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ABSTRACT

Recent data search platforms use ML task-based utility measures
rather than metadata-based keywords, to search large dataset cor-
pora. Requesters submit a training dataset, and these platforms
search for augmentations—join or union-compatible datasets—that,
when used to augment the requester’s dataset, most improve model
(e.g., linear regression) performance. Although effective, providers
that manage personally identifiable data demand differential pri-
vacy (DP) guarantees before granting these platforms data access.
Unfortunately, making data search differentially private is nontriv-
ial, as a single search can involve training and evaluating datasets
hundreds or thousands of times, quickly depleting privacy budgets.

We present Saibot, a differentially private data search platform
that employs Factorized Privacy Mechanism (FPM), a novel DP
mechanism, to calculate sufficient semi-ring statistics for ML over
different combinations of datasets. These statistics are privatized
once, and can be freely reused for the search. This allows Saibot to
scale to arbitrary numbers of datasets and requests, while minimiz-
ing the amount that DP noise affects search results. We optimize
the sensitivity of FPM for common augmentation operations, and
analyze its properties with respect to linear regression. Specifically,
we develop an unbiased estimator for many-to-many joins, prove
its bounds, and develop an optimization to redistribute DP noise to
minimize the impact on the model. Our evaluation on a real-world
dataset corpus of 329 datasets demonstrates that Saibot can return
augmentations that achieve model accuracy within 50—90% of non-
private search, while the leading alternative DP mechanisms (TPM,
APM, shuffling) are several orders of magnitude worse.
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1 INTRODUCTION

Augmenting training data with additional samples or features can
significantly enhance ML performance [50]. However, sourcing
such data in large corpora—public portals [10, 11], or enterprise
data warehouses—is a complex task. To address this, a new form
of data search platform [19, 34, 43, 45, 51] is emerging, wherein a
requester submits a search request comprising training and test-
ing datasets for augmentation. The platform then finds provider
datasets that augment the training dataset in a way that improves
utility (e.g., ML performance). This involves using a data discov-
ery tool [17, 29] to locate a set of union- or join-compatible tables
(augmentations), augmenting the training set with each candidate,
and then retraining and evaluating the model to assess its utility.
The augmentations are subsequently ranked by utility. Platforms
largely differ in the discovery tool procedure, the models they sup-
port, and how they accelerate model retraining and evaluation.
Recent works [18, 34, 51] suggest that using linear regression as a
model proxy provides a good balance of search quality and runtime.

Unfortunately, privacy is a major barrier to sharing for many
potential data providers and requesters with sensitive data (e.g.,
personally identifiable information (PII), and protected health in-
formation (PHI)). In these cases, providers are legally obligated to
prevent personal data leakage [6, 7, 9]. Rather than prohibit access
outright, differential privacy (DP) [22] supports data analysis on
sensitive data while bounding the degree of privacy loss based on
the budget € set by the data provider. Each query on the dataset adds
noise to the results, inversely proportional to the budget consumed,;
when € = 0, the dataset becomes inaccessible.

Ideally, a differentially private data search platform would let
providers and requesters set privacy budgets for their datasets, and
enforce these budgets as new datasets and requests arrive. More-
over, since the platform is often a third-party service that may not
be trusted by data providers (and the individuals they collect data
from), it should not have access to raw data. Unfortunately, inte-
grating DP with data search platforms is non-trivial. To illustrate,
Figure 1 shows where existing mechanisms would add noise in a
two-level data-sharing architecture that matches many real-world
settings. In this architecture, individuals (e.g., patients) generate
sensitive data aggregated by providers/requesters (e.g., hospitals),
and the search platform further aggregates their datasets.

Global DP (GDP) is a DP definition widely used by private DBM-
Ses [36, 40, 61], where the employed mechanisms add noise after
executing, e.g., a query over private data by a trusted central DBMS.
However, when applied to data search, previous GDP mechanisms
need to “split the budget” across every candidate augmentation on
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Figure 1: Summary of DP-mechanisms under various trust
models in a standard data sharing architecture: Provider-
s/requesters collect data from individuals, and the search
platform aggregates data from providers/requesters. At the
extremes, mechanisms for local models introduce noise to in-
dividual tuples, whereas naive mechanisms for global models
add noise to query results through a trusted 21d_Jevel aggre-
gator. Mechanisms for the shuffle model introduce a shuffler
at a point of aggregation (either at the 15/-level (Shuffle-1)
or the 2"-]evel (Shuf £1e-2)). In contrast, Saibot adds noise
to sufficient statistics computed by providers/requesters.

every request. The budget ends up being so small that the noise
drowns any signal in the data. Further, their trust model requires
the search platform, acting as the central aggregator, to be trusted,
which is challenging since it is a third-party service. To address this,
mechanisms for Local DP (LDP) (e.g., randomized response [20, 27])
eliminate the need for a trusted data curator by privatizing individ-
ual tuples. Nevertheless, the noise required for these mechanisms
can be quite large, potentially compromising data utility [60]. Shuf-
fling [26, 28] is a mechanism for an intermediate trust model that,
instead of relying on a trusted central aggregator, requires trust in
a shuffler. After privatizing tuples (using mechanisms for LDP), the
shuffler shuffles the primary keys of tuples during aggregation to
disassociate them from individuals; this "amplifies privacy” by al-
lowing each tuple to have less noise applied. Variation Shuffle-1
shuffles at the provider/requester level but requires considerable
noise for small datasets; Shuffle-2 shuffles within the search
platform but needs to trust the platform. An alternative to shuffling,
widely used by federated ML [54, 55, 60, 65], is to let providers/re-
questers iteratively compute and privatize model gradients locally,
and let an untrusted aggregator compute the final model. However,
these gradients are specific to a single augmentation’s model, so
the budget is still split across all candidate augmentations.

