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Abstract. Chemotaxis plays a crucial role in a variety of processes in biology and ecology. Quite

often it acts to improve efficiency of biological reactions. One example is the immune system

signalling, where infected tissues release chemokines attracting monocytes to fight invading bacte-

ria. Another example is reproduction, where eggs release pheromones that attract sperm. A macro

scale example is flower scent appealing to pollinators. In this paper we consider a system of PDEs

designed to model such processes. Our interest is to quantify the effect of chemotaxis on reaction

rates compared to pure reaction-diffusion. We limit consideration to surface chemotaxis, which is

well motivated from the point of view of many applications. Our results provide the first insight into

situations where chemotaxis can be crucial for reaction success, and where its effect is likely to be

limited. The proofs are based on new analytical tools; a significant part of the paper is dedicated

to building up the linear machinery that can be useful in more general settings. In particular, we

establish precise estimates on the rates of convergence to the ground state for a class of Fokker–

Planck operators with potentials that grow at a logarithmic rate at infinity. These estimates are made

possible by a new sharp weak weighted Poincaré inequality.

Keywords. Chemotaxis, reaction enhancement, reaction-diffusion equations, Fokker–Planck

operators, convergence to equilibrium, logarithmic potential

1. Introduction

Chemotaxis describes the motion of cells or species that sense and attempt to move

towards higher (or lower) concentration of some chemical. Its first mathematical studies

go back to Patlak [58] and Keller–Segel [42, 43]. The Keller–Segel system introduced in

the latter work describes a population of bacteria or mold secreting an attractive chemical
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substance, and remains the most studied model of chemotaxis. In the simplified parabolic-

elliptic form, this equation can be written as (see, e.g., [60])

@t� ���C �r � .�r.��/�1�/ D 0; �.x; 0/ D �0.x/: (1.1)

The last term on the left side describes the attraction of � by a chemical with concentra-

tion c.x; t/ D .��/�1�.x; t/: This is an approximation to the diffusion equation

@tc D ��c CR�;

under the assumption that � � R � 1, so that the chemical is both produced and diffuses

on faster typical time scales than those for the rest of the dynamics of (1.1). The literature

on the Keller–Segel equation is very extensive. In particular, a number of different variants

of (1.1) have been derived from more basic kinetic models (see, e.g., [22, 33, 38, 56, 62]).

It is known that in dimensions larger than 1 solutions to (1.1) can concentrate and become

singular in finite time. We refer to [36, 37, 60] for more details and further references.

In many settings in biology where chemotaxis is present, it facilitates and enhances

success rates of reaction-like processes. One example is reproduction for many species,

where eggs secrete chemicals that attract sperm and help improve fertilization rates. This

is especially well studied for marine life such as corals, sea urchins, mollusks, etc. (see

[35, 65, 80] for further references), but the role of chemotaxis in fertilization extends

to a great number of species, including humans [64]. In the same vein, many plants

appeal primarily to the insects’ sense of smell to attract pollinators. Another process

where chemotaxis plays an important role is mammal immune systems fighting bacte-

rial infections. Inflamed tissues release special proteins, called chemokines, that serve

to chemically attract monocytes, blood killer cells, to the source of infection [21, 67].

Chemotaxis can also be involved when things go awry, for instance, playing a role in

tumor growth [70].

In the mathematical literature, the studies of equations including both chemotaxis

and reactions focused mainly on existence and regularity of solutions as well as general

features of long-time dynamics (see [16, 24, 25, 54, 55, 68, 74, 75, 77, 79] for further refer-

ences). To the best of our knowledge, there are very few works where the question of how

chemotaxis affects the reaction rates has been studied rigorously or even modeled com-

putationally. As far as we know, the first step in this direction has been taken in [45, 46]

where a generalization of (1.1) including an absorbing reaction and a fluid flow has been

considered:

@t�C .u � r/����C �r � .�r.��/�1�/D �"�q; r � uD 0; �.x;0/D �0.x/� 0:

(1.2)

This work was motivated by modeling the life cycle of corals. Corals, and many other

marine species, reproduce by broadcast spawning. It is a fertilization strategy whereby

males and females release sperm and egg gametes that rise to the surface of the ocean.

As they are initially separated by the ambient water, an effective surface mixing is neces-

sary for a successful fertilization. For coral spawning, field measurements of fertilization
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rates are usually around 50%, and are often as high as 90% [48, 59]. On the other hand,

numerical simulations based on purely reaction-diffusion models [20] predict fertiliza-

tion rates of less than 1% due to the strong dilution of gametes. A more sophisticated

model, taking into account the instantaneous details of the advective transport, was pro-

posed in [17, 18]. Adding fluid flow to the model can account for part of the gap between

simulations and field measurements, but appears unlikely to completely explain it [46].

However, as already mentioned, there is also experimental evidence that chemotaxis plays

a role in coral and other marine animals fertilization: eggs release a chemical that attracts

sperm [14, 15, 52, 53].

The results of [45, 46] show, in the framework of (1.2), that the role of chemotaxis in

reaction enhancement can be quite significant – especially when reaction is weak, as is

known to be the case in many biological processes [73]. The efficiency of the reaction can

be measured by the decay of the total mass of the remaining density,

m.t/ D
Z

�.x; t/ dx:

If �D 0; then the decay ofm.t/ is very slow if " is small, uniformly in the incompressible

fluid velocity u [46]. On the other hand, if � ¤ 0, then in dimension 2, relevant for the

corals application, the extent of decay and time scales of decay of m.t/ are independent

of ", and the decay can be very significant and fast if the chemotactic coupling is suffi-

ciently strong. While the results of [45, 46] are suggestive, taking (1.2) as a model makes

a strong simplifying assumption that the densities of male and female species are equal

and are both chemotactic on each other. In reality, only the male density is chemotactic,

hence (1.2) can be expected to overestimate the effect of chemotaxis on the reaction rates.

Although there are certainly examples of mold and bacteria that are chemotactic on

the chemicals they themselves release, significantly more numerous situations in biology

involve species that are chemotactic on a chemical secreted by other agents. Most of

the examples mentioned above are of this kind. In this paper, we would like to initiate

qualitative analysis of a more realistic system of equations modeling chemotaxis enhanced

reaction processes, of the form

@t�1 � ���1 C �r � .�1r.��/�1�2/ D �"�1�2;

@t�2 D �"�1�2:
(1.3)

There is no ambient fluid advection: as the first step, we assume that the fluid flow is

adequately modelled by effective diffusion. The chemically attracted density is �1I the

density �2 that produces the attractant is assumed to be immobile, which is a realis-

tic assumption in many interesting problems: for example, the inflamed tissue releasing

chemokines and attracting monocytes, plants attracting insects, or immobile eggs attract-

ing sperm in the mammal reproduction tract are in this category. We also maintain the

parabolic-elliptic structure, with the assumption that the signaling chemical diffusion time

is much shorter than other relevant time scales. The system (1.3) is one of the most natural

first step models in analyzing any situation where a fixed target aims to attract, by using a

fast diffusing chemical, a diffusing and mobile species which is involved in some kind of
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reaction with the target. Systems of this type have been certainly analyzed in the literature

– for example, in [16] a system of a very similar form but with a different chemotactic

term has been considered as a model of angiogenesis. However, the focus of most such

studies has been on proving global regularity, finite-time blow-up, asymptotic behavior,

and finding special classes of self-similar solutions. Moreover, in general, there are few

rigorous results that detect specific taxis-driven effects, and these have focused almost

exclusively on finite-time blow-up [29–32, 76] and on transient growth [40, 78]. Perhaps

the closest to our aim here are the papers [13, 23] that yield some estimates on the effect

of chemotaxis on reaction in a related setting. However, to the best of our knowledge, our

paper is the first attempt at sharp qualitative estimates for the scaling rules of the effect of

chemotaxis on the reaction rates in a chemotaxis system involving two distinct densities.

Here, we will limit consideration to two spatial dimensions and to the classical form of

the Keller–Segel chemotaxis flux. We make comments on some possible extensions and

generalizations in Section 9.

The purpose of this paper is twofold. First, we provide a careful analysis of the linear

problem corresponding to (1.3). This analysis is interesting in its own right, and focuses

on a class of Fokker–Planck operators with logarithmic potentials that is very natural,

especially in dimension 2. This linear problem models convergence of a density attracted

by a fast diffusing chemical to a target that releases it. Secondly, we present an initial

nonlinear application of the techniques we develop which also involves the reaction term.

In the nonlinear case, this paper focuses on the radial setting and develops a general

framework for applying the linear techniques to analysis of reaction rates. Generalizations

to more general settings will be addressed in future work; Section 9 outlines some of the

avenues that we expect to pursue. An interesting by-product of our work is a suggestion

that the traditional Keller–Segel term may be ill-suited to accurately modeling reaction

enhancement effects, and a so-called flux-limited version may be more appropriate. This

is also discussed in more detail below and in Section 9.

To describe our main results, we begin from the nonlinear application that will moti-

vate the linear problem. For the sake of simplicity, we assume that the initial condition

for �2 is compactly supported and smooth: �2.x; 0/ D ��.x/; where � is a coupling con-

stant, and � 2 C1
0 .R2/ is close to the characteristic function of the disc BR centered at

the origin in the L1 norm – obviously, we can make it as close as we want. It is useful to

rescale (1.3); by a space-time rescaling we can normalize the parameters � and R, so that

(1.3) becomes

@t�1 ���1 C �r � .�1r.��/�1�2/ D �"�1�2;

@t�2 D �"�1�2;
(1.4)

where for simplicity we keep the same notation for variables and parameters. The connec-

tion between parameters before and after rescaling will be documented after Theorem 1.1

below. The initial condition for �2 has the form �2.x; 0/ D ��.x/, with some � > 0 and

radial � 2 C1
0 .R2/, such that � is close in L1 to the characteristic function �B1

of the

unit disk, with

0 � �B1
.x/ � �.x/ � 1:
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In particular, we can think of the constant � as a measure of total initial mass of �2:

�� �
Z

�2.x; 0/ dx � 2��: (1.5)

It is not difficult to extend our results to more general radial initial data �2.�; 0/ 2C1
c .R2/

or just rapidly decaying – though at the expense of less sharp constants and more techni-

calities. Nevertheless, to reduce technicalities, it will be convenient for us to think of � as

very close to �B1
.

For the initial condition �1.x;0/� 0 for (1.4), we assume that it is smooth and quickly

decaying at infinity, and is located at a distance � L from the origin. Specifically, we will

assume that its mass in a ball BL.0/ is at least M0 while the mass inside B1 is much

smaller than M0:

Z

jxj�L

�1.x; 0/ dx � M0;

Z

jxj�1

�1.x; 0/ dx � M0: (1.6)

Thus,M0; L; �; � and " are the parameters of the problem, and it is convenient to combine

the mass of �2 that is � � and � into a single parameter 
 WD ��: We are primarily

interested in the situations where M0 is large, so that M0" � 
 � 1 and M0 � � ; the

motivation for such a relationship between the parameters will be discussed below. Our

goal is to compare the efficiency of reaction, that is, the decay rate of the integral

Z

R2

�2.x; t/ dx;

with and without chemotaxis. A reasonable measure of the reaction rate is a typical “half-

time” scale during which about half of the initial mass � � of �2 will react. More precisely,

the half-time �C will be the time by which the mass of �2 decreases by ��=2. Our main

nonlinear application is

Theorem 1.1. Let the constants � and " describe the chemotactic mobility and the reac-

tion strength as in (1.4). Suppose that M0 and L > 1 satisfy (1.6). Let � be as above

and in particular satisfy (1.5) and 
 D ��: Assume that the initial conditions �1.�; 0/ and

�2.�; 0/ are as above and, in addition, radially symmetric. Suppose �
=" � Qc > 0: There

exists B > 0 sufficiently large, depending only on Qc, such that if

M0"=
; 
;M0=� � B; (1.7)

then the half-time for the solution of the system (1.4) satisfies

�C � C1.L
2=
 C log 
/ (1.8)

with a constant C1 only depending on Qc and B: On the other hand, if � D 0 and �1.�; 0/
is supported in ¹jxj � L=2º, then the pure reaction-diffusion half-time satisfies �D �
C2L

2=log."M0/; where C2 is a universal constant.
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Remarks. 1. Note that time-space rescaling leading from (1.3) to (1.4) is given by x0 D
x=R; t 0 D tR2=�: The new parameters are given by �0 D �R2=�; "0 D "R2=�; M 0

0 D
M0=R

2; L0 D L=R; and 
 0 D ��0 D �R2�=�: As mentioned above, after the change of

variables, we denote the new parameters without primes. Conditions (1.7) in the original

parameters take the formM0"=.�R
2�/ � B; �R2�=� � B; M0=.�R

2/ � B: Here �R2 �
initial mass of �2:

2. The assumption (1.7) is reasonable in many applications. For example, in coral

spawning, a typical number of sperms is of the order � 1010; the number of eggs � 106,

and " � 10�2: It is difficult to find data on the measurements of strength of chemotactic

coupling in biological literature.

3. In Section 7, we prove Theorem 7.3, a variant of Theorem 1.1 that eliminates the

log 
 term in (1.8) at the price of providing slightly less precise information about the

dynamics of the system.

We believe that, possibly up to a correction logarithmic in 
 , the result of Theorem 1.1

is sharp. It indicates that the presence of chemotaxis can significantly improve reaction

rates if 
 � log.M0"/. In particular, in the framework of (1.4), one can expect chemotaxis

to provide significant improvement only if 
 is sufficiently large.

There are natural further questions, discussed in some detail in Section 9. Here, let us

just comment on the radial assumption on the initial data. The technical reason behind this

condition is an artifact of the Keller–Segel form of the chemotaxis term. As the chemical

concentration is .��/�1�2, the �1 species concentrates near the center of the support

of �2, and, in general, it may arrive there without ever meeting �2, so that reaction is not

enhanced at all. This is prohibited in the radial geometry where the �1 species will have

to see �2 as they move toward the origin. We expect that the techniques developed in

this paper should apply to other chemotactic models and to a broader class of initial data

configurations, with Theorem 1.1 as an initial application.

The proof of Theorem 1.1 relies on several ideas. We expect that the main positive

effect of chemotaxis is in speeding up transport of the �1 species towards the origin where

the �2 species is concentrated. To capture this, we estimate the transport stage by com-

paring the solutions of the coupled system to the solutions of the linear Fokker–Planck

equation with a properly chosen time independent potential,

@t� ���C r � .�rH/ D 0: (1.9)

One would wish to take �.x; 0/ D �1.x; 0/; and H D �.��/�1�2: However, the time

dependence of H would complicate the analysis. Instead, we use a comparison to the

solution to (1.9) with the “weakest” attractive potentialH.x/ in an appropriate class. The

operator

FH� D ��� C r � .�rH/

appearing in (1.9) is self-adjoint and nonnegative on the weighted space L2.e�H ; dx/

and, if 
 is sufficiently large, has a ground state eH : The rate of convergence of the

solution to the ground state for large times corresponds to transport of the density � from
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the far field towards the region with higher values ofH.x/: As we will see, the worst case

potential is

H.x/ D 
.��/�1
�

�B1
.x/ � �B

1=
p

2
.x/

�

: (1.10)

It is not difficult to deduce that in dimension 2,H.x/� �.
�=2/ log jxj for jxj � 1; and

we need to deal with a Fokker–Planck equation with a logarithmic potential. We stress

that all estimates we prove for the linear problem (1.9) apply in full generality, without

radial constraint on f:

Thus, our principal goal in this paper is to provide very precise bounds on the rate of

convergence to the ground state for this class of Fokker–Planck operators, and to develop a

comparison scheme to use these estimates in the analysis of nonlinear problems. The rate

of convergence to equilibrium for Fokker–Planck operators is a classical subject, and the

literature on this question is vast. The uniformly convex case �D2H.x/� � Id with �> 0

can be viewed as a direct application of Brascamp–Lieb ideas [9], and the operator FH

has a spectral gap, so that convergence to the ground state is exponential in time. There

has been much work on generalizations of these results. An extension to (in particular)

H.x/D jxjˇ with 1 < ˇ < 2 and further references can be found in [1]. For slower growth

potentials there may be no spectral gap. Röckner and Wang [66] have initiated analysis of

convergence to equilibrium for H.x/ D jxjˇ with 0 < ˇ < 1 which are subexponential

in time (see also [69]), as well as algebraic in time convergence bounds for a logarithmic

potential – which is precisely our case. However, the dependence of these bounds on the

coupling constant is not sufficiently sharp for the applications that motivate us. There

is also related work based on probabilistic techniques by Veretennikov [57, 72]. These

estimates are designed with different applications in mind, and are also insufficient for

our purpose.

