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ABSTRACT

Chemotaxis is a directed cell movement in response to external
chemical stimuli. In this paper, wepropose a simplemodel for the ori-
gin of chemotaxis – namely how a directed movement in response
to an external chemical signal may occur based on purely reac-
tion–diffusion equations reflecting inner working of the cells. The
model is inspired by the well-studied role of the rho-GTPase Cdc42
regulator of cell polarity, in particular in yeast cells. We analyse sev-
eral versions of the model to better understand its analytic proper-
ties and prove global regularity in one and two dimensions. Using
computer simulations, we demonstrate that in the framework of
this model, at least in certain parameter regimes, the speed of the
directed movement appears to be proportional to the size of the
gradient of signalling chemical. This coincides with the form of the
chemical drift in the most studied mean field model of chemotaxis,
the Keller–Segel equation.
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1. Introduction

Chemotaxis is a directed cell movement in response to external chemical stimuli. Chemo-

taxis is ubiquitous in biology; for example, it plays a role in organismmorphology [19, 20],

reproduction processes [8, 17, 18, 23] and workings of immune system [4, 21]. There are

many mathematical models of chemotaxis, the most studied is the Keller–Segel equation

and its variants. Virtually all of these models incorporate a transport term driven by the

concentration of the external chemical, which may be produced by the cells themselves

(see, e.g. [11, 15], where further references can be found). Yet we are not aware of any

mathematical models that would aim to explain the origin of the transport based on reac-

tion–difusion processes taking place inside cells. The way chemotaxis happens, at least for

eukaryotic cells, is that cells translate chemical environmental cues into amplioed intracel-

lular signalling that results in elongated cell shape, actin polymerization toward the leading

edge and movement along the gradient. In this paper, instead of presenting chemotaxis as

an explicit transport term, we explore model that aims to explain the origin of the chemo-

tactic ability of cells. Inspired by [3], we look at sexual yeast reproduction and simplify the

polarization process into understanding active rho-GTPase Cdc42 concentration in one

CONTACT Alexander Kiselev kiselev@math.duke.edu; Yishu Gong yishugong@hsph.harvard.edu

© 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/
licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
The terms onwhich this article has been published allow the posting of the AcceptedManuscript in a repository by the author(s) or with their
consent.



2 Y. GONG AND A. KISELEV

yeast under chemical gradient produced by another yeast. This is certainly just an element

of a more complex picture involved into producing chemotactic response in cells, but we

limit consideration to this one stage. Our orst goal is to explore the well-posedness proper-

ties of the model and its variants and to understand analytic features involved. Our second

goal is to get more information on the nature of transport generated by the model reacting

to external chemical stimuli. In particular, a natural question is how the speed of transport,

which we measure via the coordinate moment of a density, depends on the gradient of the

attractive chemical. This question we approach through numerical simulations and ond

that for certain reasonable ranges of parameters, this dependence is linear.

The two-species mass-conserved activator-substrate (MCAS) system (Figure 1) that is

the basis of our model consists of two partial diferential equations (PDEs) governing the

kinetics of the slowly difusing activator u (GTP-bound GTPase on the membrane) and

the rapidly difusing substrate v (GDP-bound GTPase in the cytoplasm). In general, this

system has the following form in 1D (see [3]):

∂u

∂t
= F(u, v) + k�u,

∂v

∂t
= −F(u, v) + kv�v. (1)

Here, k refers to the difusion of u, kv refers to the difusion of v. These two difusion

constants usually difer by two orders of magnitude. F(u, v) describes the biochemical

interconversions between u and v, given in the form:

F(u, v) = h(u)v − g(u)u.

