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ABSTRACT ARTICLE HISTORY
Chemotaxis is a directed cell movement in response to external Received 16 November 2022
chemical stimuli. In this paper, we propose a simple model forthe ori- ~ Accepted 30 August 2023
gin of chemotaxis — namely how a directed movement in response KEYWORDS

to an external chemical signal may occur based on purely reac- Chemotaxis;

tion—diffusion equations reflecting inner working of the cells. The Reaction—diffusion system;
model is inspired by the well-studied role of the rho-GTPase Cdc42 Cdc42; Gradient tracking;
regulator of cell polarity, in particular in yeast cells. We analyse sev- Regularity

eral versions of the model to better understand its analytic proper-

ties and prove global regularity in one and two dimensions. Using

computer simulations, we demonstrate that in the framework of

this model, at least in certain parameter regimes, the speed of the

directed movement appears to be proportional to the size of the

gradient of signalling chemical. This coincides with the form of the

chemical drift in the most studied mean field model of chemotaxis,

the Keller-Segel equation.

1. Introduction

Chemotaxis is a directed cell movement in response to external chemical stimuli. Chemo-
taxis is ubiquitous in biology; for example, it plays a role in organism morphology [19, 20],
reproduction processes [8, 17, 18, 23] and workings of immune system [4, 21]. There are
many mathematical models of chemotaxis, the most studied is the Keller-Segel equation
and its variants. Virtually all of these models incorporate a transport term driven by the
concentration of the external chemical, which may be produced by the cells themselves
(see, e.g. [11, 15], where further references can be found). Yet we are not aware of any
mathematical models that would aim to explain the origin of the transport based on reac-
tion—-diffusion processes taking place inside cells. The way chemotaxis happens, at least for
eukaryotic cells, is that cells translate chemical environmental cues into amplified intracel-
lular signalling that results in elongated cell shape, actin polymerization toward the leading
edge and movement along the gradient. In this paper, instead of presenting chemotaxis as
an explicit transport term, we explore model that aims to explain the origin of the chemo-
tactic ability of cells. Inspired by [3], we look at sexual yeast reproduction and simplify the
polarization process into understanding active rho-GTPase Cdc42 concentration in one
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yeast under chemical gradient produced by another yeast. This is certainly just an element
of a more complex picture involved into producing chemotactic response in cells, but we
limit consideration to this one stage. Our first goal is to explore the well-posedness proper-
ties of the model and its variants and to understand analytic features involved. Our second
goal is to get more information on the nature of transport generated by the model reacting
to external chemical stimuli. In particular, a natural question is how the speed of transport,
which we measure via the coordinate moment of a density, depends on the gradient of the
attractive chemical. This question we approach through numerical simulations and find
that for certain reasonable ranges of parameters, this dependence is linear.

The two-species mass-conserved activator-substrate (MCAS) system (Figure 1) that is
the basis of our model consists of two partial differential equations (PDEs) governing the
kinetics of the slowly diffusing activator u (GTP-bound GTPase on the membrane) and
the rapidly diffusing substrate v (GDP-bound GTPase in the cytoplasm). In general, this
system has the following form in 1D (see [3]):

ou

— = F(u, kAu,

Ey (u,v) + kAu

av

e = —F(u,v) + k,Av. (1)

Here, k refers to the diffusion of u, k, refers to the diffusion of v. These two diffusion
constants usually differ by two orders of magnitude. F(u,v) describes the biochemical
interconversions between u and v, given in the form:

F(u,v) = h(u)v — g(u)u.

The positive feedback (i.e. conversion from inactive GDPase to active GTPase with
energy) is denoted by f(u)v, while the negative feedback (i.e. conversion from active

Polarized Rho-GTP

el

Local
activation

Global
depletion

Figure 1. Local activation via positive feedback and depletion of the substrate in the cytosol generates
an activator-enriched domain on the cortex [3].
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GTPase to inactive GDPase without energy) is denoted by g(u)u. Examples of F(u,v)
include: the simplest

h(u) = au?, g(u) = b
Goryachev’s (see [6])
h(u) = au® + cu, g(u) = b; (2)

and (see [14])

hw)y=1, gu) = L
In [3], Turing-type instability for these types of reaction have been analysed; it was also
shown that steady states with more than one peak are unstable for many kinds of F(u, v).
This analysis is in agreement with experiments as one usually only observes one bud in
yeast asexual production [3].

