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Abstract. Chemotaxis plays a crucial role in a variety of processes in biology and ecology. Quite
often it acts to improve efficiency of biological reactions. One example is the immune system
signalling, where infected tissues release chemokines attracting monocytes to fight invading bacte-
ria. Another example is reproduction, where eggs release pheromones that attract sperm. A macro
scale example is flower scent appealing to pollinators. In this paper we consider a system of PDEs
designed to model such processes. Our interest is to quantify the effect of chemotaxis on reaction
rates compared to pure reaction-diffusion. We limit consideration to surface chemotaxis, which is
well motivated from the point of view of many applications. Our results provide the first insight into
situations where chemotaxis can be crucial for reaction success, and where its effect is likely to be
limited. The proofs are based on new analytical tools; a significant part of the paper is dedicated
to building up the linear machinery that can be useful in more general settings. In particular, we
establish precise estimates on the rates of convergence to the ground state for a class of Fokker—
Planck operators with potentials that grow at a logarithmic rate at infinity. These estimates are made
possible by a new sharp weak weighted Poincaré inequality.

Keywords. Chemotaxis, reaction enhancement, reaction-diffusion equations, Fokker—Planck
operators, convergence to equilibrium, logarithmic potential

1. Introduction

Chemotaxis describes the motion of cells or species that sense and attempt to move
towards higher (or lower) concentration of some chemical. Its first mathematical studies
go back to Patlak [58] and Keller—Segel [42,43]. The Keller—Segel system introduced in
the latter work describes a population of bacteria or mold secreting an attractive chemical
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substance, and remains the most studied model of chemotaxis. In the simplified parabolic-
elliptic form, this equation can be written as (see, e.g., [60])

dip—Ap+ xV-(pV(=A)"'p) =0, p(x,0) = po(x). (1.1)

The last term on the left side describes the attraction of p by a chemical with concentra-
tion ¢(x,) = (—=A)~!p(x,t). This is an approximation to the diffusion equation

d;c = kAc + Rp,

under the assumption that « ~ R > 1, so that the chemical is both produced and diffuses
on faster typical time scales than those for the rest of the dynamics of (1.1). The literature
on the Keller-Segel equation is very extensive. In particular, a number of different variants
of (1.1) have been derived from more basic kinetic models (see, e.g., [22,33,38, 56, 62]).
It is known that in dimensions larger than 1 solutions to (1.1) can concentrate and become
singular in finite time. We refer to [36,37,60] for more details and further references.

In many settings in biology where chemotaxis is present, it facilitates and enhances
success rates of reaction-like processes. One example is reproduction for many species,
where eggs secrete chemicals that attract sperm and help improve fertilization rates. This
is especially well studied for marine life such as corals, sea urchins, mollusks, etc. (see
[35, 65, 80] for further references), but the role of chemotaxis in fertilization extends
to a great number of species, including humans [64]. In the same vein, many plants
appeal primarily to the insects’ sense of smell to attract pollinators. Another process
where chemotaxis plays an important role is mammal immune systems fighting bacte-
rial infections. Inflamed tissues release special proteins, called chemokines, that serve
to chemically attract monocytes, blood killer cells, to the source of infection [21, 67].
Chemotaxis can also be involved when things go awry, for instance, playing a role in
tumor growth [70].

In the mathematical literature, the studies of equations including both chemotaxis
and reactions focused mainly on existence and regularity of solutions as well as general
features of long-time dynamics (see [16,24,25,54,55,68,74,75,77,79] for further refer-
ences). To the best of our knowledge, there are very few works where the question of how
chemotaxis affects the reaction rates has been studied rigorously or even modeled com-
putationally. As far as we know, the first step in this direction has been taken in [45, 46]
where a generalization of (1.1) including an absorbing reaction and a fluid flow has been
considered:

dp+w-V)p—Ap+ yV-(pV(=A)"p)=—ep?, V-u=0, p(x,0)=po(x)=0.
(1.2)

This work was motivated by modeling the life cycle of corals. Corals, and many other
marine species, reproduce by broadcast spawning. It is a fertilization strategy whereby
males and females release sperm and egg gametes that rise to the surface of the ocean.
As they are initially separated by the ambient water, an effective surface mixing is neces-
sary for a successful fertilization. For coral spawning, field measurements of fertilization
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rates are usually around 50%, and are often as high as 90% [48, 59]. On the other hand,
numerical simulations based on purely reaction-diffusion models [20] predict fertiliza-
tion rates of less than 1% due to the strong dilution of gametes. A more sophisticated
model, taking into account the instantaneous details of the advective transport, was pro-
posed in [17, 18]. Adding fluid flow to the model can account for part of the gap between
simulations and field measurements, but appears unlikely to completely explain it [46].
However, as already mentioned, there is also experimental evidence that chemotaxis plays
arole in coral and other marine animals fertilization: eggs release a chemical that attracts
sperm [14,15,52,53].

The results of [45,46] show, in the framework of (1.2), that the role of chemotaxis in
reaction enhancement can be quite significant — especially when reaction is weak, as is
known to be the case in many biological processes [73]. The efficiency of the reaction can
be measured by the decay of the total mass of the remaining density,

m(t) = /,o(x,t)dx.

If y = 0, then the decay of m(t) is very slow if ¢ is small, uniformly in the incompressible
fluid velocity u [46]. On the other hand, if y # 0, then in dimension 2, relevant for the
corals application, the extent of decay and time scales of decay of m(¢) are independent
of ¢, and the decay can be very significant and fast if the chemotactic coupling is suffi-
ciently strong. While the results of [45,46] are suggestive, taking (1.2) as a model makes
a strong simplifying assumption that the densities of male and female species are equal
and are both chemotactic on each other. In reality, only the male density is chemotactic,
hence (1.2) can be expected to overestimate the effect of chemotaxis on the reaction rates.

Although there are certainly examples of mold and bacteria that are chemotactic on
the chemicals they themselves release, significantly more numerous situations in biology
involve species that are chemotactic on a chemical secreted by other agents. Most of
the examples mentioned above are of this kind. In this paper, we would like to initiate
qualitative analysis of a more realistic system of equations modeling chemotaxis enhanced
reaction processes, of the form

dep1 —kAp1 + xV - (01 V(=A) " p2) = —ep1 a2,

(1.3)
002 = —€p1p2.

There is no ambient fluid advection: as the first step, we assume that the fluid flow is
adequately modelled by effective diffusion. The chemically attracted density is p;; the
density p, that produces the attractant is assumed to be immobile, which is a realis-
tic assumption in many interesting problems: for example, the inflamed tissue releasing
chemokines and attracting monocytes, plants attracting insects, or immobile eggs attract-
ing sperm in the mammal reproduction tract are in this category. We also maintain the
parabolic-elliptic structure, with the assumption that the signaling chemical diffusion time
is much shorter than other relevant time scales. The system (1.3) is one of the most natural
first step models in analyzing any situation where a fixed target aims to attract, by using a
fast diffusing chemical, a diffusing and mobile species which is involved in some kind of
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reaction with the target. Systems of this type have been certainly analyzed in the literature
— for example, in [16] a system of a very similar form but with a different chemotactic
term has been considered as a model of angiogenesis. However, the focus of most such
studies has been on proving global regularity, finite-time blow-up, asymptotic behavior,
and finding special classes of self-similar solutions. Moreover, in general, there are few
rigorous results that detect specific taxis-driven effects, and these have focused almost
exclusively on finite-time blow-up [29-32,76] and on transient growth [40, 78]. Perhaps
the closest to our aim here are the papers [13,23] that yield some estimates on the effect
of chemotaxis on reaction in a related setting. However, to the best of our knowledge, our
paper is the first attempt at sharp qualitative estimates for the scaling rules of the effect of
chemotaxis on the reaction rates in a chemotaxis system involving two distinct densities.
Here, we will limit consideration to two spatial dimensions and to the classical form of
the Keller—Segel chemotaxis flux. We make comments on some possible extensions and
generalizations in Section 9.

The purpose of this paper is twofold. First, we provide a careful analysis of the linear
problem corresponding to (1.3). This analysis is interesting in its own right, and focuses
on a class of Fokker—Planck operators with logarithmic potentials that is very natural,
especially in dimension 2. This linear problem models convergence of a density attracted
by a fast diffusing chemical to a target that releases it. Secondly, we present an initial
nonlinear application of the techniques we develop which also involves the reaction term.
In the nonlinear case, this paper focuses on the radial setting and develops a general
framework for applying the linear techniques to analysis of reaction rates. Generalizations
to more general settings will be addressed in future work; Section 9 outlines some of the
avenues that we expect to pursue. An interesting by-product of our work is a suggestion
that the traditional Keller—Segel term may be ill-suited to accurately modeling reaction
enhancement effects, and a so-called flux-limited version may be more appropriate. This
is also discussed in more detail below and in Section 9.

To describe our main results, we begin from the nonlinear application that will moti-
vate the linear problem. For the sake of simplicity, we assume that the initial condition
for p, is compactly supported and smooth: p,(x,0) = n(x), where 6 is a coupling con-
stant, and € C§° (R2) is close to the characteristic function of the disc B centered at
the origin in the L' norm — obviously, we can make it as close as we want. It is useful to
rescale (1.3); by a space-time rescaling we can normalize the parameters « and R, so that
(1.3) becomes

o1 — Ap1 + AV - (01 V(=)' p2) = —ep1 2.

(1.4)
0t p2 = —&p1p2,

where for simplicity we keep the same notation for variables and parameters. The connec-
tion between parameters before and after rescaling will be documented after Theorem 1.1
below. The initial condition for p, has the form p,(x,0) = 675(x), with some 6 > 0 and
radial n € C$°(IR?), such that 7 is close in L! to the characteristic function xp, of the
unit disk, with

0= yxp(x)=nkx) =1
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In particular, we can think of the constant 6 as a measure of total initial mass of p,:
Or < /pz(x,O) dx <20m. (1.5)

It is not difficult to extend our results to more general radial initial data p,(-,0) € C2°(R?)
or just rapidly decaying — though at the expense of less sharp constants and more techni-
calities. Nevertheless, to reduce technicalities, it will be convenient for us to think of 7 as
very close to xp,.

For the initial condition p; (x, 0) > 0 for (1.4), we assume that it is smooth and quickly
decaying at infinity, and is located at a distance ~ L from the origin. Specifically, we will
assume that its mass in a ball Bz (0) is at least My while the mass inside B; is much
smaller than M:

[ p1(x,0)dx > My, v/ll p1(x,0)dx K< M. (1.6)
x|<L x[=<1

Thus, My, L, 6, y and ¢ are the parameters of the problem, and it is convenient to combine
the mass of p, that is ~ 6 and y into a single parameter y := 6y. We are primarily
interested in the situations where M, is large, so that Mye > y > 1 and My > 0; the
motivation for such a relationship between the parameters will be discussed below. Our
goal is to compare the efficiency of reaction, that is, the decay rate of the integral

/ p2(x.1)dx,
R2

with and without chemotaxis. A reasonable measure of the reaction rate is a typical “half-
time” scale during which about half of the initial mass ~ 6 of p, will react. More precisely,
the half-time t¢ will be the time by which the mass of p, decreases by w6/2. Our main
nonlinear application is

Theorem 1.1. Let the constants y and € describe the chemotactic mobility and the reac-
tion strength as in (1.4). Suppose that My and L > 1 satisfy (1.6). Let 6 be as above
and in particular satisfy (1.5) and y = 0 y. Assume that the initial conditions p; (-, 0) and
02(+,0) are as above and, in addition, radially symmetric. Suppose yy/e > ¢ > 0. There
exists B > 0 sufficiently large, depending only on ¢, such that if

Moe/y,y, My/0 > B, (1.7)
then the half-time for the solution of the system (1.4) satisfies
e < C1(L?/y +logy) (1.8)

with a constant Cq only depending on ¢ and B. On the other hand, if y = 0 and p1(-,0)
is supported in {|x| > L/2}, then the pure reaction-diffusion half-time satisfies tp >
C>L?/log(eMy), where Cy is a universal constant.
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Remarks. 1. Note that time-space rescaling leading from (1.3) to (1.4) is given by x’ =
x/R,t' = tR?/k. The new parameters are given by y' = yR?/k, &’ = eR*/x, M| =
My/R?>, L' = L/R,and y' = 0y’ = OR?y/k. As mentioned above, after the change of
variables, we denote the new parameters without primes. Conditions (1.7) in the original
parameters take the form Moe/(6R?y) > B, OR? y/x > B, My/(OR?) > B. Here OR?> ~
initial mass of p;.

2. The assumption (1.7) is reasonable in many applications. For example, in coral
spawning, a typical number of sperms is of the order ~ 10'°, the number of eggs ~ 10°,
and & ~ 1072 It is difficult to find data on the measurements of strength of chemotactic
coupling in biological literature.

3. In Section 7, we prove Theorem 7.3, a variant of Theorem 1.1 that eliminates the
log y term in (1.8) at the price of providing slightly less precise information about the
dynamics of the system.

We believe that, possibly up to a correction logarithmic in y, the result of Theorem 1.1
is sharp. It indicates that the presence of chemotaxis can significantly improve reaction
rates if y > log(Mye). In particular, in the framework of (1.4), one can expect chemotaxis
to provide significant improvement only if y is sufficiently large.

There are natural further questions, discussed in some detail in Section 9. Here, let us
just comment on the radial assumption on the initial data. The technical reason behind this
condition is an artifact of the Keller—Segel form of the chemotaxis term. As the chemical
concentration is (—A)™!p,, the p; species concentrates near the center of the support
of p», and, in general, it may arrive there without ever meeting p», so that reaction is not
enhanced at all. This is prohibited in the radial geometry where the p; species will have
to see py as they move toward the origin. We expect that the techniques developed in
this paper should apply to other chemotactic models and to a broader class of initial data
configurations, with Theorem 1.1 as an initial application.