The positive feedback (i.e. conversion from inactive GDPase to active GTPase with

energy) is denoted by f (u)v, while the negative feedback (i.e. conversion from active

Figure 1. Local activation via positive feedback and depletion of the substrate in the cytosol generates
an activator-enriched domain on the cortex [3].
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GTPase to inactive GDPase without energy) is denoted by g(u)u. Examples of F(u, v)

include: the simplest

h(u) = ãu2, g(u) = b;

Goryachev9s (see [6])

h(u) = ãu2 + cu, g(u) = b; (2)

and (see [14])

h(u) = 1, g(u) =
b

1 + u2
.

In [3], Turing-type instability for these types of reaction have been analysed; it was also

shown that steady states with more than one peak are unstable for many kinds of F(u, v).

This analysis is in agreement with experiments as one usually only observes one bud in

yeast asexual production [3].

Several complicated computational models have been developed to mimic gradient-

induced polarization toward the pheromone source [9, 22] and have shown the rate of

movement is dependent on pheromone concentration [1]. Here, we propose a simpler sys-

tem that is capable of capturing such gradient tracking ability, speciocally, in the context

of chemotactic reaction of a single yeast cell to an external pheromone signal. We apply a

modiocation to the Turing-typemodel described above and add a pheromone density pro-

ole α̃f (x) that depends on location in the form similar to [22] – andwe obtain the following

system:

∂u

∂t
= (ãu2 + α̃f (x))v − bu + k�u,

∂v

∂t
= −(ãu2 + α̃f (x))v + bu + kv�v. (3)

In (3), ã, b, α̃, k, kv are constants. ã is the reaction activation constant, b is the reaction

depletion constant, α̃ is the overall pheromone strength, k is the difusion coeocient for u,

and kv is the difusion coeocient for v. f (x) is a bounded smooth function that describes

the pheromone level at diferent locations.

We assume that rho-GDPase difuses inonitely fast, i.e. kv approaches∞. Since the total

mass of rho-GTPase and rho-GDPase is conserved, M =
∫

(u(·, t) + v(·, t))dx is a con-

stant. Then we can obtain the following equation (4) that describes the activator–substrate

reaction between these two substances. The setting we have is x ∈ T
d when dimension

d = 1, 2, with periodic boundary condition:

∂u

∂t
= (ãu2 + α̃f (x))

1

|Td|

(

M −

∫

Td
udx

)

− bu + k�u. (4)

In (4), |Td| is the measure of the domain, M is the total mass. We are interested in the

non-negative solution u with
∫

udx ≤ M for all time. By rescaling space and time, we can
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Figure 2. The interconversion of Rho-GTPases between active and inactive forms can be modelled
as a reaction–diffusion equation governing the dynamics of the slowly-diffusing activator u and the
infinitely-diffusing substrate v.

simplify Equation (4) as follows:

∂u

∂t
= (au2 + αf (x))

(

M −

∫

Td
udx

)

− u + �u. (5)

Here depletion rate and difusion coeocient are normalized to 1, and 1
|Td|

gets absorbed

into ã and α̃ (Figure 2).

Our main results are as follows. On the rigorous level, we are able to establish global

regularity results for Equation (5) in one and two dimensions for all non-negative initial

data. To better understand the structure of the equation, we consider (5) in the absence

of regularizing difusion and prove that for all onite 0 ≤ t ≤ T ≤ ∞, the proole for active

rho-GTPase u stays smooth even when there is no difusion term. When we re-introduce

difusion in one dimension, uniform in time global bound on derivatives of u is shown.

With difusion in two dimension, global regularity with possible growth is proved. In our

numerical experiments, we observe the proole of active rho-GTPaseumove towards higher

concentration of pheromone, and stopsmoving once it reaches the locationwithmaximum

pheromone concentration. In addition, we explore the speed of such movement through

tracking the centre of mass of rho-GTPase proole. If pheromone concentration is linear,

the centre ofmassmoves with a constant speed towards the pheromone peak.More impor-

tantly, we verify that the movement speed depends linearly on the pheromone gradient in

a natural parameter range similar to that used in [3]. Note that such linear dependence

of chemotactic drift on the gradient of the attractive chemical density f (x) is a common

feature of chemotaxis models, including the most studied Keller–Segel equation which in

its simplest form reads (see, e.g. [15])

