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Abstract Diagnosing the role of internal variability over recent decades is critically important for both
model validation and projections of future warming. Recent research suggests that for 1980–2022 internal
variability manifested as Global Cooling and Arctic Warming (i‐GCAW), leading to enhanced Arctic
Amplification (AA), and suppressed global warming over this period. Here we show that such an i‐GCAW is
rare in CMIP6 large ensembles, but simulations that do produce similar i‐GCAW exhibit a unique and robust
internally driven global surface air temperature (SAT) trend pattern. This unique SAT trend pattern features
enhanced warming in the Barents and Kara Sea and cooling in the Tropical Eastern Pacific and Southern Ocean.
Given that these features are imprinted in the observed record over recent decades, this work suggests that
internal variability makes a crucial contribution to the discrepancy between observations and model‐simulated
forced SAT trend patterns.

Plain Language Summary When comparing model simulations of Earth's recent warming to real‐
world observations, differences may arise from several factors. Two important factors are the model errors in the
simulated response to increased greenhouse gases, and natural fluctuations within the climate system that
produced discrepancies between observations and models. Thus, quantifying the role of these natural
fluctuations is important for the assessment of model‐observation differences. Previous studies have shown that
natural climate variability has depressed global warming and enhanced Arctic warming. By compositing the
multi‐decadal trend patterns from CMIP6 simulations in which natural variability warms the Arctic but has a
global cooling effect, we find that the majority of these model simulations also produce enhanced warming in
the Barents and Kara Seas and cooling in the Tropical Eastern Pacific and Southern Ocean due to natural
variability. Since these are the exact features imprinted on observed surface temperature changes over 1980–
2022, our work suggests that natural variability is an important component of several noteworthy differences
between models and observations.

1. Introduction
Global surface air temperatures (SAT) since 1980 have experienced significant warming due to increased
greenhouse gas concentrations and reduced aerosols (IPCC, 2023). Yet, the pattern of the observed warming has
larger spatial variability than the warming simulated by climate models (e.g., Hansen et al., 2010). One of the
most prominent features of both observed and simulated warming is Arctic Amplification (AA): a ratio of Arctic
to global SAT trend larger than one (Manabe & Wetherald, 1975). From 1980 to 2022 observed SAT in the Arctic
(defined as poleward of 70°N) warmed over four times faster than the global mean, leading to an AA of 4.2
(Rantanen et al., 2022). Although models simulate greater Arctic warming relative to the global mean, the
observed values of AA over 1980 to 2022 are larger than AAs from 94% of historical simulations from large
ensembles in the Coupled Model Intercomparison Project Phase 6 (CMIP6) (Chylek et al., 2022, 2023, 2024;
Hahn et al., 2021; Rantanen et al., 2022; Sweeney et al., 2023; Ye & Messori, 2021). The discrepancy between the
model predicted AA and that observed from 1980 to 2022 may be due to a model bias in the forced response of the
Arctic and/or global climate, leading to concerns regarding model fidelity (Chylek et al., 2022; Rosenblum &
Eisenman, 2017). Another potential cause of this discrepancy is a rare configuration of internal climate variability

RESEARCH LETTER
10.1029/2024GL108798

Key Points:
• Internal variability has enhanced Arctic

warming but suppressed global
warming over 1980–2022

• This manifestation of internal
variability is rare in model simulations
but has a robust global surface air
temperature (SAT) trend pattern

• This internal SAT pattern features
warming in the Barents and Kara Sea
and cooling of the Tropical Eastern
Pacific and Southern Ocean

Supporting Information:
Supporting Information may be found in
the online version of this article.

Correspondence to:
A. J. Sweeney and Q. Fu,
aodhan@uw.edu;
qfu@uw.edu

Citation:
Sweeney, A. J., Fu, Q., Po‐Chedley, S.,
Wang, H., & Wang, M. (2024). Unique
temperature trend pattern associated with
internally driven global cooling and Arctic
warming during 1980–2022. Geophysical
Research Letters, 51, e2024GL108798.
https://doi.org/10.1029/2024GL108798

Received 10 FEB 2024
Accepted 8 MAY 2024

© 2024. The Authors. Geophysical
Research Letters published by Wiley
Periodicals LLC on behalf of American
Geophysical Union.
This is an open access article under the
terms of the Creative Commons
Attribution License, which permits use,
distribution and reproduction in any
medium, provided the original work is
properly cited.