Several complicated computational models have been developed to mimic gradient-
induced polarization toward the pheromone source [9, 22] and have shown the rate of
movement is dependent on pheromone concentration [1]. Here, we propose a simpler sys-
tem that is capable of capturing such gradient tracking ability, specifically, in the context
of chemotactic reaction of a single yeast cell to an external pheromone signal. We apply a
modification to the Turing-type model described above and add a pheromone density pro-
file atf (x) that depends on location in the form similar to [22] — and we obtain the following
system:

% = (au® + af (x))v — bu + kAu,
av ~ 2 ~
%= —(au” 4+ af (x))v + bu + k,Av. (3)
In (3), a,b,a, k, k, are constants. a is the reaction activation constant, b is the reaction
depletion constant, & is the overall pheromone strength, k is the diffusion coefficient for u,
and k, is the diffusion coefficient for v. f(x) is a bounded smooth function that describes
the pheromone level at different locations.

We assume that rho-GDPase diffuses infinitely fast, i.e. k, approaches co. Since the total
mass of rho-GTPase and rho-GDPase is conserved, M = f(u(-, t) + v(-, t))dx is a con-
stant. Then we can obtain the following equation (4) that describes the activator-substrate

reaction between these two substances. The setting we have is x € T¢ when dimension
d = 1, 2, with periodic boundary condition:

au - - 1
3 (au’ +otf(x))m (M - /Td udx> — bu + kAu. (4)

In (4), |Td| is the measure of the domain, M is the total mass. We are interested in the
non-negative solution u with [ udx < M for all time. By rescaling space and time, we can
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ou
i E:au2<M—-Ldudx>+af(x)<M—JTdudx>—bu+kAu
-GTe — —
Rate of Local Pheromone Effect Global  piffusion
increase activation depletion
Rho 1
-GDP v(t) = ] (M — de u dx) Infinite diffusion speed

Figure 2. The interconversion of Rho-GTPases between active and inactive forms can be modelled
as a reaction—diffusion equation governing the dynamics of the slowly-diffusing activator u and the
infinitely-diffusing substrate v.

simplify Equation (4) as follows:
du )
— =(au" +af(x)) (M — udx | — u+ Au. (5)
Jt Td

Here depletion rate and diffusion coefficient are normalized to 1, and ﬁ gets absorbed
into a and & (Figure 2).

Our main results are as follows. On the rigorous level, we are able to establish global
regularity results for Equation (5) in one and two dimensions for all non-negative initial
data. To better understand the structure of the equation, we consider (5) in the absence
of regularizing diffusion and prove that for all finite 0 < t < T' < 00, the profile for active
rho-GTPase u stays smooth even when there is no diffusion term. When we re-introduce
diffusion in one dimension, uniform in time global bound on derivatives of u is shown.
With diffusion in two dimension, global regularity with possible growth is proved. In our
numerical experiments, we observe the profile of active rho-GTPase # move towards higher
concentration of pheromone, and stops moving once it reaches the location with maximum
pheromone concentration. In addition, we explore the speed of such movement through
tracking the centre of mass of rho-GTPase profile. If pheromone concentration is linear,
the centre of mass moves with a constant speed towards the pheromone peak. More impor-
tantly, we verify that the movement speed depends linearly on the pheromone gradient in
a natural parameter range similar to that used in [3]. Note that such linear dependence
of chemotactic drift on the gradient of the attractive chemical density f(x) is a common
feature of chemotaxis models, including the most studied Keller-Segel equation which in
its simplest form reads (see, e.g. [15])

Ip — Ap+aV - (pVf)=0. (6)

The emergence of transport mean field equations such as (6) from kinetic equations has
been extensively studied (see, e.g. [10, 12, 13, 16]). However the existence of chemotactic
transport is already built in on the kinetic level. As far as we know, Equation (5) is the first
simple reaction-diffusion model that aims to rigorously analyse the emergence of chemo-
taxis from the inner cell workings, even if it is focused on just one stage of the process that
can be quite complex.
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This paper is organized as follows: in the following section, we introduce the general
set up and key parameters of the model in more detail and present our numerical scheme.
We then proceed to describe results of the numerical experiments. After this we state the
rigorous results that we are able to prove and proceed with the proofs.