∂ρ − �ρ + α∇ · (ρ∇f ) = 0. (6)

The emergence of transport mean oeld equations such as (6) from kinetic equations has

been extensively studied (see, e.g. [10, 12, 13, 16]). However the existence of chemotactic

transport is already built in on the kinetic level. As far as we know, Equation (5) is the orst

simple reaction–difusion model that aims to rigorously analyse the emergence of chemo-

taxis from the inner cell workings, even if it is focused on just one stage of the process that

can be quite complex.
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This paper is organized as follows: in the following section, we introduce the general

set up and key parameters of the model in more detail and present our numerical scheme.

We then proceed to describe results of the numerical experiments. After this we state the

rigorous results that we are able to prove and proceed with the proofs.

2. General set up and numerical scheme

We want to explore the origin of chemotactic ability of cells with simulation in 1D using

the following equation (dropping the scripts in (4) and denote the total mass of u(x, t) as

U(t) :=
∫

Td u(x, t)dx):

∂u

∂t
= (au2 + αf (x))

1

|Td|
(M − U(t)) − bu + k�u. (7)

The parameters we use are the same as in [3] and are shown in Table 1 with some basic

conversions. We used the method of lines to turn spatially discretized PDE into a system

of ODEs, then we use a robust ODE solver ODE15s in Matlab to solve. Note that since

we assume rho-GDPase v is rapidly difusing, we use Simpson9s method to numerically

integrate rho-GTPase to obtain
∫

u(x, t)dx and calculate rho-GDPase as follows:

v(t) =
1

|Td|
(M − U(t)) . (8)

For the computational part, we restrict ourselves to one-dimensional surface and assume

the pheromone proole is generated by another yeast cell. If this cell is some distance away,

one reasonable model of the two-dimensional pheromone distribution is a solution to the

heat equation ∂tω − �ω = 0 with a δ function initial data, that is, as a fundamental solu-

tion of 2D heat equation. Then we can derive the pheromone proole on the cell boundary

as shown in Figure 3, and in general, it has the form:

fh(x) =
β

4πγ t

(

exp

(

−
1

4γ t

(

L2 + r2 − 2Lrcos
x − xpeak

r

)))

, (9)

where φ =
x−xpeak

r and φ ∈ [−π ,π). We use γ to denote the difusion coeocient for the

source, β as the response strength to the source, and without loss of generality, we assume

t = 1. With γ = 10, t = 1, L = 10, β = 1500, we can plot fh(x) in Figure. 4. We also plot

a linear pheromone proole f (x) that is similar to fh(x) with a peak at xpeak deoned below

Table 1. Parameters from [3].

Parameter Description Value/Range in simulation Unit

k Diffusion coefficient for u 0.01 (µm)2(s−1)

α Pheromone strength 0.5−3 s−1

|Td| Cell size 10 µm
M Total mass 10 –
a Strength of activation 1 (µm)2

b Strength of substrate 1 s−1
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Figure 3. Derivation of a pheromone profile generated from a heat equation.

Figure 4. Pheromone profile generated from a heat equation fh(x) and a similar linear pheromone
profile f (x).

in Figure 4 as well. The reason for this choice will be explained later.

f (x) =

{
2
5x, if 0 ≤ x ≤ 5,

4 − 2
5x, if 5 ≤ x ≤ 10.

(10)



JOURNAL OF BIOLOGICAL DYNAMICS 7

To obtain the initial proole of u, we start with a uniformly distributed v and a bump

function u, and we run the simulation without pheromone until it stabilizes according to

∂u

∂t
= au2

1

|Td|
(M − U(t)) − bu + k�u. (11)

Switching on the pheromone, we track themovement using centre of mass since the proole

of u is relatively stable over time. The centre of mass as a function of time is deoned using

CMu(t) =

∫

xu(x, t)dx

U(t)
. (12)

We also measure the movement of the proole of u with the time derivative of the centre of

mass: dCMu(t)
dt .