SWEENEY ET AL. 1 of 12

https://orcid.org/0000-0002-8795-9745
https://orcid.org/0000-0001-5371-8460
https://orcid.org/0000-0002-0390-238X
https://orcid.org/0000-0002-1994-4402
https://orcid.org/0000-0001-5233-4588
mailto:aodhan@uw.edu
mailto:qfu@uw.edu
https://doi.org/10.1029/2024GL108798
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2024GL108798&domain=pdf&date_stamp=2024-06-06


in the last four decades (Chylek et al., 2023; Deser et al., 2012a, 2012b; Feng et al., 2021; Kay et al., 2011; Zhou
et al., 2024). Key to reconciling this model‐observation discrepancy is separating the forced response from in-
ternal variability (e.g., Lehner & Deser, 2023).

Various methodologies have been proposed to partition the forced and internal components of climate change
(e.g., Barnes et al., 2019; Dai et al., 2015; Deser et al., 2014; Foster & Rahmstorf, 2011; Gordon et al., 2021; Labe
& Barnes, 2022; Po‐Chedley et al., 2022; Rader et al., 2022; Räisänen, 2021; Sippel et al., 2021; Wallace
et al., 2012). Pattern recognition algorithms have shown promise with this task (Wills et al., 2020), because the
SAT response to external forcing is more spatially uniform than the more complex patterns associated with in-
ternal variability. The patterns of the forced response and internal variability can be differentiated in large en-
sembles, which contain many simulations of the Earth's climate with varying initial conditions and then produce
unique manifestations of the internal variability (and thus unique patterns of warming) (Deser et al., 2020; Kay
et al., 2015). Large ensembles therefore provide a useful training data set for pattern recognition algorithms
designed to distinguish between the forced and unforced climate response. Recently, Sweeney et al. (2023)
(referred to herein as S2023) showed that the pattern recognition algorithms based on machine learning can help
partition the role of internal variability and the forced response to better understand the model‐observation
discrepancy in AA from 1980 to 2022. Their results indicate that internal variability has enhanced AA for
1980–2022 by 38%. After removing the contribution of internal variability from the observations, they can
reconcile differences between simulated and observed AA.

The identified manifestation of internal variability that creates the exceptionally high value of observed AA
features internally driven global‐cooling and Arctic‐warming (referred to hereafter as i‐GCAW). When this i‐
GCAW is imprinted onto the Earth's warming due to external forcing, the effect is to enhance the rate of
Arctic warming while damping the global mean warming trend during 1980–2022. A number of studies have
suggested that internal variability has warmed the Arctic and cooled the globe in the last few decades, evidenced
by rapid sea ice concentration decline (e.g., Ding et al., 2019) and a lack of warming (or even cooling) in the
Tropical Eastern Pacific and Southern Ocean (e.g., Feng et al., 2021; Kosaka & Xie, 2013; Po‐Chedley
et al., 2021; J. H. L. Zhang et al., 2019, L. Zhang et al., 2019). These studies reinforce the result from S2023
that internal variability produced global‐cooling and Arctic‐warming during 1980–2022.

This study aims to investigate model simulations that have an imprint of i‐GCAW. These simulations can provide
insight into the global internally driven trend pattern since 1980. It thus has value for understanding model‐
observation discrepancies and may help constrain uncertainty in future patterns of SAT change (Lehner &
Deser, 2023). Here we first show that the observationally derived i‐GCAW in S2023 occurs rarely in the ensemble
members from various models and confirm that the machine learning algorithms developed in S2023 have
minimal biases when applied to this subset of rare ensemble members. We then show that the ensemble members
featuring similar i‐GCAW to observationally derived values share a preferred internally driven global SAT trend
pattern, including warming in the Barents and Kara Sea and cooling in the Tropical Eastern Pacific and Southern
Ocean. We further examine the pattern of differences between the observed SAT trend pattern and the forced
warming pattern derived from the CMIP6 multi‐model mean scaled by observationally derived forced global‐
mean SAT trend in S2023. The difference trend pattern—which represents an estimate of the impact of inter-
nal variability on the pattern of satellite era SAT trends—also shows warming in the Kara Sea and cooling of the
Tropical Eastern Pacific and Southern Ocean. Both approaches indicate a common imprint of internal variability
on the pattern of surface warming during recent decades. Finally, we examine the evolution of AA over the
ensuing 20 years in the ensemble members that exhibit i‐GCAW over a 43‐year period (matching the length of the
observational record from 1980 to 2022). These simulations suggest a decrease of the mean AA from 4.2 to 3.4,
supporting the claim in S2023 that the exceptional AA over 1980 to present will not persist into the future.