While weighted Poincaré inequalities can be used to prove exponential in time conver-

gence to equilibrium for Fokker–Planck operators, the tools that can be deployed when the

rate of convergence is slower are called weak Poincaré or Poincaré-type inequalities. An

inequality of this kind involving Cauchy-type power weights has been proved by Bobkov

and Ledoux [7] (see also [4]). That paper contains, in particular, the following inequality

for every f 2 C1
0 .Rd /:

Z

Rd

jf � Nf j2v.x/ dx � C




Z

Rd

jrf j2.1C jxj2/v.x/ dx; (1.11)

with the weight v.x/ D .1C jxj2/�
=2 for some sufficiently large 
 , and

Nf D
Z

Rd

f .x/v.x/ dx:

The proof of Bobkov and Ledoux is based on convexity techniques, and builds on gener-

alizations of the Brascamp–Lieb inequality [9]. For our application, we need a version of

(1.11) with the weight w.x/ D eH.x/: While the behavior of w.x/ and v.x/ near infinity

is virtually identical, the weight w.x/ does not seem to satisfy the convexity assump-

tions needed for the techniques of [7] to work. Moreover, the factor C=
 on the right side



A. Kiselev, F. Nazarov, L. Ryzhik, Y. Yao 2648

of (1.11) would lead to suboptimal estimates on the rate of convergence to the ground

state. One could verify that such estimates could only yield �C . L2 in Theorem 1.1.

This is not very interesting, since pure reaction-diffusion is not outperformed in relevant

regimes.

In recent years, there has been more work focusing on weak weighted Poincaré inequal-

ities for Cauchy-type measures [8, 12]. The paper [8] proves a one-dimensional esti-

mate similar to [7] by estimating the spectral gap of a related transformed operator. The

paper [12] applies the elegant Lyapunov function method which in application to the

weight v.x/ above yields an estimate similar to (1.11). The paper [12] also treats a non-

smooth weight .1C jxj/�d�
 ; and in this case the constant C=
 in (1.11) is replaced by

a sharp (for the far range) constant C=
2: The proof of this sharp bound relies on the

mass transportation method reducing the analysis to a spectral gap estimate for a related

operator, which has been analyzed in [6]. The latter work relies on a variational approach.

It is not clear how to extend it to the smooth weight v.x/ or the weight eH that features

different behavior (and so different scaling of constants) in different regions.

Here, we prove precise weak weighted Poincaré estimates for weights with Cauchy-

type behavior at infinity which can be flat near the origin. The exact result that we need for

the sharpest estimates on convergence to equilibrium, Theorem 5.2, is a bit too technical

to state in the introduction, but it implies in particular the following improved weighted

Poincaré-type inequality by distinguishing the regions where behavior of the weight w is

different.

Theorem 1.2. Let 
 > 2; f 2 C1
0 .R2/; and w.x/ D eH.x/; with H given by (1.10).

Then the following weak weighted Poincaré inequality holds:

Z

R2

jf � Nf j2w.x/ dx � C

Z

B1

jrf j2w.x/ dx C C


2

Z

Bc
1

jrf j2.1C jxj2/w.x/ dx:

(1.12)

The bound (1.12) provides an improvement from 
�1 to 
�2 in the far field, which

is absolutely crucial for our application. It is not difficult to build examples to show that

such scaling is sharp. For the straight power weight v.x/, our results imply that

Z

Rd

jf � Nf j2v.x/dx� C.d/




Z

B1

jrf j2v.x/dxC C.d/


2

Z

.B1/c

jrf j2.1C jxj2/v.x/dx

(1.13)

for all 
 > d: Our proof of Theorem 1.2 is based on direct analytic estimates.

The weak weighted Poincaré estimates that we show allow us to derive quite sharp

bounds on convergence to equilibrium for the Fokker–Planck equation (1.9). Here is a

sample result for the weighted L2 norm. Define

Z.t/ D
Z

R2

.�.x; t/ � �s.x//
2e�H.x/ dx:

Theorem 1.3. Fix any � 2 .0; 1/: Let 
 � 
0.w/ be sufficiently large, and let �.x; t/

be the solution to (1.9) with initial condition �0 2 L1.e�H / \ L1.R2/. Set t1 WD
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C.1C log ��1 C log 
/; where C is a sufficiently large universal constant, and Z� WD
�e�H.0/k�0k2

1. Then for all t � t1, we have

Z.t/ � max ¹Z� ; .c
.t � t1//�.
�8/=8k�0e
�H k2

1º; (1.14)

where c > 0 is a universal constant.

The inequality (1.14) provides very fast, optimal in t and 
 (modulo t1 which arises

for technical reasons and constant factors), rate of decay when Z.t/ is large. One cannot

expect such decay rate for all times, since as solution concentrates near the flat part of

the weight the dynamics changes. Also, we will need to use a duality argument to get a

faster decay rate in order to rigorously reach the natural heuristic laws in the nonlinear

application.

We note that there have been several papers that analyzed convergence rates to equi-

librium for Fokker–Planck operators with Cauchy-type equilibrium measures [2, 41, 66].

Specifically, the paper [2] contains the sharpest earlier estimate for the logarithmic poten-

tial case which has the correct scaling in time, but not in 
 I the reason for that is similar

to the lack of sharp far-range constant in (1.11) and is essentially a consequence of the

analysis not separating the weight into qualitatively different regions. We believe that our

work is the first one that provides virtually sharp (in t and 
 ) estimates on convergence

to equilibrium for a Fokker–Planck operator with a potential which has qualitatively dif-

ferent behavior in different regions: flat near the origin and logarithmic in the far range.

This is exactly what one needs to understand the parabolic-elliptic chemical attraction in

two dimensions: a density attracted by a fast diffusing chemical secreted by a given fixed

target. We believe therefore that the linear problem estimates are of independent interest,

and to make these estimates relevant in applications they need to be quite precise.

The paper is organized as follows. In Section 2, we provide a heuristic motivation for

the main application result. In Section 3, we sketch the proof of the global well-posedness

for (1.4), along with an L1 bound on the density �1: In Section 4, we discuss the mass

comparison principles, which will allow the estimates for linear Fokker–Planck equations

with a time independent potential to be useful for the nonlinear analysis. In Section 5, we

derive new weak weighted Poincaré inequalities, in particular proving Theorem 1.2, and

in Section 6 we use these inequalities to obtain estimates on the rates of convergence to the

ground state for Fokker–Planck operators with logarithmic-type potentials. In Section 7,

we provide a brief detour and show how to set up a version of Theorem 1.1, Theorem 7.3,

using only comparison principles and avoiding the analysis of Fokker–Planck equations.

This argument is much simpler, and generates a result similar to our main application

here. However, it provides limited information on the distribution of �1 near the target

support, which may be useful in other applications, and does not yield intuition explaining

limitations of the standard Keller–Segel chemotaxis term that led to the radial assumption.

In Section 8, we apply the results proved in previous sections to finalize the proofs of

Theorems 1.1 and 7.3. In Section 9, we provide a preview of more advanced applications

that we believe may be possible using the techniques developed.
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Throughout the paper, we will denote by kf kp the Lp.Rd / norm of the function f

with respect to Lebesgue measure. The notation .;& and � means, as usual, bounds with

universal constants independent of the key parameters of the problem. The constants C; c

appearing in the estimates are universal constants that may change from step to step.

2. Heuristics

In order to decide whether the chemotaxis term can enhance reaction, it suffices to com-

pare the half-times �C ; �D in the two systems, with and without chemotaxis, respectively.

In Section 2.1, we will derive a rigorous lower bound for �D in the absence of chemotaxis.

We then give a heuristic argument for the full system in Section 2.2, formally deriving an

upper bound for �C in the presence of the chemotaxis term. Comparing with the estimate

without chemotaxis, it suggests that in a certain parameter regime, chemotaxis should

significantly shorten the half-time, thus meaningfully enhancing the reaction between the

two densities. Of course, the upper bound for �C in the system with chemotaxis is just

formal at this moment, but it will be made rigorous in the rest of this paper in the radially

symmetric case.

2.1. Estimates in the purely diffusive case

Consider the system without chemotaxis,

@t�1 ���1 D �"�1�2;

@t�2 D �"�1�2;
(2.1)

where the initial conditions are the same as for the original system (1.4). The time �D it

takes for k�2.�; t /kL1 to drop by half obeys a lower bound

�D � �: (2.2)

Here, � is the time it takes for kg2kL1 to drop by half, where g2 is the solution to

´

@tg1 D �g1;

@tg2 D �"g1g2;
(2.3)

where g1 and g2 have the same initial data as �1 and �2 respectively. Indeed, the compar-

ison principle implies that �1.�; t / � g1.�; t / for all t � 0, so that �2.�; t / � g2.�; t /, and

(2.2) follows.

Recall that g1.�; 0/ D �1.�; 0/ is concentrated at a distance L � 1 from the origin, in

the sense of (1.6), and �1.x; 0/ is supported inside jxj � L=2. This gives an upper bound

g1.x; t/ D 1

4�t

Z

R2

e
� jx�yj2

4t �1.y; 0/dy � M0

4�t
e�C L2=t for all x 2 B.0; 1/:
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One can plug this estimate in the equation for g2 and obtain

@t logg2 � �M0"

4�t
e�C L2=t :

Hence, �D satisfies

M0"

Z �D

0

1

4�t
e�C L2=t dt � log 2;

which, after a change of variable y D CL2=t , is equivalent to

Z 1

CL2=�D

e�y

y
dy � 4� log 2

M0"
: (2.4)

To estimate �D , we consider two cases.

Case 1.M0"� 1, which is a very weak reaction regime, or fairly smallM0 regime. Then

(2.4) is equivalent to
Z 1

CL2=�D

1

y
dy &

1

M0"
;

or � log.CL2=�D/ & 1=.M0"/. Thus �D has to satisfy

�D & L2e
C 0

M0" ; (2.5)

which is a very long time due to the large exponent.

Case 2. M0" � 1, the reaction regime that appears more relevant to the applications we

have in mind. In this case we have CL2=�D � 1, hence for a lower bound for �D , one

can find � such that Z 1

CL2=�D

e�y dy &
1

M0"
;

which reduces to CL2=�D . log.M0"/; and gives a bound

�D &
L2

log.M0"/
: (2.6)

2.2. Formal heuristics with the chemotaxis term

Now we come back to the full system (1.4), including the chemotaxis term. Again, let �C

denote the half-time of �2. The following formal argument suggests that adding this term

may significantly reduce the half-time in the regime M0" � 1, where we will formally

argue that �C � L2=
 � �D � L2=log.M0"/ as long as log.M0"/ � 
 .

To this end, note that due to chemotaxis, �1 is advected by the velocity field

v.x; t/ D �r..��/�1�2/.x; t/ D � �

2�

Z

R2

x � y
jx � yj2 �2.y; t/ dy:
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Since �C is the half-time for �2, for any t � �C we have k�2.�; t /kL1 � � , and �2.�; t / is

supported near the origin. Therefore, for all jxj � 2 and t � �C , we have the following

lower bound for the inward drift:

v.x; t/ � �x
jxj � �

Z

R2

�2.y; t/

jx � yj dy � 


jxj :

Recall that initially all of �1 starts at distanceL from the origin. Hence, in time t �L2=
 ,

the chemotactic transport should bring a significant portion (say, half) of �1 into B1.0/,

and then �1 �M0 in this ball. This enables the mass of �2 to decrease exponentially at the

rateM0"� 1, and the half-time is quickly reached; thus one formally expects �C .L2=
:

In the “risky” regimeM0"� 1; we need to add nontrivial reaction time, which is now

of the order � 1=.M0"/. Then, one expects

�C � L2



C 1

M0"
;

which can be quite a dramatic improvement compared to (2.5).

Note that this heuristic argument ignores many essential points, such as effect of dif-

fusion, or close field dynamics. There are indications that for the Keller–Segel chemotaxis

term, reaction time may be longer due to “overconcentration” of �1:We discuss this point

further in Section 9.

3. Global regularity and an L
1 bound

In order to get a uniform bound for the solutions to (1.4), let us first consider an equation

with a prescribed drift,

�t ���C r � .�rˆ.x; t// D �h.x; t/�; (3.1)

where h 2 L1.Rd � Œ0;1// is nonnegative,ˆ isH 2
loc in space for all time, and such that

rˆ 2 L1.L1.Rd /; Œ0;1//. The proof of the following a priori L1-L1 bound for (3.1)

is very close to that of [10, Theorem 5]. We recall it in Appendix A.1 for completeness.

Theorem 3.1. Let the initial condition �0 for (3.1) satisfy �0 2 L1.Rd / \ L1.Rd /:

Assume that h 2 L1.Rd � Œ0;1// is nonnegative, and ˆ is H 2
loc in space for all time

and rˆ 2 L1.L1.Rd /; Œ0;1//: If there exists 
 > 0 such that �ˆ.�; t / � �
 for all

t � 0, then

k�.�; t /k1 � C.d/max ¹t�d=2; 
d=2º k�0k1 for all t � 0. (3.2)

The assumption that �0 2 L1.Rd / in Theorem 3.1 is not necessary, and is made sim-

ply because we always consider solutions with bounded initial conditions. We also discuss

well-posedness and regularity of solutions to (3.1) briefly in Section 5 and Appendix A.2.

Note that the �1-equation in (1.4) is of the form (3.1) with hD "�2 � 0 and the poten-

tialˆ.�; t /D �.��/�1�2.�; t /. The potentialˆ grows at a logarithmic rate at infinity, and
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minimal beyond L1 regularity of �2 would ensure that ˆ 2 H 2
loc: This extra regularity is

established below in Theorem 3.3. Also, from the explicit formula for the inverse Lapla-

cian it is not hard to see that rˆ 2 L1.L1.Rd /; Œ0;1//: We will therefore be able to

apply Theorem 3.1 to obtain an a priori bound for k�1.�; t /kL1 .

The global regularity of solutions to (1.4) in all dimensions d � 1 follows from a

standard argument, which we briefly sketch below. The following lemma contains the key

estimates.