The proof of Theorem 1.1 relies on several ideas. We expect that the main positive
effect of chemotaxis is in speeding up transport of the p; species towards the origin where
the p, species is concentrated. To capture this, we estimate the transport stage by com-
paring the solutions of the coupled system to the solutions of the linear Fokker—Planck
equation with a properly chosen time independent potential,

dp—Ap+V-(pVH) =0. (1.9)

One would wish to take p(x, 0) = p1(x,0), and H = y(—A)~!p,. However, the time
dependence of H would complicate the analysis. Instead, we use a comparison to the
solution to (1.9) with the “weakest” attractive potential H(x) in an appropriate class. The
operator

Fup = —Ap + V- ($VH)

appearing in (1.9) is self-adjoint and nonnegative on the weighted space L?(e ™, dx)
and, if y is sufficiently large, has a ground state ef. The rate of convergence of the
solution to the ground state for large times corresponds to transport of the density p from
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the far field towards the region with higher values of H(x). As we will see, the worst case
potential is

H(x) = y(=8)"" (xB,(x) = xB,, 5(¥)). (1.10)

It is not difficult to deduce that in dimension 2, H(x) ~ —(yx/2)log|x| for |x| > 1, and
we need to deal with a Fokker—Planck equation with a logarithmic potential. We stress
that all estimates we prove for the linear problem (1.9) apply in full generality, without
radial constraint on f.

Thus, our principal goal in this paper is to provide very precise bounds on the rate of
convergence to the ground state for this class of Fokker—Planck operators, and to develop a
comparison scheme to use these estimates in the analysis of nonlinear problems. The rate
of convergence to equilibrium for Fokker—Planck operators is a classical subject, and the
literature on this question is vast. The uniformly convex case —D? H(x) > AId with A > 0
can be viewed as a direct application of Brascamp—Lieb ideas [9], and the operator Fg
has a spectral gap, so that convergence to the ground state is exponential in time. There
has been much work on generalizations of these results. An extension to (in particular)
H(x) = |x|# with I < B < 2 and further references can be found in [1]. For slower growth
potentials there may be no spectral gap. Rockner and Wang [66] have initiated analysis of
convergence to equilibrium for H(x) = |x|# with 0 < 8 < 1 which are subexponential
in time (see also [69]), as well as algebraic in time convergence bounds for a logarithmic
potential — which is precisely our case. However, the dependence of these bounds on the
coupling constant is not sufficiently sharp for the applications that motivate us. There
is also related work based on probabilistic techniques by Veretennikov [57, 72]. These
estimates are designed with different applications in mind, and are also insufficient for
our purpose.

While weighted Poincaré inequalities can be used to prove exponential in time conver-
gence to equilibrium for Fokker—Planck operators, the tools that can be deployed when the
rate of convergence is slower are called weak Poincaré or Poincaré-type inequalities. An
inequality of this kind involving Cauchy-type power weights has been proved by Bobkov
and Ledoux [7] (see also [4]). That paper contains, in particular, the following inequality
for every f € C(‘)’O(Rd):

= C
/ |f = fPu(x)dx < —/ V121 + [x?)v(x) dx, (1.11)
R4 Y Jr4
with the weight v(x) = (1 + |x|?)~*/2 for some sufficiently large y, and

f= fR e dx.

The proof of Bobkov and Ledoux is based on convexity techniques, and builds on gener-
alizations of the Brascamp-Lieb inequality [9]. For our application, we need a version of
(1.11) with the weight w(x) = ¢”™)_ While the behavior of w(x) and v(x) near infinity
is virtually identical, the weight w(x) does not seem to satisfy the convexity assump-
tions needed for the techniques of [7] to work. Moreover, the factor C/y on the right side



A. Kiselev, F. Nazarov, L. Ryzhik, Y. Yao 2648

of (1.11) would lead to suboptimal estimates on the rate of convergence to the ground
state. One could verify that such estimates could only yield ¢ < L? in Theorem 1.1.
This is not very interesting, since pure reaction-diffusion is not outperformed in relevant
regimes.

In recent years, there has been more work focusing on weak weighted Poincaré inequal-
ities for Cauchy-type measures [8, 12]. The paper [8] proves a one-dimensional esti-
mate similar to [7] by estimating the spectral gap of a related transformed operator. The
paper [12] applies the elegant Lyapunov function method which in application to the
weight v(x) above yields an estimate similar to (1.11). The paper [12] also treats a non-
smooth weight (1 + |x[)~¢~7, and in this case the constant C/y in (1.11) is replaced by
a sharp (for the far range) constant C/y2. The proof of this sharp bound relies on the
mass transportation method reducing the analysis to a spectral gap estimate for a related
operator, which has been analyzed in [6]. The latter work relies on a variational approach.
It is not clear how to extend it to the smooth weight v(x) or the weight e that features
different behavior (and so different scaling of constants) in different regions.

Here, we prove precise weak weighted Poincaré estimates for weights with Cauchy-
type behavior at infinity which can be flat near the origin. The exact result that we need for
the sharpest estimates on convergence to equilibrium, Theorem 5.2, is a bit too technical
to state in the introduction, but it implies in particular the following improved weighted
Poincaré-type inequality by distinguishing the regions where behavior of the weight w is
different.

Theorem 1.2. Let y > 2, f € CP(R?), and w(x) = eH™ with H given by (1.10).
Then the following weak weighted Poincaré inequality holds:

/ S = FPw(x) dx < c/ IV f Puw) dx + %/ V7P + [xPw() dx.
R2 B V© JBS

(1.12)

The bound (1.12) provides an improvement from y_l to y‘z in the far field, which

is absolutely crucial for our application. It is not difficult to build examples to show that
such scaling is sharp. For the straight power weight v(x), our results imply that

/if—f|2v<x>dx§@ |Vf|2v(x>dx+c(f)/ V7P [ Pyo () d
R4 Y B Y (By)¢ (L13)

for all y > d. Our proof of Theorem 1.2 is based on direct analytic estimates.

The weak weighted Poincaré estimates that we show allow us to derive quite sharp
bounds on convergence to equilibrium for the Fokker—Planck equation (1.9). Here is a
sample result for the weighted L2 norm. Define

Z(0) = /R (o 1) = py())%e O d.

Theorem 1.3. Fix any o € (0, 1). Let y > yo(w) be sufficiently large, and let p(x,t)
be the solution to (1.9) with initial condition py € L®(e~ ") N L1(R?). Set t; :=
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C(1 +logo™! + logy), where C is a sufficiently large universal constant, and Z° :=
e HO) lpol|?. Then for all t > t1, we have

Z(t) <max{Z°. (cy(t — 1))~ "¥/8 ppeH |12 }. (1.14)
where ¢ > 0 is a universal constant.

The inequality (1.14) provides very fast, optimal in ¢ and y (modulo #; which arises
for technical reasons and constant factors), rate of decay when Z(¢) is large. One cannot
expect such decay rate for all times, since as solution concentrates near the flat part of
the weight the dynamics changes. Also, we will need to use a duality argument to get a
faster decay rate in order to rigorously reach the natural heuristic laws in the nonlinear
application.

We note that there have been several papers that analyzed convergence rates to equi-
librium for Fokker—Planck operators with Cauchy-type equilibrium measures [2,41, 66].
Specifically, the paper [2] contains the sharpest earlier estimate for the logarithmic poten-
tial case which has the correct scaling in time, but not in y; the reason for that is similar
to the lack of sharp far-range constant in (1.11) and is essentially a consequence of the
analysis not separating the weight into qualitatively different regions. We believe that our
work is the first one that provides virtually sharp (in ¢ and y) estimates on convergence
to equilibrium for a Fokker—Planck operator with a potential which has qualitatively dif-
ferent behavior in different regions: flat near the origin and logarithmic in the far range.
This is exactly what one needs to understand the parabolic-elliptic chemical attraction in
two dimensions: a density attracted by a fast diffusing chemical secreted by a given fixed
target. We believe therefore that the linear problem estimates are of independent interest,
and to make these estimates relevant in applications they need to be quite precise.

The paper is organized as follows. In Section 2, we provide a heuristic motivation for
the main application result. In Section 3, we sketch the proof of the global well-posedness
for (1.4), along with an L° bound on the density p;. In Section 4, we discuss the mass
comparison principles, which will allow the estimates for linear Fokker—Planck equations
with a time independent potential to be useful for the nonlinear analysis. In Section 5, we
derive new weak weighted Poincaré inequalities, in particular proving Theorem 1.2, and
in Section 6 we use these inequalities to obtain estimates on the rates of convergence to the
ground state for Fokker—Planck operators with logarithmic-type potentials. In Section 7,
we provide a brief detour and show how to set up a version of Theorem 1.1, Theorem 7.3,
using only comparison principles and avoiding the analysis of Fokker—Planck equations.
This argument is much simpler, and generates a result similar to our main application
here. However, it provides limited information on the distribution of p; near the target
support, which may be useful in other applications, and does not yield intuition explaining
limitations of the standard Keller—Segel chemotaxis term that led to the radial assumption.
In Section 8, we apply the results proved in previous sections to finalize the proofs of
Theorems 1.1 and 7.3. In Section 9, we provide a preview of more advanced applications
that we believe may be possible using the techniques developed.
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Throughout the paper, we will denote by || f||, the L? (R?) norm of the function f
with respect to Lebesgue measure. The notation <, 2 and ~ means, as usual, bounds with
universal constants independent of the key parameters of the problem. The constants C, ¢
appearing in the estimates are universal constants that may change from step to step.

2. Heuristics

In order to decide whether the chemotaxis term can enhance reaction, it suffices to com-
pare the half-times tc, 7p in the two systems, with and without chemotaxis, respectively.
In Section 2.1, we will derive a rigorous lower bound for tp in the absence of chemotaxis.
We then give a heuristic argument for the full system in Section 2.2, formally deriving an
upper bound for 7¢ in the presence of the chemotaxis term. Comparing with the estimate
without chemotaxis, it suggests that in a certain parameter regime, chemotaxis should
significantly shorten the half-time, thus meaningfully enhancing the reaction between the
two densities. Of course, the upper bound for t¢ in the system with chemotaxis is just
formal at this moment, but it will be made rigorous in the rest of this paper in the radially
symmetric case.

2.1. Estimates in the purely diffusive case

Consider the system without chemotaxis,

d:p1 — Ap1 = —¢gp1p2,

2.1)
0:p2 = —€p1p2,

where the initial conditions are the same as for the original system (1.4). The time tp it
takes for || p2(-, ¢)||.1 to drop by half obeys a lower bound

p = T (2.2)
Here, 7 is the time it takes for ||g2 |1 to drop by half, where g5 is the solution to

{t%gl = Agi,

(2.3)
0:82 = —€8182.

where g1 and g, have the same initial data as p; and p, respectively. Indeed, the compar-
ison principle implies that py (-, 7) < g1(-,¢) for all ¢t > 0, so that p,(-,7) > g2(-, 1), and
(2.2) follows.
Recall that g (-,0) = p1 (-, 0) is concentrated at a distance L > 1 from the origin, in
the sense of (1.6), and p; (x, 0) is supported inside |x| > L /2. This gives an upper bound
lx—y|

1 _lx=yl7 M
g1(x, 1) = — e 4 p(y,0)dy < Z0CLYt forall x € B(0,1).
4t Jr2 4t
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One can plug this estimate in the equation for g, and obtain

Mye
d;log gz > _D0% -cr?,
4t

Hence, tp satisfies

(95 1
M08/ —e_CLz/t dt > log?2,
0 4t

which, after a change of variable y = CL?/t, is equivalent to

00 -y
/‘ e dy > 4 10g2‘

2.4
CLz/tD y - M()E ( )

To estimate tp, we consider two cases.

Case 1. Moe < 1, which is a very weak reaction regime, or fairly small M, regime. Then
(2.4) is equivalent to

1
1 1

/ —dy 2 —,

CL2/tp )V M08

or —log(CL?/tp) = 1/(Mye). Thus tp has to satisfy
5 £
™ X L7eMo®, (2.5)
which is a very long time due to the large exponent.

Case 2. Mye > 1, the reaction regime that appears more relevant to the applications we
have in mind. In this case we have C L2 /tp > 1, hence for a lower bound for tp, one

can find t such that
b 1
/ erdy 2 —,
CL2/tp Moye

which reduces to CL?/tp < log(Mye), and gives a bound

L2

z —. 2.6
D~ log(Moye) 26)

2.2. Formal heuristics with the chemotaxis term

Now we come back to the full system (1.4), including the chemotaxis term. Again, let 7¢
denote the half-time of p,. The following formal argument suggests that adding this term
may significantly reduce the half-time in the regime Mye > 1, where we will formally
argue that tc ~ L2?/y < tp ~ L?/log(Mye) as long as log(Mpe) < y.
To this end, note that due to chemotaxis, p; is advected by the velocity field
X X =

00 = V(A ) = =5 [ () dy.
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Since 7¢ is the half-time for p,, for any # < t¢ we have ||p2(-, 1)1 ~ 6, and p2(-, 1) is
supported near the origin. Therefore, for all |x| > 2 and ¢ < t¢, we have the following
lower bound for the inward drift:

_ t
v(x,[)'_xw)(/ p2(y )dy~l_
|x] R2 [x — ¥l |x|

Recall that initially all of p; starts at distance L from the origin. Hence, in time ¢t ~ L2/,
the chemotactic transport should bring a significant portion (say, half) of p; into B;(0),
and then p; ~ M in this ball. This enables the mass of p, to decrease exponentially at the
rate Moe > 1, and the half-time is quickly reached; thus one formally expects t¢ < L?/y.

In the “risky” regime Mye < 1, we need to add nontrivial reaction time, which is now
of the order ~ 1/(Mje). Then, one expects

L? 1
c ~ 7 + Moe’
which can be quite a dramatic improvement compared to (2.5).

Note that this heuristic argument ignores many essential points, such as effect of dif-
fusion, or close field dynamics. There are indications that for the Keller—Segel chemotaxis
term, reaction time may be longer due to “overconcentration” of p;. We discuss this point
further in Section 9.

3. Global regularity and an L bound

In order to get a uniform bound for the solutions to (1.4), let us first consider an equation
with a prescribed drift,

pr —Ap+ V- (pVP(x,1)) = —h(x,1)p, (3.1

where i € L®(R? x [0, 00)) is nonnegative, ® is H_2. in space for all time, and such that
V& e L®(L®(R%), [0, 00)). The proof of the following a priori L*-L bound for (3.1)
is very close to that of [10, Theorem 5]. We recall it in Appendix A.1 for completeness.

