluates its local poste-
rior (up to a proportionality constant) at a set of discrete points
called particles, leading to an empirical approximation of the true
distribution. Sample-based approximations of distributions (i.e.,
empirical measures) are the basis of particle filters in sequential
Monte Carlo [6], [7], and allow the representation of complex
non-Gaussian distributions.

The barycenter distribution that minimizes a weighted-
average Kullback–Leibler divergence (KLD) from the local dis-
tributions is often employed as a fusion criterion in engineering
applications, such as, robotics and target tracking [8], [9]. More
generally, information fusion is of relevance in many algorithms
for networked sensing [10], [11], [12], [13], [14], [15], wireless
communications [16], [17], [18], and Internet-of-Things [19]
to name a few. Furthermore, the barycenter corresponds to the
geometric average of the probability density functions of the
agents, resulting in the geometric–average fusion (GAF) rule.
The GAF rule leads to a closed-form result for Gaussian densi-
ties [8], in which case it is often named covaraince intersection
(CI) [8], [9]. Moreover for the case of two agents, this rule is also
called Chernoff information fusion in [20]. Decentralized CI was
introduced in [21], while additional algorithms and results for
distributed information fusion are found in [22].

Particle methods for GAF have seen an increased interest
due to the prevalence of non-Gaussian distributions in a myriad
of applications, e.g., sensing, finance, and biology to name
a few. PGAF methods that resort to Gaussian fitting, as an
intermediate step, followed by the CI rule have been proposed
in [23], [24]. Gaussian-mixture fitting was employed in [11] to
achieve a PGAF method. A PGAF method that does not resort to
fitting was reported in [13], [25], [26]. More details about these
state-of-the-art methods for PGAF are found in Section S-II of
the supplementary material [27].
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In this work, we propose several novel PGAF methods by
relying on multiple importance sampling (MIS) [28] principles
and kernel density estimators [29]. The agents send their IS-
generated weighted particle sets to the fusion center, which
subsequently constructs a new set of weighted particles (referred
to as fused particles) that approximates the geometrically-fused
density. The proposed PGAF methods have the following desir-
able properties. (1) Consistency: estimators based on the fused
particle set are shown to converge in probability as the number of
particles increases. The challenge in obtaining consistent PGAF
estimators stems from correlations that arise due to the GAF
target density being approximated via the local agent particles.
(2) Low-communication overhead: the agents only need to
transmit their weighted particle sets to the fusion center. (3)
Privacy: the agents need not share their local observations and
additionally, for a sub-family of the proposed PGAF methods,
the knowledge of the local prior densities is not required by
the fusion center. This is in contrast with other fusion methods,
such as in [30]. While not a formal guarantee, this privacy
feature allows the agents to withhold sensitive information such
as observations and local prior densities while only sharing the
posterior information required for fusion.

Several elements are necessary to construct the fused particle
set: (i) the target distribution, (ii) the proposal (or importance)
distributions, (iii) sampling mechanisms, and (iv) weighting
schemes. In general, the target distribution is not available in
closed form and, furthermore, for privacy-preservation reasons,
the fusion center does not have access to the expression of the
local distributions. More specifically, the fusion center has to
rely on the particle sets supplied by the agents and no further
evaluations of the local posteriors can be made. The IS samples
and the IS weights transmitted by the agents are used to construct
a kernel-based density estimate (or kernel-density estimate for
short) of the GAF density which is employed as target density.
We propose several sets of proposal densities, called families,
from which the fusion center samples the fused particles (see
Section V-B). For a given family of proposals, we propose and
analyze several sampling and weighting schemes, that is, which
proposals to use from the family and how to weigh the resulting
samples.

Parallels between PGAF and other IS methods can be made.
PGAF borrows from MIS the idea of sampling and weighting
schemes, that is, the mechanisms to select the index of the
proposal density to sample from and the choice of weighting the
resulting particle. In contrast with MIS, in PGAF the target dis-
tribution is not fully known and a particle based approximation
is used instead, thus motivating the need for novel consistency
results in the case of PGAF. Additionally for PGAF methods,
multiple sets of proposal densities can be identified, each leading
to estimators with different statistical properties. Adaptive IS
algorithms [31], [32], [33] gradually construct improved approx-
imations of the optimal importance distribution, while PGAF
approximates the target distribution.

The article is organized as follows. Section II introduces
the notation, Section III provides the necessary background,
and Section IV states the main challenges and the objective of
this article. The proposed algorithms are given in Section V

while the corresponding convergence results are presented in
Section VI. Appendix A contains the main proofs for the con-
vergence results. A detailed analysis of state-of-the-art methods,
supplemental lemmas and their proofs are given in the supple-
mentary material [27]. All section and lemma numbers from the
supplementary material [27] are indexed with the prefix “S”, i.e.,
Lemma 1 from [27] is referred to as Lemma S-1.

II. NOTATION

Let (Ω,F ,P) denote a complete probability space and
(Rd,B(Rd)) a Borel space on the real coordinate space of
dimension d. A random variable x is defined as a measurable
function x : Ω→ R. A sequence of random variables (xk)k

converges in probability to x, written xk
P−→ x, if for all ε > 0,

P
{|xk − x| > ε

}→ 0 as k →∞. Almost sure convergence, de-

noted with xk
a.s.−→ x, follows if P

{
limk→∞ xk = x

}
= 1. Ran-

dom variables are displayed in sans serif, upright fonts; their
realizations in serif, italic fonts. Vectors and matrices are de-
noted by bold lowercase and uppercase letters, respectively.
For example, a random variable and its realization are denoted
by x and x; a random vector and its realization are denoted
by x and x; a random matrix and its realization are denoted
by X and X , respectively. Random and deterministic sets are
denoted by upright sans serif and calligraphic font, respectively.
For example, a random set and its realization are denoted by X
and X , respectively. The expectation and variance operators are
denoted viaE{·} andV{·}. For a setX , set cardinality is denoted
as #X while 1X (·) denotes the indicator function of X . The set
of integers {i, i+ 1, . . . , j − 1, j} is compactly denoted with
N
j
i . The set of bounded continuous functions on R

d is denoted
via Cb(Rd), while the set of continuity points of a function f is
denoted with C(f). Function supremum is denoted via sup(·)
while function support via supp(·).

The Lebesgue measure on R
d is denoted as λ. Let P(Rd)

denote the set of probability measures on B(Rd). For μ, ν ∈
P(Rd), we write μ� ν if μ is absolutely continuous with
respect to (w.r.t.) ν and denote with dμ/dν the corresponding
Radon-Nikodym derivative. In this work, the agent probability
distributions are assumed to be absolutely continuous w.r.t. λ.
Furthermore, the KLD is defined as DKL{μ , ν} �

∫
log(dμdν )dμ

when μ� ν and DKL{μ , ν} =∞ otherwise. For p ∈ [1,∞),
Lp(λ) represents the space of real-valued functions f : Rd → R

such that
∫ |f |pdλ is finite. The L2 vector norm on R

d is ‖ · ‖.
The Dirac (singular) measure at point x is δx(·). The notation
fN (x;m,M) represents the d-dimensional standard normal
probability density function of variable x, mean vector m, and
covariance matrixM . Finally, fL(x;m, b) � (2b)−1 exp(−|x−
m|/b) denotes the Laplace (double exponential) probability
density function of variable x ∈ R, location m ∈ R, and scale
b > 0.

III. SYSTEM MODEL

Consider a network of M agents (M > 1), indexed via m ∈
N
M
1 , where each agent is tasked with inferring an unknown

quantity. Each agent constructs an estimate xm : Ω→ R
d of

Authorized licensed use limited to: MIT Libraries. Downloaded on June 17,2024 at 00:36:31 UTC from IEEE Xplore.  Restrictions apply. 



378 IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 10, 2024

the unknown quantity, where the random variable xm has a
corresponding distribution Pm ∈ P(Rd), i.e., the push-forward
probability measure Pm(A) = P{x−1m (A)} for all A ∈ B(Rd).
The distributions Pm are assumed to be absolutely continuous
w.r.t. the Lebesgue measure λ and we denote their corresponding
probability density functions as pm � dPm/dλ for m ∈ N

M
1 .

Typical applications that enjoy such a setup are Bayesian net-
work localization and navigation and target tracking [1], [15],
[17], [34], where a network of sensors collects measurements
and concentrates all their local information into the posterior
distributions Pm. Henceforth, the local distributions Pm will
also be referred to as local posterior distributions or, simply,
local posteriors.