3. Numerical results: pheromone inducedmovement

While there is no explicit transport term in (7), we observe movement of the rho-GTPase

u proole over time in response to 8reallocation of resources9 to more favourable reaction

regions induced by pheromone αfh(x) and αf (x) as shown in Figure 5. As our numerical

simulations show, at least in certain parameter ranges, this transport appears quite similar

to the Keller–Segel-type transport with speed proportional to the concentration gradient.

As we can see in Figure 5, one does not expect that the solution will be an exact trav-

eling pulse since the background level of the pheromone afects the shape of the bump of

u density. With time t and recorded CMu(t), we can compute the movement speed of the

centre of mass, dCMu(t)
dt and the corresponding pheromone proole fh and f at the centre of

mass. From Figures 6 and 7, we propose the hypothesis that the movement speed dCMu(t)
dt

depends on the derivative of the pheromone.

We have tried some other pheromone prooles with similar results. While the graphs on

Figure 7 appear close to lines, they are not quite lines – but perhaps because the density

bumpof u has spatial scale, and so is exposed to a range of concentration slopes (we take the

Figure 5. Numeric solution to Equation (7) with α = 2 and other parameters given in Table 1: (a)
pheromone profile given by fh(x) and (b) pheromone profile given by f (x).
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Figure 6. Movement speed CMu(t)
dt

as a function of pheromone profile slope f (hCMu(t))
dt

. dfh(x)
dx

> 0 for
x ∈ (0, 2.5).

Figure 7. Movement speed CMu(t)
dt

as a function of pheromone profile slope f (CMu(t))
dt

. df (x)
dx

is a constant
for x ∈ (0, 2.5).

slope at the centre ofmass as the basis of the functional relationship pictured in this ogure).

As one of our goals is to study the dependence of themovement speed of the centre of mass

CMu(t) and on the gradient of the pheromone concentration αf ′(x), we will also consider

the piecewise linear pheromone proole f (x): it has extended regionswith the constant slope

that makes it easier to capture the efect more precisely. We illustrate this transport picture

in Figure 8 by calculating the centre of mass using (12) of the initial proole of u and the

proole at t = 10,000 s pheromone proole f (x) with pheromone strength α = 2.

As one can expect, the proole of u slows down once its centre of mass starts to approach

x = xpeak = 5µm.We can plot the centre of mass a function as a time of time for diferent

pheromone strengthα. As presented in Figure 9, the centre ofmass ofu stays at x = xpeak =

5µm after t = 7000 s for the pheromone strength α = 3. In fact, if we run the simulation

long enough, the centre of mass of u appears to get arbitrarily close to x = xpeak = 5µm

for all α > 0.

We then continue to explore the movement speed of the centre of mass as a function of

pheromone strength α, which controls the slope of the pheromone concentration. From

Figure 9, we can see a constant movement speed of the centre of mass when the proole of u

is far away from xpeak. Moreover, if we plot the movement speed (before the proole of u is

too close to xpeak) as a function ofα as shown in Figure 10, we observe linear dependence of
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Figure 8. Initial profile for rho-GTPase u, rho-GDPase v, and pheromone profile f (x) and pheromone
strength α = 2: (a) initial profile t = 0s and (b) profile when t = 10, 000s.

Figure 9. Centre of mass position CMu(t) as a function of time with pheromone profile f (x). In regions
away from xpeak, CMu(t) changes linearly with time.

transport speed on pheromone strength. Such linear dependence corresponds to the mean

oeld chemotaxis models in [11, 15].