2. Data
Data used here is largely the same as from S2023. The model simulations come from large ensembles included in
CMIP6 using 10 different models that contain 10 to 50 ensemble members. Aside from the CMIP6 models, we
also include the CESM2 large ensemble with updated biomass burning aerosol emissions (Fasullo et al., 2022;
Rodgers et al., 2021), as well as the E3SM2 large ensemble (Fasullo et al., 2024). SAT trend maps are calculated
by finding the ordinary least‐squares regression at each grid point using 43‐year periods (the duration of the
satellite era from 1980 to 2022) separated by five years spanning 1850–2047 (i.e., 1850–1892, 1855–1897, …,
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1980–2022, …, 2005–2047). Historical simulations for the large ensembles end in 2014. For those models where
more than 10 ensemble members have data through 2047 using the Shared Socioeconomic Pathways 3 or 5
(SSP3‐7.0 or SSP5‐8.5), the simulations are extended (using SSP5‐8.5 when both are available) (O’Neill
et al., 2016). Of the 12 large ensembles used, 8 have extensions past the 2014 period, while 4 end in 2014 (see
Table S1 in Supporting Information S1 for information regarding the large ensembles). For each of the 12 models,
we compute the area average (global and Arctic) trends for each ensemble member, and the internal trends are the
difference between these trends and forced trends that are computed by taking the ensemble average across all
ensemble members.

Observational SAT trends shown here are the average of four datasets, including the Met Office Hadley Centre/
Climate Research Unit's global surface temperature dataset version 5, Berkeley Earth Land/Ocean Temperature
Record, GISS Surface Temperature Analysis version 4, and the NOAA Merged Land Ocean Global Surface
Temperature Analysis version 5 (Lenssen et al., 2019; Morice et al., 2021; Rohde & Hausfather, 2020; J. H. L.
Zhang et al., 2019, L. Zhang et al., 2019). All SAT trend maps are regridded to a common 2.5° × 2.5° latitude‐by‐
longitude grid.

We also use Pre‐Industrial Control (piControl) simulations from the 10 CMIP6 models used above, which allows
for investigation of simulated internal variability without the role of forcings (Eyring et al., 2016). Internal
variability is identified using 43‐year trends separated by five years for all available ensemble members given that
the ensemble member has at least 100 available years in the piControl simulation.

3. Internally Generated Global‐Cooling and Arctic‐Warming
Quantifying the internal component of recent SAT trends remains a crucial problem in climate science (Schle-
singer & Ramankutty, 1994; Watanabe et al., 2021; Wills et al., 2022; Xie & Kosaka, 2017). In this section, we
show that a robust pattern of internal variability can be obtained by compositing model simulations with i‐GCAW
similar to observationally derived values. S2023 estimated that between 1980 and 2022, internal variability
reduced observed global warming by −0.024 K/dec and enhanced Arctic warming by 0.145 K/dec. Across all 43‐
year SAT trends from the large ensembles between 1850 and 2047, the standard deviation of internally generated
SAT trends over the globe and in the Arctic are 0.025 K/dec and 0.157 K/dec, respectively. Thus, when viewed
individually, the observationally inferred estimates of internal variability are about one standard deviation from
the mean (zero), and thus not rare.

Given that internal variability both enhanced Arctic warming and depressed global warming, it is useful to
examine the frequency of these events concurrently. Figure 1 shows the Arctic versus global mean internal trends
for 43 years from all large ensembles over 1850–2047, indicating that Arctic and global internal trends are
positively correlated in model simulations (r = 0.72). While many studies have examined the coupling between
global and Arctic temperature as a response to forced climate change, internal variability is also important for the
coupling of global and Arctic temperature (Screen & Deser, 2019). The thick red line in Figure 1 shows that the
ordinary least‐squares fit of Arctic to global internal trends has a slope of 4.46, meaning that an internally driven
change in global SAT is typically amplified by a factor of 4.46 in the Arctic. This is analogous to Arctic
Amplification but operating through multidecadal internal variability alone. 74% of all simulated 43‐year trends
are confined to quadrants I and III (top‐right and bottom‐left) in Figure 1, where Arctic and global internal
variability have the same sign. Only 26% of simulations exist in quadrants II and IV (top‐left and bottom‐right),
where the Arctic and global internal trends have opposing signs. The observationally inferred trends of internal
variability from S2023 sits in quadrant II, a sparsely populated region. The observational estimate is near the edge
of the distribution suggesting that Earth may have experienced a rare configuration of internal variability over
1980–2022.