Theorem 3.1. Let the initial condition py for (3.1) satisfy po € L'(R?) N L®(R%).
Assume that h € L®(R? x [0, 00)) is nonnegative, and ® is HZ. in space for all time
and V& € L®(L*®(R%), [0, 00)). If there exists y > 0 such that A®(-,t) > —y for all
t >0, then

loCO)lloo < C(d) max {t=%2,y¥/2} | polls forallt > 0. 3.2)

The assumption that pg € L>°(R?) in Theorem 3.1 is not necessary, and is made sim-
ply because we always consider solutions with bounded initial conditions. We also discuss
well-posedness and regularity of solutions to (3.1) briefly in Section 5 and Appendix A.2.

Note that the p;-equation in (1.4) is of the form (3.1) with & = gp, > 0 and the poten-
tial ®(-,¢) = y(—=A)"!pa(-,1). The potential ® grows at a logarithmic rate at infinity, and
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minimal beyond L*° regularity of p, would ensure that ® € Hlf)c. This extra regularity is
established below in Theorem 3.3. Also, from the explicit formula for the inverse Lapla-
cian it is not hard to see that V® € L>®(L®(R%), [0, 00)). We will therefore be able to
apply Theorem 3.1 to obtain an a priori bound for || py (-, )| e-

The global regularity of solutions to (1.4) in all dimensions d > 1 follows from a
standard argument, which we briefly sketch below. The following lemma contains the key
estimates.

Lemma 3.2. Suppose f € L'(R?) N H™(R4), g € L'(R?) N H" ' (R?) N L®(RY)
with an integer m > d /2. Then

IV gl < ClA gl + ligleo), (3.3)
IV gllam < Clglh + lglloo) Lf Trm + CllLf loollgllgm—1- (34)

Proof. The inequality (3.3) follows from the estimates

I VED) gl < A IV g lloo.

and

IV(=2)""glloc < C sup / lx = y["* gl dy < Cllglh + 1glleo)-  (3.5)

xeRd JR4

To estimate the H™ norm in (3.4), let us start with the L? norm which is controlled
similarly to (3.5):

I VED) gl < 111V glloo < CUL lm (gl + lglloo)-

Any other term that we need to estimate to control the H” norm squared from the right
hand side of (3.4) is of the form

/R DAY DI(FV(-) gy dx,

where D/ is some partial derivative of order j < m. It suffices to control any term of the
form

[, 17 DV a) gl dx, 36)

where the integer s satisfies 0 < s < j. If s = 0, then (3.6) is bounded by
IV(=A)""gl% I f1I%,,, and using (3.5) and j < m leads to the estimate we seek. If

s = j, then (3.6) is bounded by ||f||go||g||12qm,l. If j > s > 1, we can estimate (3.6) by

CID' fI2ID* gl (3.7)

1 2(j=1

j—s
q= % In this step we have used only that the Riesz transforms are bounded in L” if
1 < r < oo. Recall a Gagliardo—Nirenberg inequality

— k
IDX fllanse < LIS 1115, (3.8)

where p=" +¢qg " = ,and 1 < p,q < oo. Spectfically, let us choose p = an
h 1 1/2,and 1 Specifically, 1 h d
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valid in any dimension for integers k, n such that 0 < k < n (see e.g. [51]). Applying it
to the norms in (3.7) withn = j — 1, and k = j — s and k = s — 1, respectively, we get
the bound

Jj—s v—] s‘—l

y
Cllflse’ ||f|IH, Llgllos IIgIIH, 2= CUS Iz + 18 IE N f 7 —0)-

Here we have used the inequality aPb'=B <g+bfora,b>0and0 < B < 1. Finally,
if s = 1, note that we can assume j > 1 since otherwise s = j and this is covered above.
In this case, we estimate

L, DRIy dx < 1077 F1 1DV -A) gl
=
= C||Dj71f||2;j1 I3,
72
Due to (3.8),

1D~ £ 7 <C||f||oo||f||Hj :

while ,
2j—1 1

lglz; < lgllos” lgly” -

By Young’s inequality,

1

j
||f||oo||f|| ||g|| ||g||1’ =CUSfNas ||g||2’ 2IIgII *H 1S lollgllso)
< ClSf e (gl + llglloo) + ClLA lzm g oo

Here in the last step we have used m > d/2. Since also m > j, the lemma follows. ]

Theorem 3.3. If the initial conditions p1(-,0), p2(-, 0) for (1.4) are nonnegative, and lie
in LY(R?) N H™(R¥) with an integer m > d /2, then there is a unique global-in-time
solution (p1 (-, 1), p2(-, 1)) € C(LY(R?) N H™(R?), [0, 00)) 10 (1.4).

Proof. We assume that p; (+, 0), p2(-,0) are nonnegative purely for simplicity since this
is the case in all our applications. This assumption is not hard to remove. We note that
the standard comparison principle implies that nonnegativity is conserved in time for all
sufficiently regular solutions.

The local-in-time well-posedness in C(L'(R¢) N H™(R?), [0, T]) can be shown by
a standard argument, using the Duhamel formula and the contraction mapping theorem.
In our case the Duhamel formula takes the form

pr(x.1) = e pi1(x,0)
+ [ AT VA pa ) = epr (o) ds. 3

pa(x, 1) = e Jo 1) ds o (), (3.10)
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We can reduce this system to a single equation substituting (3.10) into (3.9). Using the
fact that H™ is an algebra if m > d /2, Lemma 3.2, and simple estimates of the type

e /o P1Cds b (. 0)l[rm < || pa (-, 0) | grm e VP lccmrayo.m (3.11)

it is not hard to obtain local well-posedness in C(L'(R¢) N H™(R%), [0, T]) for suf-
ficiently small T using the contraction mapping theorem. We refer for details to [46,
Appendix I] where a very similar argument can be found.

As usual with parabolic equations, the solution is actually more regular for every ¢ > 0;
however, in our setting the solution does not become C *° due to the lack of a smoothing
mechanism for p, (unless we assume p, (-, 0) € C°, in which case the solution will
be C for all ¢+ > 0). In the general setting, using (3.11), the fact that H™ is an algebra,
and the elementary estimate

IVe™ fllgmt1-e < Ct™ 2| f | gm

for any & > 0, we can deduce from (3.9) and (3.10) that p; € H™17¢(R¢) for every ¢ > 0.
Using (3.4) to bootstrap this stronger regularity, we can then find that for any 1 > ¢ > 0,
p1 € H™H27¢(R9) for all ¢ > 0 (in fact, t = 0 is excluded only because of the first linear
heat evolution term in (3.9)). This regularity implies that for a local solution we have
d;p1 € H™¢(R?) forall t > 0, and this along with higher regularity in spatial variables
can be used to justify the calculation of 9,[|d%p; |3 and integrations by parts below; the
justification for the latter uses trace theorems for fractional Sobolev spaces (see e.g. [19]).

Now let us prove global regularity. By integrating the equations, we find that the L!
norms of p; (-, ¢) and p, (-, ¢) (which are equal to their integrals due to nonnegativity) are
nonincreasing in time. Hence to improve the local well-posedness result to a global-in-
time one, it suffices to obtain an a priori bound on

1) = o1 llFm + llp2() | m
on any given finite time interval [0, T']. Fix any multi-index o with 0 < || < m and write

1d

5 18%p2l3 = —8/ (0%p2)0% (p1p2) dx = ellp2llam [l pro2 ]| Hm
2 dt R2

< Cllpz2llam (lerlloollp2llzm + Nlp2lloo | o1 [l m)
< C(llprC )lloo + DUlpr G D) zrm + o205 )| 77m)- (3.12)

Here, the second line is obtained by the inequality (see, e.g., [50, Lemma 3.4])
[uvllam < C([ulloollvliam + [vlloollullam)  form >d/2, (3.13)

and in the last line we use the fact that || p2(f)||co < [|02(0)|lcc < C. As for ||p1||gm, for
any multi-index « as above, integration by parts gives

1d _
= — %113 = =V pu I3 + x[ V(@ p1) - 9%(01V(=A) ' p2) dx
2 dt R2

—8/ (0% p1)0% (p1p2) dx. (3.14)
R2
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The last integral on the right side can be bounded by the right side of (3.12), while the
first one can be estimated by

1 _
;IIV?)"‘m 12+ ClprV(=A) " p2l|3m

1
< ;Ilva"‘pllli + C(lo1lZello2lzm + llorlizm (lp2llT + ll02113))-  (3.15)

We have used the Cauchy—Schwarz inequality and the Young inequality in the first line
and Lemma 3.2 in the second line; the constants C depend on y and may change from line
to line. Combining the above estimates and taking into account that ||p2||; and ||p2||cc are
nonincreasing gives

d

E(Ilm(-,t)llfqm + o260 Fm) < CUlp1 (Dl + D21 G ) 7pm + o2 () zm)-
(3.16)

The first equation in (1.4) gives the bound

o1 G Dlloo =< 1p1(5 0)loo expixlp2( D) lloct} < 1p1(: 0)[loo expiX [l p2(-, 0) [0t }-
3.17)

Thus ||p1(-, ?)||cc remains finite for all times, and then (3.16) leads to global regularity.
To get a more precise bound, we may use (3.17) for 0 < ¢ < 1, while for # > 1 we may
deploy the uniform bound from Theorem 3.1. Therefore, there exists C > 0 such that
lp1(-st)|loo < C for all ¢t > 0. Then (3.16) gives exponential-in-time control of the H™
norms of the solution, for all times. [

4. The mass comparison principle

We now obtain a comparison principle that allows us to compare p; to the solution p of
the Fokker—Planck equation

dip—Ap+V-(pVH) =0 @.1)

with a certain prescribed H. The comparison will be in a mass concentration sense that
will be clarified in Proposition 4.3. The results of this section are valid in arbitrary space
dimension — the proof below is given for d = 2 for notational convenience since it is our
setting in this paper, but the argument can be generalized in a straightforward manner. Let
us assume that H = (—A)~ g, with a radially symmetric function g = g(|x|) supported
in a ball Bg,(0). The explicit form of g and H that we will use is given in (4.10) and
(4.11). The function H is radially symmetric as well, and the divergence theorem gives

r

1 1 1
a,H(r) = W/Br AH(x)dx = 27t_r/3r(_g(x)) dx = —;/(; g(s)sds. (4.2)

Integrating in r gives an expression

H(r) = —(logr) /Or g(s)sds — /oo(logs)g(s)s ds + const. 4.3)
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Since g is compactly supported, taking the arbitrary constant in (4.3) to be zero gives
1
H(r) =——1|gllilogr, r > Ro.
2

As a direct consequence of (4.2), we have the following.

Lemma 4.1. Assume that g, and g, are both radially symmetric and compactly sup-
ported. Suppose that g is more concentrated than g, in the sense that

/ gl(s)sdsz/ g2(s)sds forallr > 0.
0 0

Then the functions H; := (—=A)"'g;, i = 1,2, satisfy 0, Hy < 3, Hy <0 forallr > 0. In
addition, if g; € L®(R?), then 3, H;(0) =0 fori = 1,2.

We now compare the mass concentration of solutions to the Fokker—Planck equations.

Proposition 4.2. Suppose that u; and u, are nonnegative solutions to
osu; — Au; +V- u;VH;) =0

fori = 1,2, and uy is more concentrated than u, att = 0, so that
/ uy(x,0)dx > / Uz (x,0)dx forallr > 0. 4.4)
B, B,

If in addition Hy(-,t) is radially symmetric, and
a0, Hy(r,t) > m;lx 0, Hy(r,¢,t) forallt > 0andr > 0, 4.5)
then uy (-, t) is more concentrated than u, (-, t) forall t > 0.

Note that u; > are not necessarily radially symmetric.

Proof. The masses

M;(r,t) :=/B u;(x,t)dx

satisfy

E)tM,-(r,t)

/Auidx—/ V-(u,-VH,-)dx:/ 8,14,-(10—[ u;0,H; do
B, B, 0B, JBy

27 27
r/o 3ru,-(r,¢,t)d¢—r/0 ui(r7¢vt)8rHi(ra¢at)d¢~

(4.6)
Here, do = r d¢ is the surface measure on the boundary. Note that

2
0,M; = / u;do = r/ u;(r,¢,t)dgo,
0B 0
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so that

/27[ arui d¢ = ar(arMi) = arrMi - arTi.
0 r r

r

Substituting the above two equations into (4.6) gives
1 2m
0:M;(r,t) = 0, M; _;8rMi _V[ ui(r,¢,1)0, Hi(r,¢,t) do. 4.7
0
Subtracting the two equations and using the radial symmetry of H,, we obtain

1
0:(My — M) —0,p (M1 — M) + ;3r(M1 - M>)

>0, Hy0, M, — (aer)m(;IX 8,H1(r, P, t)
= — (0 H2)0,(My — M2) + (9, Ha - max b, Hy (r. . 0)d, My
> —(3, H2)0, (M1 — M>). (4.8)

We have used (4.5) as well as d, M; > 0 in the last inequality above. Now, the standard
parabolic comparison principle (see e.g. [49,63]) and (4.4) imply that

My(r,t) > My(r,t) forallr,t > 0.

To make the application completely routine one can consider My (r,t) = My(r,t) + & with
€ > 0 (note that M7 satisfies the same equation as M;). Then in view of the definition of
M; and the upper bound of Theorem 3.1, we have M{ (r,t) — M>(r,t) > 0 in some small
neighborhood of » = 0 uniformly in . Larger values of r are controlled by the standard
comparison principle. Letting & — 0 yields the result. ]

Let us now go back to (1.4). Let us recall that

1 1
Z”PZ("O)Hl <0< ;”Pz(',o)”l, Mo = |lp1(.0)|l1, y = x0, 4.9)

and that we are interested in the regime Mo > 6. To simplify the technicalities we assume
that p»(-, 0) is smooth but very close to yp, in L' norm, and p2(x,0) > xp, (x), but in
the argument below we think of p,(x, 0) as equal to 6y, (x). To make this argument
completely rigorous, while still using exactly the function g in (4.10), and keeping p,(:,0)
smooth, one may work with a time t, by which the mass of p, drops by a factor of «
with & < 1/2, rather than ¢, as the discrepancy between p,(-, 0) and yp, can be made
arbitrarily small in L' (R?).
Observe that any radial function f(x) > 0 supported on B, and such that

0= f(x) <p2(x.0) and [ fll1 = 3lp2(. 01,

is more concentrated than

g(x) = 0(xz, (x) — 8, (). (4.10)
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In particular, g is less concentrated than p, (-, ) for all # < 7¢. One may use (4.3) and
(4.9) to obtain

(y/8)(1 —log?2) for0 <r < 1/f2
H(x):= y(-A)"'g={ (y/d)(ogr +1—r2) forl/v2<r <1, (4.11)
—(y/4) logr forr > 1.