Is it possible for a DP search platform to return search results of
comparable quality to non-private search, and for the platform to
scale to many datasets and requests? We are motivated by the recent
data search platform Kitana [34], which uses semi-ring aggregation
to quickly evaluate a candidate augmentation’s utility on a linear
regression model without materializing the augmented table and
fully retraining it. These semi-rings can be computed for each
dataset offline, and Kitana only needs these semi-rings to evaluate
a candidate augmentation in ~1-5ms, independent of the dataset
size. Our main observation is that these precomputed semi-rings also
serve as ideal intermediates for DP, as they help directly estimate
model parameters, can be combined over joins and unions, and can
be freely reused once made private.
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This paper presents Saibot, a differentially private data search
platform for tabular datasets that scales to unlimited datasets and
requests, returns results comparable to non-private search, and
doesn’t need to be trusted. Data providers upload their privatized
datasets to the platform. When a requester submits a privatized
training dataset, the platform searches for the best combinations of
privatized datasets which, when augmented with the requester’s
dataset, most improve the accuracy of a linear regression model. For
the trust model, Saibot assumes that the 15?-level aggregators are
trusted (unlike the local model) but the 2"?-level aggregators (i.e.,
search platform) are not (unlike global model). In practice, regula-
tions [6-9] mandate that the 15*-level aggregators (e.g., healthcare
providers, schools) securely store individual data. Once Saibot iden-
tifies predictive augmentations using differentially private proxy
models (linear regression), it can directly return the private proxy
models, although they may not be complex enough for some re-
questers. To address this, Saibot can be integrated within a larger
differentially private federated ML system [55, 58, 60, 65] to train
more advanced models, like deep neural networks through differ-
entially private gradient descent, on the identified augmentations.

Our key innovation is a new DP mechanism called Factorized Pri-
vacy Mechanism (FPM), where each requester or provider computes
and privatizes sufficient statistics on their own datasets based on
their privacy requirements. These sufficient statistics provide high
utility, can be freely reused for ML over different augmentations,
and only require the search platform to store privatized datasets.
FPM satisfies GDP, but the randomized algorithm is applied by the
15! -level aggregators rather than the 2"¢-level ones. Note that FPM
has broader applications, not only for the data search but also for
more general differentially private factorized learning.

The main algorithmic challenge FPM solves is to design
privatized sufficient statistics for ML that are composable
to support various join and union augmentations. Previous
works have applied DP to sufficient statistics for privatized linear
regression [59] and GLM [35, 41], but these sufficient statistics can
be used for only a single dataset. Our key insight is to design these
sufficient statistics as a semi-ring [30], which includes addition and
multiplication operators for union and join. Although sufficient
semi-ring statistics have been utilized for ML [52, 53] over joins,
we are the first to explore their application in a DP setting. The
results of our real-world experiments indicate that FPM is capable
of identifying augmentations that achieve an average r2 score of
~50—90% compared to non-private searches. Additionally, FPM can
support a large data corpus and unlimited requests. In contrast, the
other baseline mechanisms achieve r2 scores <0.02.

To summarize, our contributions are as follows:

e We propose FPM, a novel DP mechanism that privatizes reusable
and composable monomials for join/aggregation augmentations.
We integrate FPM into Saibot to achieve scalability for large
volumes of datasets and search requests with high utility.

e We optimize FPM based on the parity of the statistics order. For
the special case of tables containing a single feature, we reduce
the expected error by a further factor of V2.

e We provide a deep analysis of FPM to linear regression models.
Specifically, we study the statistical bias introduced in many-to-
many joins, and design an unbiased estimator to address this.
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e We design an optimization that carefully redistributes noise
across sufficient statistics to improve linear regression accuracy.

e We thoroughly evaluate FPM across a real-world data corpus
with >300 datasets. Our results show that FPM can accurately
identify augmentations that achieve r2 scores close to (~50-90%)
those of a non-private search. We further use ablation studies to
validate our theoretical analyses and study the sensitivity.

Note: The paper is self-contained. References to appendices can be
disregarded or located in the technical report [12].

2 PRIVATE TASK-BASED DATA SEARCH

In this section, we formalize the problem of task-based private data
search. We start with an introduction of the non-private problem
and current solutions. We then provide the primer of differential
privacy, and present the differentially private data search problem.

2.1 Non-Private Task-based Data Search

We provide the background of previous task-based data search prob-
lem [19, 43, 45, 51], which is non-private, and previous solutions.

Data Model. We follow the standard relational data model. Rela-
tions are denoted as R, attributes as A, and domains as dom(A). R’s
schema is represented by Sg = [Ay1, - - -, Ap], with tuples labeled as
t and attribute values as t[A]. For clarity, the schema is included in
square brackets following the relation in examples R[A1, - -+, An].
The domain of a relation is the Cartesian product of attribute do-
mains: dom(R) = dom(A;) X --- X dom(A,). We consider each
dataset as a relational table and use these terms interchangeably.

Machine Learning. A ML task M, like linear or logistic regression,
aims to fit a good model based on feature-target attribute pairs.
A training dataset R;,qin comprises features X C S and a target
attribute y € Sg. The task M has a training function M.Train(-)
that inputs Ryrgin and outputs a model m that optimally predicts
y from X, even for unseen X, y pairs. To assess m, M uses a func-
tion M.Evaluate(-) which inputs m and a testing dataset Ryest, and
outputs the model’s performance on Ryes;, typically measured by
accuracy, which is to be maximized.

Task-based Data Search. Given a data corpus with datasets from
different providers, requesters send a request with datasets to aug-
ment and a task (e.g., ML). Task-based data search aims to identify a
set of augmentable (join/union) datasets that maximize task utility.

To formalize this, let R = {Ry, Ry, ...} be a data corpus with a set
of relations, with each from some provider. Requester sends a re-
quest with training and testing dataset (Ryrqin, Rresr), and chooses
a model M. Requester’s goal is to train model M on R;yqin and
maximize its performance on Ryes, which we call the task’s utility.