Lemma 3.2. Suppose f 2 L1.Rd / \Hm.Rd /, g 2 L1.Rd / \Hm�1.Rd / \ L1.Rd /

with an integer m > d=2: Then

kf r.��/�1gk1 � Ckf k1.kgk1 C kgk1/; (3.3)

kf r.��/�1gkH m � C.kgk1 C kgk1/kf kH m C Ckf k1kgkH m�1 : (3.4)

Proof. The inequality (3.3) follows from the estimates

kf r.��/�1gk1 � kf k1kr.��/�1gk1;

and

kr.��/�1gk1 � C sup
x2Rd

Z

Rd

jx � yj�dC1jg.y/j dy � C.kgk1 C kgk1/: (3.5)

To estimate the Hm norm in (3.4), let us start with the L2 norm which is controlled

similarly to (3.5):

kf r.��/�1gk2 � kf k2kr.��/�1gk1 � Ckf kH m.kgk1 C kgk1/:

Any other term that we need to estimate to control the Hm norm squared from the right

hand side of (3.4) is of the form
Z

Rd

Dj .f r.��/�1g/ �Dj .f r.��/�1g/ dx;

where Dj is some partial derivative of order j � m: It suffices to control any term of the

form Z

Rd

jDj �sf j2jDsr.��/�1gj2 dx; (3.6)

where the integer s satisfies 0 � s � j: If s D 0; then (3.6) is bounded by

kr.��/�1gk2
1kf k2

H j ; and using (3.5) and j � m leads to the estimate we seek. If

s D j; then (3.6) is bounded by kf k2
1kgk2

H m�1 : If j > s > 1; we can estimate (3.6) by

CkDj �sf k2
pkDs�1gk2

q; (3.7)

where p�1 C q�1 D 1=2; and 1 < p; q < 1: Specifically, let us choose p D 2.j �1/
j �s

and

q D 2.j �1/
s�1

: In this step we have used only that the Riesz transforms are bounded in Lr if

1 < r < 1: Recall a Gagliardo–Nirenberg inequality

kDkf k2n=k � Ckf k1�k=n
1 kf kk=n

H n ; (3.8)
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valid in any dimension for integers k; n such that 0 < k < n (see e.g. [51]). Applying it

to the norms in (3.7) with n D j � 1, and k D j � s and k D s � 1; respectively, we get

the bound

Ckf k2�2 j �s
j �1

1 kf k2 j �s
j �1

H j �1kgk2�2 s�1
j �1

1 kgk2 s�1
j �1

H j �1 � C.kf k2
1kgk2

H j �1 C kgk2
1kf k2

H j �1/:

Here we have used the inequality aˇb1�ˇ � a C b for a; b � 0 and 0 � ˇ � 1: Finally,

if s D 1; note that we can assume j > 1 since otherwise s D j and this is covered above.

In this case, we estimate

Z

Rd

jDj �1f j2jDr.��/�1gj2 dx � kDj �1f k2
2j

j �1

kDr.��/�1gk2
2j

� CkDj �1f k2
2j

j �1

kgk2
2j :

Due to (3.8),

kDj �1f k 2j
j �1

� Ckf k
1
j
1kf k

j �1
j

H j ;

while

kgk2j � kgk
2j �1

2j
1 kgk

1
2j

1 :

By Young’s inequality,

kf k
1
j
1kf k

j �1
j

H j kgk
2j �1

2j
1 kgk

1
2j

1 � C.kf kH j kgk
2j �3
2j �2
1 kgk

1
2j �2

1 C kf k1kgk1/

� Ckf kH j .kgk1 C kgk1/C Ckf kH mkgk1:

Here in the last step we have used m > d=2: Since also m � j; the lemma follows.

Theorem 3.3. If the initial conditions �1.�; 0/, �2.�; 0/ for (1.4) are nonnegative, and lie

in L1.Rd / \ Hm.Rd / with an integer m > d=2, then there is a unique global-in-time

solution .�1.�; t /; �2.�; t // 2 C.L1.Rd / \Hm.Rd /; Œ0;1// to (1.4).

Proof. We assume that �1.�; 0/, �2.�; 0/ are nonnegative purely for simplicity since this

is the case in all our applications. This assumption is not hard to remove. We note that

the standard comparison principle implies that nonnegativity is conserved in time for all

sufficiently regular solutions.

The local-in-time well-posedness in C.L1.Rd / \Hm.Rd /; Œ0; T �/ can be shown by

a standard argument, using the Duhamel formula and the contraction mapping theorem.

In our case the Duhamel formula takes the form

�1.x; t/ D et��1.x; 0/

C
Z t

0

e.t�s/�
�

��r � .�1.s/r.��/�1�2.s// � "�1.s/�2.s/
�

ds; (3.9)

�2.x; t/ D e�"
R t

0 �1.x;s/ ds�2.x; 0/: (3.10)
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We can reduce this system to a single equation substituting (3.10) into (3.9). Using the

fact that Hm is an algebra if m > d=2; Lemma 3.2, and simple estimates of the type

ke�"
R t

0 �1.�;s/ ds�2.�; 0/kH m � k�2.�; 0/kH me
"tk�1k

C.Hm.Rd /;Œ0;t�/ ; (3.11)

it is not hard to obtain local well-posedness in C.L1.Rd / \ Hm.Rd /; Œ0; T �/ for suf-

ficiently small T using the contraction mapping theorem. We refer for details to [46,

Appendix I] where a very similar argument can be found.

As usual with parabolic equations, the solution is actually more regular for every t > 0I
however, in our setting the solution does not become C1 due to the lack of a smoothing

mechanism for �2 (unless we assume �2.�; 0/ 2 C1; in which case the solution will

be C1 for all t > 0). In the general setting, using (3.11), the fact that Hm is an algebra,

and the elementary estimate

kret�f kH mC1�" � Ct�1C"=2kf kH m

for any "> 0;we can deduce from (3.9) and (3.10) that �1 2HmC1�".Rd / for every t > 0:

Using (3.4) to bootstrap this stronger regularity, we can then find that for any 1 > " > 0;

�1 2 HmC2�".Rd / for all t > 0 (in fact, t D 0 is excluded only because of the first linear

heat evolution term in (3.9)). This regularity implies that for a local solution we have

@t�1 2 Hm�".Rd / for all t > 0; and this along with higher regularity in spatial variables

can be used to justify the calculation of @t k@˛�1k2
2 and integrations by parts below; the

justification for the latter uses trace theorems for fractional Sobolev spaces (see e.g. [19]).

Now let us prove global regularity. By integrating the equations, we find that the L1

norms of �1.�; t / and �2.�; t / (which are equal to their integrals due to nonnegativity) are

nonincreasing in time. Hence to improve the local well-posedness result to a global-in-

time one, it suffices to obtain an a priori bound on

I.t/ WD k�1.t/k2
H m C k�2.t/k2

H m

on any given finite time interval Œ0; T �. Fix any multi-index ˛ with 0 � j˛j � m and write

1

2

d

dt
k@˛�2k2

2 D �"
Z

R2

.@˛�2/@
˛.�1�2/ dx � "k�2kH mk�1�2kH m

� Ck�2kH m.k�1k1k�2kH m C k�2k1k�1kH m/

� C.k�1.�; t /k1 C 1/.k�1.�; t /k2
H m C k�2.�; t /k2

H m/: (3.12)

Here, the second line is obtained by the inequality (see, e.g., [50, Lemma 3.4])

kuvkH m � C.kuk1kvkH m C kvk1kukH m/ for m > d=2; (3.13)

and in the last line we use the fact that k�2.t/k1 � k�2.0/k1 � C . As for k�1kH m , for

any multi-index ˛ as above, integration by parts gives

1

2

d

dt
k@˛�1k2

2 D �kr@˛�1k2
2 C �

Z

R2

r.@˛�1/ � @˛.�1r.��/�1�2/ dx

� "
Z

R2

.@˛�1/@
˛.�1�2/ dx: (3.14)
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The last integral on the right side can be bounded by the right side of (3.12), while the

first one can be estimated by

1

�
kr@˛�1k2

2 C Ck�1r.��/�1�2k2
H m

� 1

�
kr@˛�1k2

2 C C
�

k�1k2
1k�2k2

H m C k�1k2
H m.k�2k2

1 C k�2k2
1/

�

: (3.15)

We have used the Cauchy–Schwarz inequality and the Young inequality in the first line

and Lemma 3.2 in the second line; the constants C depend on � and may change from line

to line. Combining the above estimates and taking into account that k�2k1 and k�2k1 are

nonincreasing gives

d

dt
.k�1.�; t /k2

H m C k�2.�; t /k2
H m/� C.k�1.�; t /k1 C 1/2.k�1.�; t /k2

H m C k�2.�; t /k2
H m/:

(3.16)

The first equation in (1.4) gives the bound

k�1.�; t /k1 � k�1.�; 0/k1 exp¹�k�2.�; t /k1tº � k�1.�; 0/k1 exp¹�k�2.�; 0/k1tº:
(3.17)

Thus k�1.�; t /k1 remains finite for all times, and then (3.16) leads to global regularity.

To get a more precise bound, we may use (3.17) for 0 � t � 1, while for t � 1 we may

deploy the uniform bound from Theorem 3.1. Therefore, there exists C > 0 such that

k�1.�; t /k1 � C for all t � 0. Then (3.16) gives exponential-in-time control of the Hm

norms of the solution, for all times.

4. The mass comparison principle

We now obtain a comparison principle that allows us to compare �1 to the solution � of

the Fokker–Planck equation

@t� ���C r � .�rH/ D 0 (4.1)

with a certain prescribed H . The comparison will be in a mass concentration sense that

will be clarified in Proposition 4.3. The results of this section are valid in arbitrary space

dimension – the proof below is given for d D 2 for notational convenience since it is our

setting in this paper, but the argument can be generalized in a straightforward manner. Let

us assume that H D .��/�1g, with a radially symmetric function g D g.jxj/ supported

in a ball BR0
.0/: The explicit form of g and H that we will use is given in (4.10) and

(4.11). The function H is radially symmetric as well, and the divergence theorem gives

@rH.r/ D 1

j@Br j

Z

Br

�H.x/ dx D 1

2�r

Z

Br

.�g.x// dx D �1
r

Z r

0

g.s/s ds: (4.2)

Integrating in r gives an expression

H.r/ D �.log r/

Z r

0

g.s/s ds �
Z 1

r

.log s/g.s/s ds C const: (4.3)



Chemotaxis and reactions in biology 2657

Since g is compactly supported, taking the arbitrary constant in (4.3) to be zero gives

H.r/ D � 1

2�
kgk1 log r; r � R0:

As a direct consequence of (4.2), we have the following.

Lemma 4.1. Assume that g1 and g2 are both radially symmetric and compactly sup-

ported. Suppose that g1 is more concentrated than g2 in the sense that

Z r

0

g1.s/s ds �
Z r

0

g2.s/s ds for all r � 0.

Then the functionsHi WD .��/�1gi , i D 1; 2, satisfy @rH1 � @rH2 � 0 for all r > 0. In

addition, if gi 2 L1.R2/, then @rHi .0/ D 0 for i D 1; 2.

We now compare the mass concentration of solutions to the Fokker–Planck equations.

Proposition 4.2. Suppose that u1 and u2 are nonnegative solutions to

@tui ��ui C r � .ui rHi / D 0

for i D 1; 2, and u1 is more concentrated than u2 at t D 0, so that

Z

Br

u1.x; 0/ dx �
Z

Br

u2.x; 0/ dx for all r � 0. (4.4)

If in addition H2.�; t / is radially symmetric, and

@rH2.r; t/ � max
�
@rH1.r; �; t/ for all t � 0 and r > 0, (4.5)

then u1.�; t / is more concentrated than u2.�; t / for all t � 0.

Note that u1;2 are not necessarily radially symmetric.

Proof. The masses

Mi .r; t/ WD
Z

Br

ui .x; t/ dx

satisfy

@tMi .r; t/ D
Z

Br

�ui dx �
Z

Br

r � .ui rHi / dx D
Z

@Br

@rui d� �
Z

@Br

ui@rHi d�

D r

Z 2�

0

@rui .r; �; t/ d� � r
Z 2�

0

ui .r; �; t/@rHi .r; �; t/ d�:

(4.6)

Here, d� D r d� is the surface measure on the boundary. Note that

@rMi D
Z

@Br

ui d� D r

Z 2�

0

ui .r; �; t/ d�;
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so that
Z 2�

0

@rui d� D @r

�
@rMi

r

�

D @rrMi

r
� @rMi

r2
:

Substituting the above two equations into (4.6) gives

@tMi .r; t/ D @rrMi � 1

r
@rMi � r

Z 2�

0

ui .r; �; t/@rHi .r; �; t/ d�: (4.7)

Subtracting the two equations and using the radial symmetry of H2, we obtain

@t .M1 �M2/ � @rr .M1 �M2/C 1

r
@r .M1 �M2/

� @rH2@rM2 � .@rM1/max
�
@rH1.r; �; t/

D �.@rH2/@r .M1 �M2/C
�

@rH2 � max
�
@rH1.r; �; t/

�

@rM1

� �.@rH2/@r .M1 �M2/: (4.8)

We have used (4.5) as well as @rM1 � 0 in the last inequality above. Now, the standard

parabolic comparison principle (see e.g. [49, 63]) and (4.4) imply that

M1.r; t/ � M2.r; t/ for all r; t � 0.

To make the application completely routine one can considerM "
1 .r; t/DM1.r; t/C "with

" > 0 (note that M "
1 satisfies the same equation as M1). Then in view of the definition of

Mi and the upper bound of Theorem 3.1, we haveM "
1 .r; t/�M2.r; t/ > 0 in some small

neighborhood of r D 0 uniformly in t: Larger values of r are controlled by the standard

comparison principle. Letting " ! 0 yields the result.

Let us now go back to (1.4). Let us recall that

1

2�
k�2.�; 0/k1 � � � 1

�
k�2.�; 0/k1; M0 D k�1.�; 0/k1; 
 D ��; (4.9)

and that we are interested in the regimeM0 � � . To simplify the technicalities we assume

that �2.�; 0/ is smooth but very close to �B1
in L1 norm, and �2.x; 0/ � �B1

.x/, but in

the argument below we think of �2.x; 0/ as equal to ��B1
.x/. To make this argument

completely rigorous, while still using exactly the function g in (4.10), and keeping �2.�; 0/
smooth, one may work with a time �˛ by which the mass of �2 drops by a factor of ˛

with ˛ < 1=2, rather than �C , as the discrepancy between �2.�; 0/ and �B1
can be made

arbitrarily small in L1.R2/.

Observe that any radial function f .x/ � 0 supported on B1; and such that

0 � f .x/ � �2.x; 0/ and kf k1 � 1
2
k�2.�; 0/k1;

is more concentrated than

g.x/ WD �.�B1
.x/ � �B

1=
p

2
.x//: (4.10)
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In particular, g is less concentrated than �2.�; t / for all t � �C . One may use (4.3) and

(4.9) to obtain

H.x/ WD �.��/�1g D

8

ˆ̂
<

ˆ̂
:

.
=8/.1 � log 2/ for 0 � r < 1=
p
2;

.
=4/.log r C 1 � r2/ for 1=
p
2 � r < 1;

�.
=4/ log r for r � 1:

(4.11)

We can now compare �1 to the solution to the Fokker–Planck equation with the drift

potential H , and conclude the following:

Proposition 4.3. Let �1.x; t/; �2.x; t/ solve (1.4) with radially symmetric initial condi-

tions, where �2.�; 0/ D ��; � smooth, radial and �.x/ � �B1
.x/, and suppose �.x; t/

solves the Fokker–Planck equation (4.1) with the drift potentialH given by (4.11) and the

same initial condition as �1. Let �C be the time it takes for the L1 norm of �2 to decrease

by ��=2. Then

Z

Br

�1.x; t/ dx �
Z

Br

�.x; t/ dx � 1

2

Z

R2

�2.x; 0/ dx for all t � �C and r � 0:

(4.12)

Proof. Let Q� solve the equation for �1 without the reaction term:

@t Q� �� Q�C �r � . Q�r.��/�1�2/ D 0; (4.13)

with the same initial condition as �1. Note that Q�.�; t / is more concentrated than �.�; t / for

all t � �C . Indeed, the function g defined in (4.10) is less concentrated than �2.�; t / for

all t � �C , hence Lemma 4.1 implies that

�@r .��/�1�2.�; t / � @rH � 0 for all t � �C ;

where H as in (4.11). Thus, Proposition 4.2 gives
Z

Br

Q�.x; t/ dx �
Z

Br

�.x; t/ dx for all t � �C and r � 0: (4.14)

To prove (4.12), it now suffices to compare �1 and Q� and show that

Z

Br

�1.x; t/dx �
Z

Br

Q�.x; t/dx � 1

2

Z

R2

�2.x;0/dx for all t � �C and r � 0: (4.15)

Note that
Z

R2

�1.x; 0/ dx �
Z

R2

�1.x; t/ dx D
Z

R2

�2.x; 0/ dx �
Z

R2

�2.x; t/ dx

� 1

2

Z

R2

�2.x; 0/ dx for all t � �C ; (4.16)

and the comparison principle implies that

Q�.x; t/ � �1.x; t/ for all x; t: (4.17)
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Hence, we may write

Z

Br

�1.x; t/ dx D
Z

R2

�1.x; t/ dx �
Z

R2nBr

�1.x; t/ dx

�
Z

R2

�1.x; 0/ dx � 1

2

Z

R2

�2.x; 0/ dx �
Z

R2nBr

Q�.x; t/ dx

D �1
2

Z

R2

�2.x; 0/ dx C
Z

R2

Q�.x; 0/ dx �
Z

R2nBr

Q�.x; t/ dx

D
Z

Br

Q�.�; t / dx � 1

2

Z

R2

�2.x; 0/ dx;

which is (4.15). Here we have used (4.16) and (4.17) in the first step, and conservation of

mass for Q� in the last step.