2. General set up and numerical scheme

We want to explore the origin of chemotactic ability of cells with simulation in 1D using
the following equation (dropping the scripts in (4) and denote the total mass of u(x, t) as
Ut := de u(x, t)dx):

1

T (M — U(t)) — bu + kAu. (7)

z;_L; = (au® + af (x))

The parameters we use are the same as in [3] and are shown in Table 1 with some basic
conversions. We used the method of lines to turn spatially discretized PDE into a system
of ODEs, then we use a robust ODE solver ODE15s in Matlab to solve. Note that since
we assume rho-GDPase v is rapidly diffusing, we use Simpson’s method to numerically
integrate rho-GTPase to obtain f u(x, t)dx and calculate rho-GDPase as follows:

1
v(t) = | M —U(@)). (8)

For the computational part, we restrict ourselves to one-dimensional surface and assume
the pheromone profile is generated by another yeast cell. If this cell is some distance away,
one reasonable model of the two-dimensional pheromone distribution is a solution to the
heat equation 9,0 — Aw = 0 with a § function initial data, that is, as a fundamental solu-
tion of 2D heat equation. Then we can derive the pheromone profile on the cell boundary
as shown in Figure 3, and in general, it has the form:

1 X — Xpeal
fn(x) = ﬁ <exp <_4_yt (L2 +77 - 2chos+k))) , 9)

where ¢ = H%ak and ¢ € [—m, ). We use y to denote the diffusion coefficient for the
source, f as the response strength to the source, and without loss of generality, we assume
t=1.Withy =10,t = 1,L = 10, 8 = 1500, we can plot f;(x) in Figure. 4. We also plot
a linear pheromone profile f (x) that is similar to f,(x) with a peak at x,cax defined below

Table 1. Parameters from [3].

Parameter Description Value/Range in simulation Unit

k Diffusion coefficient for u 0.01 (wm)2(s™h
o Pheromone strength 0.5-3 s

T Cell size 10 pwm

M Total mass 10 -

a Strength of activation 1 (wm)?2

b Strength of substrate 1 s
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Figure 3. Derivation of a pheromone profile generated from a heat equation.

2.5 T T T T T T T T T
2+ RN .
4 \\
o 3 \
= / \
[e] 15 / i
. /
Q / \
%) / \
g / \\\
i / \
b 1 |- / -
2 / \
o Y b
051 // |
— Pheromone from heat equation fh(x)
—— Linear pheromone f(x)
o 1 L 1 1 1 1 1 1 L

0 1 2 3 4 5 6 7 8 9 10
Distance x (um)

Figure 4. Pheromone profile generated from a heat equation f,(x) and a similar linear pheromone
profile f(x).

in Figure 4 as well. The reason for this choice will be explained later.

Zx, if0 <x <5,

(10)
4—2Ix, if5<x<10.

o-|
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To obtain the initial profile of u, we start with a uniformly distributed v and a bump
function u, and we run the simulation without pheromone until it stabilizes according to
ou , 1
— =au"—— (M — U(t)) — bu+ kAu. 11
3¢ = M= U (11)
Switching on the pheromone, we track the movement using centre of mass since the profile
of u is relatively stable over time. The centre of mass as a function of time is defined using

[ xu(x, t)dx
CMy(t) = ———. (12)
U(t)
We also measure the movement of the profile of u with the time derivative of the centre of
dCM,(t)
mass: —a

3. Numerical results: pheromone induced movement

While there is no explicit transport term in (7), we observe movement of the rho-GTPase
u profile over time in response to ‘reallocation of resources’ to more favourable reaction
regions induced by pheromone «fj (x) and «f (x) as shown in Figure 5. As our numerical
simulations show, at least in certain parameter ranges, this transport appears quite similar
to the Keller-Segel-type transport with speed proportional to the concentration gradient.