We can now compare p; to the solution to the Fokker—Planck equation with the drift
potential H, and conclude the following:

Proposition 4.3. Let py(x,t), p2(x,t) solve (1.4) with radially symmetric initial condi-
tions, where p>(-,0) = 0n, n smooth, radial and n(x) > yxp,(x), and suppose p(x,t)
solves the Fokker—Planck equation (4.1) with the drift potential H given by (4.11) and the
same initial condition as py. Let Tc be the time it takes for the L' norm of p, to decrease
by 07 /2. Then

1
/ p1(x,t)dx z/ o(x,t)dx — —/ p2(x,0)dx  forallt < tc andr > 0.
B, B, 2 R2
(4.12)

Proof. Let p solve the equation for p; without the reaction term:
9:p— Ap+ (V- (BV(=A)""p2) =0, (4.13)

with the same initial condition as p;. Note that p(-, #) is more concentrated than p(-, ¢) for
all ¢t < t¢. Indeed, the function g defined in (4.10) is less concentrated than p, (-, ) for
all ¢ < t¢, hence Lemma 4.1 implies that

xar(—A)_lpz(-,t) <d,H <0 forallt <1c,

where H as in (4.11). Thus, Proposition 4.2 gives
/ o(x,t)ydx > / p(x,t)dx forallt <tc andr > 0. (4.14)
To prove (4.12), it now suffices to compare p; and p and show that
1
/ p1(x,t)dx 2/ polx,t)dx — —/ p2(x,0)dx forallt <tcandr>0. (4.15)
By B, 2 Jr2
Note that
[ o [ pnar= [ peodi- [ pwod
R2 R2 R2 R2
1
< —/ p2(x,0)dx forallt < ¢, (4.16)
2 R2

and the comparison principle implies that

p(x,t) > p1(x,t) forall x,¢. 4.17)
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Hence, we may write

/Br p1(x,t)dx =/}R2,01(x,t)a’x—/2 p1(x, 1) dx

R2\B,

1
2/ pl(x,O)dx——/ pz(x,O)dx—/ p(x,t)dx
R2 2 Jr2 R2\B,

1
= ——/ pz(x,O)dx+/ ﬁ(x,O)dx—[ o(x,t)dx
2 Jr2 R2 R2\ B,

1
— [ Aenax=3 [ p0dx
B, 2 R2

which is (4.15). Here we have used (4.16) and (4.17) in the first step, and conservation of
mass for p in the last step. ]

5. Weak weighted Poincaré-type inequalities

In this section, we develop some analytical tools that we will need to derive sufficiently
sharp estimates on the convergence to equilibrium rates for solutions to Fokker—Planck
equations with a logarithmic potential. To motivate these results, consider the Fokker—
Planck equation

dp—Ap+V-(pVH) =0 inR? x [0, 0c0), 5.1

where H = y(—A)~!g is time independent, and g is the radially symmetric function
supported in B(0, 1) defined in (4.10). As outlined in the previous section, we plan to use
the solution p as a comparison tool to control the behavior of p;.

Before setting the stage for the main arguments of this section, for completeness, let us
briefly discuss well-posedness and regularity properties of the solutions to (5.1). Equation
(5.1) is linear, and the result we are going to state is definitely known — but a convenient
reference does not appear to be easily available.

Theorem 5.1. Suppose that H in (5.1) satisfies AH,VH € L®(R?), and the initial data
po € W2®(R?2) N W21(R?). Then there exists a unique solution p(x,t) such that for
anyl < p <ooandany T > 0, we have

9:ollr @2y + loIlw2.r @2y < C(p,po, H, T) < 00 (5.2)
forall0 <t <T.

Remark. 1. The result holds in any dimension d without changes.

2. In our case, H is smooth away from two concentric circles. Standard parabolic
regularity theory (see e.g. [47, Corollary 2.4.3]) in this case implies that p(x, ¢) is smooth
away from those circles. Theorem 5.1 implies that p € C17(R?) for any y < 1; such
regularity near singular interfaces is certainly sufficient for any estimates below.

We will sketch a simple proof of Theorem 5.1 in Appendix A.2.
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The operator L given by
Lp=—-Ap+V-(pVH)

is self-adjoint in the weighted space L?(e™H dx) (when defined on a natural weighted
Sobolev space), and is nonnegative. Its unique ground state corresponding to the zero
eigenvalue is a multiple of e’ provided that

[ede<oo,

otherwise there is no ground state. In our situation, H is given by (4.11), so that

(e/2)7/8, x| < 1/3/2,
eH®) — e”/4|x|7’/4e*”|x‘2/4, 1/V2<|x| <1, (5.3)
|x|77/4, lx| > 1.

As the evolution (5.1) conserves the integral of p, we expect that

-1
o(t, x) — H® (/ ,odx) (/ et dx) ast — +oo.

The dual operator L* with respect to the standard L2(dx) inner product, given by
L*f=—-Af—-VH- -V},

is self-adjoint in L2(e® dx), with ground state equal to a constant. The corresponding
dual evolution is
of—Af—-VH -Vf=0. (5.4)

Note that p(-, ¢) solving (5.1) is equivalent to

flx,t) = p(x, 1)e 7

solving (5.4). The evolution (5.4) conserves the integral of f(x)exp(H (x)) so we expect

that
-1
fx,1) > f = (/foede)(/ede) ast — +o0,

where fo(x) = f(x,0). Note that

i/ (f(x,1) = [)2eH™® gx = —2] IV £(x,0)]2eH™ dx (5.5)
dt R2 R2

=:Z(t) =:W(t)

If we can bound Z(¢) from above as

Z(1) = g(W(@). [l folloo)-
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with some function g that increases in W, that would allow us to bound W (¢) from below
in terms of Z(¢) and | fo|loo- Then (5.5) would give us a differential inequality for Z(z)
leading to an explicit decay estimate on Z (). In the simplest case, the bound Z < CW
applies, which is a standard Poincaré inequality. Then there is a spectral gap for L*, and
exponential-in-time convergence to the ground state in L2(e dx). This is true for uni-
formly concave potentials, as in the Brascamp—Lieb inequality. However, it is not difficult
to verify that in the case of logarithmic potential (or even |x|* with @ < 1) there is no
spectral gap, that is, the ground state zero is not an isolated point of the spectrum. Then
the usual Poincaré inequality cannot hold, and one needs what is called a weak Poincaré
version that manifests itself in a different, stronger weight deployed for the gradient norm.

We will prove the weak weighted Poincaré inequality for a more general family of
radial weights w(r) > 0, which depend on a parameter y > 0, than the specific choice
(5.3), since the argument is essentially the same. We will assume that the weights have the
following properties: there exist 0 < r; < rp < 0o and constants Cyp, C1, C; independent
of y such that

Co_lw(s) <w(r) < Cow(s) foralls,r e ]0,r], (5.6)
w'(r) < —Ciy(r —rpw(r) forr € [ry, 1], (5.7)
w'(r) < —Coyr~w(r) for r € [r3, 00). (5.8)

An elementary computation shows that for the weight w(r) = exp(H (r)) given by (5.3),
assumptions (5.6)—(5.8) hold with

rno=1/2, ry=3/4, (5.9)

where the choice of r is rather arbitrary; any number larger than r; would do. The power
weight v(r) = (1 + r2)~/2 analyzed by Bobkov and Ledoux [7] does not directly fit the
above assumptions; as we will see below, the natural choice of 7} in this case does depend
on y, the difference with our case being the lack of a plateau near zero. We will indicate
changes necessary to accommodate the power weight in Theorem 5.5.

It will be convenient for us to derive a slightly stronger version of the standard Poincaré
estimate. Given any f(x), let

5 1 2m
foy=s- [ reap.
7T Jo
Instead of directly looking for an upper bound for
B B -1
2= [ - pruwds 7=([ wewar) [ e
R2 R2 R2
it turns out to be easier to control the following integral that is closely related to Z(¢):

I := / (f(x) = fr))wx)dx =: I + I, + I.
R2
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Here, 11, I», I3 are given by

I = / (@) = fr)Pw) dx. I = / () = f(r) w(x) dx
B},1 Brz\Brl
) (5.10)
L= [ () = Fr)Pw(x) dox.
(Bry)©

with ry and r, given by (5.9). Note that

Z= / (f(x0) = [PPw(x) dx = inf/(f —a)*w(x)dx < 1.
R2 a
Let us also define

ni= [ WrPeedx n= [ 9 Puedx
By, By \Br,

5.11)

7 ;=/ IV £ Rl Pw(x) dx.

Note that J; and J; are directly related to
W = / [V £ |2w(x) dx,

but J3 has an extra factor |x|? in the integrand.

Theorem 5.2. Suppose that the weight w(x) > 0 is radial and satisfies (5.6)—(5.8). Let
I, Ji be defined by (5.10) and (5.11) respectively. Then there exists a universal con-
stant C such that for all sufficiently large y > yo(w) and every f in the weighted Sobolev
class WV2(w dx) the following inequalities hold:

L <CJy, (5.12)
C C

L <—Jr+—1 +-1, (5.13)
Y Y 4

1 CJ + CJ + 1[ (5.14)

3= gt gt gl .

Remarks. 1. As usual, it suffices to prove the inequalities for f € C§°(R?).

2. The factors 1/4 in estimates (5.13) and (5.14) are needed (any factor less than 1
would work) to derive the sharpest version of the convergence to equilibrium estimate.

3. Here and in the estimates that follow, C and ¢ stand for universal constants (in par-
ticular independent of y) that may change from expression to expression. These constants
may depend on rq, 2, Co, C1 and C, — that is, on w.

4. The proof extends to all dimensions with a minor adjustment of the constants. While
in dimensions d # 2 the logarithmic behavior of H does not correspond to the Green
function of the Laplacian, the behavior of a particle in such slowly growing potential is of
independent interest.
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Proof of Theorem 5.2. We are interested here in the large y regime, so we assume that y
is sufficiently large; we do not try to optimize the constants. For the reader’s convenience,
we record a bound on yo(w) that is going to be sufficient for the proof:

(w) { + 2 L 400 2(1+ 2 )2 4 } (5.15)
w) = max ,—, ,—, c — ), — 7. .
Yo riCE Cy (rp—r1)?" 9 0 Ci) ri(r2—r1)Cy

Since we will be working in polar coordinates, it is convenient to incorporate the
Jacobian into the weight, setting u(r) = rw(r). Let us restate our assumptions on w in
terms of u. On the interval [ry, r] we have

wW () =rw'(r)+wl) < (—Cly(r —-ry) + %)u(r). (5.16)

Thus if y is large, u is increasing at most for only a small distance past r1, and reaches its
maximum no further than ry. = 1 + O(y™1). In particular, there is y, large enough so
that
u'(ry < —c/yu(r) forallr €[ry + 1/ /y,ra], fory > yo,
with some ¢ > 0 (we could take ¢ = Cy/2, so that the above inequality holds for all
y > ‘22). For r € [ry, 00), we have
1

i
/ C2 —1
u'(r) < (=Cy + Hw(r) < - u(r) forally >2/C,.

Altogether, u satisfies the following differential inequalities, with some C, ¢ > 0, and

Fri=r+1/y:

Cu(r) forr € [r1,71), (5.17a)
u'(r) < { —c/yu(r) forr e[f,r), (5.17b)
—cyr~Yu(r) forr € [ry, 00). (5.17¢)

These are the inequalities that we will use in the analysis below, along with (5.16).

We first note that (5.12) is a direct consequence of a slight variation of the standard
proof of the Poincaré inequality (see, e.g., [26]), so we only need to estimate I, and /3.
We will first show the inequalities for the radially symmetric f', where we only need the
first term of the right side of (5.13) and the first two terms of the right side of (5.14),
respectively, and then consider a general f.

e Control of I,: radial estimates. Let f be radial, and & > 0 an arbitrary function of
single variable, then

ra r r 2
[Fu-reruear= | (/ f’(s)ds) u(r)dr

< [2 (/ £ (5)?h(s) ds) (/ h(z)—ldz)u(r) dr

= /’2 1(s)%h(s) /rz u(r)(/rh(t)ldt) drds. (5.18)
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We choose h = ul/ 2. and claim that

/ ’ u(r)(/ u(t)_l/2 dl) dr < %u(s)l/2 for all s € [ry, r2]. (5.19)

1
Once this claim is proved, plugging it into (5.18) yields

= [ (= frudr < % [ ey as - %Jz- (5.20)

Now, let us prove (5.19). To this end, we will show that

r C
/ u(t)_l/2 dt < —u(r)_l/2 forall r € [r1, 7], (5.21)
r \/7
rn
/ u(r)V?2dr < iu(s)l/2 forall s € [ry, 7], (5.22)
s VY

which together imply (5.19) immediately. To prove (5.21), we note that if r € [ry, 7], then
(5.16) implies
u(t)=Y2 < Cu(r)=Y2 foranyt € [ry,r],

hence (5.21) holds for r < 7. If r > 71, we split the integration domain in (5.21) as

r r r
/ u(t)"Y? dr =/ u(x)—1/2dz+/ u()"V?dt = A+ B. (5.23)
r r 7

1 1 1

Again by (5.16), we have

A< %u(m“z < iu(r)*”z,

VY
as u(r) is decreasing for r > 7;. For the second integral in (5.23), note that (5.17b) gives
u(t)~V2 < e=eV¥Ye=0/2 ()12 fort € [Fy, 1],

thus c
B < —u(r)~V2. (5.24)
VY

To prove (5.22), note that if s > 7y, then (5.22) follows directly from (5.17b), as in (5.24).
If s < 71, we again split the integration domain

2 71 2
/ u@)'?de = / u()?dr + / u(@)/?dt = A + B. (5.25)
K} K} r1
The first integral on the right side can be controlled by