5. Weak weighted Poincaré-type inequalities

In this section, we develop some analytical tools that we will need to derive sufficiently

sharp estimates on the convergence to equilibrium rates for solutions to Fokker–Planck

equations with a logarithmic potential. To motivate these results, consider the Fokker–

Planck equation

@t� ���C r � .�rH/ D 0 in R
2 � Œ0;1/; (5.1)

where H D �.��/�1g is time independent, and g is the radially symmetric function

supported in B.0; 1/ defined in (4.10). As outlined in the previous section, we plan to use

the solution � as a comparison tool to control the behavior of �1:

Before setting the stage for the main arguments of this section, for completeness, let us

briefly discuss well-posedness and regularity properties of the solutions to (5.1). Equation

(5.1) is linear, and the result we are going to state is definitely known – but a convenient

reference does not appear to be easily available.

Theorem 5.1. Suppose thatH in (5.1) satisfies�H;rH 2L1.R2/; and the initial data

�0 2 W 2;1.R2/ \ W 2;1.R2/: Then there exists a unique solution �.x; t/ such that for

any 1 � p < 1 and any T � 0; we have

k@t�kLp.R2/ C k�kW 2;p.R2/ � C.p; �0;H; T / < 1 (5.2)

for all 0 � t � T:

Remark. 1. The result holds in any dimension d without changes.

2. In our case, H is smooth away from two concentric circles. Standard parabolic

regularity theory (see e.g. [47, Corollary 2.4.3]) in this case implies that �.x; t/ is smooth

away from those circles. Theorem 5.1 implies that � 2 C 1;
 .R2/ for any 
 < 1I such

regularity near singular interfaces is certainly sufficient for any estimates below.

We will sketch a simple proof of Theorem 5.1 in Appendix A.2.
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The operator L given by

L� D ���C r � .�rH/

is self-adjoint in the weighted space L2.e�Hdx/ (when defined on a natural weighted

Sobolev space), and is nonnegative. Its unique ground state corresponding to the zero

eigenvalue is a multiple of eH , provided that

Z

eH dx < 1;

otherwise there is no ground state. In our situation, H is given by (4.11), so that

eH.x/ D

8

ˆ̂
<

ˆ̂
:

.e=2/
=8; jxj < 1=
p
2;

e
=4jxj
=4e�
 jxj2=4; 1=
p
2 � jxj � 1;

jxj�
=4; jxj � 1:

(5.3)

As the evolution (5.1) conserves the integral of �, we expect that

�.t; x/ ! eH.x/

�Z

� dx

��Z

eH dx

��1

as t ! C1.

The dual operator L� with respect to the standard L2.dx/ inner product, given by

L�f D ��f � rH � rf;

is self-adjoint in L2.eH dx/; with ground state equal to a constant. The corresponding

dual evolution is

@tf ��f � rH � rf D 0: (5.4)

Note that �.�; t / solving (5.1) is equivalent to

f .x; t/ WD �.x; t/e�H.x/

solving (5.4). The evolution (5.4) conserves the integral of f .x/ exp.H.x// so we expect

that

f .x; t/ ! Nf WD
�Z

f0e
H dx

��Z

eH dx

��1

as t ! C1,

where f0.x/ D f .x; 0/. Note that

d

dt

Z

R2

.f .x; t/ � Nf /2eH.x/ dx

„ ƒ‚ …

DWZ.t/

D �2
Z

R2

jrf .x; t/j2eH.x/ dx

„ ƒ‚ …

DWW.t/

: (5.5)

If we can bound Z.t/ from above as

Z.t/ � g.W.t/; kf0k1/;
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with some function g that increases inW , that would allow us to boundW.t/ from below

in terms of Z.t/ and kf0k1. Then (5.5) would give us a differential inequality for Z.t/

leading to an explicit decay estimate on Z.t/. In the simplest case, the bound Z � CW

applies, which is a standard Poincaré inequality. Then there is a spectral gap for L�, and

exponential-in-time convergence to the ground state in L2.eHdx/: This is true for uni-

formly concave potentials, as in the Brascamp–Lieb inequality. However, it is not difficult

to verify that in the case of logarithmic potential (or even jxj˛ with ˛ < 1) there is no

spectral gap, that is, the ground state zero is not an isolated point of the spectrum. Then

the usual Poincaré inequality cannot hold, and one needs what is called a weak Poincaré

version that manifests itself in a different, stronger weight deployed for the gradient norm.

We will prove the weak weighted Poincaré inequality for a more general family of

radial weights w.r/ � 0, which depend on a parameter 
 > 0, than the specific choice

(5.3), since the argument is essentially the same. We will assume that the weights have the

following properties: there exist 0 < r1 < r2 < 1 and constants C0; C1; C2 independent

of 
 such that

C�1
0 w.s/ � w.r/ � C0w.s/ for all s; r 2 Œ0; r1�; (5.6)

w0.r/ � �C1
.r � r1/w.r/ for r 2 Œr1; r2�; (5.7)

w0.r/ � �C2
r
�1w.r/ for r 2 Œr2;1/: (5.8)

An elementary computation shows that for the weight w.r/ D exp.H.r// given by (5.3),

assumptions (5.6)–(5.8) hold with

r1 D 1=
p
2; r2 D 3=4; (5.9)

where the choice of r2 is rather arbitrary; any number larger than r1 would do. The power

weight v.r/ D .1C r2/�
=2 analyzed by Bobkov and Ledoux [7] does not directly fit the

above assumptions; as we will see below, the natural choice of r1 in this case does depend

on 
 , the difference with our case being the lack of a plateau near zero. We will indicate

changes necessary to accommodate the power weight in Theorem 5.5.

It will be convenient for us to derive a slightly stronger version of the standard Poincaré

estimate. Given any f .x/, let

Qf .r/ WD 1

2�

Z 2�

0

f .r; �/ d�:

Instead of directly looking for an upper bound for

Z D
Z

R2

.f .x/ � Nf /2w.x/ dx; Nf D
�Z

R2

w.x/ dx

��1 Z

R2

f .x/w.x/ dx:

it turns out to be easier to control the following integral that is closely related to Z.t/:

I WD
Z

R2

.f .x/ � Qf .r1//2w.x/ dx DW I1 C I2 C I3:
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Here, I1; I2; I3 are given by

I1 WD
Z

Br1

.f .x/ � Qf .r1//2w.x/ dx; I2 WD
Z

Br2
nBr1

.f .x/ � Qf .r1//2w.x/ dx

I3 WD
Z

.Br2
/c

.f .x/ � Qf .r1//2w.x/ dx;
(5.10)

with r1 and r2 given by (5.9). Note that

Z D
Z

R2

.f .x/ � Nf /2w.x/ dx D inf
a

Z

.f � a/2w.x/ dx � I:

Let us also define

J1 WD
Z

Br1

jrf j2w.x/ dx; J2 WD
Z

Br2
nBr1

jrf j2w.x/ dx;

J3 WD
Z

.Br2
/c

jrf j2jxj2w.x/ dx:
(5.11)

Note that J1 and J2 are directly related to

W D
Z

jrf j2w.x/ dx;

but J3 has an extra factor jxj2 in the integrand.

Theorem 5.2. Suppose that the weight w.x/ � 0 is radial and satisfies (5.6)–(5.8). Let

Ik ; Jk be defined by (5.10) and (5.11) respectively. Then there exists a universal con-

stant C such that for all sufficiently large 
 � 
0.w/ and every f in the weighted Sobolev

class W 1;2.w dx/ the following inequalities hold:

I1 � CJ1; (5.12)

I2 � C



J2 C C



J1 C 1

4
I1; (5.13)

I3 � C


2
J3 C C


2
J2 C 1

4
I2: (5.14)

Remarks. 1. As usual, it suffices to prove the inequalities for f 2 C1
0 .R2/:

2. The factors 1=4 in estimates (5.13) and (5.14) are needed (any factor less than 1

would work) to derive the sharpest version of the convergence to equilibrium estimate.

3. Here and in the estimates that follow, C and c stand for universal constants (in par-

ticular independent of 
 ) that may change from expression to expression. These constants

may depend on r1; r2; C0; C1 and C2 – that is, on w:

4. The proof extends to all dimensions with a minor adjustment of the constants. While

in dimensions d ¤ 2 the logarithmic behavior of H does not correspond to the Green

function of the Laplacian, the behavior of a particle in such slowly growing potential is of

independent interest.
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Proof of Theorem 5.2. We are interested here in the large 
 regime, so we assume that 


is sufficiently large; we do not try to optimize the constants. For the reader’s convenience,

we record a bound on 
0.w/ that is going to be sufficient for the proof:


0.w/ D max

²
4

r2
1C

2
1

;
2

C2

;
1

.r2�r1/2
;
r2

1

9
; 4096c2

0

�

1C 2

C1

�2

;
4

r1.r2�r1/C1

³

: (5.15)

Since we will be working in polar coordinates, it is convenient to incorporate the

Jacobian into the weight, setting u.r/ D rw.r/. Let us restate our assumptions on w in

terms of u: On the interval Œr1; r2� we have

u0.r/ D rw0.r/C w.r/ �
�

�C1
.r � r1/C 1

r

�

u.r/: (5.16)

Thus if 
 is large, u is increasing at most for only a small distance past r1, and reaches its

maximum no further than rmax D r1 CO.
�1/. In particular, there is 
0 large enough so

that
u0.r/ � �cp
 u.r/ for all r 2 Œr1 C 1=

p

; r2�, for 
 > 
0;

with some c > 0 (we could take c D C1=2, so that the above inequality holds for all


 � 4

r2
1

C 2
1

). For r 2 Œr2;1/, we have

u0.r/ � .�C2
 C 1/w.r/ � �C2

2

r�1u.r/ for all 
 � 2=C2.

Altogether, u satisfies the following differential inequalities, with some C; c > 0, and

Qr1 WD r1 C 1=
p

 :

u0.r/ �

8

<̂

:̂

Cu.r/ for r 2 Œr1; Qr1/; (5.17a)

�cp
 u.r/ for r 2 Œ Qr1; r2/; (5.17b)

�c
r�1u.r/ for r 2 Œr2;1/. (5.17c)

These are the inequalities that we will use in the analysis below, along with (5.16).

We first note that (5.12) is a direct consequence of a slight variation of the standard

proof of the Poincaré inequality (see, e.g., [26]), so we only need to estimate I2 and I3.

We will first show the inequalities for the radially symmetric f , where we only need the

first term of the right side of (5.13) and the first two terms of the right side of (5.14),

respectively, and then consider a general f .

� Control of I2: radial estimates. Let f be radial, and h > 0 an arbitrary function of

single variable, then

Z r2

r1

.f .r/ � f .r1//2u.r/ dr D
Z r2

r1

�Z r

r1

f 0.s/ ds

�2

u.r/ dr

�
Z r2

r1

�Z r

r1

f 0.s/2h.s/ ds

��Z r

r1

h.t/�1dt

�

u.r/ dr

D
Z r2

r1

f 0.s/2h.s/

Z r2

s

u.r/

�Z r

r1

h.t/�1dt

�

dr ds: (5.18)
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We choose h D u1=2, and claim that

Z r2

s

u.r/

�Z r

r1

u.t/�1=2 dt

�

dr � C



u.s/1=2 for all s 2 Œr1; r2�: (5.19)

Once this claim is proved, plugging it into (5.18) yields

I2 D
Z r2

r1

.f � f .r1//2udr � C




Z r2

r1

f 0.s/2u.s/ ds D C



J2: (5.20)

Now, let us prove (5.19). To this end, we will show that

Z r

r1

u.t/�1=2 dt � C
p


u.r/�1=2 for all r 2 Œr1; r2�; (5.21)

Z r2

s

u.r/1=2 dr � C
p


u.s/1=2 for all s 2 Œr1; r2�; (5.22)

which together imply (5.19) immediately. To prove (5.21), we note that if r 2 Œr1; Qr1�, then

(5.16) implies

u.t/�1=2 � Cu.r/�1=2 for any t 2 Œr1; r�,

hence (5.21) holds for r � Qr1. If r > Qr1, we split the integration domain in (5.21) as

Z r

r1

u.t/�1=2 dt D
Z Qr1

r1

u.t/�1=2 dt C
Z r

Qr1

u.t/�1=2 dt D AC B: (5.23)

Again by (5.16), we have

A � C
p


u. Qr1/�1=2 � C

p


u.r/�1=2;

as u.r/ is decreasing for r > Qr1. For the second integral in (5.23), note that (5.17b) gives

u.t/�1=2 � e�c
p


.r�t/=2u.r/�1=2 for t 2 Œ Qr1; r�,

thus

B � C
p


u.r/�1=2: (5.24)

To prove (5.22), note that if s > Qr1, then (5.22) follows directly from (5.17b), as in (5.24).

If s < Qr1, we again split the integration domain

Z r2

s

u.t/1=2 dt D
Z Qr1

s

u.t/1=2 dt C
Z r2

Qr1

u.t/1=2 dt D AC B: (5.25)

The first integral on the right side can be controlled by

A � C
p


u.s/1=2;
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because u.t/ � Cu.s/ on this interval due to (5.16), and j Qr1 � sj � 1=
p

 . The second

integral can be controlled by

B � C
p


u. Qr1/1=2 � C

p


u.s/1=2;

by (5.17b) and (5.16).

� Control of I2 for a nonradial function. For the general nonradial case, we decompose

a function f D f .r; �/ into the Fourier series

f .r; �/ D Qf .r/C
1

X

nD1

. n.r/ cos.n�/C �n.r/ sin.n�//: (5.26)

Using this decomposition, I2 becomes

I2 D
Z r2

r1

. Qf .r/ � Qf .r1//2u.r/ dr C �

1
X

nD1

Z r2

r1

. n.r/
2 C �n.r/

2/u.r/ dr; (5.27)

whereas J2 becomes

J2 D
Z r2

r1

Qf 0.r/2u.r/ dr

C �

1
X

nD1

Z r2

r1

�
n2

r2
 n.r/

2 C n2

r2
�n.r/

2 C  0
n.r/

2 C � 0
n.r/

2

�

u.r/ dr: (5.28)

Note that I1 and J1 can be written in the same form as I2 and J2 with the domain of

integration replaced by Œ0; r1�. To bound I2, we will prove the following estimate for each

n � 1:

Z r2

r1

 n.r/
2u.r/ dr � C




Z r2

r1

 0
n.r/

2u.r/ dr C C




Z r1

0

 0
n.r/

2u.r/ dr

C 1

4

Z r1

0

 n.r/
2u.r/ dr; (5.29)

with an identical estimate holding for �n. With (5.29) in hand, adding (5.20) for Qf and

(5.29) for both  n and �n, we arrive at (5.13).