In non-linear estimation, closed-form expressions of the dis-
tributions Pm for m ∈ N

M
1 are unavailable and Monte Carlo,

more specifically IS (see [35, Sec. 2.5] and [36], [37]), ap-
proximations are used instead. Thus a set of discrete points{
x
(n)
m ∈ R

d : n = 1, 2, . . . , N
}

, are used to describe the dis-
tributions Pm for m ∈ N

M
1 . These points are instances of

the corresponding random variables
{
x
(n)
m

}N
n=1

for m ∈ N
M
1 ,

henceforth referred to as particles. Since sampling directly from
Pm is difficult in general, these particles are independent and
identically distributed (i.i.d.) with a distribution Qm, referred
to as importance or proposal distribution. Assuming Qm � λ,
let qm denote the respective probability density function for
agent m ∈ N

M
1 . Assuming Dm � supp(qm) ⊃ supp(pm) for

m ∈ N
M
1 , the mismatch between target Pm and importanceQm

distributions is corrected via the IS weights [6, Ch. 1.3.2]

w(n)
m =

pm
(
x
(n)
m

)
qm

(
x
(n)
m

) (1)

for n ∈ N
N
1 . On the side of each agent m ∈ N

M
1 , the samples{

x
(n)
m

}N
n=1

and weights
{
w
(n)
m

}N
n=1

are locally constructed since
both pm and qm are available for evaluation at any finite number
of points. Moreover, pm is only available through evaluation,
while sampling directly from pm is unachievable and a full
analytic expression of pm is often unavailable. On the side of the
fusion center, the weighted particle sets

{(
w
(n)
m , x

(n)
m

)}N
n=1

are
received from each agentm, without having access to the target
distributions {pm}Mm=1, neither for evaluation nor sampling.

Based on the weighted particle set
{(

w
(n)
m , x

(n)
m

)}N
n=1

, two IS
choices exist to approximate Pm: the standard IS empirical
distribution

P̂Nm(A) = 1

N

N∑
n=1

w(n)
m δ

x
(n)
m

(A) (2)

and, by defining w̄
(n)
m = w

(n)
m /

∑N
n=1 w

(n)
m , the self-

normalized IS empirical distribution

P̄Nm(A) =
N∑
n=1

w̄(n)
m δ

x
(n)
m

(A) (3)

for any set A ∈ B(Rd). Note that although (2) is not a prob-
ability distribution (since in general P̂Nm(Rd) �= 1), it leads to
unbiased IS estimates [38, Thm. 9.1]. Furthermore, (3) is a

probability distribution that leads to consistent IS estimates,
see [7, Ch. 3.3] and [39].

IV. OBJECTIVE STATEMENT

The task of the centralized node is to construct a new prob-
ability distribution F ∈ P(Rd) that merges the information
contained in all of the agents in a consistent manner. The
first challenge stems from not having access to the analytical
form of the local distributions and instead, the fusion has to
be carried out only having access to the local particle sets{(

w
(n)
m , x

(n)
m

)
: n ∈ N

N
1 ,m ∈ N

M
1

}
.

The second challenge stems from the agents not having the
same prior distribution. This prohibits the usage of likelihood
consensus [40] and a fusion rule is employed instead that
searches for the barycenter distribution F ∈ P(Rd) that min-
imizes a suitable dissimilarity metric (e.g. the KLD) w.r.t. the
local distributions Pm. Let (cm)Mm=1 be a collection of weights
such that cm ∈ (0, 1) ∀m and

∑M
m=1 cm = 1. The weights

(cm)Mm=1 can be interpreted as credibility coefficients given to
each agent during the fusion process.

One such fusion rule, namely the GAF, results from the
following Kullback–Leibler divergence average (KLDA) mini-
mization program

FG � argmin
F∈P(Rd)

M∑
m=1

cm DKL{F, Pm} . (4)

Restricting ourselves to the class of distributions that are ab-
solutely continuous w.r.t. the Lebesgue measure (i.e., F � λ)
and assuming that the support domains of the local probability
density functions verify λ(∩Mm=1supp(pm)) �= 0, the GAF dis-
tribution is easily shown (see Section S-III of the Supplemental
Material [27]) to have the probability density

fG � dFG

dλ
= Z−1

M∏
m=1

pcmm (5)

where Z �
∫ ∏M

m=1 p
cm
m (x)dλ(x) ∈ (0, 1] is a normalization

constant. The third challenge stems from not having in general
a closed-form expression for the GAF density of (5), due to the
normalization constantZ, or not having access to the expressions
of the local posteriors {pm}Mm=1 at the fusion center.

In order to address these challenges, the objective of this
work is to provide IS solutions with convergence guarantees
for the GAF rule when the local posterior densities (pm)Mm=1

are only approximately known through their particle sets{(
w
(n)
m , x

(n)
m

)}N
n=1

for m ∈ N
M
1 . More specifically, we assume

that the posteriors {pm}Mm=1 can only be evaluated at a finite
collection of points and cannot be directly sampled from. Thus,
the fused density (5) is only approximately known, further
hampering direct sampling. We aim to formulate mechanisms to
generate weighted particle sets

{(
w
(n)
G , x

(n)
G

)}N
n=1

, that provide
consistent estimators for the fused density fG, i.e.,

N∑
n=1

ϕ
(
x
(n)
G

) w
(n)
G∑N

j=1 w
(j)
G

P−→
∫
ϕ(x)fG(x)dλ(x) (6)

as N →∞ and for any function ϕ ∈ Cb(Rd).
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Remark 1: The usage of the inclusive form of the KLD (i.e.,
DKL{Pm, F}) in place of the exclusive form DKL{F, Pm} of
(4) is also possible and leads to the arithmetic–average fusion
(AAF) rule with resulting density fA �

∑M
m=1 cmpm, as seen

in Section S-III of the Supplemental Material [27]. For com-
pleteness, an IS approximation for the AAF density is eas-
ily obtained via the concatenation

{(
cmw̄

(n)
m , x

(n)
m

)
: n ∈ N

N
1 ,

m ∈ N
M
1

}
. The exclusive and inclusive KLDs, called I-

projection and M-projection in [41, Ch. 8.5], have different
characteristics. More specifically, the exclusive KLD tends to
allocate the entire mass of the approximating density on the
most probable mode of the target density whereas the inclu-
sive KLD attempts to cover most of the target density, that
is, to assign reasonable probability to the entire support of the
target density at the cost of higher variance. For this reason, the
exclusive KLD is referred to as mode-seeking or zero-forcing
and the inclusive KLD is referred to as zero avoiding in [42]. A
comprehensive study of various fusion rules is given in [43]. �

Remark 2: In the special case of Gaussian distributions [36],
closed-form expressions are available for GAF (see Section S-
IV of the Supplemental Material [27]), while closed-form ex-
pressions for AAF are trivially obtained for Gaussian mixture
distributions. When the cross-correlations between the local
estimators are unknown, the CI rule leads to estimators with a
variance that is equal to or larger than the variance of the optimal
fusion estimator that has knowledge of the aforementioned
cross-correlations [44]. Such properties confer robustness to
the GAF rule and are preferred in applications such as robotics.�

V. PARTICLE GAF ELEMENTS AND METHODS

The framework of all IS-based methods [6], [7], includ-
ing MIS [28], is comprised of four elements: (i) the target
distribution, (ii) the proposal distributions, (iii) sampling mech-
anisms, and (iv) weighting schemes. The standard IS setting
(see [7, Ch. 3.3] and [6, Ch. 1.3.2]) is obtained when a single
proposal distribution Q is utilized. More complex sampling
and weighting mechanisms emerge whenever a set of proposal
functions are available (see [28, Section 5]).

Particle fusion methods attempt to merge several local par-
ticle sets, and thus different families of proposal distributions
naturally arise from the local empirical distributions. In contrast
to MIS, however, PGAF methods differ on the following two
points: (i) here the target distributions are also particle-based
approximations leading to distinct estimators from [28] and (ii)
multiple families of proposal distributions can be constructed
in addition to {qm}Mm=1. In the following, we describe the
construction of the necessary elements for IS with the GAF rule.

A. The GAF Target Distribution

In order to apply the KLDA metric of (4), or equivalently
the GAF rule of (5), a regularization step is first performed
on the local empirical distributions of (2). This is achieved via
the convolution of the local empirical distributions with a ker-
nel, defined as a Borel-measurable function K : Rd → [0,∞).
Furthermore, for a positive sequence of real terms (hi)

∞
i=1, let

Khi
(x) � h−di K(x/hi) ∀i. Note that hi ∈ R>0 are referred to

as bandwidth terms ∀i. For each agent m, a regularized particle
approximation of the density pm is obtained as

p̂Nm(x) � 1

N

N∑
n=1

w(n)
m KhN

(
x− x(n)m

)
. (7)

Since a closed-form expression for the GAF density is generally
not known and only the local particle sets are available, we
employ the regularized densities {p̂Nm}Mm=1 to construct the
following target density

fNG (x) �
M∏
m=1

[
p̂Nm(x)

]cm
. (8)

Note that the density of (8) is not normalized, i.e.,∫
fNG (x)dλ(x) �= 1 in general, and it depends on the number

of particles N , the kernel K, and bandwidth hN .