As we can see in Figure 5, one does not expect that the solution will be an exact trav-
eling pulse since the background level of the pheromone affects the shape of the bump of
u density. With time ¢ and recorded CM,,(t), we can compute the movement speed of the

centre of mass, % and the corresponding pheromone profile f, and f at the centre of

mass. From Figures 6 and 7, we propose the hypothesis that the movement speed %
depends on the derivative of the pheromone.

We have tried some other pheromone profiles with similar results. While the graphs on
Figure 7 appear close to lines, they are not quite lines — but perhaps because the density
bump of u has spatial scale, and so is exposed to a range of concentration slopes (we take the

= n
= 3
- N
@ 8

J

Concentration of u
=

Vsl

" 10000 N

__aR 8000 .

— 8 6000 .
e 6 4000

Time t(s) s

2
Distance x (um) 0 Distance x (um)

(a) (b)

Figure 5. Numeric solution to Equation (7) with « = 2 and other parameters given in Table 1: (a)
pheromone profile given by f;(x) and (b) pheromone profile given by f(x).
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Figure 6. Movement speed CM”“) as a function of pheromone profile slope W. dfg% > 0 for
x € (0,2.5).

0.00025

0.00020

0.00015

dCM,(t)/dt
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0.00010 i 6121, 008

g —_— =150
—_— =200
0.00005 " — =250
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0 2000 4000 6000 8000 10000 0.00000 0.00002 0.00004 0.00006 0.00008 0.00010 0.00012 0.00014
Time t (s) dfiCM,(t))/dt

Figure 7. Movement speed CM“([) as a function of pheromone profile slope f(CM"(t)) dg(x) is a constant

forx € (0,2.5).

slope at the centre of mass as the basis of the functional relationship pictured in this figure).
As one of our goals is to study the dependence of the movement speed of the centre of mass
CM,,(t) and on the gradient of the pheromone concentration «f’(x), we will also consider
the piecewise linear pheromone profile f (x): it has extended regions with the constant slope
that makes it easier to capture the effect more precisely. We illustrate this transport picture
in Figure 8 by calculating the centre of mass using (12) of the initial profile of u and the
profile at + = 10,000 s pheromone profile f (x) with pheromone strength o = 2.

As one can expect, the profile of u slows down once its centre of mass starts to approach
X = Xpeak = 5Sm. We can plot the centre of mass a function as a time of time for different
pheromone strength . As presented in Figure 9, the centre of mass of u stays at x = Xpeak =
5um after t = 7000 s for the pheromone strength « = 3. In fact, if we run the simulation
long enough, the centre of mass of u appears to get arbitrarily close to x = xpeax = 5um
forallae > 0.

We then continue to explore the movement speed of the centre of mass as a function of
pheromone strength «, which controls the slope of the pheromone concentration. From
Figure 9, we can see a constant movement speed of the centre of mass when the profile of u
is far away from xpeak. Moreover, if we plot the movement speed (before the profile of u is
too close to xpeak) as a function of & as shown in Figure 10, we observe linear dependence of
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Pheromone strength = 2.00 Pheromone strength = 2.00
(t=0s) (t=10000s)
——GTPase u ——GTPase u
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5 ( \ S sl I
S ' 915 ’
@© ©
£ = | |
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|
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Figure 8. Initial profile for rho-GTPase u, rho-GDPase v, and pheromone profile f(x) and pheromone
strength o« = 2: (a) initial profile t = 0s and (b) profile when t = 10, 000s.

4.0

N
[

Center of mass (UM)

2000 4000 6000 8000 10000
Time (s)

Figure 9. Centre of mass position CM,(t) as a function of time with pheromone profile f(x). In regions
away from Xpeak, CMy (t) changes linearly with time.

transport speed on pheromone strength. Such linear dependence corresponds to the mean
field chemotaxis models in [11, 15].