To prove (5.29), first note that

Z r2

r1

 n.r/
2u.r/ dr � 2

Z r2

r1

. n.r/ �  n.r1//
2u.r/ dr C 2 n.r1/

2

Z r2

r1

u.r/ dr

� C




Z r2

r1

 0
n.r/

2u.r/ dr C 2 n.r1/
2

Z r2

r1

u.r/ dr: (5.30)

We have used (5.20) applied to  n.r/ in the last inequality above. To bound the last

integral on the right side, we use (5.16) to observe that u. Qr1/ � 2u.r1/ for 
 sufficiently
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large, and then also (5.17b) to get

Z r2

r1

u.r/ dr D
Z Qr1

r1

u.r/ dr C
Z r2

Qr1

u.r/ dr � 2
p


u.r1/C

Z r2

Qr1

2e�c
p


.r�Qr1/u.r1/ dr

� 2
p



�

1C 1

c

�

u.r1/: (5.31)

Note that if

4

�

1C 1

c

�

 n.r1/
2 1

p


u.r1/ � 1

4

Z r1

0

 n.r/
2u.r/ dr; (5.32)

then (5.29) follows from (5.30)–(5.32). If (5.32) does not hold, and 
 is sufficiently large,

there existC , independent of 
 , and r3 2 Œr1 �C=p
;r1� such that j n.r3/j � j n.r1/j=2
(specifically, C D 32C0.1 C 1=C / would work here). Here, we have used the fact that

u.r/ � C�1
0 u.r1/=2 for all r 2 Œr1=2; r1� due to (5.6). Thus, we have

Z r1

0

 0
n.r/

2u.r/ dr �
Z r1

r3

 0
n.r/

2u.r/ dr �
�Z r1

r3

 0
n.r/ dr

�2�Z r1

r3

1

u.r/
dr

��1

� j n.r1/j2
4

u.r1/

2C0.r1 � r3/
� j n.r1/j2

4

p

 u.r1/

2C0C
; (5.33)

which, using (5.31), gives that if (5.32) fails, then

 n.r1/
2

Z r2

r1

u.r/ dr � C
p


 n.r1/

2u.r1/ � C




Z r1

0

 0
n.r/

2u.r/ dr:

This finishes the proof of (5.29), and hence also of (5.13).

� Control of I3: radial estimates. To control I3 for a radial function f , first note that

Z 1

r2

.f .r/ � f .r1//2u.r/ dr

� 2

Z 1

r2

.f .r/ � f .r2//2u.r/ dr C 2.f .r2/ � f .r1//2
Z 1

r2

u.r/ dr: (5.34)

We start with the second term on the right side, and claim that

.f .r2/ � f .r1//2
Z 1

r2

u.r/ dr � C


2
J2: (5.35)

To see this, note that (5.17c) implies that for all r > s � r2 we have

u.r/ � u.s/

�
s

r

�c


: (5.36)

Applying this with s D r2 we get

Z 1

r2

u.r/ dr � C



u.r2/: (5.37)
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Also note that

.f .r2/ � f .r1//2 D
�Z r2

r1

f 0.r/ dr

�2

�
�Z r2

r1

f 0.r/2u.r/ dr

��Z r2

r1

1

u.r/
dr

�

:

(5.38)

Next, we will show that
Z r2

r1

1

u.r/
dr � C


u.r2/
:

By (5.16), we have

�
1

u.r/

�0
D � u

0.r/

u.r/2
�

�

C1
.r � r1/ � 1

r

�
1

u.r/
for r 2 Œr1; r2�: (5.39)

Hence, provided that 
 is sufficiently large, we have

�
1

u.r/

�0
� c


u.r/
for r 2

�
r1 C r2

2
; r2

�

;

with some c > 0, implying that

1

u.r/
� ec
.r�r2/ 1

u.r2/
for r 2

�
r1 C r2

2
; r2

�

: (5.40)

By (5.39), we also have

�
1

u.r/

�0
� � C

u.r/
; thus

1

u.r/
� C

u. r1Cr2

2
/

� Ce�c
.r2�r1/=2

u.r2/
for r 2

�

r1;
r1 C r2

2

�

:

We have used (5.40) with r D .r1 C r2/=2 in the last inequality above. Putting these

estimates together yields

Z r2

r1

1

u.r/
dr � C

Z r1Cr2
2

r1

e�c
.
r2�r1

2 / 1

u.r2/
dr C

Z r2

r1Cr2
2

ec
.r�r2/ 1

u.r2/
dr � C


u.r2/
:

Combining this bound with (5.38) and (5.37) gives us (5.35).

For the first integral on the right side of (5.34), a computation identical to (5.18), but

with r1 replaced by r2, and r2 replaced by 1, yields

Z 1

r2

.f .r/ � f .r2//2u.r/ dr �
Z 1

r2

f 0.s/2h.s/

Z 1

s

u.r/

�Z r

r2

h.t/�1 dt

�

dr ds

(5.41)

for any function h > 0. We again choose h D u1=2, and claim that

Z 1

s

u.r/

�Z r

r2

u.t/�1=2dt

�

dr � C


2
s2u.s/1=2 for all s � r2; (5.42)

with some C > 0 (to be shown below). Substituting this into (5.41) gives

Z 1

r2

.f .r/ � f .r2//2u.r/ dr � C


2

Z 1

r2

f 0.s/2s2u.s/ ds; (5.43)
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and combining it with (5.35) and (5.34) yields
Z 1

r2

.f .r/ � f .r1//2u.r/ dr � C


2

Z 1

r2

f 0.s/2s2u.s/ds C C


2

Z r2

r1

f 0.r/2u.r/ dr:

(5.44)

That is, we have

I3 � C


2
J3 C C


2
J2

for all radially symmetric f .

To show (5.42), we consider the inner integral first. Using (5.36), we find that if

r2 � t < r then

u.r/�1=2

�
t

r

�c


� u.t/�1=2;

so that Z r

r2

u.t/�1=2 dt � u.r/�1=2r�c


Z r

r2

tc
 dt � C



u.r/�1=2r:

Thus the left hand side of (5.42) is bounded from above by

C




Z 1

s

u.r/1=2r dr � C


2
s2u.s/1=2 for all s > r2:

The last inequality follows from (5.36) with r2 replaced by s and a direct computation.

� Control of I3 for a nonradial function. For a general function f , using the decomposi-

tion (5.26), we can write I3 and J3 as

I3 D
Z 1

r2

. Qf .r/ � Qf .r1//2u.r/ dr C
1

X

nD1

Z 1

r2

�. n.r/
2 C �n.r/

2/u.r/ dr; (5.45)

J3 D
Z 1

r2

Qf 0.r/2r2u.r/ dr

C �

1
X

nD1

Z 1

r2

�
n2

r2
 n.r/

2 C n2

r2
�n.r/

2 C  0
n.r/

2 C � 0
n.r/

2

�

r2u.r/ dr: (5.46)

We now aim to show the following estimate for each  n, n � 1:
Z 1

r2

 2
n.r/u.r/ dr � C


2

Z 1

r2

 0
n.r/

2r2u.r/ dr C C


2

Z r2

r1

 0
n.r/

2u.r/ dr

C 1

4

Z r2

r1

 n.r/
2u.r/ dr: (5.47)

Combining (5.47) with the analogous estimate for �n and the radial estimate (5.44), we

will have (5.14).

First, we write
Z 1

r2

 n.r/
2u.r/ dr � 2

Z 1

r2

. n.r/ �  n.r2//
2u.r/ dr C 2 n.r2/

2

Z 1

r2

u.r/ dr:

(5.48)
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Applying (5.43) to the first integral on the right side gives

Z 1

r2

. n.r/ �  n.r2//
2u.r/ dr � C


2

Z 1

r2

 0
n.r/

2r2u.r/ dr:

For the second term on the right side of (5.48), by (5.37) we have

2 n.r2/
2

Z 1

r2

u.r/ dr � C



 n.r2/

2u.r2/:

Thus, if
C



 n.r2/

2u.r2/ � 1

4

Z r2

r1

 n.r/
2u.r/ dr; (5.49)

we are done. If not, since u is decreasing in . Qr1; r2/, there exists r3 2 Œr2 � 16C=
; r2/

such that  n.r3/ �  n.r2/=2. Then

Z r2

r1

 0
n.r/

2u.r/ dr �
Z r2

r3

 0
n.r/

2u.r/ dr �
�Z r2

r3

j 0
n.r/j dr

�2�Z r2

r3

dr

u.r/

��1

� C
 n.r2/
2u.r2/: (5.50)

In the last step we have used the inequality

Z r2

r3

1

u.r/
dr � C


u.r2/
;

which follows from the decay of u on Œr3; r2� and r2 � r3 � 16C=
: Thus, if (5.49) fails,

then

2 n.r2/
2

Z 1

r2

u.r/ dr � C



 n.r2/

2u.r2/ � C


2

Z r2

r1

. 0
n/

2udr;

which finishes the proof of (5.47).

Theorem 5.2 leads to the following two corollaries. Note that adding the inequalities

in the theorem together, we get

I D I1 C I2 C I3 � C

�

J1 C 1



J2 C 1


2
J3

�

: (5.51)

We also recall, as already noted in the remarks to Theorem 5.2, that the arguments above

generalize to an arbitrary dimension d > 2 in a straightforward manner. This implies

Corollary 5.3. Suppose that d � 2: For the weight w satisfying (5.6)–(5.8), we have

Z

Rd

jf � Nf j2w dx �
Z

Rd

jf � Qf .r1/j2w dx

� C

�Z

Br1

jrf j2w dxC 1




Z

Br2
nBr1

jrf j2w dxC 1


2

Z

Bc
r2

jrf j2jxj2w dx
�

(5.52)

for all sufficiently large 
:
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Remarks. 1. The one-dimensional results are in fact stronger and will be considered

elsewhere.

2. It is not hard to adapt the arguments in the proof so that, once we get the 1
4

factor

as in (5.13), (5.14) is not necessary and an arbitrary constant would suffice, and the result

can be extended to all 
 > d with an adjustment of the constant C:

Tracing the proof of Theorem 5.2, it is straightforward to check that the result remains

true for truncated integrals. For R > r2; let us define

IR D
Z

BR

.f .x/� Qf .r1//2w.x/ dx; IR
3 D

Z

BRnBr2

.f .x/� Qf .r1//2w.x/ dx;

JR
3 D

Z

BRnBr2

jrf j2jxj2w.x/ dx:
(5.53)

Corollary 5.4. For any R > r2, let IR
3 ; J

R
3 ; and IR be as in (5.53), and recall that I2, J1

and J2 are defined in (5.10), (5.11). Then for all 
 � 
0.w/ we have

IR
3 � C


2
JR

3 C C


2
J2 C 1

4
I2; (5.54)

IR � C

�

J1 C 1



J2 C 1


2
JR

3

�

: (5.55)

We now pause to indicate a result that can be obtained with similar techniques for the

power weight v.x/ D .1C jxj2/�
=2 with a sufficiently large 
:

Theorem 5.5. Let v.x/ D .1 C jxj2/�
=2: Then the following weak weighted Poincaré

inequality holds for all dimensions d � 2 for 
 � d :

Z

Rd

jf � Nf j2v.x/ dx � C.d/




Z

B1

jrf j2v.x/ dx

C C.d/


2

Z

.B1/c

jrf j2.1C jxj2/v.x/ dx: (5.56)

Proof. In two dimensions, the only essential difference is that for the weight v.x/ the

condition (5.6) holds if we choose r1 . 
�1=2 that depends on 
 . Specifically, we could

take r1 D 2=
p

: With that choice, direct computations show that for the weight u.r/ D

rv.r/ the inequality (5.16) remains valid, while (5.17b) and (5.17c) hold with Qr1 D r1 and

r2 D 1: The standard Poincaré inequality becomes

I1 � Cr2
1J1 D C



J1; (5.57)

as it is important to keep track of the r2
1 factor which now depends on 
: The rest of the

proof goes through. One place that requires attention and minor adjustment is the control

of I2 for a nonradial function, namely the estimates (5.32) and (5.33), since we need to

“step back” a distance QC=p
 into the Œ0; r1� region, and we may not have that much

space. However, the factor 1=4 in (5.13) is not crucial for establishing (5.56) given that
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we can control I1 via (5.57); any constant would do. Then we can choose a sufficiently

large constant C instead of 1=4 in (5.32) so that r3 with the needed properties can be

found in Œr1 � 1=
p

; r1�. With this modification, the rest of the argument goes through.

We leave the details to the interested reader. Finally, as already noted above, the proof

generalizes to an arbitrary dimension d with minor adjustments.

6. Convergence to equilibrium estimates for Fokker–Planck operators

6.1. Weighted L2 norm decay

With the weak weighted Poincaré inequalities in hand, we may now go back to the dual

evolution (5.4) and the dissipation inequality (5.5):

dZ

dt
D �2W.t/ (6.1)

with

Z.t/ D
Z

R2

.f .x; t/ � Nf /2eH.x/ dx; W.t/ D
Z

R2

jrf .x; t/j2eH.x/ dx:

We are going to focus on the specific weight in (5.3); we will need fairly sharp estimates

to get close to the heuristic bounds. Our analysis in this section will be driven by the

nonlinear application we have in mind: to derive sharp bounds on the time required to

transport a significant part of density towards the center of the attracting potential, the

ball Br1
: We stress that in this section, we do not need the initial data f0.x/ or �0.x/

to be radial: the bounds on convergence to equilibrium in the linear setting with a fixed

potential apply in full generality.

Although Corollary 5.3 with w.x/D eH.x/ already gives us an upper bound forZ.t/,

we cannot directly control the right side of (5.52) by W.t/, due to the extra factor jxj2
in the integrand of J3. To overcome this issue, we follow a general scheme introduced

in [66]. Let us take a truncation at radius R � r2 in I.t/ and apply Corollary 5.4:

I.t/ � IR.t/C C



R�
=4C2kf .�; t /k2

1

� C

�

J1 C 1



J2 C 1


2
JR

3

�

C C



R�
=4C2kf0k2

1

� CW.t/C C
R2


2
W.t/C C



R�
=4C2kf0k2

1: (6.2)

In the first inequality above we used (5.3), and in the second the fact that kf .�; t /k1 is

nonincreasing in time, as well as (5.55). To optimize the right side of (6.2) over R � r2,

we take

R D 
4=
W.t/�4=
 kf0k8=

1 :

Note that if R < 1; then I.t/ � CW.t/, fitting the scheme below. As


8=
 . 1; (6.3)
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this leads to

I.t/ � CW.t/C C
�2W.t/

�8


 kf0k16=

1 � 2C max ¹W.t/; 
�2W.t/


�8

 kf0k16=


1 º:
(6.4)

Since Z.t/ � I.t/, it follows that (6.1) and (6.4) together with (6.3) imply

Z0.t/ � �cmin
®

Z.t/; 
2Z.t/




�8 kf0k� 16

�8

1
¯

: (6.5)

Let us now discuss how this differential inequality relates to the heuristic bound �C �
L2=
 for the reaction time we have informally derived in Section 2, to give context and

outline the main ideas behind the technical estimates that follow. Let us think for now of

the linear Fokker–Planck operator (5.1) with the potentialH given by (4.11). Consider an

initial condition �0 that has total mass M0 and is concentrated at a distance L from the

origin. Then f D �e�H solves the dual Fokker–Planck equation (5.4), and (6.5) is appli-

cable. If we drop the term Z.t/ from the minimum in (6.5) (which of course strengthens

the differential inequality compared to what we really have), then a direct computation,

with yet another use of (6.3), gives

Z.t/ �
�

Z.0/�
8


�8 C c
 tkf0k� 16

�8

1
�� 
�8

8 � .c
 t/�

�8

8 kf0k2
1: (6.6)

In our situation, we have kf0k1 �M0L

=4 according to the assumptions on �0 and (5.3).