B. Proposal Families

The fusion center constructs a set of weighted GAF parti-
cles

{(
w
(n)
G , x

(n)
G

)}NG

n=1
by relying on the local particle sets{(

w
(n)
m , x

(n)
m

)}N
n=1

for m ∈ N
M
1 . Without loss of generality1,

we will consider NG = N . Given the available information
from the M agents, the fusion center can construct multiple
sets Q � {qm}MG

m=1 of proposal densities qm. Here, we refer
to the set Q as a proposal family. Moreover, we will consider
MG =M , where a single proposal density qm is constructed for
each agentm. Applications where several proposal densities are
associated with a single agent can be addressed in a similar
fashion to the case treated here. The design and choice of
an optimal proposal family is related to adaptive importance
sampling methods (see [45] for more details). The GAF particles
can be sampled from a proposal family Q � {qm}Mm=1, where
the generic proposals qm take on specific forms for each family,
as shown next.

P1 Local distributions. The family Q is comprised of the local
proposals that were used to sample the local particle sets, i.e.,
Q �

{
qm : m ∈ N

M
1

}
.

P2 Mollified distributions. The family Q is comprised of a
mollified version of the local proposals, i.e., Q �

{
q̃Nm :

m ∈ N
M
1

}
, where each importance distribution is obtained

by convolution with a mollifier, i.e., q̃Nm � qm ∗KhN
. For

the special case of a Gaussian kernel K, sampling from a
proposal q̃Nm is easily obtained by sampling a particle from qm
and adding an independent Gaussian noise with distribution
KhN

.
P3 Regularized distributions. The family Q is comprised of

regularized particle approximations of the local posteriors,
i.e., Q �

{
q̄Nm : m ∈ N

M
1

}
, where each q̄Nm is defined as

q̄Nm(x) � 1

c

N∑
n=1

[
w(n)
m

]cm [
KhN

(
x− x(n)m

)]cm
(9)

1The consistency results of Section VI also hold when the local number N
and the fused number NG of particles jointly increase.
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where c � (hdN )1−cm
[∑N

j=1

(
w
(j)
m

)cm] ∫
Kcmdλ <∞ ∀N

and cm ∈ (0, 1), as per assumption A.4 of Section VI. In par-
ticular for Gaussian kernelsK and given the local particle sets,
sampling from a proposal q̄Nm is equivalent to sampling from
a Gaussian mixture and has a low computational overhead.
Sampling fromP3has the added privacy advantage: the fusion
center requires neither local observations nor local proposal
distributions {qm}Mm=1. Instead, the fusion center relies solely

on the weighted particle sets
{(

w
(n)
m , x

(n)
m

)}N
n=1

form ∈ N
M
1 .

C. Sampling Methods

Borrowing from MIS concepts [28] and regardless of which
proposal family is employed, several sampling methods are
available to select the index i(n) of the proposal used to sample
the n-th particle x

(n)
G . Let Q =

{
qm : m ∈ N

M
1

}
be the family

of proposals and define an arbitrary collection r � (rm)Mm=1,
such that

∑M
m=1 rm = 1 and rm > 0 form ∈ N

M
1 . In this work,

the weights (rm)Mm=1 are assumed fixed. The choice of optimal
wights is a subject of ongoing research in the MIS community
(see [46], [47] and references within). In the following, we
present several index-selection mechanisms for

{
i(n)

}N
n=1

, with
i(n) ∈ N

M
1 andn ∈ N

N
1 , that indicate which proposals to sample

from.

S1 Categorical sampling (with replacement). The indices{
i(n)

}N
n=1

of IS densities from Q are i.i.d. according
to a categorical distribution with weights r, i.e., i(n) ∼
Cat(r) ∀n, where Cat(r) denotes the categorical distribution
with event probabilities (rm)Mm=1. Given a sequence of real-
izations

{
i(n)

}
n

, the particles are conditionally sampled as

x
(n)
G |i(n) ∼ qi(n) ∀n.

S2 Recycling selection (only in combination with the proposal
familyP1). The particles x(n)G are deterministically mapped to
the (already available) particles

{
x
(n)
m

}N
n=1

form ∈ N
M
1 . Let

DetNM (·) be a function N
N
1 
 n �→ DetNM (n) ∈ N

M
1 × N

N
1 ,

i.e., that maps each GAF particle index n to a proposal index
i(n) and a local particle index j(n). Thus, the S2-sampled

particles are defined as x
(n)
G = x

(j(n))

i(n) where
(
i(n), j(n)

)
=

DetNM (n) for all n ∈ N
N
1 . Let κNm denote the number of

times the deterministic function DetNM (·) maps to the m-th
proposal in N consecutive calls, i.e, κNm � #

{(
i(n), j(n)

)
:(

i(n), j(n)
)
= DetNM (n), i(n) = m, n ∈ N

N
1

}
. While multi-

ple definitions of DetNM (·) are possible2, here, we only require
that DetNM (·) be constructed such that limN→∞ κNm/N = rm
∀m and that the tuples

(
i(n), j(n)

)
are distinct for all n.

In the case of the scheme S2, no additional sampling is
carried out, and instead the fused particles

{
x
(n)
G

}N
n=1

are de-
terministically selected from the local (and already available)
particles

{
x
(n)
m : n ∈ N

N
1 , m ∈ N

M
1

}
. This has the potential to

significantly reduce computational complexity especially in ap-
plications involving high-dimensional spaces. Note thatS2 only

2For example, by partitioning the set NN
1 into M subsets with cardinalities of

the type �rm N� for m = 1, . . . ,M , then one such function maps n �→ (m,n)
when n belongs to the m-th subset.

works in conjunction with the proposal familyP1, since the local
particles obey the distributions

{
qm : m ∈ N

M
1

}
. In addition

to the categorical sampling with replacement of S1, in [28] a
sampling method without replacement is employed. However,
this becomes infeasible in our formulation since M � N in
general. Moreover, for the convergence analysis the number of
particles is taken to infinity while the number of agents M is
fixed.

D. Weighting Schemes

An (un-normalized) weighting function is constructed as

w̃NG (x) =
fNG (x)

ψPn (x) , i.e., as the ratio of the target density fNG (x)

and the importance function ψPn(x). Note that ψPn is a generic
probability density function that obeys supp(ψPn) ⊇ supp(fNG )

and which is parameterized by a subset Pn ⊆
{
i(n)

}N
n=1

of

the indices used in the sampling of
{
x
(n)
G

}N
n=1

. From [28],
two choices for ψPn are relevant to this work and lead to the
weighting schemes presented next.

W1 Direct weighting. For any family of proposal densities and
assuming that the sequence of indices

{
i(n)

}N
n=1

was used to

select the individual proposal densities to sample
{
x
(n)
G

}N
n=1

,

the importance function for x(n)G is set toψPn = qi(n) . In other
words, irrespective of the mechanism used to select the indices{
i(n)

}N
n=1

, if x(n)G was sampled from qi(n) , then ψPn(x) =
qi(n)(x).

W2 Mixture weighting. For any family of proposal densi-
ties, the importance function is set to the mixture distri-
bution ψPn(x) = Ψ(x) �

∑M
m=1 rmqm(x). In other words,

irrespective of the mechanism used to select the indices{
i(n)

}N
n=1

, each particle is interpreted as being drawn from
the mixture of densities that comprise the proposal fam-
ily Q = {qm}Mm=1. This alternative weighting scheme has
received different names in the literature, such as balance
heuristic or deterministic mixture weights. See [46], [48], [49]
for more details.