4. Mathematical analysis: global regularity

Our goal in this section is to initiate rigorous mathematical analysis of Equation (5). There

is much literature on regularity of solutions for reaction–difusion type equations, but we

could not locate references dealing directly with (5) due to nonlocality produced by our

assumption of inonite difusion for v. In [2], the author presented global existence result
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Figure 10. Centre of mass movement speed dCMu(t)
dt

as a function of pheromone strength α with

pheromone profile f (x). In regions away from xpeak,
dCMu(t)

dt
changes linearly with α.

to a similar equation for suociently small and non-negative initial data. In this section,

we will present regularity result for (5) in T
d, with d = 1, 2 for any non-negative smooth

initial data with difusion and without difusion. When there is no difusion with d = 1, 2,

we can still show that u is smooth for all times 0 ≤ t < ∞. With difusion in 1D, uniform

in time global bound is proven while with difusion in 2D, global regularity with possible

growth is shown. At this time, we are unable to prove rigorous results that would provide

more qualitative features of the evolution, and in particular establish the conjecture on

linear dependence of the transport speed on pheromone gradient at least in some regimes.

The part of the dioculty is that, as we mentioned before, the solution cannot be expected

to take form of a traveling pulse of the oxed shape on an unbounded domain, and lack of

such framework complicate analysis. This paper can be viewed as creating a foundation for

such further investigation that remains an intriguing open problem.

4.1. Without difusion

We start with the case without difusion. Consider the following equation:

∂u

∂t
= (au2 + αf (x)) (M − U(t)) − u,U(t) =

∫

Td
udx. (13)

Theorem 4.1: Suppose u(t, x) is a non-negative solution to (13) with dimension d = 1, 2

and periodic boundary condition; a,α,M are constant parameters, and f (x) is a smooth non-

negative function. If u0(x) is a smooth initial proole, then u(t, x) stays smooth for all times

0 ≤ t < ∞.

Proof: We orst show some a-priori bounds on u, namely that all Sobolev norms of u are

controlled by L∞ norm. It is clear that on a bounded domain, L∞ norm controls all other Lp
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norms. In the estimates that follow,D stands for any partial derivative (just ∂x in one dimen-

sion), andWk,p is the usual Sobolev space. Multiplying (13) by (−�)su and integrating, we

get

∂t||u||
2
Hs ≤ C |

∫

u2 · (−�)sudx|

︸ ︷︷ ︸

I

−

∫

u(−�)sudx

︸ ︷︷ ︸

||u||2
Hs

+αM|

∫

f (−�)sudx|. (14)

The last term can by controlled by αM||f ||W2s,1 ||u||L∞ (moving all derivatives to f ). Term

I can be represented by a sum of integrals of the type
∫

DluDs−luDsudx, where l =

0, . . . , s. Then with Hölder9s inequality and Gagliardo–Nirenberg interpolation inequality

in dimension d = 1, 2, we can bound them by

∫

DluDs−luDsudx ≤ C||Dlu||p||D
s−1u||q||D

su||2 with
1

p
+

1

q
+

1

2
= 1;

||Dlu||p ≤ C||Dsu||α2 ||u||
1−α
∞ ;

||Ds−lu||q ≤ C||Dsu||
β
2 ||u||

1−β
∞ .

In 1D, α =
2(−1+lp)
p(−1+2s) and β =

2(−1+(s−l))q
q(−1+2s) , and α + β = 2( 1p + 1

q ) = 1.

In 2D, α =
−2+lp
p(−1+s) and β =

−2+(s−l)q
q(−1+s) , and α + β = 2( 1p + 1

q ) = 1. Then

∫

DluDs−luDsudx ≤ C||Dlu||p||D
s−1u||q||D

su||2 ≤ C||u||2Hs ||u||∞.

Substituting back into (14) gives

∂t||u||
2
Hs ≤ (C||u||∞ − 1)||u||2Hs + αM||f ||W2s,1 ||u||L∞ .

Applying Gronwall inequality [7], we see that to show global regularity, it suoces to prove

that
∫ T
0 ||u(·, t)||∞ dt remains bounded.We will show a stronger constraint that ‖u(·, t)‖∞

remains onite for all times. Via contradiction, denote T the orst time of blow up of ||u||∞.