Also, using the relationship between � and f , we see that

Z.t/ D
Z

R2

j�.x; t/ � �s.x/j2e�H.x/ dx: (6.7)

Here,

�s.x/ D eH

R

�0 dx
R

eH dx

is the stationary state of the same mass as �0 to which the solution � converges. From

(6.7) it is clear that transport of � to the origin corresponds to decay of Z.t/: Intuitively,

from (5.3) it looks likely that we need Z.t/ � M 2
0 in order to be sure that a significant

portion of � is inside Br1
(we will make these arguments precise later). Going back to

(6.6) and the estimate on kf0k1; we find that to ensure the needed bound on Z.t/, we

need t &L4=
;which is quite a bit off the heuristic estimate. The situation is similar to the

usual heat equation, where the L1 to L2 estimate decays only as t�d=4; while the faster

decay rate t�d=2 is realized for the L1 to L1 estimate. A standard way to attain the latter

estimate if an explicit heat kernel is not available (like for diffusions with incompressible

drift, see e.g. [27]) is to combine the L1 to L2 bound with its dual L2 to L1 bound.

We will need to follow a similar route in what follows. The L1 to L2.eHdx/ bound

(6.6) provides a decay estimate for Z.t/, which via (6.7) leads to the L1.e�Hdx/ to

L2.e�Hdx/ bound for �: We will also derive a variant of the bound dual to (6.6), which

is an L2.e�Hdx/ to L1 estimate for �: Combining them leads to an L1.e�Hdx/ to L1

bound for � which will have the needed decay and also will provide control in the L1

space most convenient for measuring mass transport.
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Before we go to the duality estimates, however, there is one more issue to take care

of. The presence of the term Z.t/ under minimum in (6.5) affects the bound (6.6). The

balance of the two terms depends on the initial data; the second term is smaller if Z.t/ is

sufficiently small, namely if

Z.t/ . kf0k2
1


�.
�8/=4:

Our assumptions on �0 give Z.0/ � M 2
0L


=4, and the above condition at t D 0 translates

into an additional constraint L & 
: For some configurations of parameters, say when

1 � L � 
; the time delay before the second term in (6.5) becomes smaller can be

up to order 
 log 
: We would like to avoid these additional constraints and significant

losses in the estimate of the transport time, as they appear to be of technical nature. The

idea is to use the L1 norm time decay estimate proved in Theorem 3.1. This gives an

outline for the rest of this section. First, we deploy the L1 norm decay bound to improve

the weighted L2 control on f and �; and then use a duality argument to obtain optimal

convergence to equilibrium bounds for � in L1:

The differential inequality (6.5) can be improved in the following way for t & 1. In the

second inequality of (6.2), instead of using (5.55) to bound the whole IR, we can instead

split

IR D I1 C I2 C IR
3 ;

and directly control I1 and I2 as follows. The bound in Theorem 3.1 implies that

kf .�; t /eH k1 D k�.�; t /k1 � C
k�0k1 D C
kf0e
H k1

for all t � 1. Two immediate consequences are

I1.t/ D
Z

Br1

jf � Qf .r1/j2eH dx � C
2kf0e
H k2

1e
�H.0/ DW Q1 for all t � 1; (6.8)

I1.t/C I2.t/ D
Z

Br2

jf � Qf .r1/j2eH dx � C
2kf0e
H k2

1e
�H.r2/

DW Q2 for all t � 1: (6.9)

Recall that r1 D 1=
p
2 and r2 D 3=4, as defined in (5.9). Note that Q2 � Q1 due to


 � 1 and (5.3); hence, for t � 1, if I.t/ � 4Q2, then we can bound IR by (6.9) and

(5.54) as follows:

IR.t/ � Q2 C IR
3 � Q2 C C


2
J2 C C


2
JR

3 C 1

4
I2:

Substituting this into the second inequality of (6.2), and then absorbing Q2 and 1
4
I2 into

the left side, we obtain

I.t/ � C


2
W.t/C C

R2


2
W.t/C C



R�
=4C2kf0k2

1 � C


2
W.t/C C


2
W.t/


�8

 kf0k16=


1 ;
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where the last inequality comes from choosing the same optimal R as before, since the

terms containing R are the same as in (6.2) (and again, if we get R � r2 then I.t/ �
C

2W fitting the scheme below). The 
�2 factor in the first term then leads to a stronger

differential inequality:

Z0.t/ � �c
2 min
®

Z.t/; Z.t/




�8 kf0k� 16

�8

1
¯

: (6.10)

Here c > 0 is a universal constant (corresponding to our fixed weight w D eH ).

Likewise, for t � 1, if I.t/ 2 Œ4Q1; 4Q2�, then we control IR using (6.8), (5.13)

and (5.54):

IR.t/ � Q1 C I2 C IR
3 � Q1 C C


2
JR

3 C C



J2 C 1

4
I1 C 1

4
I2:

and a similar argument leads to the differential inequality

Z0.t/ � �cmin
®


Z.t/; 
2Z.t/




�8 kf0k� 16

�8

1
¯

: (6.11)

For all t � 1, the inequalities (6.5), (6.10), (6.11) control convergence ofZ.t/ to zero.

The above results are summarized in the following proposition.

Proposition 6.1. Suppose that 
 � 
0.w/ is sufficiently large. For all t � 1, Z.t/ given

by (6.7) satisfies the differential inequality

Z0.t/ � �cmin
®

�.Z.t//Z.t/; 
2Z.t/




�8 kf0k� 16

�8

1
¯

; (6.12)

where

�.Z/ WD

8

ˆ̂
<

ˆ̂
:

1 for Z.t/ � 4Q1;


 for Z.t/ 2 .4Q1; 4Q2/;


2 for Z.t/ � 4Q2;

(6.13)

and c > 0 is a universal constant.

Due to the minimum taken in (6.12), which part will dominate depends on the ini-

tial data, or, more precisely, on the relationship between kf0k1, Q1; and Q2. A careful

accounting is needed to take care of several cases; however, it turns out that for the sake

of the application at hand, we only need to track the decay of Z.t/ until it drops to Z� ,

defined as

Z� WD �e�H.0/kf0e
H k2

1; (6.14)

where � < 1 is sufficiently small. The definition of Z� is motivated by Proposition 6.4

below. Basically, we will see that by the time Z.t/ reaches Z� , a significant portion of

the mass of � D feH has already moved into Br1
, which will be sufficient to prove that

significant reaction took place.

The following theorem says that even with the first item in the minimum in (6.12), the

decay of Z.t/ is not too much worse than in (6.6) – namely, as long as Z.t/ is above Z� ,

the presence of the first item in the min function introduces at most an extra time delay t1
which is estimated below (and is much better than 
 ).
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Theorem 6.2. Suppose that 
 � 
0.w/ is sufficiently large. Let f .x; t/ be the solution to

(5.4) with initial condition f0 2 L1.R2/ \ L2.eH /, let � be any number in .0; 1/; and

let Z.t/ and Z� be as given in (5.5) and (6.14) respectively. Let t1 WD C.1C log ��1 C
log 
/; where C is a sufficiently large universal constant. Then for all t � t1, we have

Z.t/ � max ¹Z� ; .c
.t � t1//�.
�8/=8kf0k2
1º: (6.15)

Proof. Note that Z.t/ is decreasing in time, and in every regime where the form of � in

(6.13) stays fixed, once the second term becomes the smaller one, this continues for all

subsequent times. Let us first estimate the total time in the interval t � 1 where the first

term under minimum in (6.12) is smaller, whileZ.t/ � 4Q2. Comparing the two terms in

the min function of (6.12), we see that the minimum is achieved by the first term as long

as Z.t/ � kf0k2
1. Thus, Z.t/ decays exponentially not more slowly than exp.�c
2t /.

Note that at t D 1, we have

Z.1/ � Z.0/ D
Z

R2

.f0 � Nf /2eH dx �
Z

R2

f 2
0 e

H dx � kf0k2
1

Z

R2

eH dx;

hence the total time t � 1 whenZ.t/ � 4Q2 and the first term in (6.12) is the smaller one

is bounded by

t11 WD 1

c
2
log

�
Z.1/

kf0k2
1

�

� 1

c
2
log

�Z

R2

eH dx

�

� C



:

Hence, in the Z.t/ � 4Q2 regime, the presence of the first term at most introduces a time

delay of the order 
�1 � 1:

Likewise, if the first term in (6.12) is smaller and Z.t/ 2 Œ4Q1; 4Q2�, then Z.t/ has

exponential decay not slower than exp.�c
 t/. Hence, in this case the time with the first

term active is bounded by

t12 WD 1

c

log

�
Q2

Q1

�

� 1

c

.H.0/ �H.r2// � C:

Thus the presence of the first term also at most introduces a time delay of order 1 in this

regime.

Finally, in the Z.t/ 2 ŒZ� ; 4Q1� regime and when the first term in (6.12) is smaller,

Z.t/ has exponential decay not slower than exp.�ct/. So the time with the first term

active is bounded by

t13 WD 1

c
log

�
Q1

Z�

�

� 1

c
log

�

2

�

�

� C.1C log ��1 C log 
/:

Combining these estimates, we see that the total time delay caused by the first term in the

minimum function is bounded by

t1 WD t11 C t12 C t13 D C.1C log ��1 C log 
/:



Chemotaxis and reactions in biology 2677

Remark 6.3. The appearance of log 
 in the definition of t1 is likely not optimal. In fact,

as far as pure transport of the density goes (without estimate on the rate of convergence to

equilibrium), in Section 7 we outline a different method that yields a bound on transport

without extra delay terms. In the context of convergence to equilibrium estimates, this

extra correction comes from the 
2 factor in Z1 and Z2, which is due to the 
 factor in

our L1 estimate of � in Theorem 3.1,

k�.�; t /k1 � C
k�0k1 for all t � 1.

Such a bound would be optimal if we hadH D .��/�1�B.0;1/, and our argument can also

be adapted to this case. But for the weight eH in (5.3), the top is flat and keH k1 � keH k1,

which suggests that there should not be a 
 factor, and we should have

kf .�; t /eH k1 � Ckf0e
H k1 for t � 1.

We have not been able to show this and settle here for the log 
 correction that in most

situations is not very significant.

We now translate the above weightedL2 bounds to �. Let �.x; t/ be a solution to (5.1)

with initial condition �0 2 L1.e�H / \ L1.R2/. Recall that

�s WD eH

R

�0 dx
R

eH dx

is a stationary solution to (5.1) with the same mass as �. Also recall that Z.t/ can be

written as in (6.7):

Z.t/ D
Z

R2

.�.x; t/ � �s.x//
2e�H.x/ dx;

and that f .x; t/ WD �.x; t/e�H.x/ satisfies (5.4) with initial condition

f0 D �0e
�H 2 L1.R2/ \ L1.eH /:

Applying Theorem 6.2 to f D �e�H , we get Theorem 1.3. It implies, in particular, that

Z.t/ � Z� for all

t � t2 WD t1 C C




�k�0e
�H k1p

� k�0k1

� 16

�8

:

On the other hand, once Z.t/ drops below Z� , the following proposition shows that

�.�; t / is sufficiently close to �s in Br1
.

Proposition 6.4. Let Z� D �e�H.0/k�0k2
1 with � < 1, and let r � r1 D 1=

p
2: If

Z.t/ � AZ� , then
Z

Br

j�.x; t/ � �s.x/j dx �
p
��A rk�0k1: (6.16)

Moreover, if we assume in addition that �0 � 0; then

Z

Br

�.x; t/ dx �
�

2r2 � C
p



� r
p
��A

�

k�0k1: (6.17)



A. Kiselev, F. Nazarov, L. Ryzhik, Y. Yao 2678

Proof. If Z.t/ � AZ� , the definitions of Z.t/ and Z� give

Z

Br

j� � �sj2e�H dx �
Z

R2

j� � �sj2e�H dx � �Ae�H.0/k�0k2
1:

Using the fact that e�H � e�H.0/ in Br , the above inequality becomes

Z

Br

j� � �sj2 dx � �Ak�0k2
1:

Then a direct application of the Cauchy–Schwarz inequality gives (6.16).

A direct computation using (5.3) shows that

R

.Br1
/c e

H.x/ dx
R

Br1
eH.x/ dx

� C
p


:

Then, if �0 � 0; we have, since �s is constant on Br1
and r � r1,

Z

Br

�s.x/ dx � r2

r2
1

k�0k1

�

1 � C
p



�

:

Combining this inequality with (6.16), we obtain (6.17).

Inequality (6.17) gives us a way to ensure that much of the mass of �1 has been trans-

ported into the support of �2; provided we choose � sufficiently small and 
 is sufficiently

large. However, as mentioned above, the weighted L2 decay estimates we have for Z.t/

lead to bounds on the transport time that are far from the heuristic ones. We now discuss

this issue in more detail and use duality to rectify the situation.

6.2. Duality and L1 control

Theorem 1.3 and Proposition 6.4 give us an explicit upper bound for the time it takes for

a large portion of mass to enter Br1
, but this is not sufficient for our application. Let us

recap the reason: Consider a special case where �0.x/ is a bump of mass M0, located at

distance L from the origin. In this case, we have

k�0e
�H k1 � M0L


=4:

Then (1.14) requires the time

t � 1C log 
 C L4




to ensure transport of a significant portion of � to Br1
; which is at odds with the heuristic

bound of the order L2=
 . To get control at a time scale close to heuristic, we employ a

duality procedure which is somewhat delicate in our case since we may have different

regimes in differential inequalities. A direct computation leads to the following auxiliary

duality lemma.
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Lemma 6.5. Let � and f be solutions to (5.1) and (5.4) respectively, with initial condi-

tions �0 and f0, where �0 2 L1.R2; e�Hdx/ \ L1.R2; dx/, and f0 2 L1.R2; dx/ \
L1.R2; eHdx/, and set

�s.x/ WD eH.x/
R

�0 dx
R

eH dx
; Nf WD

R

f0e
H dx

R

eH dx
:

Then, for any t > 0 and s 2 Œ0; t �, the integral
Z

R2

.�.x; s/ � �s.x//.f .x; t � s/ � Nf / dx (6.18)

does not depend on s for all s 2 Œ0; t �.

Note that the term Nf on the right side can always be dropped since
Z

�.x; s/ dx D
Z

�s.x/ dx for all s � 0.

Proof of Lemma 6.5. By standard approximation arguments, it suffices to show the result

for smooth, sufficiently quickly decaying � and f . Denote the integral in (6.18) by U.s/.

Taking the derivative in s gives

d

ds
U.s/ D

Z

R2

@t�.x; s/.f .x; t � s/ � Nf / dx �
Z

R2

.�.x; s/ � �s.x//@tf .x; t � s/ dx

DW T1 � T2;

where

T1 D
Z

R2

�

��.x; s/ � r � .�.x; s/rH/
�

.f .x; t � s/ � Nf / dx;

T2 D
Z

R2

.�.x; s/ � �s.x//
�

�f .x; t � s/C rf .x; t � s/ � rH
�

dx:

Now one can check that T1 D T2 by the divergence theorem – using, in particular, the fact

that �s and Nf are eigenfunctions of�� r.�rH/ and�C rHr; respectively, with zero

eigenvalue.

We can now prove the following theorem.