To gain confidence in the observational estimate in Figure 1, we apply the ML algorithm trained in Sweeney
et al. (2023) to the subset of 43‐year trends which occur during 1980–2022 and are in quadrant II. The mean
estimated forced AA for these cases is 2.92 based on the S2023 ML algorithm, versus the mean true forced AA of
2.72. The latter is based on the forced AA from the corresponding ensemble mean. That the ML derived forced
AA is similar to the true forced AA suggests that the algorithm used in S2023 to estimate the role of global and
Arctic internal variability can do so accurately in model simulations, even when those simulations occur with rare
configurations of internal variability like the i‐GCAW. This provides confidence that the estimated effects of
internal variability are accurate.
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The observationally inferred estimate suggests that from 1980 to 2022 the
Earth experienced i‐GCAW. However, it does not provide information on the
accompanying spatial pattern of the SAT trends. To investigate the SAT trend
pattern associated with i‐GCAW, we select 43‐year trends in quadrant II with
internally generated global cooling and Arctic warming magnitudes larger
than σGlobal/2 and σArctic/2, respectively (Figure 1). We note that this threshold
of i‐GCAW is less than the observational estimate in Figure 1 but is a lower
limit. It is also chosen to make sure that there are enough samples in the
subset. This subset contains 154 samples out of a total 9,121 points in
Figure 1. These i‐GCAW cases are thus a rare configuration of internal
variability. These selected simulations show no obvious propensity for onset
between 1850 and 2047, nor are these cases limited to a small subset of
climate models (see Figure S1 and Table S1 in Supporting Information S1).
Figure 2 shows the global internal SAT trend pattern created by averaging
over the 154 i‐GCAW cases at each grid point. We reproduced Figures 1 and
2 but using the CMIP6 piControl simulations (Figures S2 and S3 in Sup-
porting Information S1), showing almost identical results (comparing Figures
S2 and S3 in Supporting Information S1 with Figures 1 and 2). We also
produced average trend maps using the same thresholds for quadrant I (in-
ternal Global Warming and Arctic Warming; i‐GWAW), quadrant III (in-
ternal Global Cooling and Arctic Cooling; i‐GCAC), and quadrant IV
(internal Global Warming Arctic Cooling; i‐GWAC), which are provided in
Figure S4 in Supporting Information S1.

The SAT trend pattern shown in Figure 2 is derived entirely from model
simulated internal variability based on simulations exhibiting internally
generated global cooling and Arctic warming. The results suggest that i‐
GCAW has a preferred internal SAT trend pattern, which is unique
compared to other configurations of internal variability shown in Figure S4 in

Supporting Information S1. Notable warming is featured in the Barents and Kara Sea relative to other locations in
the Arctic, while cooling is evident throughout the Tropical Eastern Pacific in addition to continental cooling in
northern South America, central Africa, and parts of central Asia. A region of strong cooling is also located in the

Figure 1. Arctic versus global internal trends from all large ensembles
between 1850 and 2047. Each gray circle represents an internal trend from
one ensemble member over one 43‐year period. Thin black lines show the
normalized probability density functions of all global and Arctic internal
trends with the corresponding standard deviations provided. The orange
pentagon shows the observationally derived internal trends for 1980–2022
with one‐standard deviation error bars from S2023. The red line shows the
ordinary‐least squares regression of the Arctic internal trend onto that of the
global internal trend, which has a slope of 4.46 and a correlation coefficient
of 0.72. Roman numerals denote the quadrant number.

Figure 2. The 43‐year SAT trend pattern due to internal variability obtained by averaging over 154 cases which have
internally driven global cooling and Arctic warming (i‐GCAW) magnitudes larger than σGlobal/2 and σArctic/2 (see Figure 1),
respectively. Hatching represents the regions where over 80% of the cases agree on sign. The domain averaged Arctic and
global mean temperature trends are provided on the top left.
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Amundsen Sea, linking tropical cooling of the Eastern Pacific to the Southern Ocean (Ding & Steig, 2013; Dong
et al., 2022; Hwang et al., 2017; Stuecker et al., 2017). Interestingly, many of these features are sufficiently strong
that they are imprinted onto the observed warming pattern (shown in Figure 3a); namely, enhanced Barents and
Kara Sea warming, Eastern Pacific cooling, and Southern Ocean cooling. Figure S4 in Supporting Information S1
shows that the average trend map for i‐GWAC (quadrant IV) is essentially the mirror of i‐GCAW. While both i‐
GCAW and i‐GWAC patterns have global features agreed upon by over 80% of ensemble members (signified by
hatching in Figure 2), the average i‐GWAW and i‐GCAC (quadrants I and III) trend maps are focused on the
Northern Hemisphere, and do not share consistent global features (see Figure S4 in Supporting Information S1).
Note that the trend pattern in Figure 2 has a mean Arctic warming of 0.125 K/dec and global cooling of −0.021 K/
dec, which are roughly 15% weaker than those from the observational estimates in S2023. Using more stringent
criterion with global cooling and Arctic warming magnitudes larger than 3

4σGlobal and 3
4σArctic, similar but stronger

features are shown (see Figure S5 in Supporting Information S1).