To improve the utility, the requester aims to find a set of provider
datasets in R that can be used to augment their data and enhance
model performance. The function Discover (R, augType) is used to
find datasets in the data corpus R that can be joined or unioned with
R, given augType € {4, U}. The requester wants to try different
combinations of subsets of these datasets to augment! and find the
combination that maximizes utility.

IFor simplicity, we consider datasets that can be directly joined or unioned with
requester R;rqin. The search space could be further expanded by, e.g., 15¢ joining
provider datasets; our solution can be easily adapted to this larger search space.

Putting everything together, the problem can be formulated as:

PROBLEM 1 (TASK-BASED DATA SEARCH.). Forrequest (Rirain, Reest, M),

find the set of datasets R}, R}, C R from data corpus such that

RU.R;, = argmax M.Evaluate(m, Reest Aug)
RU:RM

s.t. Ry C Discover(R,U), Ry C Discover(R, »),
RtrainAug = (Rtrain UR, €Ry R1) MR, eR,, R2
RtestAug = Rtest MReR,, R
m = M-Train(RtrainAug)

Solutions. Current task-based data search platforms [19, 43, 45, 51]
follow the architecture illustrated in black in Figure 2. Offline, when
providers upload raw datasets to Data storage, the platform com-
putes minhashes for data discovery [17, 29], and sketches to acceler-
ate retraining [19, 34, 45, 51]. Online, the platform solves Problem 1
for each request (R¢rqin, Reest, M). First, data discovery [17, 29] uses
the minhashes or sketches to return a set of candidate datasets. Data
search then identifies a subset that maximizes task utility. The brute-
force search evaluates all possible combinations and can be expen-
sive due to retraining costs and the large set of combinations, so ap-
proaches use various heuristics and greedy algorithms [19, 43, 51].

Our work primarily builds on Kitana [34], which follows the
architecture in Figure 2 and uses specialized sketches for factorized
ML. factorized ML trains models over joins without materializing
them, which speeds up model retraining and evaluation after any
candidate augmentation. This allows Kitana to execute task-based
searches much faster, while maintaining competitive task utility.
Our insight is that these sketches boost performance and act as the
ideal sufficient statistics for DP, as detailed in Section 3.2.

2.2 Differential Privacy Primer

Before delving into our solution to differentially private dataset
search, we first introduce differential privacy (DP). We focus on the
Gaussian mechanism, a common, straightforward technique offer-
ing comparable performance and guarantee with other baselines
(e.g., it offers the same approximate DP by shuffling [26]). In prac-
tice, our solution can also support pure DP by Laplace mechanism
(Section 5.2), where shuffling falls short.

Differential Privacy. DP [22] is a technique used to protect recon-
struction, membership, and inference attacks [24] by bounding the
information leakage from individual records. DP guarantees that
the probability that an algorithm will produce the same output on
two datasets that differ by only one record is bounded. Formally:

DEFINITION 1 ((€,8) —DP). Let f be a randomized algorithm that
takes a relation R as input. f is (¢, §) — DP if, for all relations Ry, Ry
that differ by adding or removing a row, and for every set S of outputs
from f, the following holds: Pr[f(Ry) € S] < e*Pr[f(R) € S] + 6,
where € and § are non-negative real numbers (called privacy budget). €
controls the level of privacy, and § controls the level of approximation.
For the special case when § = 0, (€,0) — DP is also called pure DP.

DP definitions can be global (GDP) or local (LDP) depending
on inputs: GDP applies to randomized algorithms that process an
entire relation (as an aggregator) described above. In contrast, LDP



guarantees the differential privacy of algorithms on individual tu-

ples (or relations with a cardinality of 1) before transmitting tuples

to any aggregator. As a result, LDP algorithms can function under a

weaker trust model, where no aggregator is trusted. However, this

often leads to increased noise levels and reduced data utility [64].
There are two important theorems of DP:

THEOREM 1 (ROBUSTNESS TO POST-PROCESSING). Let f be a ran-
domized algorithm that provides (€, ) — DP. Let g be an arbitrary
function. Then, the composition g o f provides (€,8) — DP.

THEOREM 2 (SEQUENTIAL COMPOSITION). Let fi,..., fn be a se-
quence of independent algorithms that provide (€1, 1), . . ., (€n, On) —
DP, respectively. Then, the algorithm that applies each of them in
sequence, i.e., f © fu—1---0 fi, is (X1, &, X1, 8;) — DP.

To ensure (€, 5) — DP when Q queries need to be executed, the
privacy budget (e, &) can be split among the queries using sequential
composition, such as allocating (e/Q, /Q) for each query. This
work employs (basic) sequential composition for simplicity, but it
could be further optimized by advanced composition [23].
Gaussian Mechanism. The Gaussian mechanism [21] adds noise
to a query function to satisfy (e, §)-differential privacy. Formally:

THEOREM 3 (GAUSSIAN MECHANISM.). Given €,6 € (0,1], let
query q be a function that takes R as input and outputs a vector of
real numbers. The Gaussian mechanism independently adds random
noise to each output to satisfy (e, §)-differential privacy: ¢’ (R) =
q(R) + N(0,02), where N(0,0?) denotes a Gaussian distribution
with mean 0 and standard deviation o = /2In(1.25/8)Ag/e. Aq is
the ¢y -sensitivity of q defined as: for all possible neighbouring relations
R1, Rz, Ag is the maximum £, distance of q outputs [|q(R1) —q(R2)||2.

Different definitions exist for neighbouring relations (and can
be extended to multi-relations). We adopt bounded DP [15], where
neighbouring relations Ry, Ry have identical row numbers, but one
row’s data differ; our system can be readily adapted for other defi-
nitions (e.g., unbounded DP where row numbers differ).

2.3 Private Task-based Data Search

We first lay out the privacy requirements based on the criteria
(Section 1) and motivated by real-world use cases. Then, we de-
fine the differentially private data search problem, and discuss the
challenges and the intuition for solutions.