Theorem 6.6. Fix any 0 < r � r1: For all � 2 .0; 1/, let t1 be as in Theorem 6.2. Define

t3 WD C

�

t1 C 1




�k�0e
�H k1

�k�0k1

� 8

�8

�

(6.19)

with some sufficiently large constant C that will be fixed in the proof. Then, for all t � t3,
Z

Br

j�.x; t/ � �s.x/j dx � .4
p
� r C 4�/k�0k1: (6.20)

In particular, if � is sufficiently small, 
 is sufficiently large, and �0 � 0; then
Z

Br

�.x; t/ dx � .2r2 � 0:1/k�0k1 for all t � t3. (6.21)
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Proof. Consider first what happens at time t3=3. If Z.t3=3/ drops below Z� D
�e�H.0/k�0k2

1, we are done due to Proposition 6.4. Otherwise, we have the second bound

in (1.14) forZ.t3=3/with t D t3=3. To obtain betterL1 control of �.�; t3/� �s in the latter

case, we use the following duality argument. For any f0 2L1.R2/\L1.eH /, let f .x; t/

be the solution to the dual equation (5.4) with initial condition f0. Applying Lemma 6.5

with t D 2t3=3, s D 2t3=3 and then s D t3=3, we obtain

Z

R2

�

�

�

x;
2t3

3

�

� �s.x/

�

f0.x/ dx D
Z

R2

�

�

�

x;
t3

3

�

� �s

��

f

�

x;
t3

3

�

� Nf
�

dx:

(6.22)

We dropped the term involving Nf on the left side using the remark after Lemma 6.5. We

can then bound the left side in (6.22) as
ˇ
ˇ
ˇ
ˇ

Z

R2

�

�

�

x;
2t3

3

�

� �s.x/

�

f0.x/ dx

ˇ
ˇ
ˇ
ˇ

�








�

�
t3

3

�

� �s










L2.e�H /









f

�
t3

3

�

� Nf









L2.eH /

�








�

�
t3

3

�

� �s










L2.e�H /

max

²

.�e�H.0/kf0e
H k2

1/
1=2;

�

c


�
t3

3
� t1

��� 
�8
16

kf0k1

³

(by Theorem 6.2)

�
�

c


�
t3

3
� t1

��� 
�8
16

k�0e
�H k1

�
�

�1=2e�H.0/=2kf0e
H k1 C

�

c


�
t3

3
� t1

��� 
�8
16

kf0k1

�

(by Theorem 1.3)

� ˛kf0e
H k1 C ˇkf0k1; (6.23)

where

˛ WD
�

c


�
t3

3
� t1

��� 
�8
16

�1=2e�H.0/=2k�0e
�H k1;

ˇ WD
�

c


�
t3

3
� t1

��� 
�8
8

k�0e
�H k1:

(6.24)

Now let us apply the following lemma, the proof of which is postponed till the end of

this subsection.

Lemma 6.7. Suppose that for some G 2 L1.e�H / \ L1.R2/, there exist ˛; ˇ > 0 such

that

ˇ
ˇ
ˇ
ˇ

Z

R2

G.x/f .x/ dx

ˇ
ˇ
ˇ
ˇ

� ˛kfeH k1 C ˇkf k1 for all f 2 L1.R2/\L1.eH /: (6.25)

Then G can be decomposed as G D G1 C G2, where G1; G2 2 L1.e�H / \ L1.R2/

satisfy the estimates kG1e
�H k1 � 2˛, kG2k1 � 2ˇ.

Applying this lemma to (6.23), we can decompose

�.x; 2t3=3/ � �s.x/ D G1.x/CG2.x/;
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where using (6.24),

kG1e
�H k1 � 2˛ D 2.c
.t3=3 � t1//�.
�8/=16�1=2e�H.0/=2k�0e

�H k1; (6.26)

and

kG2k1 � 2ˇ D 2.c
.t3=3 � t1//�.
�8/=8k�0e
�H k1 � 2�k�0k1;

where the last inequality comes from choosing a sufficiently large universal constant C in

the definition (6.19) of t3.

Let �1.x; t/ and �2.x; t/ denote the solutions to (5.1) starting at t D 2t3=3 with initial

conditions �1.�; 2t3=3/ D G1, �2.�; 2t3=3/ D G2, respectively. Since (5.1) is linear, we

have

�.�; t3/ � �s D �1.�; t3/C �2.�; t3/:

Note that k�2.�; t /k1 is nonincreasing in time, hence

k�2.�; t3/k1 � kG2k1 � 2�k�0k1: (6.27)

To control �1.�; t3/, set

�s
1 WD eH

R

G1 dx
R

eH dx
:

By Theorem 1.3, we have

k�1.�; t3/ � �s
1kL2.e�H /

� max ¹�1=2e�H.0/=2kG1k1; .c
.t3=3 � t1//�.
�8/=16kG1e
�H k1º (6.28)

If the first term in the max function is larger, using the fact that

kG1k1 � k�k1 C k�sk1 C kG2k1 � 3k�0k1;

we obtain

k�1.�; t3/ � �s
1kL2.e�H / � 3�1=2e�H.0/=2k�0k1 � 3

p
Z� :

And if the second term is larger, combining (6.28) with (6.26) we get

k�1.�; t3/ � �s
1kL2.e�H / � 2.c
.t3=3 � t1//�.
�8/=8�1=2e�H.0/=2k�0e

�H k1

� 2�3=2e�H.0/=2k�0k1 D 2�
p
Z� :

In both cases, applying Proposition 6.4 yields

Z

Br

j�1.x; t3/ � �s
1.x/j dx � 4

p
� rk�0k1:

Finally, combining the above estimate with (6.27), we have

k�.t3/ � �skL1.Br / � k�1.t3/ � �s
1kL1.Br / C k�2.t3/C �s

1kL1.Br /

� k�1.t3/ � �s
1kL1.Br / C k�2.t3/k1 C kG2k1

� .4
p
� r C 4�/k�0k1;
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where in the second inequality we have used the mean zero property
Z

.G1 CG2/ dx D 0;

which gives

k�s
1k1 D

ˇ
ˇ
ˇ
ˇ

Z

G1 dx

ˇ
ˇ
ˇ
ˇ

D
ˇ
ˇ
ˇ
ˇ

Z

G2 dx

ˇ
ˇ
ˇ
ˇ
:

The above argument shows that (6.20) holds at t D t3. For t > t3, the same argument

works by replacing t3 with t .

Estimate (6.21) follows from a simple computation similar to that in the proof of the

lower bound (6.17).

Proof of Lemma 6.7. Let S D ¹x W jG.x/j � 2˛eH º, and define G1 WD G�Sc .x/, so that

kG1e
�H k1 � 2˛:

To show that G2 WD G � G1 D G�S satisfies kG2k1 � 2ˇ, we use (6.25) with f D
.sgnG/�S :

kG2kL1.R2/ D
Z

S

G2f dx � ˛

Z

S

eH dx C ˇ � 1

2
kG2k1 C ˇ;

and the proof is complete.

7. Transport estimates based on comparison principles

In this section we take a quick detour to provide a simple alternative proof that a signif-

icant portion of the initial mass of �0 gets transported inside a certain ball of radius less

than 1 under the action of the potential H in time � � L2=
: As mentioned in the intro-

duction, this result can be used to obtain a simpler proof of a result similar to Theorem 1.1

if one is willing to compromise and settle for an estimate that provides little information

on the closeness to the ground state.

The main step is the analysis of the dual equation (5.4). Recall that the dual opera-

tor L� is given by

L�f D ��f � rH � rf;
and the dual evolution by

@tf D �f C rH � rf D �L�f: (7.1)

We will prove the following theorem.

Theorem 7.1. Let f .x; t/ solve (7.1) with H given by (4.11). Suppose that the radial

initial data f0 2 C1
0 satisfies 1 � f � 0; f nonincreasing in the radial direction, and

f0.x/ � �Bd1
.x/ where 1 � d1 > r1 D 1=

p
2: Then there exists a constant c > 0 such

that for all sufficiently large 
 we have

f .x; t/ � c�Bc
p

1C
t
.x/ for all t � 0: (7.2)



Chemotaxis and reactions in biology 2683

Proof. Fix some d0 such that 1 � d1 > d0 > r1: For simplicity, in the argument that fol-

lows, we can think for instance of d0 D 5=7 and d1 D 6=7; but any other choice satisfying

the above relationship works as well (the constant c will depend on this choice). Due to

parabolic comparison principles and since H is radial, we know that the solution f .x; t/

remains radial, nonincreasing in the radial direction, and satisfies 1 � f .x; t/ � 0 for all

times.

Observe that

f .x; t/jSd0

Z

R2nBd0

eH dx �
Z

R2nBd0

feH dx �
Z

R2

f0e
H dx �

Z

Bd0

feH dx

�
Z

R2nBd0

f0e
H dx �

Z

R2nBd0

�Bd1
eH D

Z

Bd1
nBd0

eH dx: (7.3)

Here Sd0
is the circle of radius d0I in the first step we use monotonicity of f in the radial

variable, in the second step conservation of
R

f .x; t/eH.x/ dx and in the third step

Z

Bd0

f0e
H dx �

Z

Bd0

feH dx

due to 1 D f0.x/ � f .x; t/ in Bd0
: However, since jrH.x/j D �@rH.x/ � c0
 jxj�1 if

jxj � d0, we have

eH.tx/ � t�c0
eH.x/:

Set q D d1=d0: Then

Z

B
d1qk nB

d0qk

eH.x/ dx D qkd

Z

Bd1
nBd0

eH.qkx/ dx � qk.d�c0
/

Z

Bd1
nBd0

eH.x/ dx:

Therefore, Z

R2nBd0

eH.x/ dx � 2

Z

Bd1
nBd0

eH.x/ dx

for 
 large enough. In this case from (7.3) we conclude that f .x; t/jSd0
� 1=2 for all

times.

Now fix any convex C 2 function ! on Œd0;1/ such that !.d0/ D 1=2, !.r/ > 0 for

r 2 Œd0; d1/; and !.r/ D 0 if r � d1: For ' 2 Œ0; 1� define !'.r/ D !.d0 C '.r � d0//I
we will abuse notation by also writing !'.x/ D !'.jxj/: Note that

L�!'.x/ D !00
'.r/C 1

r
!0

'.r/C @rH.r/!
0
'.r/

� c0
 � 1
r

j!0
'.r/j � c0


2r
j!0.d0 C '.r � d0//j';

where we have used !00
'.r/ � 0; !0.r/ < 0; and the last step holds if 
 is suffi-

ciently large. Choose a decreasing '.t/ defined for t � 0 such that '.0/ D 1: Consider

F.x; t/ D !'.t/.x/: Since we always have f .x; t/jSd0
� 1=2 D F jSd0

and f0.x/ �
�Bd1

.x/ � !.jxj/, we can be sure that f .x; t/ � F.x; t/ in R
2 n Bd0

for all times if
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@tF � L�F: However, @tF D .r � d0/!
0.d0 C '.r � d0//'

0.t/, and @tF D L�F D 0

if d0 C '.r � d0/ � 1: Hence we just need to check the inequality

�.r � d0/'
0.t/ � c0


2r
' when r � d0 C 1 � d0

'
� 1

'
:

Thus, it suffices to ensure that

�1 � d0

'
'0.t/ � c0


2
'2;

which would follow from @t .1='.t/
2/ � c0
: Therefore

'.t/ D 1p
1C c0
 t

is acceptable. Now fix a constant a < d1 � d0. Then we can make

d0 C 1p
1C c0
 t

.r � d0/ � d0 C a

for r � d0 C c
p
1C 
 t by choosing small enough c: In this case, if d0 � r � d0 C

c
p
1C 
 t; we have

f .x; t/ � !

�

d0 C 1p
1C c0
 t

.r � d0/

�

� !.d0 C a/ � c > 0;

where we may have to make our constant c smaller if necessary.

Here is the corollary for the behavior of the density �.x; t/ satisfying (1.9).

Corollary 7.2. Let �.x; t/ solve (1.9) with a potentialH given by (4.11). Suppose that the

initial data �0 satisfies �0.x/ � 0 and
R

1�jxj�L
�0.x/ dx D M0: Then for all sufficiently

large 
; there exists a constant C1 such that if t � C1L
2=
 , we have

Z

Bp
3=2

�.x; t/ dx � cM0: (7.4)

Remark. For simplicity, we picked a fixed constant as a radius of the ball in (7.4). It

is not hard to run the argument for an arbitrary radius greater than 1=
p
2 (adjusting d0

and d1), but then all constants and the range of validity in 
 will depend on the choice of

radius.

Proof of Corollary 7.2. Recall that we took d0 D 5=7 and d1 D 6=7; and note that 6=7 <p
3=2: Take f0 2 C1

0 .Bp
3=2/ as in Theorem 7.1. By duality, we have

Z

R2

f0.x/�.x; t/ dx D
Z

R2

f .x; t/�0.x/ dx:

Therefore, applying Theorem 7.1 we find that if C1 is sufficiently large then
Z

Bp
3=2

�.x; t/ dx �
Z

R2

f0.x/�.x; t/ dx D
Z

R2

f .x; t/�0.x/ dx � cM0:
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Corollary 7.2 and (7.4) can replace Theorem 6.6 and (6.21) in the nonlinear argument

of the next section. We state here the theorem alternative to Theorem 1.1 that this would

yield.

Theorem 7.3. Under the assumptions of Theorem 1.1, with chemotaxis present, a quarter

of the initial mass of �2 will react by time �C � C1L
2=
:

Remark. It is not difficult to design an additional argument that will show, under the

assumptions of Theorem 1.1, that more than half of the initial mass of �2 will react if

we wait an additional time � 1. Basically, once mass � M0 has entered B1; arguments

similar to the ones we have used above and employing mass comparison with the simple

heat equation lead to the conclusion that after an additional unit time, mass � M0 can be

found insideB1=
p

2 (or in fact in a ball of smaller radius, with a constant of proportionality

depending on the radius). Then the pass-through argument of the following section would

yield consumption of the larger fraction of �2:

8. Decay for �2 based on a “pass-through” argument

Let us now consider the nonlinear system (1.4):

@t�1 ���1 C �r � .�1r.��/�1�2/ D �"�1�2;

@t�2 D �"�1�2: (8.1)

We focus on the case when the initial conditions �1.�; 0/ and �2.�; 0/ are radially sym-

metric, so that radial symmetry is preserved for all time. Assume that �1.�; 0/ is initially

concentrated near r D L with total mass M0, while �2.�; 0/ D 
� with � 2 C1
0 . We

think of � as very close to �B1
in the L1 norm. As in the introduction, we assume that

"M0 � 
 � 1; and M0 � �: As we will see, the constant B involved in � will depend

on the value of the ratio �
=" and would have to be larger if the ratio is small (but can be

taken uniform for all larger values of the ratio). Combining Proposition 4.3 and Theorem

6.6 shows that if t3 � �C , with t3 given in Theorem 6.6, and �C the half-time of �2, then

at least 1=4 of the mass of �1 must have entered B1=2 by time t3.

In this section, we will use this result to obtain decay estimates on the mass of �2

which will show that, in fact, �C � t3: Let us start with a heuristic argument to see how

much of �2 should react by time t3. Since the drift velocity is @r .��/�1�2 � �
 for

all r 2 .1=2; 1/, a generic particle of �1 should take about � 
�1 time to pass through

the region .1=2; 1/. It will react with �2 during this time with coupling coefficient ", so

that approximately the "M0=
 portion of the mass of �2 originally situated in B1 n B1=2

should be gone by time t3. In other words, if "M0=
 � 1, then we should have �C � t3.

We will discuss below why we have to resort to this “pass-through” argument to get

an estimate on the reaction time. The reason has to do with the form of the Keller–Segel

chemotaxis term that leads to the possibility of an excessive concentration of �1:

The goal of this section is to rigorously justify the above heuristics. The key step is

the following proposition.
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Proposition 8.1. Let �1; �2 be a solution to (1.4) with radially symmetric initial condi-

tions. Assume that �1.�; 0/ is concentrated near r D L with total massM0, and �2.�; 0/D
��.x/ as described above. Assume that "M0 � 
 � 1, and suppose �C � t3 C 1: Then

the following holds with some universal constant c > 0, where t3 > 0 is as given by (6.19):

Z t3C1

0

�1.r; t/ dt � cM0



for all r 2 .1=2; 1/: (8.2)

Before we prove the proposition, let us point out that it implies Theorem 1.1.

Proof of Theorem 1.1. Suppose that �C � t3 C 1: The second equation in (8.1) implies

that

�2.r; t/ D �2.r; 0/ exp

²

�"
Z t

0

�1.r; s/ ds

³

;

so that if (8.2) holds, then

�2.r; t3 C 1/

�2.r; 0/
D exp

²

�"
Z t3C1

0

�1.r; t/ dt

³

� e�"cM0=
 for all r 2 .1=2; 1/.