C
A< ——u(s)'/?,
NS2
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because u(t) < Cu(s) on this interval due to (5.16), and |F; — s| < 1/,/y. The second
integral can be controlled by
C
B _ (}’ )1/2 M(S)l/z,
Rved VY

by (5.17b) and (5.16).

e Control of I, for a nonradial function. For the general nonradial case, we decompose
a function f = f(r, ¢) into the Fourier series

[ ¢) = fr)+ D (Yn(r) cos(ng) + & (r) sin(ng)). (5.26)

n=1
Using this decomposition, /> becomes
2 ; 2 — [ 2 2
I =/ (f(r)=fr))ur)dr+x Z (Yn(r)” + & (r) u(r)dr, (5.27)
ri n=1vT"1

whereas J, becomes

= / " Ferueydr
2
+nZ / ( Yn(r)? + —zsn(rf+w,’,(r)2+s,;(r)2)u(r)dr. (5.28)

Note that /7 and J; can be written in the same form as I, and J, with the domain of
integration replaced by [0, r1]. To bound /5, we will prove the following estimate for each
n>1:

/ Py dr < € [ C iy dr+ € / " L u(r) dr
r1 Y r1 Y Jo
+ % /O l Y (r)?u(r) dr, (5.29)

with an identical estimate holding for &,,. With (5.29) in hand, adding (5.20) for f and
(5.29) for both v, and &,, we arrive at (5.13).
To prove (5.29), first note that

/ YU dr <2 /  Un () = Y ()2 (r) dr + 20 (1)? / P urydr

r

< % i Yo (1)2u(r) dr + 2y, (r1)? /rz u(r)dr. (5.30)

r

We have used (5.20) applied to v, (r) in the last inequality above. To bound the last
integral on the right side, we use (5.16) to observe that u(7;) < 2u(r;) for y sufficiently
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large, and then also (5.17b) to get

2 71 2 2 2 B
/ u(r)ydr = f u(r)dr +/ u(rydr < 7u(r1) +/ 20 VYD (ry) dr
r r F Y 7

1 1 ry 1

2 1
< ﬁ(l + ;)u(rl). (5:31)
Note that if | { |
o1+ ;)Wn)zﬁu(m <3 ] wmeruean (532)

then (5.29) follows from (5.30)—(5.32). If (5.32) does not hold, and y is sufficiently large,
there exist C, independent of y, and r3 € [r; — C//y,r1] such that [, (r3)| < [V, (r1)]/2
(specifically, C = 32Cy(1 4+ 1/C) would work here). Here, we have used the fact that
u(r) > Co_lu(rl)/Z forall r € [r;/2, r1] due to (5.6). Thus, we have

1 i r 2 oo -1
/ 2 / 2 /
/0 Y (r)*u(r)dr > /;; Y (r) u(r)dr > (/m Y, (r) dr) (/m _u(r) dr)

WP wr) )P 7 utn)
- 4 2C0(7‘1 —r3) - 4 2COC

, (5.33)
which, using (5.31), gives that if (5.32) fails, then
2 [ c 2 C [,
Yy (r1) / u(r)dr < — Y, (r1)“u(ry) < —/ Y, (r)“u(r)dr.
ri \/7 y 0
This finishes the proof of (5.29), and hence also of (5.13).
e Control of I5: radial estimates. To control I3 for a radial function f, first note that
o0
| oo - sevueyar
,
2 o0 o0
=2 [ (0) = ) Puydr + 2002 - £00)? [ uerdr 6534
r r

2

We start with the second term on the right side, and claim that

(f(r2) — f(r))? / u(r)dr < %Jz- (5.35)

r2

To see this, note that (5.17¢) implies that for all ¥ > s > r, we have
s\
u(r) < u(s)(—) . (5.36)
r
Applying this with s = r, we get

/Oou(r) dr < %u(rz). (5.37)

2
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Also note that

r2 2 r2 r
(f("z)—f(”l))zz(/ f’(r)dr) 5(/ f/(r)zu(r)dr)(/ %r)dr).

(5.38)
2] C
/ dr < .
ro u(r) yu(rz)
By (5.16), we have

( 1 ) _ _u/(r) < (Cly(r —ry) — l)L forr € [r1,12]. (5.39)

u(r) u(r)? = r)u(r)

Next, we will show that

Hence, provided that y is sufficiently large, we have

1Y cy r+r
- >~ f
(u(r))‘u(r) "”G[ 2 ”2]’

with some ¢ > 0, implying that

1 1
e L gy |2 | (5.40)
u(r) u(ry 2
By (5.39), we also have
1 ! C 1 C Ce_c}'(rZ_rl)/2 r + ra
—— ) >———, thus < < forre|ry, .
u(r) u(r) u(r) u(%) u(rp) 2

We have used (5.40) with r = (r; + r»)/2 in the last inequality above. Putting these
estimates together yields

ritro

/‘I‘z Ldrfc/‘ 2 e_cy(%) 1 dr+/r2 ecy(r—"z) 1 dr < C '
r u(r) r u(ra) n4r u(ra) yu(ra)

2
Combining this bound with (5.38) and (5.37) gives us (5.35).

For the first integral on the right side of (5.34), a computation identical to (5.18), but
with r; replaced by r,, and r, replaced by oo, yields

[ o= rearuerar < [ e [Cuo( [ netan)aras
" " ’ ” (5.41)
for any function 4 > 0. We again choose 4 = u!/2, and claim that

o] r C
/ u(r)(/ u(t)_l/zdl) dr < —s*u(s)"/? foralls > r, (5.42)
N r Y

2

with some C > 0 (to be shown below). Substituting this into (5.41) gives

[r U0 = feu) dr < % / SRy (5.43)
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and combining it with (5.35) and (5.34) yields

o0 C o0 C ro
/, U= S0 dr < / SO / o dr
(5.44)

That is, we have

C C
I3 <=3+ =/
Y2 y?

for all radially symmetric f.
To show (5.42), we consider the inner integral first. Using (5.36), we find that if
rp <t < r then

u(r)_l/z(é)cy > u(n) 2,

so that . . c
/ u(@)" V2 dt Su(r)_l/zr_C”/ 1V dt < —u(r)"V?r.
T T J/

2 2
Thus the left hand side of (5.42) is bounded from above by
C [ C
_/ ”(”)l/zr dr < —2s2u(s)1/2 forall s > rp.
V Js 14

The last inequality follows from (5.36) with r, replaced by s and a direct computation.

e Control of I for a nonradial function. For a general function f', using the decomposi-
tion (5.26), we can write /3 and J3 as

B= [ GO Ferumrdr+ Y [ awne? + 0@ 6545
r n=1 r
n=| " FeRru) dr

2 2
(550007 + 258007 + 0300 5 507 ) Pu) . (50
We now aim to show the following estimate for each v, n > 1:
o0 C oo C r
/ V2(ru(r)dr < —2/ v (r)r2u(r)dr + —2/ v (r)?u(r)dr
r V r y ri

+ i ” Vo (r)u(r)dr. (5.47)
ri

Combining (5.47) with the analogous estimate for &, and the radial estimate (5.44), we
will have (5.14).
First, we write

/ Y (u(r)dr <2 / Wn () — Y (r2) () dr + 2 (r2)? f u(rdr.
’ ” ” (5.48)
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Applying (5.43) to the first integral on the right side gives

o0 C o0
/ W) — Yn(r2)Pulr) dr < < / VL2 ru(r) dr.
> Y r

For the second term on the right side of (5.48), by (5.37) we have

2¢n(r2)2/ u(r)dr < g1//,,(r2)2u(r2).
ra y

Thus, if
rn
%wn(rz)zu(rz) < %/ wn(r)zu(r) dr, (5.49)
r

we are done. If not, since u is decreasing in (71, 1), there exists r3 € [r, — 16C/y, r2)
such that ¥, (r3) < ¥, (r2)/2. Then

r r r2 2 2 d -1
/ YA u(r) dr > / w;<r>2u<r)drz(/ |w;<r>|dr) (/ T:))

> CyYn(ra)*u(r2). (5.50)

In the last step we have used the inequality

/’2 L, . C
r 9
rs u(r) 7 yu(ra)

which follows from the decay of u on [r3, r;] and rp — r3 < 16C/y. Thus, if (5.49) fails,
then

2 [T ¢ 2 C (™
24, (1r2) u(rydr < —ym(r2)7u(r2) < — (Y, udr,
ra V y r
which finishes the proof of (5.47). ]

Theorem 5.2 leads to the following two corollaries. Note that adding the inequalities
in the theorem together, we get

1 1
I=Il+12+[3§C(J1+;J2+PJ3). (5.51)

We also recall, as already noted in the remarks to Theorem 5.2, that the arguments above
generalize to an arbitrary dimension d > 2 in a straightforward manner. This implies

Corollary 5.3. Suppose that d > 2. For the weight w satisfying (5.6)—(5.8), we have
[ 1= ireas< [ 15 - fonPuds
R4 R4
1 1
SC(/ |Vf|2wdx+—/ |Vf|2wdx+—2/ |Vf|2|x|2wdx) (5.52)
r Y JB,\By, V= JBf

1 2

for all sufficiently large .
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Remarks. 1. The one-dimensional results are in fact stronger and will be considered
elsewhere.

2. It is not hard to adapt the arguments in the proof so that, once we get the % factor
asin (5.13), (5.14) is not necessary and an arbitrary constant would suffice, and the result
can be extended to all y > d with an adjustment of the constant C.

Tracing the proof of Theorem 5.2, it is straightforward to check that the result remains
true for truncated integrals. For R > r;, let us define

Ig = [ (f)=fr))Pwx) dx, If = [ (f(x)— f (r)*w(x) dx.
Br BRr\Br,
(5.53)
T 24 R
BR\Br2
Corollary 5.4. Forany R > ry, let IR, JR and Ig be as in (5.53), and recall that I,, J
and J are defined in (5.10), (5.11). Then for all y > yo(w) we have

C C 1

R R

I; SP‘G +PJ2+112, (5.54)
1 I g

Ir <C J1+—J2+—2J3 . (5.55)
14 14

We now pause to indicate a result that can be obtained with similar techniques for the
power weight v(x) = (1 + |x|?)~*/2 with a sufficiently large y.

Theorem 5.5. Let v(x) = (1 + |x|2)"¥/2. Then the following weak weighted Poincaré
inequality holds for all dimensions d > 2 fory > d:

/ |f—f‘|2v(x)dxs@/ IV / Po(x) dx
R v JB

C(f)/ VAP + [x[)v(x) dx. (5.56)
4 (B1)¢

+

Proof. In two dimensions, the only essential difference is that for the weight v(x) the
condition (5.6) holds if we choose r; < y~1/2 that depends on y. Specifically, we could
take r; = 2/,/y. With that choice, direct computations show that for the weight u(r) =
rv(r) the inequality (5.16) remains valid, while (5.17b) and (5.17¢) hold with 7; = r; and
r, = 1. The standard Poincaré inequality becomes

C
I <CriJy = —Ji, (5.57)
Y

as it is important to keep track of the rl2 factor which now depends on y. The rest of the
proof goes through. One place that requires attention and minor adjustment is the control
of I, for a nonradial function, namely the estimates (5.32) and (5.33), since we need to
“step back” a distance C/ /7 into the [0, rq] region, and we may not have that much
space. However, the factor 1/4 in (5.13) is not crucial for establishing (5.56) given that
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we can control /; via (5.57); any constant would do. Then we can choose a sufficiently
large constant C instead of 1/4 in (5.32) so that r3 with the needed properties can be
found in [r; — 1/ /¥, r1]. With this modification, the rest of the argument goes through.
We leave the details to the interested reader. Finally, as already noted above, the proof
generalizes to an arbitrary dimension d with minor adjustments. |

6. Convergence to equilibrium estimates for Fokker—Planck operators

6.1. Weighted L? norm decay

With the weak weighted Poincaré inequalities in hand, we may now go back to the dual

evolution (5.4) and the dissipation inequality (5.5):
dzZ
— = 2W( 6.1
= ") 6.1

with
20 = [ (o=t an wo = [ 950z dx.
R2 R2

We are going to focus on the specific weight in (5.3); we will need fairly sharp estimates
to get close to the heuristic bounds. Our analysis in this section will be driven by the
nonlinear application we have in mind: to derive sharp bounds on the time required to
transport a significant part of density towards the center of the attracting potential, the
ball B,,. We stress that in this section, we do not need the initial data fy(x) or po(x)
to be radial: the bounds on convergence to equilibrium in the linear setting with a fixed
potential apply in full generality.

Although Corollary 5.3 with w(x) = e already gives us an upper bound for Z(z),
we cannot directly control the right side of (5.52) by W(z), due to the extra factor |x|?
in the integrand of J3. To overcome this issue, we follow a general scheme introduced
in [66]. Let us take a truncation at radius R > r, in I(¢) and apply Corollary 5.4:

C
1(t) < Ir(1) + ;R—W““nf(-,t)uio
1 1 C
< C(Jl Ly —ZJ;*) + SR f)2,
14 Y Y
R? C a2 2
< CW(t) + CFW(I) + ;R Y foll s (6.2)

In the first inequality above we used (5.3), and in the second the fact that || (-, ?)]|co iS
nonincreasing in time, as well as (5.55). To optimize the right side of (6.2) over R > r,,
we take

R =y W)y | fol8Y.