E. Particle GAF Methods

PGAF methods arise as combinations of the previous el-
ements: proposal family, sampling method, and weighting
scheme. Table I presents the resulting PGAF methods. The GAF
particle set is constructed as

{(
w
(n)
G , x

(n)
G

)}N
n=1

, where the
weights3 are set to

w
(n)
G = w̃NG

(
x
(n)
G

)
. (10)

Note that regardless of the proposal family, sample method, or
weighting scheme, the weightsw(n)

G are correlated due to the use
of the kernel density estimate fNG (x) as the target density in all
samples n ∈ N

N
1 . From Table I, note again that the recycling

sampling method S2 is only employable with the proposal
family P1, since here the fused particles are selected from the
available local particles. Finally, the PGAF methods that employ

3In the following, the dependence of the importance weights on the number
of particles N is dropped for notational compactness.
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TABLE I
PARTICLE GAF METHODS: FOR A SPECIFIC PROPOSAL FAMILY

Q = {qm : m ∈ NM
1 } (E.G., P1, P2, OR P3), EACH COMBINATION OF

SAMPLING AND WEIGHTING SCHEMES LEADS TO A VALID METHOD

the P3 proposal, do not require the knowledge of the priors
{qm}Mm=1 used by the local nodes. This enhances the privacy
of the nodes via-à-vis the fusion center when the latter employs
P3-based PGAF methods.

For any bounded continuous test function ϕ ∈ Cb(Rd), the
Z-normalized PGAF estimator is defined as

ϕNG � 1

ZN

N∑
n=1

ϕ
(
x
(n)
G

)
w
(n)
G (11)

with the weights w
(n)
G defined in (10). In the case of unknown

Z, the estimator ẐN = 1
N

∑N
n=1 w

(n)
G is employed instead ofZ

in (11), leading to the self-normalized PGAF estimator

ϕ̄NG �
N∑
n=1

ϕ
(
x
(n)
G

) w
(n)
G∑N

j=1 w
(j)
G

. (12)

VI. CONVERGENCE RESULTS

Throughout the convergence guarantees presented in this
section, several of the following assumptions on the kernel
functionK, the bandwidth sequence (hn)∞n=1, and the densities
{pm}Mm=1 and {qm}Mm=1 are assumed to hold:

A.1(a) K(x) = K(−x) and K(x) � 0 ∀x,
A.1(b)

∫
Kdλ = 1,

A.1(c) supx∈Rd K(x) =MK <∞,
A.1(d) ‖x‖dK(x)→ 0 as ‖x‖ → ∞,
A.2(a) limn→∞ hn = 0,
A.2(b) limn→∞ nhdn =∞,
A.2(c)

∑∞
n=1 exp(−αnhdn) <∞ for any α > 0,

A.3(a) supx∈Dm
pm(x)/qm(x) =Mm <∞ ∀m ∈ N

M
1

(recall Dm � supp(qm)),
A.3(b) pm are λ-almost everywhere continuous ∀m ∈ N

M
1 ,

A.3(c) pm/qm ∈ L1(Rd) ∀m ∈ N
M
1 ,

A.4 Kcm ∈ L1(Rd) (i.e.,
∫
Kcmdλ <∞) ∀m ∈ N

M
1 .

Remark 3: Assumptions A.1(a)-A.3(b) are standard in the
kernel-density estimate and IS literature. For d = 1 in [50] and
for d ≥ 1 in [51], assumptions A.1(b), A.1(c), A.1(4), A.2(b),
and A.2(a) are employed to ensure the asymptotic unbiasedness
and weak consistency of the standard kernel density estimate,
that is, with a direct sampling construction (sampling from pm

instead of qm). Additionally by assuming A.2(c) and A.3(b),
both strong consistency and convergence inL1(Rd) are obtained
in [52] for the same standard kernel density estimate. Assump-
tion A.3(a) implies that the importance density qm has heavier
tails than pm and is a typical assumption for IS methods, see [7,
Ch.3.3.2] and [53]. Furthermore, this condition is strengthened
in Assumption A.3(c), to ensure the convergence of the PGAF
methods that rely on the recycling strategy S2. Assumption A.4
is necessary for the proper definition of the P3 proposal family
in (9). �

In the following, several convergence results are presented for
the PGAF estimators in (11) and (12), where the fused particle
set

{
x
(n)
G

}N
n=1

and the weighting function w̃NG are subject to the
particular choice of PGAF method, as seen in Table I.

Theorem VI.1 (Asymptotic unbiasedness (I)–for PGAF meth-
ods with : S1 sampling) Under assumptions A.1(a)-A.3(b) (and
A.4 for the methods involving P3) and when the normaliza-
tion constant Z of (5) is known, the Z-normalized PGAF
methods P1S1W1, P2S1W1, P1S1W2, P2S1W2, P3S1W1,
and P3S1W2, from Table I are asymptotically unbiased, i.e.,
limN→∞ E

{
ϕNG

}
=

∫
ϕ(x)fG(x)dλ(x), for any test function

ϕ ∈ Cb(Rd). �
Theorem VI.2 (Asymptotic unbiasedness (II)–for PGAF

methods with : S2 sampling) Under assumptions A.1(a)-
A.3(b), A.3(c), and when the normalization constant Z of
(5) is known, the Z-normalized PGAF methods P1S2W1 and
P1S2W2 from Table I are asymptotically unbiased, that is,
limN→∞ E

{
ϕNG

}
=

∫
ϕ(x)fG(x)dλ(x), for any test function

ϕ ∈ Cb(Rd). �
Remark 4: Note that the PGAF methods with the S2

sampling method require a stronger assumption on the tails
of the importance distributions {qm}Mm=1 than the methods
with S1—namely, A.3(c) in contrast to A.3(a). This is due
to the recycling of samples that leads to terms of the form
pm(xm)
q2m(xm) where xm ∼ qm for ∀m ∈ N

M
1 . The condition of fi-

nite expectation of these aforementioned terms is ensured
by assumption A.3(c). �

Theorem VI.3 (Consistency of PGAF methods): For all PGAF
methods of Table I and under the specific assumptions
listed below, both the Z-normalized (11) and the self-

normalized (12) estimators are (weakly) consistent, i.e., ϕNG
P−→∫

ϕ(x)fG(x)dλ(x) and ϕ̄NG
P−→ ∫

ϕ(x)fG(x)dλ(x) as N →
∞ for any test function ϕ ∈ Cb(Rd).
� Consistency for P1S1W1 results by assuming A.1(a)-

A.3(b) and

(pm ∗KhN
)/qk ∈ L1(Rd) (13)

for all m, k ∈ N
M
1 and ∀N . Whereas for P1S1W2, the

above only needs to hold for all m = k.
� Consistency for P1S2W1 follows by assuming A.1(a)-

A.3(b),

sup
x∈Dm

pm(x)/q2m(x) <∞ (14)

for all m ∈ N
M
1 , and (13) ∀m, k ∈ N

M
1 . Whereas for

P1S2W2 (13) only needs to hold for all m = k.
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� Consistency for P2S1W1 follows by assuming A.1(a)-
A.3(b), and

(pm ∗KhN
)/(qk ∗KhN

) ∈ L1(Rd) (15)

for alln, k ∈ N
M
1 and∀N . Whereas forP2S1W2 the above

only needs to hold for all n = k.
� Consistency for P3S1W1 and P3S1W2 follow

from A.1(a)-A.3(b) and A.4. �
Remark 5: The methods involving the scheme S2 employ re-

cycling of samples and, consequently, have the lowest computa-
tional and memory requirements at the cost of the more stringent
conditions of (14) on the tails of {qm}Mm=1. The conditions in
(15) for the methods involving P2 are less severe than those of
(13) and (14). Most noteworthy are the methods that rely on the
P3 proposal family, which in virtue of their construction—the
distribution in (9)—do not require any additional constraints on
the tails of {qm}Mm=1. �

VII. IMPLEMENTATION AND EXPERIMENTAL RESULTS

A. Implementation Aspects

This section presents a discussion on the assumptions of
Section VI, specifically the kernel function and the bandwidth
sequence. Furthermore, we also offer examples of kernels and
bandwidth sequences that satisfy these assumptions. It can be
shown that assumptions A.1(a)-A.1(d) are satisfied by all kernel
functions (both Gaussian and non-Gaussian) given in Table I
of [50] for the single dimensional case (d = 1). For d > 1, mul-
tidimensional kernels are straightforwardly obtained by product
kernels [51, Sec. 4]. In this work, we will employ the multidi-
mensional normal kernel K(x) = (2π)−d/2 exp(−x�x/2) for
x ∈ R

d.
For a bandwidth sequence (hn)

∞
n=1 with general term hn =

cn−p, for some constant c > 0 and 0 < p < d−1, assump-
tions A.2(a) and A.2(b) are readily verified while A.2(c) follows
from the integral test for series. More specifically, the con-
vergence of the series

∑∞
n=1 exp(−αnhdn) <∞ follows from

the facts: exp(−nΘ(1)) < n−β for all β > 1 and n sufficiently
large; and

∑
n≥1 n

−β <∞ for every β > 1. Note that this
class of bandwidth sequences includes the optimal sequence
hn = O(n−1/(d+4)), i.e., the sequence that minimizes the mean-
squared error for a fixed n [51, p. 186].