Trust Model. We adopt a standard two-level aggregator setting
illustrated in Figure 3: the 1%?-level aggregators are providers/re-
questers (e.g., hospitals, schools), and the 2"9-level aggregator is
the search platform. Individuals share data with their direct 1%*-
level aggregator, who is trusted (e.g., a hospital collects data from
patients and stores them securely). However, they don’t trust other
non-direct 15¢-level aggregators or the 2"?-level aggregators (e.g.,
patients don’t trust other hospitals and the search platform).

Our trust model sits between the global model (by GDP) and local
model (by LDP): Previous global model [36, 40, 61] assumes that the
central data curator (2"?-level aggregator) is trusted. On the con-
trary, the local model assumes no trusted aggregators. In contrast
to the shuffle model [26, 28] which requires a trusted shuffler at ei-
ther 15/ <(Shuffle—1, similar to ours) or 2"@-level (Shuffle-2,
similar to the global model), we don’t rely on any trusted shuffler.
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Figure 2: Saibot architecture. Previous data search platforms
(black) store raw datasets in data storage, use data discovery
to identify augmentable datasets, and search the datasets
for task improvement. To ensure privacy, Saibot additionally
applies FPM (red) to compute sufficient semi-ring statistics,
that are aggregated (y) and privatized (~) before being sent
to the search platform. These statistics can support join and
union queries to train and evaluate ML as post-processing,.
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Figure 3: Illustration of Saibot trust model, where individuals
only trust the direct 15’-level aggregator, and not any others.

In practice, we believe our trust model fits the structure of many
organizations, where individuals solely trust their immediate data
aggregator (like a hospital or service provider), but do not trust
any other aggregators. Further, regulatory requirements [6, 8] place
privacy protection requirements on the 15?-level aggregator.

Privacy Requirement. Providers and requesters hope to disclose
datasets to the malicious search platform for augmentation. Each
provider or requester sets a DP budget (€, 8) for each of their
datasets, which is independent of other datasets and the search
platform. As per previous works [46, 62], we assume that each
individual contributes to exactly one row of one dataset. In line
with prior studies [36, 40, 61], we assume that the schemas and the
domains of join keys (as group-by attributes) are public.

The differentially private task-based data search problem is
then defined as Problem 1, adhering to the above trust model and
satisfying the privacy requirements.

ExXAMPLE 1. Fitbit [47], a mobile health app, gathers health data
from individuals and is trusted by individuals to handle sensitive infor-
mation responsibly. To enhance the accuracy of its ML recommender,
Fitbit plans to share data with a search platform (as requesters) but
also wants to protect sensitive health data. Upon obtaining consent
from individuals, Fitbit employs DP to privatize each dataset and uses
Saibot to search for valuable augmentations.

Private task-based data search is particularly challenging be-
cause, even for a single request, it requires model retraining over
a combinatorially large space of augmented datasets created by
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joining and unioning candidate datasets. How to avoid exhaust-
ing the requester’s and the providers’ privacy budgets? How can
massive datasets and requests be scaled without degrading search
quality? Is there a one-time differentially private, yet universally
useful intermediate representation [16, 31]?

We draw inspiration from Kitana [34] which uses factorized
linear regression to expedite data search. Kitana computes the
gram matrix semi-ring (Section 3.1) for each dataset, allowing fast
join/union with a candidate dataset and evaluation of the linear
regression accuracy. While semi-rings were initially used for per-
formance, they also make an ideal intermediate representation for
DP. Thus, in the next section, we design FPM to privatize sufficient
semi-ring statistics to support private ML over joins and unions.

3 FACTORIZED PRIVACY MECHANISM

In this section, we introduce Factorized Privacy Mechanism (FPM),
which privatizes sufficient semi-ring statistics. We start with the
factorized ML background, extend it to monomial semi-ring, present
our main mechanism algorithms, and analyze its errors.

3.1 Factorized Machine Learning Primer

We start with the fundamental concepts of annotated relations and
aggregation pushdown, then introduce factorized ML [13, 48].
Annotated Relations. The annotated relational model [30] maps
t € R to a commutative semi-ring (D, +, X, 0, 1), where D is a set,
+ and X are commutative binary operators closed over D, and 0/1
are zero/unit elements. An annotation for ¢t € R is denoted as R(t).
Semi-ring annotation expresses various aggregations. For example,
the natural numbers semi-ring expresses count aggregations.
Semi-ring Aggregation Query. Semi-ring aggregation queries can
now be reformulated using annotated relations by translating group-
by, union, and join operations into addition (+) and multiplication
(X) operations over the semi-ring annotations, respectively.

(yaR)(t) = Y {R(t1)| t1 € Rt = 7 (11)}
(R1 U R2)(2) = Ry (2) + Ra(1)
(Ry b Re) (1) = Ry (s, (1)) X R (s, (1))
(1) The annotation for group-by yaR is the sum of the annotations
within the group. (2) The annotation for union R; U Ry is the sum

of annotations in Ry and Ry. (3) The annotation for join Ry » Ry is
the product of annotations from contributing tuples in Ry and R».

Aggregation Pushdown. The optimization of factorized ML [13,
53] involves the distribution of aggregations y (additions) through

joins b (multiplications). For example, consider the query yp (R; [A, B]

Ry[B,C] » R3[C, D]). Rather than applying y on the join (which is
O(n3) where n is relation size), y can be performed on R before b«
with S, and this process can be repeated two more times (in O(n)):

yp(rc(yB(Ri[A, B]) > Ra[B, C]) > R3[C, D)
The associativity of additions can be similarly exploited for union:
YA(Ri[A, Bl U Rz[A, B]) = ya(Ri[A, B]) Uya(Rz[A, B])

Factorized Linear Regression. The fundamental optimization of
factorized ML is aggregation pushdown, but different semi-rings are
used for different models. We use linear regression as an example.

Annotation
c:8 Q: B C D

s B C D B [46 52 54
[18 22 24] © 66 66
D

80

I
Y((R1U Rp) >4 Ry)

Annotation
D Q

D
[e] D[20]

ay 2 3 ay
[afa]a] [af4]
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Figure 4: Optimized query plan of y((R; U Ry) x4 R3) for
factorized ML. Aggregations are pushed down before joins.
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Figure 5: Aggregated monomials and statistics.