Note that if R < 1, then I(¢) < CW(t), fitting the scheme below. As

v <1, (6.3)
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this leads to

v=8 _ v=8
1) < CW() + Cy2We) 7 I flIS7 < 2C max (W), y 2 W) 7 1| foll 2577
(6.4)
Since Z(t) < I(t), it follows that (6.1) and (6.4) together with (6.3) imply

16

Z'(t) < —emin {Z(), Y2 Z() 7% | follow % ) 6.5)

Let us now discuss how this differential inequality relates to the heuristic bound ¢ ~
L?/y for the reaction time we have informally derived in Section 2, to give context and
outline the main ideas behind the technical estimates that follow. Let us think for now of
the linear Fokker—Planck operator (5.1) with the potential H given by (4.11). Consider an
initial condition pg that has total mass My and is concentrated at a distance L from the
origin. Then f = pe_H solves the dual Fokker—Planck equation (5.4), and (6.5) is appli-
cable. If we drop the term Z(¢) from the minimum in (6.5) (which of course strengthens
the differential inequality compared to what we really have), then a direct computation,
with yet another use of (6.3), gives

_16_ _y-8 y—
Z(t) < (ZO) 75 + eyt follod =) F < ey T fold. (66

In our situation, we have || fo|loo ~ MoL/* according to the assumptions on pg and (5.3).
Also, using the relationship between p and f, we see that

20 = / (e ) = pe(0)Pe O dx. ©.7)
R

Here, f
u J podx

) = M
is the stationary state of the same mass as pg to which the solution p converges. From
(6.7) it is clear that transport of p to the origin corresponds to decay of Z (). Intuitively,
from (5.3) it looks likely that we need Z(¢) < Mo2 in order to be sure that a significant
portion of p is inside B, (we will make these arguments precise later). Going back to
(6.6) and the estimate on || fo||co, We find that to ensure the needed bound on Z (), we
need ¢t > L*/y, which is quite a bit off the heuristic estimate. The situation is similar to the
usual heat equation, where the L! to L? estimate decays only as 1 =%/, while the faster
decay rate 1 ~%/2 is realized for the L' to L estimate. A standard way to attain the latter
estimate if an explicit heat kernel is not available (like for diffusions with incompressible
drift, see e.g. [27]) is to combine the L' to L? bound with its dual L2 to L* bound.
We will need to follow a similar route in what follows. The L*® to L2(e dx) bound
(6.6) provides a decay estimate for Z(¢), which via (6.7) leads to the L (e H dx) to
L?(eH dx) bound for p. We will also derive a variant of the bound dual to (6.6), which
is an L2(e ™" dx) to L estimate for p. Combining them leads to an L> (e~ dx) to L!
bound for p which will have the needed decay and also will provide control in the L!
space most convenient for measuring mass transport.
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Before we go to the duality estimates, however, there is one more issue to take care
of. The presence of the term Z(¢) under minimum in (6.5) affects the bound (6.6). The
balance of the two terms depends on the initial data; the second term is smaller if Z () is
sufficiently small, namely if

Z(t) < | follZy~ 0874,

Our assumptions on pg give Z(0) ~ MOZLV/ 4. and the above condition at # = 0 translates
into an additional constraint L 2 y. For some configurations of parameters, say when
1 €« L K y, the time delay before the second term in (6.5) becomes smaller can be
up to order y log y. We would like to avoid these additional constraints and significant
losses in the estimate of the transport time, as they appear to be of technical nature. The
idea is to use the L°° norm time decay estimate proved in Theorem 3.1. This gives an
outline for the rest of this section. First, we deploy the L°° norm decay bound to improve
the weighted L? control on f and p, and then use a duality argument to obtain optimal
convergence to equilibrium bounds for p in L!.

The differential inequality (6.5) can be improved in the following way for # 2 1. In the
second inequality of (6.2), instead of using (5.55) to bound the whole /g, we can instead
split

IR =11+12+1R,

and directly control /; and I, as follows. The bound in Theorem 3.1 implies that

1/ C 0P oo = llp¢ Dlloo < Cylipolls = Cyll foe™ |1

for all + > 1. Two immediate consequences are

1 (t) =f |f — foDPe® dx < Cy?| foe® |2 HO® = 0, forallr > 1, (6.8)

1
L) + (1) = / |f — Fr)Pe™ dx < Cy?|| foell |2e~H2)
Br2

=:Q, forallt > 1. (6.9)

Recall that r; = l/ﬁ and r, = 3/4, as defined in (5.9). Note that O, > Q1 due to
y > 1 and (5.3); hence, for t > 1, if I(¢t) > 40>, then we can bound /g by (6.9) and
(5.54) as follows:

Cc

C 1
IRW) < Q2+ IF < 0 + a2t PJ3R + b
Substituting this into the second inequality of (6.2), and then absorbing Q, and 4—1‘12 into

the left side, we obtain

C R? Cc C C y—8
102 W +C W0+ R YIAR2) 12, < WO+ meVv I folle’,
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where the last inequality comes from choosing the same optimal R as before, since the
terms containing R are the same as in (6.2) (and again, if we get R < r, then I(¢) <
%W fitting the scheme below). The y 2 factor in the first term then leads to a stronger
differential inequality:

Z'(t) < —cy*min {Z(1), Z(r)ﬁllfoll;%}. (6.10)

Here ¢ > 0 is a universal constant (corresponding to our fixed weight w = e ).
Likewise, for ¢t > 1, if I(t) € [4Q1,4Q>], then we control /g using (6.8), (5.13)

and (5.54):

C C 1 1
IRO< Q1+ L+IF <01+ S5+ —h+-h+-Dh
y y 4 4

and a similar argument leads to the differential inequality

y —l6_
Z'(t) < —cmin{yZ (). y*Z@) 72 || follos "} (6.11)

For all ¢ > 1, the inequalities (6.5), (6.10), (6.11) control convergence of Z(t) to zero.
The above results are summarized in the following proposition.

Proposition 6.1. Suppose that y > yo(w) is sufficiently large. For allt > 1, Z(t) given
by (6.7) satisfies the differential inequality

16

Z'(t) < —emin {n(Z@) Z(1), y*Z@O) 7 | follod ° ) (6.12)

where
1 for Z(1) <401,
nZ):=3y forZ{)e (401.40,), (6.13)
y> for Z(t) = 40,,

and ¢ > 0 is a universal constant.

Due to the minimum taken in (6.12), which part will dominate depends on the ini-
tial data, or, more precisely, on the relationship between || fo|lco, Q1, and Q». A careful
accounting is needed to take care of several cases; however, it turns out that for the sake
of the application at hand, we only need to track the decay of Z(¢) until it drops to Z?,
defined as

Z% =g HO| s |2, (6.14)

where o < 1 is sufficiently small. The definition of Z¢ is motivated by Proposition 6.4
below. Basically, we will see that by the time Z(¢) reaches Z9, a significant portion of
the mass of p = feH has already moved into B, which will be sufficient to prove that
significant reaction took place.

The following theorem says that even with the first item in the minimum in (6.12), the
decay of Z(¢) is not too much worse than in (6.6) — namely, as long as Z(¢) is above Z°,
the presence of the first item in the min function introduces at most an extra time delay #;
which is estimated below (and is much better than y).
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Theorem 6.2. Suppose that y > yo(w) is sufficiently large. Let f(x,t) be the solution to
(5.4) with initial condition fy € L®(R?) N L2(e®), let 0 be any number in (0, 1), and
let Z(t) and Z° be as given in (5.5) and (6.14) respectively. Let t; := C(1 +logo™! +
log y), where C is a sufficiently large universal constant. Then for all t > t1, we have

Z(t) < max{Z°, (cy(t — 1))~ Y8 fo]|1%.}. (6.15)

Proof. Note that Z(¢) is decreasing in time, and in every regime where the form of 7 in
(6.13) stays fixed, once the second term becomes the smaller one, this continues for all
subsequent times. Let us first estimate the total time in the interval + > 1 where the first
term under minimum in (6.12) is smaller, while Z(¢) > 4(Q,. Comparing the two terms in
the min function of (6.12), we see that the minimum is achieved by the first term as long
as Z(t) > || fol|%- Thus, Z(r) decays exponentially not more slowly than exp(—cy?r).
Note that at 1 = 1, we have

2= 20 = [ (o= e ar= [ fzeax < pl [ M dx

hence the total time ¢ > 1 when Z(¢) > 4 Q> and the first term in (6.12) is the smaller one
is bounded by

1 Z(1 1 C
ti1 :=—210g( (Z ) 5—210g(/ ede)f—.
cy [l foll50 cy R2 Y

Hence, in the Z(¢) > 40> regime, the presence of the first term at most introduces a time
delay of the order y~! < 1.

Likewise, if the first term in (6.12) is smaller and Z(¢) € [40Q1,40>], then Z(¢) has
exponential decay not slower than exp(—cyt). Hence, in this case the time with the first
term active is bounded by

= —tog(22) < T - Ho < €
cy 01/ " cy
Thus the presence of the first term also at most introduces a time delay of order 1 in this
regime.
Finally, in the Z(¢) € [Z7,4Q] regime and when the first term in (6.12) is smaller,
Z(t) has exponential decay not slower than exp(—ct). So the time with the first term
active is bounded by

1 1 2
H3 = —log(&) < —log(y—) <C( +1logo™! +logy).
c z° c o

Combining these estimates, we see that the total time delay caused by the first term in the
minimum function is bounded by

thi=ti1+tx+tH:3=C(+ logcr_1 + log y). [
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Remark 6.3. The appearance of log y in the definition of #; is likely not optimal. In fact,
as far as pure transport of the density goes (without estimate on the rate of convergence to
equilibrium), in Section 7 we outline a different method that yields a bound on transport
without extra delay terms. In the context of convergence to equilibrium estimates, this
extra correction comes from the y? factor in Z; and Z,, which is due to the y factor in
our L*° estimate of p in Theorem 3.1,

lo¢Dlleo = Cylipolls  forallz = 1.

Such a bound would be optimal if we had H = (—A)~!y B(0,1)> and our argument can also
be adapted to this case. But for the weight e in (5.3), the top is flat and [|e? ||, ~ [l || 00>
which suggests that there should not be a y factor, and we should have

IfC.t)ef oo < Cllfoe™ |1 fort > 1.

We have not been able to show this and settle here for the log y correction that in most
situations is not very significant.

We now translate the above weighted L2 bounds to p. Let p(x, ) be a solution to (5.1)
with initial condition pg € L®(e~H#) N L!(R?). Recall that

— oH [ podx
Ps - [efl dx

is a stationary solution to (5.1) with the same mass as p. Also recall that Z(¢) can be
written as in (6.7):

20 = [ (6r.0) = pu(0?e W a.
R2
and that f(x,1) 1= p(x,1)e " H® satisfies (5.4) with initial condition
fo=poe H e L*R*) N L' (H).

Applying Theorem 6.2 to f = pe~H, we get Theorem 1.3. It implies, in particular, that

Z(t) < Z° forall
C [ ooeH [loo \ 75
t2t22=l‘1+—(—oo) .
y \ V& Ioollr

On the other hand, once Z(t) drops below Z?, the following proposition shows that
p(-, t) is sufficiently close to ps in By, .

Proposition 6.4. Let Z° = oe 1O py|2 with 6 < 1, and let r < r; = 1//2. If
Z(t) < AZ°, then

/B 1pGra 1) — s () dx < V7oA r1polls. 6.16)

Moreover, if we assume in addition that py > 0, then

/ p(x,t)dx > (2;’2 — i — rVnaA) lleoll1- (6.17)
B VY
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Proof. If Z(t) < AZ?, the definitions of Z(¢) and Z° give
/ o= psPe™ dx < / o= psl?e™ dx < oA o] 7.
B, R2

Using the fact that e = ¢=H©) jp B, the above inequality becomes

[ lo= il ax =l

Then a direct application of the Cauchy—Schwarz inequality gives (6.16).
A direct computation using (5.3) shows that

H
Sy e e
fB,l O dx =y

Then, if pg > 0, we have, since p; is constant on By, and r < rq,

r2 C
ps () dx = ol (1 - —).
/Br R

Combining this inequality with (6.16), we obtain (6.17). [ ]

Inequality (6.17) gives us a way to ensure that much of the mass of p; has been trans-
ported into the support of p,, provided we choose o sufficiently small and y is sufficiently
large. However, as mentioned above, the weighted L2 decay estimates we have for Z(t)
lead to bounds on the transport time that are far from the heuristic ones. We now discuss
this issue in more detail and use duality to rectify the situation.

6.2. Duality and L' control

Theorem 1.3 and Proposition 6.4 give us an explicit upper bound for the time it takes for
a large portion of mass to enter B, but this is not sufficient for our application. Let us
recap the reason: Consider a special case where pg(x) is a bump of mass My, located at
distance L from the origin. In this case, we have

lpoe ™ [loo ~ MoLY’*.

Then (1.14) requires the time

L4
t~14+logy + —
14

to ensure transport of a significant portion of p to B, , which is at odds with the heuristic
bound of the order L?/y. To get control at a time scale close to heuristic, we employ a
duality procedure which is somewhat delicate in our case since we may have different
regimes in differential inequalities. A direct computation leads to the following auxiliary
duality lemma.
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Lemma 6.5. Let p and f be solutions to (5.1) and (5.4) respectively, with initial condi-
tions po and fy, where py € L®(R?, e Hdx) N L1(R?,dx), and fy € L®(R?,dx) N
L1 (R?, ede), and set

() 1= eH® [ podx - [ foefl dx
PstX) -= [efdx o [efdx

Then, for anyt > 0 and s € [0, t], the integral
|05 = N (F st =5) = 6.18)
does not depend on s for all s € [0, t].

Note that the term / on the right side can always be dropped since

/p(x,s) dx = /ps(x) dx foralls > 0.

Proof of Lemma 6.5. By standard approximation arguments, it suffices to show the result
for smooth, sufficiently quickly decaying p and f. Denote the integral in (6.18) by U(s).
Taking the derivative in s gives

d _
SU(s) = / Bep(r. $)(f(x.1 — ) — F)dx — [ (P25 5) — P f (xot — ) dx
Ky R2 R2
=T -1,

where

T — /R (Ap(x,8) = V- (p(x, )VH)) (f(x,t —5) — f)dx,

T, = /Rz(p(x,w — P (Af (vt =)+ V f(x.1 —5) - VH) dx.

Now one can check that 77 = T, by the divergence theorem — using, in particular, the fact
that py and f are eigenfunctions of A — V(-VH) and A + VHV, respectively, with zero
eigenvalue. ]

We can now prove the following theorem.