B. Numerical Experiments

We consider two fusion scenarios. The first scenario con-
siders the fusion of Gaussian densities, where closed-form
solutions exist for the resulting fused density. Furthermore,
we consider the test function ϕ(x) = 1 ∀x ∈ R, leading to
estimators of the normalization constant Z. The parameters
in this case are: d = 1, M = 2, and the bandwidth sequence
has the general term hn = 0.1× n−1/5. The local densities are
Gaussian: p1(x) = fN (x; 1, 1) and p2(x) = fN (x;−1, 2); the
proposal densities are also Gaussian: q1(x) = fN (x; 1.3, 4.2)
and q2(x) = fN (x;−0.5, 5); while c1 = 0.2, c2 = 0.8, and
r1 = r2 = 0.5. Note that in addition to all the assumptions of
Section VI, the strong assumption qm ∈ L4(Rd), ∀m ∈ {1, 2},
is also met in this single-Gaussian case. This last assumption is

Fig. 1. Bias analysis of the proposed and state-of-the-art PGAF methods
for the estimation of the normalization constant in the Gaussian case (i.e.,
Gaussian density fusion). The proposed methods and a variant of the Gaussian
mixture particle geometric–average fusion (GM-PGAF) method with perfect
knowledge of the local posteriors (referred to as Gini) are represented on the
left axis in red. The two resulting estimators of the U-PGAF method are shown
on the right axis in blue. The exact values of Z, Z1, and Z2 are also indicated
on the respective axes.

only required to ensure the convergence of the uncorrected parti-
cle geometric–average fusion (U-PGAF) method (see Section VI
of the Supplemental Material [27]). Furthermore, the exact GAF
density is fG(x) = fN (x;−1/3, 5/3) while the normalization
constant of (5) is Z ≈ 0.75. For the proposed PGAF methods,
an estimator forZ is constructed via ẐN = 1

N

∑N
n=1 w̃

N
G

(
x
(n)
G

)
,

where the particles and the weights are obtained according to the
various PGAF methods resulting from Table I.

We compare the proposed PGAF methods with two variants
based on the state-of-the-art methods presented in Section S-II.
First, we construct a variant of the Gaussian mixture parti-
cle geometric–average fusion method (referred to as Gini)
that has perfect knowledge of the local posteriors, that is, the
Gaussian-mixture distributions of (S-29) are replaced with the
exact local posteriors: p̃m ← pm ∀m ∈ N

M
1 . Thus, the Gini

method employs the exact target density whereas all other meth-
ods use kernel density estimates instead. Second, the U-PGAF
method of Section S-II leads to two normalization constant
estimators since M = 2. These estimators are given by ẐNm =
1
N

∑N
n=1 f

N
G

(
x
(n)
m

)
, for m ∈ {1, 2}, with the U-PGAF weights

given in (S-48). Note that according to the consistency analysis
of the U-PGAF method conducted in Section S-VI, the estima-
tors converge to Zm � Z

∫
fG(x)qm(x)dλ(x) for m ∈ {1, 2}.

Numerically in this case, Z1 ≈ 0.098 and Z2 ≈ 0.115.
Fig. 1 shows the mean value of the resulting Z estimators

computed over 100 independent simulations using the pro-
posed methods and the state-of-the-art variants. Note that the
proposed PGAF methods and the Gini method asymptotically
approach Z whereas the U-PGAF method approaches Z1 and
Z2, corresponding to the two nodes respectively. This result
confirms the asymptotic unbiasedness of the proposed PGAF
methods while also numerically showing the asymptotic bias of
the U-PGAF estimators ẐN1 and ẐN2 as estimators of Z.

Fig. 2 presents the estimated variance of the Z estimators
for the Gini and the proposed PGAF methods. Two remarks
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Fig. 2. Variance analysis of the normalization constant estimator for the
proposed and state-of-the-art PGAF methods in the Gaussian case (i.e., Gaussian
density fusion).

Fig. 3. Bias analysis of the proposed and state-of-the-art PGAF methods for
the estimation of the normalization constant in the non-Gaussian case (i.e.,
Laplace density fusion). The proposed methods and a variant of the GM-PGAF
method with perfect knowledge of the local posteriors (referred to as Gini) are
represented on the left axis in red. The two resulting estimators of the U-PGAF
method are shown on the right axis in blue. The exact values of Z, Z1, and Z2

are also indicated on the respective axes.

are in order about these results. First, the estimated variance
of all proposed PGAF methods is decreasing with N . Second,
the P3S1W2 method has the lowest estimated variance among
all the methods. These conclusions are also supported by the
results in Table II. The table presents estimated quartile val-
ues for the absolute error |Z − ẐN | in the case of the Gini
and the proposed PGAF methods with W2 weighting. Similar
to MIS [28], PGAF methods with the W2 weighting scheme are
shown to exhibit a lower estimated variance than those with
W1. Furthermore, the P3 family defined by (9) can be seen
as providing a closer fit to the set of local posterior densities
than the families P1 and P2, thus justifying its lower estimated
variance.

A second scenario is considered where the densities to be
fused are non-Gaussian. More specifically, the two Laplace
distributions p1(x) = fL(x; 1, 1) and p2(x) = fL(x;−1, 2) are
to be fused with equal weights c1 = c2 = 0.5. The proposal

Fig. 4. Variance analysis of the normalization constant estimator for the
proposed and state-of-the-art PGAF methods in the non-Gaussian case (i.e.,
Laplace density fusion).

TABLE II
ESTIMATED QUARTILES q1, q2 (MEDIAN), AND q3 OF THE ABSOLUTE ERROR

|Z − ẐN | FOR THE Gini AND SEVERAL PGAF METHODS, AS A FUNCTION OF

THE NUMBER OF PARTICLES N . THE ESTIMATED QUARTILE VALUES REPORTED

IN THE TABLE WERE MULTIPLIED WITH 103

densities are also Laplace: q1(x) = fL(x; 1.3, 4.2) and q2(x) =
fL(x;−0.5, 5); while other parameters are kept identical to the
previous scenario. As before, the proposed PGAF methods are
compared with the U-PGAF method and a Gini method that
has access to the exact target density. Fig. 3 showcases the
estimators for the normalization constant in this non-Gaussian
case. The proposed PGAF methods and the Gini method
are numerically converging to the true normalization constant
Z ≈ 0.7968, whereas the two U-PGAF-based estimators con-
verge to Z1 ≈ 0.0667 and Z2 ≈ 0.0587. The logarithm of the
variance of these estimators is numerically shown to vanish with
increasing number of particles in Fig. 4. Similar to the Gaussian
scenario, the P3S1W2 method has the lowest variance among
the proposed PGAF methods.
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VIII. CONCLUSION

The article proposed several IS methods for approximating
GAF densities in multi-agent systems. The aim of these parti-
cle GAF methods is to sample particles that approximate the
weighted geometric-average of local densities, where the local
and the resulting GAF densities are difficult to sample from
and/or do not have closed-form expressions. The local particle
approximations serve to establish a kernel-density estimate of
the GAF density which is subsequently employed as target
density in a MIS framework. We also constructed several sets
of importance densities and propose sampling and weighting
schemes in order to construct the fused particle set, i.e., the
particles that approximate the GAF density. The proposed PGAF
methods are privacy-preserving, that is, the agents need not share
their measurements, while for a sub-family of PGAF methods,
the expressions of their prior distributions are not shared either.
Moreover, the agents only need to transmit a weighted set of
particles to the fusion center, thus ensuring a low communica-
tion overhead. Finally, consistency results were established for
estimators based on the fused particles. The proposed PGAF
methods are aimed at a broad spectrum of applications, such as,
robotics, sensing, and multi-agent learning.