We start with an overview of linear regression and its sufficient
statistics. Given the training data X € R™*™ and the target variable
y € R™! the goal is to find parameters § € R™*! that minimize the
square loss 8* = argming|ly—X®0)||?, yielding a closed-form solution
0*=(XTX)~1XTy. Including the target variable as a special feature
and appending it to X for X’=[X | y], we find that X'TX’eR™ *™",
where m” = m+ 1, is the core sufficient statistics to compute, where
each cell represents the sum of products between feature pairs.

We can compute X’TX’ over the join Ry = Ry 54 ... = Ry, by the
covariance matrix semi-ring [53]. For m’ features, the semi-ring is
defined as a triple (c,s,Q) € (Z, R™  R™'Xm") which contains the
count, sums, and sums of pairwise products respectively. The zero
and one elements are 0 = (0, 0™, 0™ XM’y and 1 = (1,0, 0™ XM’
+ and X between two annotations a and b are defined as:

a+b=(cqg+cp,sa+5sp Qa+9Qp)
aXxXb=(cqcp,cpSa + caSp, cpQa + caQp + sasz + sbsaT)

Then, computing X'TX’ is reduced to executing y(R; » ... = Ry),
where aggregation can be pushed down as discussed before.

ExampLE 2. Consider Ry, Ry, R3 in Figure 4. We aim to train linear
regression on (R{UR2)4R3 using D as the feature and C as the target
variable. The naive solution is to first materialize the union and join
results (Figure 5) and then compute X'TX’. Using factorized linear
regression, we can optimize the query plan (Figure 4) by pushing
down aggregations: y ((ya(R1)Uya(R2))>4 ya(R3)). This approach



yields the same result as the naive solution, but avoids the costly
materialization. We use the aggregates to fit the linear regression:

vD* yD|7'[zcp] _[s0 24]7" |66
D Y1 C| |24 8 22
After obtaining the model parameters 0, the model performance

can also be evaluated. For square loss, ) (y — xT9)? = 2P -
20Txy + 0TxxT0) = yTy — 20" XTy + 6TXTX0.

0=X"X)""'xTy= l

3.2 Monomial Semi-ring

This section introduces sufficient statistics as vectors of monoids
and extends it with semi-ring operations + and X. This helps bridge
ideas from two communities—semi-rings from the factorized ML
literature that train models over joins and unions, but primarily
focused on non-private linear regression, and privatized sufficient
statistics from the ML literature [35, 41, 59] that approximate gen-
eralized linear models, but do not support joins and unions. We are
the first to explicitly extend semi-ring from gram matrix (linear
regression) to higher order monomial (generalized linear models).
This section focuses on the semi-ring design of monomials to sup-
port join and union operations without DP. In the next section, we
introduce FPM, a mechanism to privatize these monomials for DP.

We first define the k-order monomial [35] in sufficient statistics:

DEFINITION 2 (k-ORDER MONOMIAL). Given n random variables

fis f2s s fu, the k-order monomials are of the form p = flk1 Zkz...fnk",

where ki, k..., kn are n non-negative integers s.t. Z?:l ki =k.

The core statistics for ML are the expected value of each mono-
mial E[p]. For example, 1-order monomials estimate means, 1, 2-
order monomials estimate covariance (core sufficient statistics for
linear regression), and 1, 2, 3-order monomials estimate skewness.
Moreover, a generalized linear model can be approximated by high-
order monomials using Taylor series expansions [35].

ExampLE 3. Consider the relation in Figure 5 (left) and random
variables B,C,D. The 1-order monomials are B,C, D, the 2-order
monomials are B2, BC,C2, BD,CD, D2, and the 3-order monomials
are B3, B2C, BD, BC2%, BCD, .... The statistics (right) are the expected
monomials when the relation is the population, and can be derived
from the aggregated monomials (middle). The 1,2-order statistics are
the sufficient statistics for linear regression training (Example 2).

Instead of computing statistics over join and union through
costly materialization and subsequent aggregation, factorized lin-
ear regression utilizes semi-ring operators for + and X to push down
the aggregation of 1,2-order statistics. We extend this concept by
defining operators for a k-order monomial semi-ring, thus general-
izing factorized linear regression (2-order monomial semi-ring).

DEFINITION 3 (k-ORDER MONOMIAL SEMI-RING). Given m features
fis f2s s fn, the k-order monomial semi-ring has domain of a vector

with size 11__”;1 for m>2, and 1+k for m=1. The domain breaks into

k+1 subvectors [so, $1, ..., Sk | wheres; is a vector of size m?. Then, given
P _[.a a a _r1.b b b )
two semi-ring element a = [so, st ...,sk] and b = [sO,sl, . sk], let:

a+b=[s§ +sé’,sf +si’, ...,sl‘z +sZ]
1 k
axb=[s§® 33,23? ® sf_i, Zsla ® si_i]
i=0 i=0
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Figure 6: Aggregation of 3-order monomial semi-ring over
join: y(R; [A] » Rz2[B]).Each row is one tuple, and we show the
vector representation for the first tuple in R;. Dictionary rep-
resentation removes redundancy and sparsity. Dotted lines
map the contributing components to aggregated results.

where ® : RP X R — RPY is the tensor product defined as: for
a = [ay1,a,...,ap| andb = [by, by, ..., bql, tensor product computes
the pairwise producta ® b = [a1by, a1 by, ..., apbl, apbz, apbq].

The zero element is a vector of all zeroes, and the one element is a
vector with non-zero sy = [1], but the rest as all zeroes.

Intuitively, each subvector sZ holds the k-order monomials with

a size m¥, as there are m¥ possible permutations with repetition. In

order to compute statistics using a k-order monomial semi-ring, we
annotate R by assigning to each tuple ¢ its monomials (non-existing
features are considered to be all zeros). Note that, while this vector
representation provides a straightforward way to define semi-rings
for arbitrary orders, it is inherently inefficient and can be optimized
by the dictionary representation discussed next.