The forced SAT trend pattern over 1980–2022 can be obtained from the multi‐model mean (MMM) from 8
models that cover this period (Table S1 in Supporting Information S1). This MMM, however, may have biases
due to errors in climate sensitivity and radiative forcings (Tokarska et al., 2020; IPCC chapter 4, 2023). Here we

Figure 3. The SAT trend pattern from 1980 to 2022 in (a) observations, (b) the multi‐model mean (MMM) forced trend scaled
by observationally derived global mean forced trend from S2023, and (c) the difference between (a) and (b). Observations are
the mean over four observational data sets (see Section 2), and the MMM is the average forced trend scaled so that the global
mean warming is equal to 0.213 K/dec (see text).
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attempt to minimize the impact of these biases by scaling the MMM trend pattern with the observationally
estimated forced global trend of 0.213 K/dec for 1980–2022 (S2023). A rough estimate of the global internal trend
pattern for 1980–2022 can then be obtained as the difference between observed trends and the scaled MMM trend.
Figure 3 shows the SAT trend patterns for 1980–2022 from (A) observations, (B) the scaled MMM, and (C) the
difference between A and B. While scaling gives us more confidence in the magnitude of the forced trend, it does
not change the trend pattern. If the scaled MMM correctly captures the forced pattern of climate change, then the
difference in panel C represents the internal trend contribution to the observational record. On the other hand,
biases in the simulated forced pattern of warming would produce errors in this estimate of the impact of internal
variability.

Observations show many features in the SAT trends not seen in the MMM. While the scaled MMM suggests that
external forcing should have produced weak warming throughout the Tropical Eastern Pacific and Southern
Ocean from 1980 to 2022, observations exhibit weak cooling in these regions. The difference panel in Figure 3c
shows Arctic warming and cooling in the Tropical Eastern Pacific that connects to extensive cooling of the
Southern Ocean and is strongest in the Amundsen Sea. Figure 3c also shows cooling in the northern hemisphere
extratropical continents. Notably, many of the features present in the difference pattern of Figure 3c are also seen
in the climate model composite of the i‐GCAW shown in Figure 2. Both figures show warming around the Kara
Sea, and cooling throughout the Tropical Eastern Pacific and Southern Ocean. The area weighted spatial cor-
relation between the composite trend pattern in Figure 2 and the difference pattern in Figure 3c is r = 0.5, which
may be surprising given that the trend pattern in Figure 2 is based on model simulated internal variability pre‐
conditioned only on i‐GCAW. The similarity of the global trend patterns from the two methods that are con-
strained by observations in very different ways strongly suggests that the trend pattern shown in Figure 3c is
largely impacted by the trend pattern of internal variability in the last few decades.

The analysis shown here suggests that from 1980 to 2022 internal variability manifested as an i‐GCAW, a rare
configuration of internal variability in model simulations. This configuration of internal variability exhibits a
unique but robust SAT trend pattern, agreed upon by simulations from different models and over different time
periods. The i‐GCAW pattern main features are also visible in the differences between the observations and the
scaled MMM, suggesting that the pattern associated with i‐GCAW is imprinted onto the observed SAT trend
pattern from 1980 to 2022. This also suggests that a plausible trend pattern of internal variability can be obtained
by solely restricting simulations based on i‐GCAW. We next evaluate the implications of this finding and attempt
to predict the future evolution of internal variability.

3.1. Implications for Future Arctic Amplification

Figure 2 showed that i‐GCAW has a robust spatial pattern, with several regions showing strong model agreement.
If models also agree on the SAT evolution after a given i‐GCAW period considered (i.e., 43 years), it may then be
possible to predict the future evolution of SAT trends. In this section, we attempt to use the simulated i‐GCAW
cases to predict the future evolution of the internal variability and evaluate its implications for AA.