Consider ρ = e−t

1+u , then ρ satisoes the following equation:

∂ρ

∂t
= −(ae−t − 2aρ + aρ2et + αf (x)ρ2et) (M − U(t)) − ρ2et . (15)

Then at time T, ρ will reach 0 at some point. For simplicity, let us focus on d = 1; the

argument for d = 2 is similar. From (15), we see that ρ is decreasing for all times, therefore

ρ is bounded from above by ||ρ0||∞. Now we take a derivative with respect to x to obtain

∂x∂tρ = − (M − U(t))
(

−2a∂xρ + 2aetρ∂xρ + αρ2et∂xf + 2αρetf (x)∂xρ
)

− etρ∂xρ.

Then it is clear that for all x,

∂t|∂xρ| ≤ C0(T) + C1(T)|∂xρ|.
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By Gronwall inequality, we can see that |∂xρ| is bounded for any onite time t ≤ T. We can

take another derivative in x and obtain

∂xx∂tρ = − (M − U(t)) (−2a∂xxρ + 2aetρ∂xxρ + 2aet(∂xρ)2 + αρ2et∂xxf + αρet∂xf ∂xρ

+ 2αρetf (x)∂xxρ + 2αetf (x)(∂xρ)2 + 2αρet∂xf ∂xρ) − etρ∂xxρ − et(∂xρ)2.

The boundedness of ρ along with control of |∂xρ| gives

∂t|∂
2
xxρ| ≤ C2(T) + C3(T)|∂xxρ|.

ByGronwall inequality again, one gets that |∂2xxρ| is bounded for any onite time t ≤ T. One

can efectively continue this calculation and get that all derivatives in space are bounded

for t ≤ T. Since blow up happens for the orst time at time T, then ρ(xB,T) = 0 at some

point xB. There can be many such points, but let us focus on one of them. Due to control

of ∂x|ρ| and ∂2xx|ρ|, we have ρ(x,T) ≤ C(T)|x − xB|
2 by Taylor expansion. Observe that

ρ(x, t) → ρ(x,T)monotonically for every x. Therefore, as u = 1
etρ

− 1, we have u(x, t) →

u(x,T) (including when u(x, t) = ∞). Then we have u(x,T) = 1
eTρ

− 1 ≥ 1
eT |x−xB|2

− 1.

Then by Fatou9s lemma, we have

M ≥ lim inf
t−>T

∫

u(x, t)dx ≥

∫

lim inf
t−>T

u(x, t)dx =

∫

u(x,T)dx

≥

∫

C|x − xB|
−2dx = ∞, (16)

which is a contradiction. Therefore, we cannot have such onite time blow up. Note that the

argument above works both in 1D and 2D, only the computation yielding control of the

derivatives of ρ needs a minor adjustment. Note that the size of the Sobolev norms of the

solution may depend on time. �

4.2. With difusion in 1D

Now we turn out attention to the system with difusion in 1D:

∂u

∂t
= (au2 + αf (x)) (M − U(t)) − u +

∂2u

∂x2
,U(t) =

∫

Td
udx. (17)

We will prove global regularity for (17) as well.

Theorem 4.2: Suppose u is a non-negative solution to (17) in dimension d = 1 and periodic

boundary condition. Let a,α,M be constant parameters, and f (x) a smooth function. If u0(x)

is a smooth initial proole, then u(x, t) stays smooth for all time; in particular, all Sobolev

norms ||u||Hs with s>0 are bounded uniformly for all time.
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Proof: First we show that ||u||2 is bounded: multiplying both sides by u and integrating,

we have

∫

u
∂u

∂t
dx =

∫

u(au2 + f (x)) (M − U(t)) dx −

∫

u2dx +

∫

u
∂2u

∂x2
dx.