Theorem 6.6. Fixany 0 <r <ry. Forallo € (0, 1), let t; be as in Theorem 6.2. Define

1( llpoeH oo} 75
t3 1= C(t1 + —(—°°) ) (6.19)
Y\ olpol:

with some sufficiently large constant C that will be fixed in the proof. Then, for allt > t3,
[ 1ot = o)l dx = @ 7 + 40 ol (620)
By
In particular, if o is sufficiently small, y is sufficiently large, and py > 0, then

/ o(x,t)ydx = 2r> = 0.1)]|lpoll1 forallt > ts. (6.21)

I
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Proof. Consider first what happens at time #3/3. If Z(#3/3) drops below Z¢ =
e H©O) | py||2, we are done due to Proposition 6.4. Otherwise, we have the second bound
in (1.14) for Z(t3/3) with t = t3/3. To obtain better L! control of p(-,13) — py in the latter
case, we use the following duality argument. For any f, € L (R?) N L1(ef), let f(x,1)
be the solution to the dual equation (5.4) with initial condition fy. Applying Lemma 6.5
with t = 2t3/3, s = 2t3/3 and then s = t3/3, we obtain

/Rz (p(x, %) - Ps(x))fo(x)dx - fR (p(x, %3) —ps) (f(x, %3) - f) dx.
(6.22)

We dropped the term involving f on the left side using the remark after Lemma 6.5. We
can then bound the left side in (6.22) as

2t t t =
L (o(x%2) = n0) o ax] < [o(2) =0, 7(5)-7
k> L2(e=H) L2(eH)
t ¢ T
<[o(2)-n| ., max{oem et By (er(2-n)) T 1l
L2(e~H)
(by Theorem 6.2)

8
t 16 _
<(er(2-1)) " 1o

y—8
_ t 16
(a2 102 eyt (er(2 =) folke) oy Theorem 1

< al foef |1 + Bl folloos (6.23)

where

_r=8
Z‘3 16 _ _
wim (er(3-n)) MO e N,
y—8

pim(er(2-0)) " Ime "l

Now let us apply the following lemma, the proof of which is postponed till the end of
this subsection.

(6.24)

Lemma 6.7. Suppose that for some G € L>® (e~ ) N L1(R?), there exist o, f > 0 such
that

' [ 6@ x| <alfel + Bl 1w orail £ e LXERIALIEM, (629)
RZ

Then G can be decomposed as G = Gy + G,, where G1, G, € L®(e H) N L1(R?)
satisfy the estimates |Gie ™ || o < 2a, ||G2|l1 < 2B.

Applying this lemma to (6.23), we can decompose

p(x,213/3) = ps(x) = G1(x) + Ga(x),
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where using (6.24),
1G1e™ lloo < 20 = 2(cy(t3/3 = 1))~V 166 1 2= HOZ  pgeH o, (6.26)

and
[G2lly < 2B = 2(cy(t3/3 = 11)) " "¥/8] pge™ || os < 20001

where the last inequality comes from choosing a sufficiently large universal constant C in
the definition (6.19) of #3.

Let &1 (x,¢) and {2 (x, t) denote the solutions to (5.1) starting at ¢ = 2¢3/3 with initial
conditions {1 (-, 2¢3/3) = G1, $2(-, 2t3/3) = G2, respectively. Since (5.1) is linear, we
have

p(.13) — ps = G1( 13) + §a2 (-, 13).
Note that ||¢2(+, 2) |1 is nonincreasing in time, hence

182, 13) 11 < 1G2ll1 < 20l poll1- (6.27)

To control & (-, £3), set

é-s .=erG1dx
L [efdx’

By Theorem 1.3, we have
161C.23) = &Yl L2(e—H)
< max{o'?e HO2|Gy |11, (cy(t3/3—1) " ¥1)Gre ™ [} (6:28)
If the first term in the max function is larger, using the fact that
1G1llr < llells + llesllt + G211t < 3llpoll1s

we obtain
121, t3) = Gl p2e—rry < 302 HO2 | pg ||y < 37/ Z0.

And if the second term is larger, combining (6.28) with (6.26) we get

121Co13) = &l p2@e—#y < 2(cy(ts)3 — 1)) VDB 2=HOZ| oo o=H |
<20°2e7HO2| gl = 20V Z0.

In both cases, applying Proposition 6.4 yields

| e - @l dx < 435 rlpolh
B,
Finally, combining the above estimate with (6.27), we have

o) = pslliLics,) < 161(t3) = &lliee,y + 162(83) + &l L1 ca))
< |1&1(t3) = Sillrs,y + 16211 + [1G2(l
< (4o r +40)llpoll1.
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where in the second inequality we have used the mean zero property

/(Gl + Ga)dx =0,

||¢i||1=‘/cldx =‘/szx

The above argument shows that (6.20) holds at ¢t = #3. For ¢t > t3, the same argument
works by replacing 73 with ¢.

Estimate (6.21) follows from a simple computation similar to that in the proof of the
lower bound (6.17). [

which gives

Proof of Lemma 6.7. Let S = {x : |G(x)| > 2ae™}, and define G, := Gysc(x), so that
1G1e™ oo < 20

To show that G, := G — G1 = Gys satisfies ||G2||1 < 2B, we use (6.25) with [ =
(sgnG)ys:

1
[Galiy = [ Gaf dx < [ e dx+ B <516l + 5.
S N

and the proof is complete. ]

7. Transport estimates based on comparison principles

In this section we take a quick detour to provide a simple alternative proof that a signif-
icant portion of the initial mass of pg gets transported inside a certain ball of radius less
than 1 under the action of the potential H in time T ~ L?/y. As mentioned in the intro-
duction, this result can be used to obtain a simpler proof of a result similar to Theorem 1.1
if one is willing to compromise and settle for an estimate that provides little information
on the closeness to the ground state.

The main step is the analysis of the dual equation (5.4). Recall that the dual opera-
tor L* is given by

L*f=—-Af—-VH- -V,

and the dual evolution by
0, f=Af+VH -Vf=-L"f (7.1)
We will prove the following theorem.

Theorem 7.1. Let f(x,t) solve (7.1) with H given by (4.11). Suppose that the radial
initial data fo € Cg° satisfies 1 > f > 0, f nonincreasing in the radial direction, and
fo(x) > XBy, (x) where 1 > dy > r1 = 1/~/2. Then there exists a constant ¢ > 0 such
that for all sufficiently large y we have

flx,t) > C)(ch(x) forallt > 0. (7.2)
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Proof. Fix some dy such that 1 > d; > dy > ry. For simplicity, in the argument that fol-
lows, we can think for instance of dy = 5/7 and d; = 6/7, but any other choice satisfying
the above relationship works as well (the constant ¢ will depend on this choice). Due to
parabolic comparison principles and since H is radial, we know that the solution f(x,?)
remains radial, nonincreasing in the radial direction, and satisfies 1 > f(x,7) > 0 for all
times.

Observe that

Fxtlsy, [

R—\Bay0

z/ foeH dx Z/ )(BdleH :/ e dx. (7.3)
R2\By,, R2\By,, Bay\Byj

Here Sy, is the circle of radius dy; in the first step we use monotonicity of f in the radial
variable, in the second step conservation of [ f(x, 1)eH ™ dx and in the third step

el dx > / fefl dx > / foefl dx — fefl dx
R2\Bg, R2

Bg,

foe dx > fefl dx
Bq, Bq,
dueto 1 = fo(x) > f(x,1) in By,. However, since |VH(x)| = —0d, H(x) > coy|x| 1 if
|x| > do, we have
eH(tx) < [—coyeH(x)_

Setq = di/dy. Then

/ eH) gy = gkd / H@ D) g < gkd=con) / JHE gy
By 4k \Byyqk By \Bq, By \Bq,

Therefore,
/ eH® gx < 2/ eH&X) gy
R2\Bg, B \Bq,

for y large enough. In this case from (7.3) we conclude that f(x,¢)|g 0o > 1/2 for all
times.

Now fix any convex C?2 function w on [dg, o0) such that w(dp) = 1/2, w(r) > 0 for
r € [do,dy), and w(r) = 0if r > d;. For ¢ € [0, 1] define w,(r) = w(do + ¢(r — dy));
we will abuse notation by also writing w, (x) = @, (|x|). Note that

1
L*wy(x) = wy(r) + ;w(’o(r) + 9, H(r)aw,(r)

coy — 1 coy
> p |y, (r)] = FIw’(do + ¢(r — do))|g.

where we have used a);,’(r) >0, o'(r) <0, and the last step holds if y is suffi-
ciently large. Choose a decreasing ¢(¢) defined for ¢+ > 0 such that ¢(0) = 1. Consider
F(x,t) = wyq)(x). Since we always have f(x,t)|§d0 >1/2 = F|Sd0 and fo(x) >
XBy, (x) = w(|x|), we can be sure that f(x,7) > F(x,t) in R? \ By, for all times if
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d;F < L*F. However, 0; F = (r — do)w'(do + ¢(r — do))¢'(t),and 0, F = L*F =0
if dy + ¢(r — do) > 1. Hence we just need to check the inequality

1—d
—(r—do)e'(t) < %(p when r < dy + 0

1
< —.
@ @
Thus, it suffices to ensure that
1 —dy

Coy
¢'(1) < 7‘02,
which would follow from 8;(1/¢(t)?) < coy. Therefore
1
p(t) = ———
V1 +coyt
is acceptable. Now fix a constant a < d; — dy. Then we can make
1
do + ——=(r—do) <do+a
0 m( 0) <do

for r < dy + c+/1 + yt by choosing small enough c. In this case, if dy <r < dy +
c+/1+ yt, we have

f(x,t)za)(do+ t(r—do))zw(d0+a)zc>0,

1
V1 +coy

where we may have to make our constant ¢ smaller if necessary. ]
Here is the corollary for the behavior of the density p(x, ¢) satisfying (1.9).

Corollary 7.2. Let p(x,t) solve (1.9) with a potential H given by (4.11). Suppose that the
initial data py satisfies po(x) > 0 and f1<|x\<L po(x) dx = My. Then for all sufficiently
large vy, there exists a constant Cy such that if t > C1L2/y, we have

/ p(x,t)ydx > cMjy. (7.4)
B3

Remark. For simplicity, we picked a fixed constant as a radius of the ball in (7.4). It
is not hard to run the argument for an arbitrary radius greater than 1/+/2 (adjusting do
and d1), but then all constants and the range of validity in y will depend on the choice of
radius.

Proof of Corollary 7.2. Recall that we took dg = 5/7 and d; = 6/7, and note that 6/7 <
V3/2. Take fy € Cs®° (Bﬁ/z) as in Theorem 7.1. By duality, we have

/ fo(x)p(x. 1) dx = [ F(x.1)po(x)dx.
R2 R2

Therefore, applying Theorem 7.1 we find that if C; is sufficiently large then

J

p(x,t)dx 2/ fo(x)p(x,t)dx =[ f(x,t)po(x)dx > cMy. [
V32 R2 R2
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Corollary 7.2 and (7.4) can replace Theorem 6.6 and (6.21) in the nonlinear argument
of the next section. We state here the theorem alternative to Theorem 1.1 that this would
yield.

Theorem 7.3. Under the assumptions of Theorem 1.1, with chemotaxis present, a quarter
of the initial mass of p, will react by time tc < C1L?/y.

Remark. It is not difficult to design an additional argument that will show, under the
assumptions of Theorem 1.1, that more than half of the initial mass of p, will react if
we wait an additional time ~ 1. Basically, once mass ~ My has entered B, arguments
similar to the ones we have used above and employing mass comparison with the simple
heat equation lead to the conclusion that after an additional unit time, mass ~ M, can be
found inside B, /5 (or in fact in a ball of smaller radius, with a constant of proportionality
depending on the radius). Then the pass-through argument of the following section would
yield consumption of the larger fraction of p,.

8. Decay for p; based on a “pass-through’ argument

Let us now consider the nonlinear system (1.4):

dep1 — Ap1 + 1V - (01V(=A) " p2) = —ep1p2,
dip2 = —€p1pP2. (8.1

We focus on the case when the initial conditions p; (-, 0) and p, (-, 0) are radially sym-
metric, so that radial symmetry is preserved for all time. Assume that p; (-, 0) is initially
concentrated near r = L with total mass My, while p5(-, 0) = yn with n € C§°. We
think of 7 as very close to yp, in the L' norm. As in the introduction, we assume that
eMy > y > 1, and My > 0. As we will see, the constant B involved in > will depend
on the value of the ratio yy/e and would have to be larger if the ratio is small (but can be
taken uniform for all larger values of the ratio). Combining Proposition 4.3 and Theorem
6.6 shows that if 3 < t¢, with 73 given in Theorem 6.6, and t¢ the half-time of p,, then
at least 1/4 of the mass of p; must have entered B;, by time 3.

In this section, we will use this result to obtain decay estimates on the mass of p,
which will show that, in fact, t¢ < #3. Let us start with a heuristic argument to see how
much of p, should react by time #3. Since the drift velocity is d,(—A)™'py ~ —y for
all € (1/2,1), a generic particle of p; should take about ~ y~! time to pass through
the region (1/2, 1). It will react with p, during this time with coupling coefficient &, so
that approximately the eMy/y portion of the mass of p, originally situated in By \ By
should be gone by time #3. In other words, if eMy/y > 1, then we should have 7¢ < t3.

We will discuss below why we have to resort to this “pass-through” argument to get
an estimate on the reaction time. The reason has to do with the form of the Keller—Segel
chemotaxis term that leads to the possibility of an excessive concentration of pj.

The goal of this section is to rigorously justify the above heuristics. The key step is
the following proposition.



A. Kiselev, F. Nazarov, L. Ryzhik, Y. Yao 2686

Proposition 8.1. Let p1, p2 be a solution to (1.4) with radially symmetric initial condi-
tions. Assume that p1 (-, 0) is concentrated near r = L with total mass My, and p,(-,0) =
0n(x) as described above. Assume that eMy > y > 1, and suppose t¢c > t3 + 1. Then
the following holds with some universal constant ¢ > 0, where t3 > 0 is as given by (6.19):

t3+1 M
f pmﬁmz%%jmquuzu (8.2)
0

Before we prove the proposition, let us point out that it implies Theorem 1.1.

Proof of Theorem 1.1. Suppose that t¢ > #3 4+ 1. The second equation in (8.1) implies

that
t

pa(ro1) = pa(1,0) exp{—e /0

so that if (8.2) holds, then

pr(r.s) ds},

pa(r,t3 + 1)
p2(r,0)

Thus, if eMo/y > 1, then most of the mass of p, originally supported in By \ B/, will
react away by time 73 + 1 and the half-time 7¢ satisfies t¢ < #3 + 1, a contradiction. =

t3+1
= exp{—e/ p1(r,1) dt} < e e MolY forallr € (1/2.1).
0

Recall that in the pure diffusion case, we have

L2
p
th~ log(Moe)

Comparing this with 73 4+ 1, and assuming that L2/y > log y, we see that chemotaxis
would significantly reduce the half-time of reaction in the regime

1K<y € Mpe K e

As mentioned in the introduction, such a relationship between parameters is natural in
some applications.
The rest of this section contains the proof of Proposition 8.1. Let us denote

H(,1) = p(=8) " pa(-s1).