To do this, we take all 154 cases of i‐GCAW used to compose Figure 2 and evaluate the SAT trend evolution over
the subsequent 20‐year after the i‐GCAW was identified. These evolutions of the simulated internal variability are
referred to as trajectories and are used to evaluate the potential evolution from the recent observed instance of i‐
GCAW. Because we only use data from 1850 to 2047, 22 of the 154 i‐GCAW cases are identified after the period
of 1990–2032 and do not have the full 20‐year trajectories available. In these cases we use the abbreviated
trajectory, for example, if an i‐GCAW case is identified over 2000–2042 we just use the trajectory for the
following five years. Figure 4a shows the predicted SAT trend patterns after extending the i‐GCAW trajectories
by 5, 10, 15, and 20 years. We also show 5‐, 10‐, 15‐, and 20‐year SAT trend patterns following identification of
an i‐GCAW in Figure S6 in Supporting Information S1. Results of Figure 4a suggest that while cooling trends in
the Tropical Eastern Pacific degrade after the first decade, the Amundsen Sea cooling trend remains a persistent
feature with over 80% of trajectories agreeing on this cooling even when trends are calculated with another
20 years of data. While the trajectories suggest that internally generated Arctic warming will persist in future trend
calculations, this signal loses its significance during the second decade of projections. Figure S7 in Supporting
Information S1 shows a recreation of Figure 4 but using 43‐year trends at 5, 10, 15, and 20 years after the initial i‐
GCAW is identified (i.e., the 43‐year window is shifted by 5, 10, 15, and 20 years to recalculate the internally
generated trend). Results of Figures S6 and S7 in Supporting Information S1 indicate that the degradation of
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significance in the Arctic signal shown in Figure 4a is due to strong internally driven cooling in the Arctic after i‐
GCAW episodes.

Figure 4b shows the future values of AA based on the trajectories of the i‐GCAW. The observed AA (shown in
orange pentagon) during the 1980–2022 period is inflated above the dashed black line due to internal variability.
Based on the mean evolution of the internal trend pattern associated with i‐GCAW in Figure 4a, future values of
AA are shown as colored points in Figure 4b. Given that each realization of i‐GCAW in model simulations may
have different magnitudes of global‐cooling and/or Arctic‐warming when identified, all trajectories are computed
relative to their initial magnitudes. While on average the AA metric tends to relax toward the forced trend as the
length of time used for the AA calculation increases, the model trajectories indicate that elevated values of AA
may persist into the 2040s (England et al., 2015). Figure 4b suggests that the rare configuration of internal
variability that produced large observed values of AA will moderate and AA will subside over the next two
decades.

4. Discussion and Conclusions
The observationally inferred trend of internal variability from 1980 to 2022 suggests global cooling and Arctic
warming. Model simulations infrequently simulate this observationally derived variability, suggesting that the
Earth experienced a rare configuration of internal variability from 1980 to 2022. To investigate the spatial pattern
of SAT trends associated with the i‐GCAW, large ensemble simulations were used to identify cases with the i‐
GCAW. The spatial SAT trend pattern associated with the i‐GCAW is unique, spanning the globe with many
robust features, which are distinct from other multi‐decadal internal SAT trend patterns (see Figure S4 in Sup-
porting Information S1). These unique and robust features associated with the i‐GCAW are also imprinted on the
observational record, providing strong evidence that the Earth indeed experienced the i‐GCAW from 1980 to
2022.

Whether discrepancies between climate models and observations are due to a rare configuration of internal
variability or model biases in the forced response is a crucial issue in climate science. Of particular importance are
the observed cooling trends in the Tropical Eastern Pacific over recent decades. These cooling trends generally
disagree with simulations which predict a warming response (e.g., Seager et al., 2019; Seager et al., 2022). Due to
the myriad of teleconnections between this region and higher latitudes (e.g., Baxter et al., 2019; Trenberth
et al., 1998; Xie, 2020), understanding the causes of this discrepancy is important (e.g., Lee et al., 2022; Scaife &

Figure 4. (a) Internally generated SAT trends extended by 5, 10, 15, and 20 years after the i‐GCAW pattern has been
identified. Hatching indicates regions where over 80% of the cases agree on sign. The number of samples (N) used in the
composite of each trend map is shown in the top right. (b) Impact of predicted future configurations of internal variability for
Arctic Amplification (AA). Colored dots show model derived AA values given the forced trend (dashed line) from S2023.
The orange pentagon shows the AA during the 1980–2022 period from observations. Error bars show the two‐sigma
confidence interval of future AA using all available trajectories. The black dashed line shows the estimate of the forced AA
ratio (3.03) over 1980–2022 from S2023.
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Smith, 2018; Watanabe et al., 2021; Wills et al., 2022). Another area where observations diverge from model
predictions is the Southern Ocean. While models predict weak warming (see MMM in Figure 3), observations
show a distinct cooling trend (Kang, Yu, et al., 2023). Many plausible drivers have been proposed to explain
cooling of the Southern Ocean and its possible connection to the Tropical Eastern Pacific, but the relative
contribution of different mechanisms is not fully understood (e.g., Dong et al., 2022, 2023; Ferreira et al., 2015;
Hartmann, 2022; Hwang et al., 2017; Kang, Shin, et al., 2023; Latif et al., 2013; Luongo et al., 2023; Meehl
et al., 2016; Roach et al., 2023; Schneider & Deser, 2018; J. H. L. Zhang et al., 2019, L. Zhang et al., 2019). At the
same time, parts of the Arctic have been warming ∼7x faster than the global mean over 1980–2022, which may
implicate the role of internally driven sea‐ice decline associated with atmospheric circulation anomalies (e.g., Day
et al., 2012; Ding et al., 2014; England et al., 2019; Isaksen et al., 2022; Roach & Blanchard‐Wriggles-
worth, 2022; Svendsen et al., 2021). Furthermore, many studies have indicated the potential connection between
Arctic warming and Northern Hemisphere continental cooling and the role of internal variability (Blackport
et al., 2019; Cohen et al., 2014; Fyfe, 2019; Kaufman et al., 2024; Palmer, 2014). Our study suggests that internal
variability has made an important contribution to observed Arctic warming, Eastern Pacific cooling, and Southern
Ocean cooling over 1980–2022.