4. Mathematical analysis: global regularity

Our goal in this section is to initiate rigorous mathematical analysis of Equation (5). There
is much literature on regularity of solutions for reaction-diffusion type equations, but we
could not locate references dealing directly with (5) due to nonlocality produced by our
assumption of infinite diffusion for v. In [2], the author presented global existence result
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Figure 10. Centre of mass movement speed % as a function of pheromone strength « with

pheromone profile f(x). In regions away from xpeak, % changes linearly with «.

to a similar equation for sufficiently small and non-negative initial data. In this section,
we will present regularity result for (5) in T4, with d = 1, 2 for any non-negative smooth
initial data with diffusion and without diffusion. When there is no diffusion with d = 1, 2,
we can still show that u is smooth for all times 0 < t < oo. With diffusion in 1D, uniform
in time global bound is proven while with diffusion in 2D, global regularity with possible
growth is shown. At this time, we are unable to prove rigorous results that would provide
more qualitative features of the evolution, and in particular establish the conjecture on
linear dependence of the transport speed on pheromone gradient at least in some regimes.
The part of the difficulty is that, as we mentioned before, the solution cannot be expected
to take form of a traveling pulse of the fixed shape on an unbounded domain, and lack of
such framework complicate analysis. This paper can be viewed as creating a foundation for
such further investigation that remains an intriguing open problem.

4.1. Without diffusion
We start with the case without diffusion. Consider the following equation:

ou

vl (au® + af(x) (M —-U®) —u,U() = / udx. (13)
T4

Theorem 4.1: Suppose u(t, x) is a non-negative solution to (13) with dimension d =1, 2

and periodic boundary condition; a, o, M are constant parameters, and f (x) is a smooth non-

negative function. If ug(x) is a smooth initial profile, then u(t, x) stays smooth for all times
0<t< oo

Proof: We first show some a-priori bounds on u, namely that all Sobolev norms of u are
controlled by L> norm. It is clear that on a bounded domain, L> norm controls all other L?
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norms. In the estimates that follow, D stands for any partial derivative (just d in one dimen-

sion), and W*? is the usual Sobolev space. Multiplying (13) by (—A)*u and integrating, we
get

3t||ull%{s < CI/u2 - (= A)’udx| —/u(—A)Sudx+aM| /f(—A)Sudxl. (14)

2
I lulls

The last term can by controlled by aM||f||yy2s1||u]| 1 (moving all derivatives to f). Term
I can be represented by a sum of integrals of the type [ D'uD*~'uD’udx, where I =
0,...,s. Then with Holder’s inequality and Gagliardo-Nirenberg interpolation inequality
in dimension d = 1, 2, we can bound them by

1 1 1
f D'uD*'uDfudx < CIID"ullp|ID* ullglID*ull>  with STt
q

I 1-
[IDullp < ClID*ull3 ulloo %

_ 1—
D]y < ClD |8 |ul1 557

Inl1D,x = 2= 1+p) and 8 = 2(_1+—(S_l))q,ando{+ﬂ :2(}74—%) =1.

— p(=142s) q(—1+2s)
_ 24l _ ~2+(=Dq ol 1y _
IHZD,O{ = m and,B = m,anda-l—ﬂ = 2(1—) + a) = l.Then

/ D'uD'uDfudx < ClID ul|,||D* " ul|g[ID°ull2 < Cllul 3|1l oo-

Substituting back into (14) gives
2 2
Il lullgs = (Cllulloo — Dllullis + aMI[f[ly2st ]|z

Applying Gronwall inequality [7], we see that to show global regularity, it suffices to prove

that fOT [|u(-, t)||oo dt remains bounded. We will show a stronger constraint that ||u(-, 1) || oo
remains finite for all times. Via contradiction, denote T the first time of blow up of ||u]|sc.

Consider p = %, then p satisfies the following equation:
0
a—'? = —(ae~" = 2ap 4+ ap’e’ + ozf(x)pzet) (M — U(t)) — pe. (15)

Then at time T, p will reach 0 at some point. For simplicity, let us focus on d = 1; the
argument for d = 2 is similar. From (15), we see that p is decreasing for all times, therefore
p is bounded from above by ||po||co- Now we take a derivative with respect to x to obtain

0500 = — (M — U(t)) (—2a8x,0 + 2ae' pdgp + a,ozetaxf + Zapetf(x)ax,o) — el poyp.
Then it is clear that for all x,

d0xp| = Co(T) + C1(D)[dxpl.
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By Gronwall inequality, we can see that |dxp| is bounded for any finite time ¢ < T. We can
take another derivative in x and obtain

uxtp = — (M — U(1)) (—2adsxp + 2a€' pdxp + 2a€' (050)* + ape'duf + ape’ dxf O
+ Z(Xpetf(x)axx,o + zaetf(x)(ax/))z + Z(Xpetaxfax,o) - etpaxxp - et(axp)z-

The boundedness of p along with control of |d,p| gives
0110201 < Co(T) + C3(T)|9xxp].