Dictionary Representation. Vector representation has redundan-
cies (e.g., fifz = f2f1) and sparsity (nonexistent features are zeros).
Dictionary representations [39] help reduce redundancy: monomi-
als serve as keys to deduplicate, and monomials with zeros are not
materialized. We next provide an example of semi-ring operations
using the dictionary representation for join-aggregation:

ExampLE 4. Consider two relations of a single feature Ry [A] =
[2,3] and Ry[B] = [3,4], and the aggregation query y(Ry = Ry)
for 3-order monomial semi-ring. Figure 6 illustrates the annotated
relations and the query processing. To start, the aggregations are
pushed down by summing each monomial. Next, the monomials are
combined according to the multiplication operator for join.

Assuming the join result, Ry, as the population, we can use
the aggregated monomials to compute statistics (i.e., the expected
monomials). Let s=y(Rw) be the aggregated monomial semi-ring.
Then, for monomial p: E[p] = s[p]/s[c], where 4 is the count (0-
order monomial). For example, in Figure 6, E|AB]=s[AB] /s[c]=35/4
=8.75. The aggregated monomials comprise count and sum aggre-
gations over the base tables, which can be efficiently computed by
requesters/providers using SQL queries. Further, they serve as an
ideal intermediate for DP due to their reusability, as discussed next.

3.3 FPM Mechanism

In this section, we present the Factorized Privacy Mechanism (FPM)
which applies the Gaussian mechanism to the aggregated mono-
mials discussed in the previous section to support differentially
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private data search (Section 2.3) while maintaining high utility. The
primary algorithmic challenge FPM addresses is designing suffi-
cient statistics that are composable (through semi-ring operators)
and reusable (as post-processing without additional privacy cost)
to support ML across various join and union augmentations.

We make the following simplifications: (1). Features consist only
of numerical attributes, and join keys consist only of categorical at-
tributes. Section 3.5 describes preprocessing to support categorical
features. (2). Group-by operator y has been extended to annotate
group-by keys without tuples with zero elements (group-by at-
tribute domains are assumed public in Section 2.3). (3). Datasets
are preprocessed so that the £, norm of the features in each tuple is
bounded by a constant value B, following previous works [25, 59].
Algorithms. The FPM mechanism, detailed in Algorithm 1, is ap-
plied locally by either the requester or provider before dataset
upload to the search platform. It uses as inputs: (1) the relation R to
be privatized (2) the join key A%, which = null if R is only for union,
(3) the order of monomials, k, based on the model to support, and
(4) the DP budget (¢, d) for R. FPM computes locally aggregated
monomials y(R) and applies the Gaussian mechanism to these, with
sensitivity optimized based on order parity and feature count (line
2, 7): For even-order monomials, sensitivity is reduced by V2, and
if there’s only one feature, sensitivity is reduced by another V2.

THEOREM 4. FPM is (¢€,0) — DP.

PRrROOF SKETCH. FPM applies the Gaussian mechanism [21] to
the aggregated monomials for (¢, §) — DP. Therefore, we only need
to show the correctness of A. We present simple cases illustrating
proof concepts for the union and join of 1 feature (with lower A),
and the union of 2 features with 1/2-order monomial semiring.
These cases are meant to illustrate the key intuitions; full proofs
and generalizations are available in Appendix A due to space limits.
o (1 feature, Union, any order) For union, count (0-order monomial)
remains unchanged as we consider bounded DP, where the neigh-
bour relation has one tuple modified (instead of removed/added). Let
the modified feature value be a — a’ where both a and a” have a do-
main of [—B, B]. Then, for the i-th monomial, the squared difference
is (a' —a’")?. When i is odd, @’ € [-B!, B'], and (a' —a’?)? < (2B})2.
When i is even, a! € [0, B!], and (a! — a’})? < (B!)2.

o(1 feature, Join, any order) For join, the query also groups results
by join key A. This can be considered as a histogram [63], where
each bin is a join key, and the value is the k-order monomial semi-
ring. The neighbouring relation has two cases: the modified tuple
has changed the join key or not. If the join key doesn’t change,
this is the same as the union case. If the join key changes, there
are two bins with a maximum square difference of Zf:o B (note
that, unlike the union, the counts change). Thus, the sensitivity is

bounded by /2 Zi.‘:() B2, Finally, we take the maximum.
o (2 features, Union, 1-order) Let the modified feature value be (a, b) —

(a’,b") where both a? + b2 and a’? + b’? are < B%. Then, consider
the 1-order monomials (a, b), (a’, b’). The squared difference is:

(a-=d)?+ (b -b)% <(2a® +24'%) + (2b° + 2b"%) = 4B?
2 A could be composite. To support multiple join keys, the DP budget can be split among

different key combinations. Additionally, optimization techniques can be applied to
take advantage of the correlations between join keys [49].

The sensitivities for higher odd orders are similar.
o (2 features, Union, 2-order) For even-orders, we can obtain a tighter
bound. Consider the 2-order monomials (a2, ab, b2), (a’?, a’b’, b’?).
The squared difference is:

(a® = d'*)® + (ab - a'b')* + (b* - b'%)?
<(@®-d??%+2(ab-a'b)? + (B> - b'?)?
=(a*-2d%a"*+a’")+(2a°b* —4aba’ b’ +2a"*b"*) +(b* —2b°b"* +b'*)
=(@®+ b))%+ (@ +b)% = 2(ad’ +bb')? < B*+B*—0=2B*

For higher even orders, we can similarly amplify the monomials
by the binomial coefficients (second line) to find a non-negative
red term for even-order monomials, resulting in a tighter bound.
Extending to joins follows a similar approach as the single feature
case, where we consider group-by queries as histograms. O

Algorithm 1: FPM mechanism
inputs :Relation R, Join Key A, Order k, DP budget (¢, )
output:Privatized Aggregated Relation R