Therefore,

1

2
∂t

∫

u2dx ≤ M

∫

au3dx −

∫

u2dx −

∫

(ux)
2dx + M2||f ||∞. (18)

Using Gagliardo–Nirenberg–Sobolev inequality (see, e.g. [5]) gives

||u||L3 ≤ C||u||
5/9

L1
||ux||

4/9

L2
. (19)

Substituting (19) into (18) yields (note that the constant C changes from line to line and

may depend onM):

1

2
∂t

∫

u2dx ≤ C

(∫

udx

)5/3 (∫

u2xdx

)2/3

−

∫

u2dx −

∫

u2xdx + M2||f ||∞

≤
C

3

(∫

udx

)5

+
2

3

(∫

u2xdx

)

−

∫

u2dx −

∫

u2xdx + M2||f ||∞

≤ −
1

3

(∫

u2xdx

)

−

∫

u2dx + M2||f ||∞ + C(M). (20)

Note that in the second inequality above, we used Young9s inequality ab ≤ ap

p + bq

q with

p = 3, q = 3
2 . The calculation (20) implies that ||u||L2 is globally bounded by Gronwall

inequality. Moreover, from (20), we can see that ||u||2 is in fact uniformly bounded by

M2||f ||∞ + C(M) since if ||u||2 ever crosses this value for the orst time at t0, ∂t||u||
2

becomes negative, which implies that before t0, ||u||2 lies aboveM
2||f ||∞ + CM5 already.

We arrive at a contradiction. Therefore, ||u||2 is uniformly bounded for all time.

Next, we estimate the higher order Sobolev norms. In fact, in 1D, this can be done using

just control of the L1 norm, but we are going to use L2 norm for convenience as we have

shown it remains bounded. Multiplying (5) by (−�)su and integrating, we get

∂t||u||
2
Hs ≤ C

∣
∣
∣
∣

∫

u2 · (−�)sudx

∣
∣
∣
∣

︸ ︷︷ ︸

I

−

∫

u(−�)sudx

︸ ︷︷ ︸

||u||2
Hs

−||u||2
Hs+1 + αM

∣
∣
∣
∣

∫

f (−�)sudx

∣
∣
∣
∣
.

(21)

The last term can by controlled by αM||f ||H2s ||u||L2 (moving all derivatives to f ). Term I

can be represented by a sum of integrals of the type
∫

DluDs−luDsudx, where l = 0, . . . , s.

In 1D, D = ∂x. Then with Hölder9s inequality and Gagliardo–Nirenberg interpolation
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inequality with dimension d = 1, we can bound them by

∫

DluDs−luDsudx ≤ C||Dlu||p||D
s−1u||q||D

su||2 with
1

p
+

1

q
+

1

2
= 1

≤ C||u||
2− 3

2(s+1)

Hs+1 ||u||
1+ 3

2(s+1)

L2
. (22)

Here we deploy the Gagliardo Nirenberg inequalities ||Dsu||L2 = ||u||Hs ≤ ||u||
1

s+1

L2

||u||
s

s+1

Hs+1 , ||Dlu||p ≤ C||u||1−α

L2
||Ds+1u||α

L2
, with α =

l− 1
p+ 1

2

s+1 , and ||Ds−lu||q ≤ C||u||
1−β

L2

||Ds+1u||
β

L2
, with β =

s−l− 1
q+ 1

2

s+1 . Substituting gives (note that the constant C changes from

line to line):

∂t||u||
2
Hs ≤ C||u||

2− 3
2(s+1)

Hs+1 ||u||
1+ 3

2(s+1)