By Gronwall inequality again, one gets that |32 p| is bounded for any finite time t < T.One
can effectively continue this calculation and get that all derivatives in space are bounded
for t < T. Since blow up happens for the first time at time T, then p(xp, T) = 0 at some
point xp. There can be many such points, but let us focus on one of them. Due to control
of d,|p| and 8fx|,0|, we have p(x, T) < C(T)|x — xp|?> by Taylor expansion. Observe that
p(x,t) = p(x, T) monotonically for every x. Therefore, as u = ﬁ — 1, we have u(x, t) —

u(x, T) (including when u(x, t) = 00). Then we have u(x, T) = ﬁ —-1> m —

Then by Fatou’s lemma, we have

t—>T

M > liminf/u(x, t)dx > /litmir%fu(x, t)dx:/u(x, T)dx

> /Clx—xgl_zdx=oo, (16)

which is a contradiction. Therefore, we cannot have such finite time blow up. Note that the
argument above works both in 1D and 2D, only the computation yielding control of the
derivatives of p needs a minor adjustment. Note that the size of the Sobolev norms of the
solution may depend on time. |

4.2. With diffusionin 1D

Now we turn out attention to the system with diffusion in 1D:

92u

(au® + af(x) (M —U(®®) —u+ 5 U = / udx. (17)
0x T4

8u_
ot

We will prove global regularity for (17) as well.

Theorem 4.2: Suppose u is a non-negative solution to (17) in dimension d = 1 and periodic
boundary condition. Let a,a, M be constant parameters, and f (x) a smooth function. If ug(x)
is a smooth initial profile, then u(x,t) stays smooth for all time; in particular, all Sobolev
norms ||u||pgs with s > 0 are bounded uniformly for all time.
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Proof: First we show that ||u||, is bounded: multiplying both sides by u and integrating,
we have

ou ) ) d%u
u—dx= | u(au” +f(x) M —-U@®)dx — [ u'dx+ | u—dx.
ot 0x?
Therefore,
1
Eat/uzdx < M/au3dx—/u2dx— /(ux)zdx—i—MZl[fHOO. (18)
Using Gagliardo—Nirenberg-Sobolev inequality (see, e.g. [5]) gives
lulls < Cllull2 7. (19)

Substituting (19) into (18) yields (note that the constant C changes from line to line and

may depend on M):
1 5/3 2/3
58tfu2dx§ C(/ udx) (/ u,zcdx) —/uzdx—/uidx—i—le[fHoo
C )
<5 (/ udx) 2 (/ ugdx) —/uzdx—fuidx—i—MszHoo
1 2 _ 2 2
= 3 uydx u dx + M7||flloc + C(M). (20)

%p + % with
p=39= % The calculation (20) implies that ||u||;2 is globally bounded by Gronwall
inequality. Moreover, from (20), we can see that ||u||; is in fact uniformly bounded by
M?||f||oo + C(M) since if ||u||, ever crosses this value for the first time at oy, d;||ul|?
becomes negative, which implies that before o, ||u||, lies above M?||f||oc + CM?® already.
We arrive at a contradiction. Therefore, ||ul|; is uniformly bounded for all time.

Next, we estimate the higher order Sobolev norms. In fact, in 1D, this can be done using
just control of the L; norm, but we are going to use L, norm for convenience as we have

shown it remains bounded. Multiplying (5) by (—A)*u and integrating, we get

Note that in the second inequality above, we used Young’s inequality ab <

Orllullf= < C V - (—A) udx

—/u(—A)Sudx—HuH?{m +aM‘/f(—A)5udx

I [ullF;s
(21)
The last term can by controlled by oo M||f||g2s||u|| 2 (moving all derivatives to f). Term I
can be represented by a sum of integrals of the type f D'uD"'uDSudx, where [ = 0,. . .,s.
In 1D, D = 9x. Then with Holder’s inequality and Gagliardo-Nirenberg interpolation
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inequality with dimension d = 1, we can bound them by