Since H (-, 1) is radial, we denote it by H (r, 7).
Recall from (4.7) that

M(r,t):/ p1(x,t)dx,
B,
satisfies

1 -
oM — 83,M + -0,M + (0,M)(d,H) + 8/ p1p2dx = 0. (8.3)
r B,
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Since py(r,t) = (2wr)~1d, M(r, 1), to prove (8.2) it suffices to show that
t3+1 M.
/ 0, M(r,t)dt > 2% forallr € (1/2,1). (8.4)
0 14

Let I = (a,b) C (1/2,1) be an arbitrary interval. For any s € (a, b), integrating (8.3)
over (a, s) in r gives

5 s 1 .
/ aM(r,t)ydr = 8,M(s,t)—8rM(a,t)—/ (—8,M(r, Z)—i—a,M(r,t)a,H(r,t)) dr
a a \T
N S
—/ 8/ p1p2dxdr < B,M(s,t)—}—C)// orM(r,t)dr,
a B, a

since 9, M >0, 9, H > —Cy,and p1,p2 > 0. As M(r,0) = 0 for all r < 1, since p; is
initially concentrated near r = L, integrating this inequality in time fromz = 0to? = 73
gives

s 13 3 ps
/ M(r,t3)dr < / 0, M(s,t)dt + Cy/ / o, M(r,t)drdt.
a 0 0 a

Combining Proposition 4.3 and Theorem 6.6, we have M (r,t3) > My /4 forallr € (1/2,1),
and the above inequality becomes

13 3 s — M,
/ 9, M(s, 1) dt —i—Cy/ / 0, M(r,1)dr dt > %
0 0 a

Integrating this inequality over s € I gives

i3 t3 b — 2M
/ /8,M(s,t)dsdt +Cy/ (b—a)/arM(r,t)dr di > %
0 1 0 1

so that

53] M
/ —/B,M(s,t)dsdt >0
o | Jr 8(I1=1+Cy)
Therefore, for any interval I C (1/2, 1) with |I| = y~1, we have
1 '3 M,
—// 9, M(s,t)dt ds > <220 (8.5)
111 JrJo Y

This inequality shows that (8.4) holds in each such interval I in an average sense. To finish
the proof of Proposition 8.1, we need to rule out the possibility that f0t3 0, M(s,t)dt is
distributed very nonuniformly among s € /. We are going to show that this cannot happen
since pp satisfies a parabolic PDE.

Taking a derivative of (8.3), we deduce a parabolic equation

1 ~ 1 ~
dou — 0%, u + (— + 8,H)8,u + (——2 + 02, H + spz(r,t))u =0 (8.6)
r r

foru(r,t) := 0, M(r,t) = 2mrpy(r,t).
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Lemma 8.2. There exists a universal constant ¢ > 0 such that any nonnegative solution
to (8.0) satisfies
2

oty
u(r,t) > cy3// u(r,t)dtdr forallr € 1,1t €[ty +y 2 to + 2y 2],
I Jty

for all intervals I C (1/2,1) with |I| =2y~ !, and ty > y~2.
Proof. Let us rescale (8.6) setting y = yr, T = y2(t — to). In the new coordinates,
U —uyy +b(Yuy +c(y. Hu =0,

where |b(y)| < C and |c(y,7)| < C forall y € (y/2,y),7 = 0. The bounds on b and ¢
follow from the facts that r € (1/2,1), |0, H| < Cy,|0?H| < Cy, p2 < [|p2(,0)|loc < 0,
and

g0 & .
—_— =<

> < (8.7)
4 XY
(where ¢ is from Theorem 1.1).
By the parabolic Harnack inequality (e.g. [49, Theorem 6.27 or Corollary 7.42]), for

any interval I’ C (y/2, y) with length 2 we have

1
u(y,t)ZC// u(y,t)dtdy forally € I',7 €[l1,2];
1 Jo

here the constant C depends on ¢ in (8.7). Translating this back into the original coordi-
nates finishes the proof. ]

Consider the time intervals Jy := [2ky~2,2(k + 1)y 2], k € N, and let n be the
smallest integer such that 2(n 4+ 1)y =2 > t3. Then for any interval I C (1/2, 1) with
|I| = 2y~!, we can rewrite (8.5) as

" CMO
> M(r.t)drdt = —=, (8.8)
k=0’ 1xJk 4
while Lemma 8.2 gives, for each k > 0,
3, M(r,t) > c;ﬁ/ 0, M(s,t)dsdt forallr € I andt € Jiy1, (8.9)
IxJy

so that
/ o, M(r,t)dt > C)// 0, M(s,t)dsdt.
Jk+1

I xJy
It follows that for each r € I we have

t3+1 (n+2)y—
/ orM(r,t)dt > /
0 0

n

zeyZ/I , 0, M(s,t)dsdt >
k=0"1>*Jk

2

O,M(r.)dt =y / 3 M(r,t)dt
k=0

Jk+1

M,
o (8.10)

This finishes the proof of Proposition 8.1.
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9. Discussion

In this section, we briefly discuss the nature of the constraints in our main nonlinear
application. The arguments here are purely heuristic, though some of the statements can
be made rigorous. Observe that for H(x) = y(—A)~! y, (x), the ground state is

u {e”(l_’z)/“, r<l,
oH —

rv/2, r>1.

9.1

A simple calculation shows that for r < 1 we have

/ ™) gy = 4—T[e”/“(l - e_7r2/4),
B, 14

4

/ MO gy = 2T oy/4(omyr? /4 _ /4y 4 4o
(Br)© 14

y—4

1/2 centered at

Therefore, most of the mass of e is concentrated in a ball of radius ~ Y-
the origin.

This explains why the radial constraint on the initial conditions is needed to make
touch with the heuristics. Indeed, consider p; that is concentrated initially at a distance L
from the support of p,, in a region of size ~ 1 (as opposed to radial). If y is large, as
this mass gets transported towards the origin, it will enter the support of p, — the unit ball
centered at the origin — through a narrow sector and then concentrate overwhelmingly in
a tiny region near the origin. After a time ~ L?/y, the density p; will approximate e
given by (9.1) since not much reaction has happened during the passage through a narrow
sector. Thus, even after the transport phase has taken place, the reaction rate is going to be
penalized since p; is smaller than My by a factor that is exponential in ¥ on most of the
support of p,. As p, gets depleted near the origin, the potential and so the configuration
of p; will adjust, but this process is not straightforward to control. It seems clear that
some essential extra time will be lost.

A similar issue applies in the “risky” regime eM, < 1, even in the radial case. Then,
little reaction happens on the pass through, while the reaction after the transport stage
incurs the same penalty due to the aforementioned excessive concentration.

Both of these constraints are due to an artifact of the specific form of the Keller—Segel
chemotaxis term. The extreme concentration of e’ can be seen as a consequence of the
scaling yV(—=A)~!p, ~ —y near and on the support of p,, which is very large when y is
large. But in reality, there is always a speed limit on how fast biological agents can move.
A variation of the classical Keller—Segel model is the so-called flux limited chemotaxis
system given by
Ve 1
depr + xV- (mWW(IVCI)) —Apr=—ep1p2, ¢ =(=A)"p2, dip2=—p1p2.

9.2)

The function i appearing in (9.2) satisfies ¥ (0) = 0, is increasing, and saturates at some
level that we can take equal to 1 (given that we have an explicit coupling constant y). The
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system (9.2) is more complex to analyze due to the strongly nonlinear flux, but is more
realistic. A variety of flux limited Keller—Segel systems have been considered recently
in many works (see e.g. [3, 34] for more references); in particular, papers [22, 62, 71]
provided derivation of the flux limited Keller—Segel system from kinetic models built on
biologically reasonable assumptions about the behavior of the modeled organisms.

In future work, we plan to adapt the techniques developed in this paper to analyze
(9.2). The adaptation is not straightforward, but preliminary computations show that in
this case the radial assumption is not necessary, and the case of the “risky” reaction can
be handled.

Appendix A

A.l. Proof of Theorem 3.1

Let us first assume that pg is nonnegative. The proof is almost identical to that of [10,
Theorem 5], but we include it for the sake of completeness. Let r(t) be a C! increasing
function to be specified later. We compute the time evolution of ||p(?)]|,¢) as follows,
where we omit the ¢, x dependence on the right hand side for notational simplicity:

d
— Al
oDl

r’ r’ _ _ _
=S lell toe(pl) + 11l [ o togpdx + 1ol [ 7 taupx

v B pr _ B
= ol r/pflog(”p”,)dx+||p||: "o @p =V oV )~ hpydx
r

r’ - p" 4(r—1) r—1
L [p’log ' dx——,/|vpr/2|2dx ML
; EE - -

(A.1)

IA

where in the last inequality we use the assumptions A(-,¢) > 0 and A®(-, 1) > —y for
all 7, as well as the fact that p remains nonnegative for all # > 0. Next we use a sharp form
of the logarithm Sobolev inequality in R”. Itis [10, (7.17)], and it is equivalent to Gross’s
logarithmic Sobolev inequality in [28] after a scale transformation. For all f € H'(R?)
andalla > 0,

2 d

f21og( J Z)dx + (d + —loga)/ Frdx < 3/ IVfPdx. (A2)
d /13 2 R4 7 Jra

Choosing f = p’/2 and a = 47 (r — 1)/r’, we see that (A.2) becomes

o" d dz(r—1) (r -1
/]Rd o log(”p”r) dx + (d + Elog( p loll: < p A«d |Vp'/2|? dx.

Applying this to (A.1) gives
d r’ d dr(r —1) r—1
IOl = ol (< - Fiog( T2 ) +

r
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Let G(t) := log ||p(¢) (). Then the above differential inequality becomes

dG r’ d dm(r — 1) r—1
A (B Y (A = A.
dt = r2( d 2 og( r ))+ r 7 (A-3)

Since our goal is to estimate ||p(T)] oo using ||0(0)||; (Where T > 0 is an arbitrary time
at which we want to obtain our estimate), let us set ¥ (0) = 1 and r(7') = p, where p > 1
will be sent to infinity at the end. Integrating (A.3) in [0, 7] yields

lo(Dllp\ - T d 4 (r —1) r—1
°g(np«»n1)“G(T)_(“°)—p£ (rz(‘d"zl°g( 7 ))'* ; V)d’

T
< —/ s/(—d - %log(4n(s —5%) + %log(—s’))dt +yT  (lets(z) := 1/r(t))
0

1/p d d T
< f (d + ) log(4m(s — sz))) ds + 5/ (—s")log(—s")dt + yT.
1 0

The first integral on the right hand side can be explicitly computed, and it is uniformly
bounded by some constant C(d) as p — oo. For the second integral, since fOT (—s")dt is
fixed as s(0) — s(T) = 1 — 1/ p, Jensen’s inequality gives that the integral is minimized
when —s’ is a constant. We thus set —s’ = #, which yields

e\ _ a1 1-1/p
1%(w@m)—a“+zo p)%( T )+”‘

hence in the limit p — oo we obtain

Io(T)lloo = C(@T 2T p(O)]]1 forall T > 0. (A4
Note that 1=4/2¢" reaches its minimum value (2y/d)%/2e%/2 at t = 2d—y. For ¢t > %,

by applying the estimate (A.4) with ¢ — % as the initial time (and using the fact that

ot = 411 = llp(0)][1), we obtain [|p(1)[lec < C(d)y?/?||polly for all # > 5= Com-
bining this with (A.4) gives

lo(t) oo < C(d) max {t=4/2,y4/2} || p(0)[l; forall # > 0.

To establish the theorem for sign changing pg, notice that equation (3.1) is linear. Thus
we can run the evolution separately for the positive and negative parts of the initial data,
and both solutions will satisfy (3.2). By linearity, the actual solution of (3.1) is just the
difference of these two solutions and (3.2) clearly holds for it as well. [

A.2. Proof of Theorem 5.1

Existence and uniqueness of a weak solution p(x, ) under the assumptions of Theo-
rem 5.1 is well known (see e.g. [47, Theorem 2.3.1]). However, the regularity characteri-
zation of the solution available in the standard literature is weaker than what is convenient



A. Kiselev, F. Nazarov, L. Ryzhik, Y. Yao 2692

for us here (though stated for a more general class of coefficients). Here we provide a
sketch of a simple proof that applies to the particular case of time independent H.

First, let us introduce the mollified potential H, = n, * H, where ¢(x) = e 2n(x/¢)
is a standard mollifier. Let us denote by p, the smooth solution of (5.1) with H replaced
by H,. It suffices to prove the uniform-in-¢ bounds for p, for all 0 < ¢ < 1; one can show
in a standard way that they are inherited in the limit by p. Multiply (5.1) by p¢|pe|? 2,
p > 1, and integrate by parts in space to obtain

1 _ _
—at/ |pa|de+(p—1>/ 1V P10 2dx=(p—1>/ peV Hy -V palpsl?2 dx.
P R2 R2 R2

The integral on the right hand side can be estimated by

1/2 1/2
(p—l)(/ |vPe|z|pE|P—2dx) (/ |VH8|2|ps|P)
R2 R2

p—1 _
=77 A;Z'V%lzlpel” 2dx + C(p = DIVH Zosllpelf-

where we have used |VH|p~ < ||[VH]|Lo. It follows that given T > 0, we have
lpelly < C(p,po, H, T) forevery t <T.
Now define v = p; — po. Then

d;v—Av+V-(vVWH,) = f, v(,0)=0,
where f = Apg — V - (poV H) satisfies

1F1lp =< llpollw2.» (IIVH oo + [AH [[oo).-

Since H does not depend on ¢, w = d;v = 0d; p, satisfies
dyw—Aw+V-(wVH) =0, w(,0)=f

By the argument identical to the above estimate for ||pg|,, we obtain [|d;p.l, <
C(p, po, H, T) for every t < T. Finally, the W?2? estimate of v (and thus of p,) follows
from standard elliptic regularity estimates. ]
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