APPENDIX

PROOFS OF THEOREMS

Without loss of generality, letϕ � 0 throughout this appendix.
Proof of Theorem VI.1:
� (P1 or P2)S1W1 Considering either the proposal family
P1orP2 (generically denoted viaQ = {qm}Mm=1) coupled
with the sampling methodS1 leads to i.i.d. particles {x(n)G }
that obey x

(n)
G |

{
i(n) = i(n)

} ∼ qi(n) and to i.i.d. indices
with laws i(n) ∼ Cat(r) ∀n. By the law of total expectation
and Fubini’s theorem,

E
{

ϕNG
}

=
1

ZN

N∑
n=1

E

{
E

{
ϕ
(
x
(n)
G

) fNG
(
x
(n)
G

)
qi(n)

(
x
(n)
G

) ∣∣∣∣i(n)}}

=
1

ZN

N∑
n=1

M∑
m=1

rm E

{
ϕ
(
x
(n)
G

) fNG (
x
(n)
G

)
qm

(
x
(n)
G

) ∣∣∣∣i(n) = m

}

=
1

Z

∫
ϕ (y)E

{
fNG (y)

}
dλ(y)

Lemma (S-V.4) (i) leads to ϕ (y)Z−1E
{
fNG (y)

}→
ϕ (y) fG (y) λ-a.e., similarly the sequence with
general term gN (y) � sup(ϕ)Z−1E

{
fNG (y)

}
also

converges gN (y)→ g (y) λ-a.e. as N →∞, with
g (y) � sup(ϕ)fG (y). Moreover,

∫
gNdλ <∞

since
∫
E
{
fNG (y)

}
dλ �

∑
m cm

∫
pm ∗KhN

dλ = 1
∀N , while from Lemma (S-V.5) (ii) it follows that
limN→∞

∫
gNdλ =

∫
gdλ = sup(ϕ) <∞. Thus, the

claim follows from a generalized form of the dominated
convergence theorem (DCT).

� (P1 or P2)S1W2 We consider either the proposal family
P1 or P2 (generically denoted via Q = {qm}Mm=1), the
sampling method S1, and the weighting scheme W2. By
marginalizing over the sampling index i(n), the i.i.d. fused
particles

{
x
(n)
G

}N
n=1

can be seen as drawn from the mix-

ture density x
(n)
G ∼ Ψ, where Ψ(y) =

∑M
m=1 rmqm(y).

Similarly, by the law of total expectation

E
{

ϕNG
}
=

1

ZN

N∑
n=1

E

{
ϕ
(
x
(n)
G

) fNG
(
x
(n)
G

)∑M
m=1 rm qm

(
x
(n)
G

)}

=
1

Z

∫
ϕ(y)

E
{
fNG (y)

}∑M
m=1 rm qm(y)

Ψ(y)dλ(y) .

The claim follows from a similar reasoning as in the
previous case.

� (P3S1W1) We fist denote the set of all local particles
via XNM �

{
x
(n)
m : m ∈ N

M
1 , n ∈ N

N
1

}
and note that, con-

ditionally on XNM = XNM , the random density functions
q̄Nm and fNG become deterministic, i.e., q̄Nm|XNM � q̄Nm and
fNG |XNM � fNG . The expectation E

{
ϕNG

}
can be written as

E
{

ϕNG
}
=

1

ZN

N∑
n=1

E

{
E

{
ϕ
(
x
(n)
G

) fNG
(
x
(n)
G

)
q̄N
i(n)

(
x
(n)
G

) ∣∣∣∣i(n),XNM}}

=
1

ZN

N∑
n=1

E

{∫
ϕ(y)fNG (y)dλ(y)

}

=
1

Z

∫
ϕ(y)E

{
fNG (y)

}
dλ(y)

where Fubini’s theorem was employed in the last line.
Subsequently, a combination of Lemma (S.V.4) (i),
Lemma (S.V.5) (ii), and DCT lead to the desired claim.

� (P3S1W2) The claim follows in a similar manner to
P1S1W2 and from the law of total expectation by con-
ditioning on XNM .

�
Proof of Theorem VI.2:
� P1S2W1The combinationP1S2 implies that the GAF par-

ticles are mapped to the local particles, i.e., x(n)G = x
(j(n))

i(n)

where
(
i(n), j(n)

)
= DetNM (n) is a deterministic map-

ping (see Section V-C). Let JNm �
{
j(n) :

(
i(n), j(n)

)
=

DetNM (n), i(n) = m, n ∈ N
N
1

}
and κNm = #JNm which

denotes the number of times the deterministic function
DetNM (·) maps to them-th proposal inN consecutive calls.
The expectation of the Z-normalized estimator becomes

E
{

ϕNG
}
=

1

ZN

N∑
n=1

E

{
ϕ
(
xj

(n)

i(n)

) fNG
(
x
(j(n))

i(n)

)
qi(n)

(
x
(j(n))

i(n)

)}

=
1

ZN

M∑
m=1

∑
j∈JN

m

E

{
ϕ
(
x(j)m

) fNG (
x
(j)
m

)
qm

(
x
(j)
m

)}

=
1

Z

M∑
m=1

κNm
N

E

{
ϕ
(
x(1)m

) fNG (
x
(1)
m

)
qm

(
x
(1)
m

)} (16)
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where the last equality results by noting that the expecta-
tion is identical for all j ∈ JNm . Lemma (S-V.6) and the
continuous mapping theorem lead to the convergence

ϕ
(
x(1)m

) fNG (
x
(1)
m

)
qm

(
x
(1)
m

) a.s.−→ ϕ
(
x(1)m

)ZfG

(
x
(1)
m

)
qm

(
x
(1)
m

) (17)

as N →∞ and for all m ∈ N
M
1 . Furthermore employing

the weighted arithmetic mean geometric mean (WAMGM)
inequality, a dominating sequence can be constructed as

ϕ
(
x(1)m

) fNG (
x
(1)
m

)
qm

(
x
(1)
m

) � sup(ϕ)

M∑
i=1

ci
p̂Ni

(
x
(1)
m

)
qm

(
x
(1)
m

) . (18)

The sequence with general term given in the right-hand-

side above, i.e., yN � sup(ϕ)
∑M

i=1 ci
p̂Ni (x

(1)
m )

qm(x
(1)
m )

, converges

almost surely to y � sup(ϕ)
∑M

i=1 ci
pi(x

(1)
m )

qm(x
(1)
m )

as N →∞
via Lemma (S-V.6) and the continuous mapping theorem.
Furthermore, the mean E{yN} also converges to E{y} as
N →∞. This follows by first noting that

E

{
p̂Ni

(
x
(1)
m

)
qm

(
x
(1)
m

)} =

∫
E
{
p̂Ni (x)

}
dλ(x) = 1

for all i �= m and ∀N . Subsequently, the decomposition
hods

E

{
p̂Nm

(
x
(1)
m

)
qm

(
x
(1)
m

)
}

= E

{
p̃N,1
m

(
x
(1)
m

)
qm

(
x
(1)
m

)
}

+
K(0)

Nhd
N

E

{
pm

(
x
(1)
m

)
q2m

(
x
(1)
m

)
}

− 1

N
E

{
pm (x̃m)KhN

(
x̃m − x

(1)
m

)
qm

(
x̃m

)
qm

(
x
(1)
m

)
}

(19)

where x̃m ∼ qm is independent of
{
x
(n)
m : ∀n} and p̃N,1m is

defined in (S-41). Due to the construction of p̃N,1m (see
proof of Lemma (S.V.6) from [27]), the first expecta-
tion on the right-hand-side above converges to one. The
other two terms converge to zero by invoking pm/qm ∈
L1(R) from assumption A.3(c). It follows that {yN : N ∈
N} is uniformly integrable [54, Thm. 5.5.2], as well as{
ϕ
(
x
(1)
m

) fNG (x
(1)
m )

qm(x
(1)
m )

: N ∈ N

}
due to (18). The latter cou-

pled with (17) and assuming limN→∞ κNm/N = rm leads
to the claim.

� P1S2W2 Recalling that Ψ(x) =
∑M
m=1 rmqm(x), the ex-

pectation of the estimator becomes

E
{

ϕNG
}
=

1

Z

M∑
m=1

κNm
N

E

{
ϕ
(
x(1)m

) fNG (
x
(1)
m

)
Ψ
(
x
(1)
m

) }
Similarly to the previous case, Lemma (S-V.6) and the
continuous mapping theorem lead to the convergence

ϕ
(
x(1)m

) fNG (
x
(1)
m

)
Ψ
(
x
(1)
m

) a.s.−→ ϕ
(
x(1)m

)ZfG

(
x
(1)
m

)
Ψ
(
x
(1)
m

) (20)

as N →∞ and for all m ∈ N
M
1 . A dominating se-

quence is easily constructed from ϕ
(
x
(1)
m

) fNG (x
(1)
m )

Ψ(x
(1)
m )

�

r−1m sup(ϕ)
fNG (x

(1)
m )

qm(x
(1)
m )

, where the sequence on the right-hand

side forms a uniformly integrable family (see the case
P1S2W1). Thus, (20) and limN→∞ κNm/N = rm lead to
the claim through Vitali’s convergence theorem.