1 1 1
/DluDS_luDsudx < ClID"ullp| D ullglID*ull,  with P +ots =1
q

272(511) 1+2(sil)
< Clulln 2 ull, 7. (22)
1
Here we deploy the Gagliardo Nirenberg inequalities ||D°ul|;2 = [|ul|lps < ||u||;rl
S l—l+l
! 1- 1 : ) _1 1-8
llZs 11D ully < Cllull' 1D ull%, with @ = —£12, and [|D"lull, < Cllull’;
s—1-141
ull®,, wi = . Substituting gives (note that the constant C changes from
DH1y)|?,, with 472 Substituting g te that the constant C changes f
line to line):
2 2~ 55 I+ 363 2 2
Ollullgrs = Cllull et Hull 2 — Nl g — Nl + oM |f | g2s lull 2
4541 5 3C 4510 5
< —||u —||u + ——ull.,> — lull5s + oM 2| |ull72
4S_|_4|| IR 7] 4S_’_4|| 1 [ull5s f 1zl |

45+10

ull 2* + M| gas |l |25 (23)

< —|lull}s + 14

where we use Young’s inequality ab < %p + Y with p = ﬁﬁ, and g = 45; 4 Given that

we proved ||ul|, is bounded uniformly in time, (23) implies that ||u||gs is also bounded
uniformly for all time. |

4.3. With diffusion in 2D

The equation that we are interested is given by
du = au*(M — U(t)) + af () (M — U(t)) — u+ Au, U(t) = / udx.  (24)
Td

Theorem 4.3: Suppose u is a non-negative solution to (24) with dimension d = 2 and peri-
odic boundary condition. Let a, o, M be constant parameters, and f (x) a smooth function. If
up(x) is a smooth initial profile, then u(x, t) stays smooth for any finite time, that is, Sobolev
norms ||u||gs with s> 0 are bounded for any time 0 <t < oo. The bound on the Sobolev
norms may now depend on time.

Proof: First we derive an a-priori estimate. In the 2D case, the analog of the estimate (20)

is not available, as the exponents do not allow to control ||u||;2 uniformly in time in this
way. Therefore, we need a more nuanced argument. Note that

T T
/ / dudxdt = / / (au>(M — U@®)) + af ()(M — U()) — u + Au)dxdt  (25)
0 0

gives (in the following calculations, the constant C changes from line to line):

T
/ / (au*(M — U(t))) dxdt < U(T) + MT. (26)
0
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Then multiplying (24) by (—A)*u and integrating in x, we obtain

Illullfs < —lull3in — ||u||%qs+a(M—/udx)fu2<—A>5udx+aM|tf||Hs||u||Hs.

I

(27)
The integral I is a sum of terms of the form: [ D'uD*"'uD’udx, and [ =0,...,s. We
estimate it as follows:

1 1 1
/DluDs_luDsudx < C||u||HS||Dlu||p||D5_l||q with 1—) + -+ E =1
q
— 1—
< Cllal sl el 172 a5
=< Cllullg2 [ul g [lul | s+ (28)

Here we use Gagliardo Nirenberg inequalities for n = 2: ||Dlu||p < C|u||1?‘{5 " ||u||;°‘ with
I+1-2 _ -8 . s—I+1-2 _
o= Tl”,andHDS l||q < C||u||fl$+1||u||L2ﬁw1thﬁ = 1, + B = 1. Substituting

s+1
these estimates back into (27) gives

2 2 2
Ollullgs < —lullfen — Nullgs + Ca M — U®) [lull2|lul|gs|[ul| g+

+ oM [f s |u] | s
< CMa®> (M — U(®)) [Jul|7 |ullFs + %nunzﬁl — el Fpen
— lJull2s + aMI{f 5| ul | s
< CMa* (M — U®)) |[ul |2, |ullfs — %nungsﬂ + aM||flgs Il (29)

where in the second line, we used the inequality: 2ab < ea® + %bz. Then by Gronwall
inequality, we get

T T
llul g < exp (CMa f / au? (M — U (1)) dxdt) (||u(0)||Hs + / ocMIlfIIHsdt) .
0 0

From (26), we see that ||u||gs is bounded for any finite t < T < oo. |
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