L2
− ||u||2Hs − ||u||2

Hs+1 + αM||f ||H2s ||u||L2

≤
4s + 1

4s + 4
||u||2

Hs+1 − ||u||2
Hs+1 +

3C

4s + 4
||u||

4s+10
3

L2
− ||u||2Hs + αM||f ||H2s ||u||L2

≤ −||u||2Hs +
3C

4s + 4
||u||

4s+10
3

L2
+ αM||f ||H2s ||u||L2 , (23)

where we use Young9s inequality ab ≤ ap

p + bq

q with p = 4s+4
4s+1 , and q = 4s+4

3 . Given that

we proved ‖u‖2 is bounded uniformly in time, (23) implies that ||u||Hs is also bounded

uniformly for all time. �

4.3. With difusion in 2D

The equation that we are interested is given by

∂tu = au2(M − U(t)) + αf (x)(M − U(t)) − u + �u,U(t) =

∫

Td
udx. (24)

Theorem 4.3: Suppose u is a non-negative solution to (24) with dimension d = 2 and peri-

odic boundary condition. Let a,α,M be constant parameters, and f (x) a smooth function. If

u0(x) is a smooth initial proole, then u(x, t) stays smooth for any onite time, that is, Sobolev

norms ||u||Hs with s>0 are bounded for any time 0 ≤ t < ∞. The bound on the Sobolev

norms may now depend on time.

Proof: First we derive an a-priori estimate. In the 2D case, the analog of the estimate (20)

is not available, as the exponents do not allow to control ‖u‖L2 uniformly in time in this

way. Therefore, we need a more nuanced argument. Note that

∫ T

0

∫

∂tudxdt =

∫ T

0

∫
(

au2(M − U(t)) + αf (x)(M − U(t)) − u + �u
)

dxdt (25)

gives (in the following calculations, the constant C changes from line to line):

∫ T

0

∫
(

au2(M − U(t))
)

dxdt ≤ U(T) + MT. (26)
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Then multiplying (24) by (−�)su and integrating in x, we obtain

∂t||u||
2
Hs ≤ −||u||2

Hs+1 − ||u||2Hs + a(M −

∫

udx)

∫

u2(−�)sudx

︸ ︷︷ ︸

I

+αM||f ||Hs ||u||Hs .

(27)

The integral I is a sum of terms of the form:
∫

DluDs−luDsudx, and l = 0, . . . , s. We

estimate it as follows:
∫

DluDs−luDsudx ≤ C||u||Hs ||Dlu||p||D
s−l||q with

1

p
+

1

q
+

1

2
= 1

≤ C||u||Hs ||u||α
Hs+1 ||u||

1−α

L2
||u||

β

Hs+1 ||u||
1−β

L2

≤ C||u||L2 ||u||Hs ||u||Hs+1 . (28)

Here we use Gagliardo Nirenberg inequalities for n = 2: ||Dlu||p ≤ C|u||α
Hs+1 ||u||

1−α

L2
with

α =
l+1− 2

p

s+1 , and ||Ds−l||q ≤ C||u||
β

Hs+1 ||u||
1−β

L2
withβ =

s−l+1− 2
q

s+1 ,α + β = 1. Substituting

these estimates back into (27) gives

∂t||u||
2
Hs ≤ −||u||2

Hs+1 − ||u||2Hs + Ca (M − U(t)) ||u||L2 ||u||Hs ||u||Hs+1

+ αM||f ||Hs ||u||Hs

≤ CMa2 (M − U(t)) ||u||2
L2

||u||2Hs +
1

2
||u||2

Hs+1 − ||u||2
Hs+1

− ||u||2Hs + αM||f ||Hs ||u||Hs

≤ CMa2 (M − U(t)) ||u||2
L2

||u||2Hs −
1

2
||u||2

Hs+1 + αM||f ||Hs ||u||Hs , (29)

where in the second line, we used the inequality: 2ab ≤ εa2 + 1
ε
b2. Then by Gronwall

inequality, we get

||u||Hs ≤ exp

(

CMa

∫ T

0

∫

au2 (M − U(t)) dxdt

) (

||u(0)||Hs +

∫ T

0
αM||f ||Hsdt

)

.

From (26), we see that ||u||Hs is bounded for any onite t ≤ T < ∞. �
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