�
Proof of Theorem VI.3: For all PGAF methods from

Table I, Theorems VI.1 and VI.2 assert the convergence
limN→∞ E

{
ZϕNG

}
= Z

∫
ϕ(x)fG(x)dλ(x). Subsequently, if

the variance vanishes V
{
ZϕNG

}→ 0 as N →∞, then the
consistency of the Z-normalized estimator is guaranteed

from [54, Thm. 2.2.4], i.e., ϕNG
P−→ ∫

ϕ(x)fG(x)dλ(x) as
N →∞. The special case for ϕ(x) = 1 ∀x also follows:
1
N

∑N
n=1 w̃

N
G

(
x
(n)
G

) P−→ Z as N →∞. Furthermore, the con-
sistency of the self-normalized estimator follows via the
continuous mapping theorem and by noticing that ϕ̄NG =

ZϕN
G

1
N

∑N
n=1 w̃N

G (x
(n)
G )

.

Hence it is sufficient to prove that the variance V{ZϕNG }
vanishes asN →∞ for ∀ ϕ ∈ Cb(Rd) and each PGAF method.
The variance V

{
ZϕNG

}
becomes

V

{
1

N

N∑
n=1

ϕ
(
x(n)
G

)
w̃N

G

(
x(n)
G

)}

=
1

N2

N∑
n=1

E

{(
ϕ
(
x(n)
G

)
w̃N

G

(
x(n)
G

))2
}
− [

Z E
{
ϕN

G

}]2

+
1

N2

N∑
n=1

N∑
�=1,��=n

E

{
ϕ
(
x(n)
G

)
w̃N

G

(
x(n)
G

)
ϕ
(
x(�)G

)
w̃N

G

(
x(�)G

)}
.

(21)

In the following, the variance of (21) is addressed separately for
each PGAF method.
� Consistency of ϕ̄NG for the case P1S1W1. The first term in

(21) is written as

1

N2

N∑
n=1

E

{(
ϕ
(
x
(n)
G

)
w̃NG

(
x
(n)
G

))2
}

=
1

N2

N∑
n=1

M∑
m=1

rm

∫
ϕ2(y)

E

{[
fNG (y)

]2}
qm(y)

dλ(y)

=
1

N

M∑
m=1

rm

∫
ϕ2(y)

qm(y)
E

{[
fNG (y)

]2}
dλ(y)

� sup(ϕ2)

N

M∑
m=1

rm

∫
1

qm(y)

M∑
�=1

c� E
{[

p̂N� (y)
]2}

dλ(y)

� sup(ϕ2)MK

NhdN

M∑
m,�=1

(
M�

N
+ 1

)∫
p� ∗KhN

(y)

qm(y)
dλ(y)
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which is finite for all N and converges to zero as N →∞
when (13) holds. The last term in (21) can be written as

1

N2

N∑
n=1

N∑
�=1,��=n

E
{
ϕ
(
x
(n)
G

)
w̃N

G

(
x
(n)
G

)
ϕ(x

(�)
G ) w̃N

G (x
(�)
G )

}

=
N − 1

N

∫∫
E
{
ϕ(x) fNG (x)ϕ(y) fNG (y)

}
dλ(x) dλ(y) .

(22)

Lemma (S.V.4) (ii) leads to the convergence

E
{
ϕ(x) fNG (x)ϕ(y) fNG (y)

}→ Z2 ϕ(x) fG(x)ϕ(y) fG(y)

for (λ× λ)-a.e. x and y as N →∞. Furthermore, the
integrand E

{
ϕ(x) fNG (x)ϕ(y) fNG (y)

}
on the right-hand

side of (22) is bounded by

(sup(ϕ))2
M∑
m=1

cm E
{
p̂Nm(x) p̂Nm(y)

}
� (sup(ϕ))2

M∑
m=1

cm
[
aNm(x,y) + bNm(x,y)

]
where

aNm(x,y) =
Mm

N

∫
pm(z)KhN

(x− z)KhN
(y − z)dλ(z)

bNm(x,y) =
N − 1

N
(pm ∗KhN

(x)) (pm ∗KhN
(y)) .

For any m, the functions aNm and bNm are integrable w.r.t.
the product measure (λ× λ) for all N and we denote

ANm �
∫∫

aNm(x,y)dλ(x)dλ(y) =
Mm

N
(23)

BNm �
∫∫

bNm(x,y)dλ(x)dλ(y) =
N − 1

N
. (24)

Since aNm(x,y)→ 0 and bNm(x,y)→ pm(x)pm(y)
for (λ× λ)-a.e. as well as limN→∞ANm = 0 and
limN→∞BNm = 1, the application of the generalized DCT
w.r.t. the product measure (λ× λ) leads to the convergence
of the quantity in (22) to [Z

∫
ϕ(x)fG(x)dλ(x)]

2 and
subsequently the variance V{ZϕNG } → 0 as N →∞.

� Consistency of ϕ̄NG for the case P1S1W2. The first term of
the variance in (21) is written as

1

N2

N∑
n=1

E

{(
ϕ
(
x
(n)
G

)
w̃NG

(
x
(n)
G

))2
}

=
1

N2

N∑
n=1

M∑
i(n)=1

ri(n)

∫ ϕ2(y)E
{[
fNG (y)

]2}[∑M
m=1 rm qm(y)

]2 qi(n)(y) dλ(y)

� sup(ϕ2)

N

M∑
�=1

∫
c�

E

{[
p̂N� (y)

]2}∑M
m=1 rm qm(y)

dλ(y)

� sup(ϕ2)MK

NhdN

M∑
�=1

c�

r�

(
M�

N
+1

)∫
p� ∗KhN

(y)

q�(y)
dλ(y)

which is finite for all N and converges to zero as N →
∞ when (13) holds. Analogous to the case of P1S1W1,

the quantity in (22) converges to [Z
∫
ϕ(x)fG(x)dλ(x)]

2

and subsequently the variance V{ZϕNG } → 0 as N →∞
leading to the consistency of the self-normalized estimator
for P1S1W2.

� Consistency of ϕ̄NG for the case P1S2W1. Under the
proposal and sampling choice P1S2, the GAF particles

are mapped to local particles, i.e., x(n)G = x
(j(n))

i(n) where(
i(n), j(n)

)
= DetNM (n) is a deterministic mapping (see

Section V-C). Employing the WAMGM inequality and
|x+ y|p � 2p(|x|p + |y|p), ∀x, y ∈ R and p > 0, the first
term in the variance of (21) is bounded by

1

N2

N∑
n=1

E

{(
ϕ
(
xj

(n)

i(n)

)
w̃NG

(
x
(j(n))

i(n)

))2
}

�
sup

(
ϕ2

)
N2

M∑
�=1

κN�

M∑
m=1

cm E

{[
p̂Nm

(
x
(1)
�

)]2
q2�
(
x
(1)
�

) }

�
sup

(
ϕ2

)
N2

M∑
�=1

κN�

{
4c�K

2(0)

N2h2d
N

[
sup

(
p�
q2�

)]2

+
4c�MK

hdN

(
M�

N
+1

)∫
p� ∗KhN

(y)

q�(y)
dλ(y)

+

M∑
m=1
m �=�

cm
MK

hdN

(
Mm

N
+1

)∫
pm ∗KhN

(y)

q�(y)
dλ(y)

}

which is finite for all N and converges to zero, as
N →∞, when both (13) and (14) hold. Let JNm �{
j(n) :

(
i(n), j(n)

)
= DetNM (n), i(n) = m, n ∈ N

N
1

}
and

note that κNm = #JNm . The last term of (21) becomes

1

N2

N∑
n,k=1
n �=k

E

{
ϕ
(
x(j

(n))

i(n)

)
ϕ
(
x(j

(k))

i(k)

) fNG
(
x(j

(n))

i(n)

)
qi(n)

(
x(j

(n))

i(n)

) fNG
(
x(j

(k))

i(k)

)
qi(k)

(
x(j

(k))

i(k)

)
}

=
1

N2

M∑
m=1

∑
i∈JN

m

∑
j∈JN

m
j �=i

E

{
ϕ
(
x(i)m

)
ϕ
(
x(j)m

) fNG (
x(i)m

)
qm

(
x(i)m

) fNG
(
x(j)m

)
qm

(
x(j)m

)
}

+
1

N2

M∑
m,�=1
m �=�

∑
i∈JN

m

∑
j∈JN

�

E

{
ϕ
(
x(i)m

)
ϕ
(
x(j)�

) fNG (
x(i)m

)
qm

(
x(i)m

) fNG
(
x(j)�

)
q�
(
x(j)�

)
}

=
M∑

m=1

κN
m

(
κN
m − 1

)
N2

E

{
ϕ
(
x(1)m

)
ϕ
(
x(2)m

) fNG (
x(1)m

)
qm

(
x(1)m

) fNG
(
x(2)m

)
qm

(
x(2)m

)
}

+
M∑

m=1

M∑
�=1
��=m

κN
mκN

�

N2
E

{
ϕ
(
x(1)m

)
ϕ
(
x(2)�

) fNG (
x(1)m

)
qm

(
x(1)m

) fNG
(
x(2)�

)
q�
(
x(2)�

)
}

(25)

where the last equality results by noting that for all m, � ∈
N
M
1 with m �= �, the expectation is identical in the cases

of i �= j and i = j. Lemma (S-V.6) and the continuous
mapping theorem lead to the convergence

fNG
(
x
(1)
m

)
qm

(
x
(1)
m

) fNG (
x
(2)
�

)
q�
(
x
(2)
�

) a.s.−→ Z2 fG

(
x
(1)
m

)
qm

(
x
(1)
m

) fG

(
x
(2)
�

)
q�
(
x
(2)
�

) (26)
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as N →∞ and for all m, � ∈ N
M
1 . Furthermore, the