Another notable result of this study is that the model‐simulated internal SAT trend pattern associated with the i‐
GCAW has remarkable similarity to the inferred internal trend pattern by taking the difference between the
observed SAT trend and the scaled MMM trend (c.f., Figures 2 and 3c). These features include many of the
aforementioned discrepancies between observations and CMIP6 simulated warming, namely a warming of the
Kara Sea concurrent with cooling of the Tropical Eastern Pacific and Southern Ocean. Importantly, all these
features are agreed upon in sign by more than 80% of the simulations considered. This study is consistent with
previous research that indicates that internal variability has a strong imprint in these regions individually (e.g.,
Watanabe et al., 2021; J. H. L. Zhang et al., 2019, L. Zhang et al., 2019) and that internal variability in these
regions may even be linked via atmospheric and oceanic teleconnections (Ding et al., 2014; Dong et al., 2022;
England et al., 2020). However, it is not necessary that all these features be connected through the same mode of
internal variability (Feng et al., 2021), as features present in the i‐GCAW may occur through separate modes of
internal variability which might, by chance, occur simultaneously. Instead, results here suggest that these
internally driven trend patterns are related to the rare manifestation of the i‐GCAW, which is responsible for the
inflation of AA over recent decades.

The spatial trend patterns associated with i‐GCAW using different thresholds and the difference trend pattern
(i.e., Figure 3c) are directly compared in Figure S5 in Supporting Information S1 using the same scale. While
the spatial pattern associated with the i‐GCAW (Figure 2) is consistent with the difference between obser-
vations and the forced response (Figure 3c), its magnitude is smaller, especially in the Tropical Eastern Pacific.
This discrepancy may be due to biases in the forced response of climate models (e.g., Seager et al., 2019),
biases in the historical forcing exerted to models (e.g., Fasullo et al., 2022), insufficient amplitude of multi-
decadal internal variability in models (e.g., Laepple et al., 2023), other components of internal variability
operating over 1980–2022 which are not captured by the i‐GCAW composite, and/or biases in the observations
(Karl et al., 2015). Here we note that compositing over the 25% of i‐GCAW cases with the strongest cooling in
the Tropical Eastern Pacific (Figure S5c in Supporting Information S1) can largely reconcile the magnitude of
cooling in this region (Figure S5c vs. Figure S5d in Supporting Information S1), suggesting another possibility,
that is, an extreme i‐GCAW case might have occurred for 1980–2022. Figure S5 in Supporting Information S1
indicates that the difference between the observations and MMM trend patterns may be largely explained by
internal variability.

This study does not preclude a role of biases in the forced response of models or errors in the historical forcings
(Dong et al., 2022; Hwang et al., 2024; Tseng et al., 2023; Wills et al., 2022). If part of this discrepancy between
Figures 2 and 3c (also see Figure S5 in Supporting Information S1) in the Tropical Eastern Pacific is caused by a
bias in the modeled forced response, then this would suggest that the correction of forced response bias has a
similar pattern to that of the internal variability in this region. This possibility might complicate efforts to separate
forced and unforced climate variability, because many disentanglement techniques are dependent on pattern
recognition methodologies (Po‐Chedley et al., 2022; Wills et al., 2020). This possibility, however, would not
affect our results because a forced response bias with an overestimation of warming in the Tropical Eastern
Pacific but an underestimation of warming in the Arctic at the same time is very unlikely. As previously stated, it
is also possible that models do not correctly represent the magnitude of internal variability at multi‐decadal
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timescales (Feng et al., 2021; Kravtsov et al., 2018; Laepple & Huybers, 2014; Laepple et al., 2023; Parsons
et al., 2017; Rugenstein et al., 2023; Stout et al., 2023). Similarly, extreme events such as the 2022 heatwave in
Antarctica continue to suggest that the observational record is too short in many instances to fully encapsulate the
range of internal variability, and that models may not always simulate the full extent of real‐world natural
variability (Blanchard‐Wrigglesworth et al., 2023; Lehner & Deser, 2023).