1 if A = null (Union Only) then

2 A= \/Zle(ifi odd: 4, elif #fea=1: 1, else: 2) - B%;

3 | o,R=+21n(1.25/8)A/e, y(R);

4 // add i.i.d. noises to each 1 — k order monomial s;

5 R ={s: R[s] + e~N (0, ¢) for 1 — k monomial s};

¢ else

7 A:max(\/Z{;l (if i odd: 4, elif #fea=1: 1, else: 2) - B2, \/2 Zf:o B2,

s | o,R=+/2In(1.25/5)A/e ya(R);

9 foreach a € dom(A) do

10 L // add i.i.d. noises to each 0 — k order monomial s;

R(a)={s:R(a)[s]+e~N(0, %) for 0 — k monomial s};

11

12 return R;

3.4 Comparison with Other Mechanisms

We next analyze the error of FPM in estimating the statistics s
(expected values of monomials). Generally, the expected errors of s
are correlated with the error of the target model parameter  and
accuracy; we will study the confidence bound for linear regression
parameter in the next section, where the s error is the key factor.

Setting. We consider a data corpus with size ncorp (defined as
the number of provider datasets) and has received nyeq requests.
To simplify the analysis, we assume that: (1) the search only uses
union operations (and we will discuss the extension to join). (2)
each dataset has one feature, n tuples, and a DP budget of (e, ).
The search platform evaluates all possible augmentations, each
corresponding to a unique combination of provider datasets.
Metrics. The goal is to evaluate, for each augmentation, the ex-
pected £, error of the privatized set of monomials §: E[||s — §]|2].
Mechanisms. We compare FPM with standard DP mechanisms
used in various existing trust models:
e For Saibot’s trust model (Section 2.3), FPM (Algorithm 1) pri-
vatizes local aggregates independently for each dataset, and
combines the aggregates with factorized ML.



e For the local model, the Per-tuple Privacy Mechanism (TPM)>
applies Algorithm 1 to privatize each tuple [64].

e For the global model, the Aggregate Privacy Mechanism (APM)*
first computes the union result Ry after augmentation, and then
applies Algorithm 1 to y(Ry) [59]. To ensure (€, §) — DP for all
nreq(z"mfﬁ_l — 1) augmentations, the DP budget has to be split.

o For the shuffle model, shuffling [26] privatizes each tuple, similar
to TPM, but applies Laplace mechanism with the amplified pri-
vacy budget. These tuples are shuffled either at the 15%- (SF-1)
or 2" _Jevel (SF-2); akin to APM, SF-2 requires budget splits.

PROPOSITION 5. For the estimation of each augmentation (as-
suming that the number of augmented datasets and the order of s
are small constants), FPM/SF~1 has expected f» error ofé(A/ne),
while TPM has an error ofé(A/\/ﬁe) and APM/SF-2 has an error of
é(nrqu"w’P A/ne), where O(-) hides at most a logarithmic term.

The proof is in Appendix B.

Remark. Proposition 5 highlights prior mechanisms’ limitations:
APM/SF -2 are competitive only for small corpora and quickly ex-
haust budget for larger requests/corpus sizes due to budget split for
all possible augmentations, and require trust in centralized aggre-
gators/shufflers. TPM adds excessive noise to each tuple, requiring
quadratically more tuples to achieve the same level of error as FPM.
Although SF-1 can theoretically match FPM’s complexity with
privacy amplification, it’s significant only for large numbers of
tuples. For instance, given e=1 and §=107°, ¢ is amplified when n
reaches ~650 [26, 28]. However, small n needs amplification most,
where SF-1 provides much larger errors than FPM (Section 5.2).

3.5 Differentially Private Data Search Platform

In this section, we discuss Saibot, a data search platform that inte-
grates FPM to ensure differential privacy.

Provider. The architecture of the Saibot, which uses FPM for DP,
is illustrated in Figure 2. For each dataset R data provider owns,
the supported operation (= /U’ or U-only) is decided. If join is
supported, the join key A must also be specified. FPMis then applied
locally to R to privatize the sufficient statistics yﬁ), which are then
uploaded to Saibot. As Saibot is not trusted, data storage only stores
privatized statistics, but not raw data. All operations over y,(‘l?) are
post-processing without additional DP costs.

Requester. The requester has model type M and Ryy4in, and wants
to improve accuracy on Ryess. The requester computes and submits
to Saibot the privatized sufficient statistics y(Rsrqgin) and y(Rrest)-
Data discovery returns a set of joinable or unionable relations R from
data storage. Then, Data search applies greedy algorithm (following
Kitana [34]): in each iteration, it evaluates each candidate and adds
the one that most improves the model accuracy. Saibot is agnostic
to the search algorithm, and others [19, 56] can also be used.
Data Discovery. Previous data discovery systems [17, 29] leverage
MinHash sketches, column type and data distribution statistics;
Saibot supports all of them. Specifically, for categorical attributes,

3An alternative is to apply Gaussian mechanism to raw tuples and then compute
monomial semi-ring; this, however, results in an even larger error.

“4There are other alternatives like perturbing objectives and gradients; however they
are similarly limited by the combinatorially large number of models to train.

5Any dataset supports join also supports union by aggregating out the join key.
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we utilize minhash sketches, computed from public domains, to
measure set similarity. For numerical attributes, we rely on public
schemas for column names and types.

Preprocessing. Before applying FPM, requesters and providers
can locally preprocess datasets to enhance utility and robustness.
For instance, datasets may have categorical features not directly
supported by the proxy model (linear regression). Standard one-hot
encoding can be applied, treating the encoded features as numeri-
cal for privatization by FPM. Saibot also applies two steps to boost
DP robustness. First, it removes outliers (>1.5 std from the mean),
which typically improves model performance and reduces the tuple
£, norms, enhancing DP noise robustness [42]. Second, all DP mech-
anisms (including ours) degrade with increasing dimensionality due
to the increased tuple #» norms. Thus, Saibot applies dimensionality
reduction [44] to retain the top K principal components (K=1 works
best in our experiments), and rescales tuples to bound max £, norm
<B. These steps are applied to all datasets and DP baselines in our
real-world experiments (Section 5.1).