WAMGM inequality leads to

ϕ
(
x(1)m

)
ϕ
(
x
(2)
�

) fNG (
x
(1)
m

)
qm

(
x
(1)
m

) fNG (
x
(2)
�

)
q�
(
x
(2)
�

)
� sup(ϕ)2

M∑
i=1

ci

[
p̂Ni

(
x
(1)
m

)
qm

(
x
(1)
m

) p̂Ni (
x
(2)
�

)
q�
(
x
(2)
�

) ]
(27)

and to the construction of the dominating sequence

(yNi,m,�)N with general term yNi,m,� �
p̂Ni (x

(1)
m )

qm(x
(1)
m )

p̂Ni (x
(2)
� )

q�(x
(2)
� )

.

Again, Lemma (S-V.6) and the continuous mapping theo-
rem lead to the convergence yNi,m,�

a.s.−→ yi,m,� asN →∞,

∀i,m, � ∈ N
M
1 , and where yi,m,� � pi(x

(1)
m )

qm(x
(1)
m )

pi(x
(2)
� )

q�(x
(2)
� )

. In the

following, we will show that E
{
yNi,m,�

}→ E
{
yi,m,�

}
= 1

as N →∞ and subsequently the family
{
yNi,m,�

}
N

is
uniformly integrable ∀i,m, �. For the case i �= m �= �, we
obtain

E
{
yNi,m,�

}
=

∫
E{p̂Ni (x) p̂Ni (y)}dλ(x)dλ(y)

=
1

N

∫
p2i (z)

qi(z)
dλ(z) +

N − 1

N

which converges to one (in virtue of assumption A.3(a)).
For the case i = m �= �, we obtain

E
{
yNi,i,�

}
=

KhN
(0)

N2

∫ [
p2i (x)

q2i (x)
+ (N − 1)

pi(x)

qi(x)

]
dλ(x)

+
N − 1

N2

∫ [
pi(x)

qi(x)
(pi ∗KhN

)(x) +
p2i (x)

qi(x)

]
dλ(x)

+
(N − 1)(N − 2)

N2

where all terms converge to zero (assumption A.3(a) and
pm/qm ∈ L1(Rd) ∀m due to (14)), except the last term
which converges to one. Similarly, for the case i �= m = �,
it can be easily shown that E

{
yNi,m,m

}→ 1 as N →∞.
Lastly, for i = m = �, we obtain

E
{
yNi,i,i

}
=

K2
hN

(0)

N2

[∫
pi(x)

qi(x)
dλ(x)

]2
+

1

N2

∫∫
pi(x)

qi(x)

pi(y)

qi(y)
K2
hN

(x− y) dλ(y)dλ(x)

+
2(N − 2)

N2

∫
pi(x)

qi(x)
(pi ∗KhN

)(x) dλ(x)

+
2KhN

(0)

N2

[∫
p2i (x)

q2i (x)
dλ(x)+(N−2)

∫
pi(x)

qi(x)
dλ(x)

]

+
N − 2

N2

∫
p2i (x)

qi(x)
dλ(x) +

(N − 2)(N − 3)

N2

which also converges to one in virtue of assump-
tion A.3(a) and since (14) holds ∀ m. The uni-
form integrability of the family

{
yNi,m,�

}
N

and the in-
nequality in (27) lead to the uniform integrability of

the family
{
ϕ
(
x
(1)
m

)
ϕ
(
x
(2)
�

) fNG

(
x
(1)
m

)
qm

(
x
(1)
m

) fNG

(
x
(2)
�

)
q�

(
x
(2)
�

) : N ∈ N
}

.

Coupled with (26), this results in the convergence

lim
N→∞

E

{
ϕ
(
x(1)m

)
ϕ
(
x
(2)
�

) fNG (
x
(1)
m

)
qm

(
x
(1)
m

) fNG (
x
(2)
�

)
q�
(
x
(2)
�

) }

=

(
Z

∫
ϕ(x) fG(x) dλ(x)

)2

for all m, � ∈ N
M
1 . Finally, limN→∞ κNm/N = rm and∑M

m=1 rm = 1 lead to the convergence of (25) to
[Z

∫
ϕ(x)fG(x)dλ(x)]

2. Subsequently the variance
V{ZϕNG } → 0 as N →∞ leading to the consistency
of the self-normalized estimator with the P1S2W1
construction.

� Consistency of ϕ̄NG for the caseP1S2W2 follows along sim-
ilar arguments to the case of P1S2W1 with the exception
being that (13) only needs to hold for all m, k ∈ N

M
1 with

m = k.
� Consistency of ϕ̄NG for the case P2S1W1 follows along

similar lines to the case P1S1W1 by assuming (15) to hold
for all m, k ∈ N

M
1 .

� Consistency of ϕ̄NG for the case P2S1W2 follows along
similar lines to the case P1S1W2 by assuming (15) to hold
for all m, k ∈ N

M
1 with m = k.

� Consistency of ϕ̄NG for the case P3S1W1. Assuming A.4,

note the bound fNG (x)

q̄Nm(x)
� N1−cmC for some finite con-

stant C > 0 (see Section VIII of the Supplemental Ma-
terial [27]). By the law of total expectation, the first term
in (21) is written as

1

N2

N∑
n=1

E

{
E

{(
ϕ
(
x
(n)
G

)
w̃NG

(
x
(n)
G

))2
∣∣∣∣∣i(n),XNM

}}

=
1

N2

N∑
n=1

M∑
i(n)=1

ri(n)

∫
ϕ2(y)E

{(
fNG (y)

)2
q̄N
i(n)(y)

}
dλ(y)

� C
M∑
m=1

rmN
−cm

∫
ϕ2(y)E

{
fNG

(
y
)}
dλ(y)

� sup(ϕ2)C

M∑
m=1

rmN
−cm

∫ M∑
�=1

c� E
{
p̂N� (y)

}
dλ(y)

= sup(ϕ2)C
M∑
m=1

rmN
−cm (28)

where, in the last line, we employed the result
E
{
p̂N� (x)

}
= p� ∗KhN

(x). Furthermore, the bound (28)
vanishes as N →∞. The last term in (21) becomes

1

N2

N∑
n,�=1
n �=�

E

{
E

{
ϕ
(
x
(n)
G

) fNG
(
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(n)
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(
x
(n)
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)
× ϕ(x(�)G )

fNG (x
(�)
G )
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G )

∣∣∣∣∣i(n), i(�),XNM
}}

=
N − 1

N

∫∫
E
{
ϕ(x) fNG (x)ϕ(y) fNG (y)

}
dλ(x) dλ(y)
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with the double integral converging to [Z
∫
ϕ(x)fG

(x)dλ(x)]2 according to the same arguments given for the
case P1S1W1. This implies that the variance V{ZϕNG } →
0, as N →∞, for the P3S1W1 PGAF method and thus
assuring its consistency.

� The consistency of ϕ̄NG for the case P3S1W2 by addition-
ally assuming A.4. The first term in (21) becomes

1

N2

N∑
n=1

E

{∫
ϕ2(y)

[
fNG (y)

]2∑M
j=1 rj q̄

N
j (y)

dλ(y)

}

� 1

Nr1
E

{∫
ϕ2(y)fNG (y)

(
fNG (y)

q̄N1 (y)

)
dλ(y)

}
� C

sup(ϕ2)

r1 N c1

∫
E
{
fNG (y)

}
dλ(y)

which is finite for all N and vanishes as N →∞. In
a similar manner to the case P3S1W2, the last term
in (21) converges to [Z

∫
ϕ(x)fG(x)dλ(x)]

2, leading to
V
{
ZϕNG

}→ 0, asN →∞. Thus, proving the consistency
for the P3S1W2 PGAF method.

�
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