Thus, if "M0=
 � 1, then most of the mass of �2 originally supported in B1 n B1=2 will

react away by time t3 C 1 and the half-time �C satisfies �C � t3 C 1, a contradiction.

Recall that in the pure diffusion case, we have

�D &
L2

log.M0"/
:

Comparing this with t3 C 1; and assuming that L2=
 & log 
 , we see that chemotaxis

would significantly reduce the half-time of reaction in the regime

1 � 
 � M0" � e
 :

As mentioned in the introduction, such a relationship between parameters is natural in

some applications.

The rest of this section contains the proof of Proposition 8.1. Let us denote

QH.�; t / WD �.��/�1�2.�; t /:

Since QH.�; t / is radial, we denote it by QH.r; t/.
Recall from (4.7) that

M.r; t/ D
Z

Br

�1.x; t/ dx;

satisfies

@tM � @2
rrM C 1

r
@rM C .@rM/.@r

QH/C "

Z

Br

�1�2 dx D 0: (8.3)
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Since �1.r; t/ D .2�r/�1@rM.r; t/, to prove (8.2) it suffices to show that

Z t3C1

0

@rM.r; t/ dt � cM0



for all r 2 .1=2; 1/: (8.4)

Let I D .a; b/ � .1=2; 1/ be an arbitrary interval. For any s 2 .a; b/, integrating (8.3)

over .a; s/ in r gives

Z s

a

@tM.r; t/ dr D @rM.s; t/�@rM.a; t/�
Z s

a

�
1

r
@rM.r; t/C@rM.r; t/@r

QH.r; t/
�

dr

�
Z s

a

"

Z

Br

�1�2 dx dr � @rM.s; t/CC

Z s

a

@rM.r; t/ dr;

since @rM � 0, @r
QH � �C
 , and �1; �2 � 0. As M.r; 0/ D 0 for all r < 1, since �1 is

initially concentrated near r D L, integrating this inequality in time from t D 0 to t D t3
gives

Z s

a

M.r; t3/ dr �
Z t3

0

@rM.s; t/ dt C C


Z t3

0

Z s

a

@rM.r; t/ dr dt:

Combining Proposition 4.3 and Theorem 6.6, we haveM.r; t3/�M0=4 for all r 2 .1=2;1/,
and the above inequality becomes

Z t3

0

@rM.s; t/ dt C C


Z t3

0

Z s

a

@rM.r; t/ dr dt � .s � a/M0

4
:

Integrating this inequality over s 2 I gives

Z t3

0

Z

I

@rM.s; t/ ds dt C C


Z t3

0

.b � a/
Z

I

@rM.r; t/ dr dt � .b � a/2M0

8
;

so that Z t3

0

1

jI j

Z

I

@rM.s; t/ ds dt � M0

8.jI j�1 C C
/
:

Therefore, for any interval I � .1=2; 1/ with jI j D 
�1, we have

1

jI j

Z

I

Z t3

0

@rM.s; t/ dt ds � cM0



: (8.5)

This inequality shows that (8.4) holds in each such interval I in an average sense. To finish

the proof of Proposition 8.1, we need to rule out the possibility that
R t3

0
@rM.s; t/ dt is

distributed very nonuniformly among s 2 I . We are going to show that this cannot happen

since �1 satisfies a parabolic PDE.

Taking a derivative of (8.3), we deduce a parabolic equation

@tu � @2
rruC

�
1

r
C @r

QH
�

@ruC
�

� 1

r2
C @2

rr
QH C "�2.r; t/

�

u D 0 (8.6)

for u.r; t/ WD @rM.r; t/ D 2�r�1.r; t/.
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Lemma 8.2. There exists a universal constant c > 0 such that any nonnegative solution

to (8.6) satisfies

u.r; t/ � c
3

Z

I

Z t0C
�2

t0

u.r; t/ dt dr for all r 2 I; t 2 Œt0 C 
�2; t0 C 2
�2�;

for all intervals I � .1=2; 1/ with jI j D 2
�1, and t0 � 
�2.

Proof. Let us rescale (8.6) setting y D 
r; � D 
2.t � t0/. In the new coordinates,

u� � uyy C b.y/uy C c.y; �/u D 0;

where jb.y/j � C and jc.y; �/j � C for all y 2 .
=2; 
/; � � 0. The bounds on b and c

follow from the facts that r 2 .1=2; 1/, j@r
QH j � C
; j@2

r
QH j � C
 , �2 � k�2.�; 0/k1 � � ,

and
"�


2
D "

�

� Qc�1 (8.7)

(where Qc is from Theorem 1.1).

By the parabolic Harnack inequality (e.g. [49, Theorem 6.27 or Corollary 7.42]), for

any interval I 0 � .
=2; 
/ with length 2 we have

u.y; �/ � C

Z

I 0

Z 1

0

u.y; t/ dt dy for all y 2 I 0; � 2 Œ1; 2�I

here the constant C depends on Qc in (8.7). Translating this back into the original coordi-

nates finishes the proof.

Consider the time intervals Jk WD Œ2k
�2; 2.k C 1/
�2�, k 2 N, and let n be the

smallest integer such that 2.n C 1/
�2 � t3. Then for any interval I � .1=2; 1/ with

jI j D 2
�1, we can rewrite (8.5) as

n
X

kD0

Z

I�Jk

@rM.r; t/ dr dt � cM0


2
; (8.8)

while Lemma 8.2 gives, for each k � 0,

@rM.r; t/ � C
3

Z

I�Jk

@rM.s; t/ ds dt for all r 2 I and t 2 JkC1, (8.9)

so that Z

JkC1

@rM.r; t/ dt � C


Z

I�Jk

@rM.s; t/ ds dt:

It follows that for each r 2 I we have
Z t3C1

0

@rM.r; t/ dt �
Z .nC2/
�2

0

@rM.r; t/ dt D
n

X

kD0

Z

JkC1

@rM.r; t/ dt

� c


n
X

kD0

Z

I�Jk

@rM.s; t/ ds dt � cM0



: (8.10)

This finishes the proof of Proposition 8.1.
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9. Discussion

In this section, we briefly discuss the nature of the constraints in our main nonlinear

application. The arguments here are purely heuristic, though some of the statements can

be made rigorous. Observe that for H.x/ D 
.��/�1�B1
.x/; the ground state is

eH D
´

e
.1�r2/=4; r < 1;

r�
=2; r � 1:
(9.1)

A simple calculation shows that for r < 1 we have
Z

Br

eH.x/ dx D 4�



e
=4.1 � e�
r2=4/;

Z

.Br /c

eH.x/ dx D 4�



e
=4.e�
r2=4 � e�
=4/C 4�


 � 4 :

Therefore, most of the mass of eH is concentrated in a ball of radius � 
�1=2 centered at

the origin.

This explains why the radial constraint on the initial conditions is needed to make

touch with the heuristics. Indeed, consider �1 that is concentrated initially at a distance L

from the support of �2; in a region of size � 1 (as opposed to radial). If 
 is large, as

this mass gets transported towards the origin, it will enter the support of �2 – the unit ball

centered at the origin – through a narrow sector and then concentrate overwhelmingly in

a tiny region near the origin. After a time � L2=
; the density �1 will approximate eH

given by (9.1) since not much reaction has happened during the passage through a narrow

sector. Thus, even after the transport phase has taken place, the reaction rate is going to be

penalized since �1 is smaller than M0 by a factor that is exponential in 
 on most of the

support of �2: As �2 gets depleted near the origin, the potential and so the configuration

of �1 will adjust, but this process is not straightforward to control. It seems clear that

some essential extra time will be lost.

A similar issue applies in the “risky” regime "M0 � 1, even in the radial case. Then,

little reaction happens on the pass through, while the reaction after the transport stage

incurs the same penalty due to the aforementioned excessive concentration.

Both of these constraints are due to an artifact of the specific form of the Keller–Segel

chemotaxis term. The extreme concentration of eH can be seen as a consequence of the

scaling �r.��/�1�2 � �
 near and on the support of �2; which is very large when 
 is

large. But in reality, there is always a speed limit on how fast biological agents can move.

A variation of the classical Keller–Segel model is the so-called flux limited chemotaxis

system given by

@t�1 C �r �
�

�1

rc
jrcj .jrcj/

�

���1 D �"�1�2; c D .��/�1�2; @t�2 D �"�1�2:

(9.2)

The function  appearing in (9.2) satisfies  .0/ D 0; is increasing, and saturates at some

level that we can take equal to 1 (given that we have an explicit coupling constant �). The
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system (9.2) is more complex to analyze due to the strongly nonlinear flux, but is more

realistic. A variety of flux limited Keller–Segel systems have been considered recently

in many works (see e.g. [3, 34] for more references); in particular, papers [22, 62, 71]

provided derivation of the flux limited Keller–Segel system from kinetic models built on

biologically reasonable assumptions about the behavior of the modeled organisms.

In future work, we plan to adapt the techniques developed in this paper to analyze

(9.2). The adaptation is not straightforward, but preliminary computations show that in

this case the radial assumption is not necessary, and the case of the “risky” reaction can

be handled.

Appendix A

A.1. Proof of Theorem 3.1

Let us first assume that �0 is nonnegative. The proof is almost identical to that of [10,

Theorem 5], but we include it for the sake of completeness. Let r.t/ be a C 1 increasing

function to be specified later. We compute the time evolution of k�.t/kr.t/ as follows,

where we omit the t; x dependence on the right hand side for notational simplicity:

d

dt
k�.�; t /kr.t/

D � r
0

r2
k�kr log.k�kr

r /C r 0

r
k�k1�r

r

Z

�r log � dx C k�k1�r
r

Z

�r�1@t� dx

D r 0

r2
k�k1�r

r

Z

�r log

�
�r

k�kr
r

�

dx C k�k1�r
r

Z

�r�1.�� � r � .�rˆ/ � h�/ dx

� r 0

r2
k�k1�r

r

�Z

�r log

�
�r

k�kr
r

�

dx � 4.r � 1/
r 0

Z

jr�r=2j2 dx
�

C r � 1
r


k�kr ;

(A.1)

where in the last inequality we use the assumptions h.�; t / � 0 and �ˆ.�; t / � �
 for

all t , as well as the fact that � remains nonnegative for all t � 0. Next we use a sharp form

of the logarithm Sobolev inequality in R
n. It is [10, (7.17)], and it is equivalent to Gross’s

logarithmic Sobolev inequality in [28] after a scale transformation. For all f 2 H 1.Rd /

and all a > 0,
Z

Rd

f 2 log

�
f 2

kf k2
2

�

dx C
�

d C d

2
log a

� Z

Rd

f 2 dx � a

�

Z

Rd

jrf j2 dx: (A.2)

Choosing f D �r=2 and a D 4�.r � 1/=r 0, we see that (A.2) becomes
Z

Rd

�r log

�
�r

k�kr
r

�

dxC
�

d C d

2
log

�
4�.r � 1/

r 0

��

k�kr
r � 4.r � 1/

r 0

Z

Rd

jr�r=2j2 dx:

Applying this to (A.1) gives

d

dt
k�.t/kr.t/ � r 0

r2
k�kr

�

�d � d

2
log

�
4�.r � 1/

r 0

��

C r � 1
r


k�kr :
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Let G.t/ WD log k�.t/kr.t/. Then the above differential inequality becomes

dG

dt
� r 0

r2

�

�d � d

2
log

�
4�.r � 1/

r 0

��

C r � 1
r


: (A.3)

Since our goal is to estimate k�.T /k1 using k�.0/k1 (where T > 0 is an arbitrary time

at which we want to obtain our estimate), let us set r.0/ D 1 and r.T / D p, where p > 1

will be sent to infinity at the end. Integrating (A.3) in Œ0; T � yields

log

�k�.T /kp

k�.0/k1

�

DG.T /�G.0/�
Z T

0

�
r 0

r2

�

�d � d

2
log

�
4�.r � 1/

r 0

��

C r � 1
r




�

dt

� �
Z T

0

s0
�

�d � d

2
log.4�.s � s2//C d

2
log.�s0/

�

dt C 
T .let s.t/ WD 1=r.t//

�
Z 1=p

1

�

d C d

2
log.4�.s � s2//

�

ds C d

2

Z T

0

.�s0/ log.�s0/ dt C 
T:

The first integral on the right hand side can be explicitly computed, and it is uniformly

bounded by some constant C.d/ as p ! 1. For the second integral, since
R T

0
.�s0/ dt is

fixed as s.0/ � s.T / D 1 � 1=p, Jensen’s inequality gives that the integral is minimized

when �s0 is a constant. We thus set �s0 D 1�1=p
T

, which yields

log

�k�.T /kp

k�.0/k1

�

� C.d/C d

2

�

1 � 1

p

�

log

�
1 � 1=p
T

�

C 
T;

hence in the limit p ! 1 we obtain

k�.T /k1 � C.d/T �d=2e
T k�.0/k1 for all T > 0: (A.4)

Note that t�d=2e
t reaches its minimum value .2
=d/d=2ed=2 at t D d
2


. For t � d
2


,

by applying the estimate (A.4) with t � d
2


as the initial time (and using the fact that

k�.t � d
2

/k1 D k�.0/k1), we obtain k�.t/k1 � C.d/
d=2k�0k1 for all t � d

2

. Com-

bining this with (A.4) gives

k�.t/k1 � C.d/max ¹t�d=2; 
d=2º k�.0/k1 for all t > 0:

To establish the theorem for sign changing �0; notice that equation (3.1) is linear. Thus

we can run the evolution separately for the positive and negative parts of the initial data,

and both solutions will satisfy (3.2). By linearity, the actual solution of (3.1) is just the

difference of these two solutions and (3.2) clearly holds for it as well.

A.2. Proof of Theorem 5.1

Existence and uniqueness of a weak solution �.x; t/ under the assumptions of Theo-

rem 5.1 is well known (see e.g. [47, Theorem 2.3.1]). However, the regularity characteri-

zation of the solution available in the standard literature is weaker than what is convenient
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for us here (though stated for a more general class of coefficients). Here we provide a

sketch of a simple proof that applies to the particular case of time independent H:

First, let us introduce the mollified potentialH" D �" �H; where �".x/D "�2�.x="/

is a standard mollifier. Let us denote by �" the smooth solution of (5.1) with H replaced

byH": It suffices to prove the uniform-in-" bounds for �" for all 0 < " < 1; one can show

in a standard way that they are inherited in the limit by �: Multiply (5.1) by �"j�"jp�2;

p > 1; and integrate by parts in space to obtain

1

p
@t

Z

R2

j�"jp dxC .p� 1/
Z

R2

jr�"j2j�"jp�2dxD .p� 1/
Z

R2

�"rH" � r�"j�"jp�2dx:

The integral on the right hand side can be estimated by

.p � 1/
�Z

R2

jr�"j2j�"jp�2 dx

�1=2�Z

R2

jrH"j2j�"jp
�1=2

� p � 1
2

Z

R2

jr�"j2j�"jp�2 dx C C.p � 1/krHk2
L1k�"kp

Lp ;

where we have used krH"kL1 � krHkL1 . It follows that given T � 0; we have

k�"kp � C.p; �0;H; T / for every t � T:

Now define v D �" � �0: Then

@tv ��v C r � .vrH"/ D f; v.�; 0/ D 0;

where f D ��0 � r � .�0rH"/ satisfies

kf kp � k�0kW 2;p .krHk1 C k�Hk1/:

Since H does not depend on t; w D @tv D @t�" satisfies

@tw ��w C r � .wrH/ D 0; w.�; 0/ D f:

By the argument identical to the above estimate for k�"kp; we obtain k@t�"kp �
C.p; �0; H; T / for every t � T: Finally, the W 2;p estimate of v (and thus of �") follows

from standard elliptic regularity estimates.
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