While more research is needed to fully attribute the causes of modeled‐versus‐observed differences in the
pattern of SAT change, the identified pattern of internal variability and its similarity to features in the
observational record suggests that the Earth did indeed experience an internally generated global cooling and
Arctic warming pattern from 1980 to 2022. Quantifying the contribution of internal variability to differences in
the simulated and observed pattern of SAT change is important because without knowing the relative
contribution of internal variability versus biases in the simulated forced response, we are faced with significant
uncertainties in decadal climate projections (Deser, 2020; Hu & Deser, 2013; Lehner et al., 2020; Wills
et al., 2022). This study shows that the internal trend pattern associated with the i‐GCAW can largely account
for the discrepancy between observed and CMIP6 simulated patterns of warming from 1980 to 2022.
Importantly, this internally generated trend pattern can be obtained by constraining simulations based only on
their internally generated global cooling and Arctic warming and calls for further studies focused on this rare
manifestation of internal variability.

Data Availability Statement
The data on which this article is based is the same as was used in S2023 (Sweeney, 2023).
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Table S1: Large ensembles used for analysis. Time period refers to the years of data used 
for the analysis. N trend maps is the total number of 43-year trend maps from each 
model. It is calculated by taking the total number of 43-year trends (e.g., from 1850-2050 
for CESM2 this would be 31) and multiplying this by the total number of ensemble 
members (e.g., for CESM2 this would be 50). N i-GCAW is the number of times for 
which a given model produces internally generated global-cooling and Arctic-warming 
greater than !!"#$%"	

#
 and !&'()*(	

#
 respectively (see text for details). i-GCAW Frequency 

shows the percentage of 43-year trend maps produced by the model that fall into this i-
GCAW category. 
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Fig. S1: (A) The number of the i-GCAW as a function of starting time for the 43-year 
trends from all large ensembles. Red bar highlights the 1980-2022 period. (B) Relative 
model contributions of all the 154 i-GCAW patterns found in the main text.  
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Fig. S2: The same as Fig. 1 but using CMIP6 Pre-Industrial (pi) Control runs. Models 
chosen for composite have at least 100 years of data, including CESM2, GISS-E2-1-G, 
GISS-E2-1-H, CanESM5, ACCESS-ESM1-5, MIROC6, IPSL-CM6A-LR, MPI-ESM1-
2-LR, MPI-ESM1-2-HR, and NorCPM1. The i-GCAW pattern occurs in 1.4% of the total 
piControl simulated 43-year period samples (33 of 2403) 
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Fig S3: The same as Fig. 2 but using CMIP6 Pre-Industrial (Pi) Control runs. 
 

 
 
 
Fig. S4: Comparison of SAT internal trend patterns from each of the four quadrants 
shown in Fig. 1 of the main text. Each map is found by taking averaging over the 
simulations which have global and Arctic internal variability trend magnitudes larger 
than  !!"#$%"	

#
 and !&'()*(	

#
 , respectively. 



 
 

6 
 

 

 
 

Fig. S5: Comparison of the internal trend pattern associated with the i-GCAW from Fig. 
2 (A) with that using the more stringent criterion of global and Arctic internal variability 
trend magnitudes stronger than $

%
𝜎&'()*' and 

$
%
𝜎+,-./-, respectively (B). Note that using 

this more stringent criterion reduces the number of samples to 32 from 154 when using 
the 0

#
𝜎&'()*' and 

0
#
𝜎+,-./-  criterion. The pattern associated with the i-GCAW cases using 

only the strongest 25% of Tropical Eastern Pacific cooling is also shown (C). The 
difference pattern between observations and the scaled MMM shown in Fig. 3C of the 
main text is included (D) using a common color bar scale for a comparison. 
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Fig. S6: 5-, 10-, 15-, and 20-year SAT trend patterns following identification of an i-
GCAW. None of the trends show 80% agreement in sign between different trajectories 
(i.e., no hatching on any plot). The number of samples used for each composite (N) is 
shown for each trend map. 
 
 
 
 
 
 

 



 
 

8 
 

 
 

Fig. S7: A recreation of Figure 4 from the main text using 43-year trends based on the 
trajectory analysis. Panel A shows 43-year trends of multidecadal variability shifted by 5, 
10, 15, and 20 years. The number of samples used for the composite (N) is shown for 
each trend map. Panel B shows the implications of these different configurations of 
internal variability on Arctic Amplification. The horizontal dashed line shows the 1980-
2022 estimated forced trend from Sweeney et al. (2023).  
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