Supporting Varied Privacy Needs. A unique benefit of Saibot’s
design is that it can adapt to different privacy needs. In cases
where pure DP (§=0) is required, FPM can be modified to apply
Laplace mechanisms [22]. In situations where individuals don’t
trust providers or requesters, FPM can be reduced to LPM to priva-
tize individual tuples. Conversely, shuffling only guarantees approx-
imate DP and GPM always requires a trusted centralized aggregator.
ML training after data search. After Saibot finds predictive aug-
mentations using a differentially private proxy model (linear regres-
sion), the model could be directly returned to requesters. However,
requesters may need more complex model M, and the training shall
also satisfy DP. To achieve this, Saibot can be integrated within a
larger differentially private federated ML system [55, 58, 60, 65],
where Saibot first locates augmentations, and then the ML systems
use the augmented dataset to train sophisticated models, such as
deep neural networks, via differentially private gradient descent.

Scope. While Saibot can employ FPM to support a wide range of
models [52] and approximate GLM [41], this paper focuses on linear
regression [53] because it’s widely used and is adopted by previous
data search [18, 34, 51]. Next, we dive deep into linear regression
to analyze the task utility and propose further optimizations.

4 DIVING DEEP INTO LINEAR REGRESSION

This section examines the ML task utility FPM provides and sug-
gests optimizations for linear regression. We start with the assump-
tion of linear regression on many-to-many join (as opposed to
one-to-one [32, 58]), which is challenging due to unexpected dupli-
cation and independence. We then propose an unbiased estimator.
Next, we explore the confidence bounds for the linear regression
parameters and propose optimizations to tighten the bound further.

4.1 Linear Regression on Many-to-Many Join

Linear regression assumes a noisy linear relationship between the
features and target variable: y = Xf + e, where e is the error
term. This is consistent with our assumption so far if Ry = Ry
... Ry is the population, and let us use the monomial semi-ring
to compute the expected s. However, when many-to-many joins
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are involved, Ry often doesn’t represent the population as joins
generate Cartesian products for each matching key. This leads
to (1) duplicated tuples (the same y values are repeated) and (2)
unexpected independence between features from different relations
with the same join key, leading to biased estimation.

Our analysis focuses on an easy-to-explain case inspired by verti-
cal federated ML [32, 58], where we want to train linear regression
over relation R. However, R is not directly observable, and each
party can only access a projection 7 (R). Multiple 7 (R) may have
many-to-many relationships on the common attribute (join key)
instead of the one-to-one relationships studied by federated ML.
The objective is to train linear regression on R collectively.

Unbiased Estimator. Given R of cardinality n, suppose there are
two parties holding different projections 7, (R) and 7f, (R), and the
goal is to compute the 2-order monomial semi-ring y(7F,uF, (R)).
However, factorized ML is trained on R = g, j(R) ™j 7F, 7 (R)
with join key J = Fi N Fy; Ry is likely to differ from 7f,yF, (R)
(unless J is primary key), resulting in bias. To address this, we
propose an unbiased estimator for s based on s” = y(Rw).

PROPOSITION 6 (UNBIASED ESTIMATOR OF s OVER R). We make
the simplifying assumption that ] is uniformly distributed (if d =
|dom(]J)|, each j € J appears n/d times in R) and is not correlated
with any other attribute. Let s" = y(Rw). Then,

fifs= 5+ i v
forfl €F1—],f2€F2—_]

=s"[p]l/s’[c] for any other monomial p

0>
1l

$ is an unbiased estimator of monomial semi-ring s = y(7r,ur, (R)).

The proof is in Appendix C. We assume vertical partitions of R,
but real-world datasets may also be horizontally partitioned; the
estimators could be refined for these cases. Our analysis studies the
base case, and the unbiased estimator can be recursively applied
for multiple joins and unions. Note that the estimators are post-
processing steps without compromising DP.

4.2 Simple Linear Regression Analysis

Building on the assumption in the previous section, this section stud-
ies the confidence bound of factorized linear regression. Compared
to [59], our analysis focuses on simple linear regression with one
feature, under less stringent assumptions; this scenario is sufficient
to show FPM’s advantages over other mechanisms, and motivates
optimization. We first consider a single relation case, then extend
to union and join. We’ll begin with defining the confidence bound,
which will be used to evaluate the utility of private estimators.

DEFINITION 4 (CONFIDENCE BOUND). Given parameter 0, the

(1 - p) confidence bound Cg (p) for an private estimator 0 is:

Cg(p) =inf {b:P[|0—0] <b] > 1-p}
where 0 is the non-private estimator.

We consider relation R[x, y] with one feature x, target variable

y, and cardinality n. We want to train y = fx - x + Sy, and focus

on the parameter S Bxs ﬁx has an optlmal non- perltlzed estimator

b = E[xy]-E[x]E [y]
E[x*]-Elx]

= ny / o2, where ny and o2 are polynomials

that can be derived from aggregeted 2-order monomials y(R). We
apply FPM to compute the privatized 2-order y(R) and study the
confidence bound of the privatized estimator ﬁx. Note that more
familiar error definitions like mean-squared-error can be upper
bounded, roughly, by the square of the confidence bound.

THEOREM 4.1 (CONFIDENCE BOUND OF Bx). For every p where
71 < 1 holds, the (1 — p) confidence boundfor Px is:

" (jevo)

Chrip) < ra+ 1

where ﬁ~x (ﬁx) is the private (non-private) estimate of fx. Let By
and By be the (1 — p) confidence bounds for o2 and cr,%y respectively.
Bg/;fz are both O (W) The

=By/oZ andty =
e?no?

Then 7y

probability is taken over the randomness of FPM.

The proof and extension to multi-features can be found in Ap-
pendix D. Theorem 4.1 demonstrates that the private estimator /);x
is asymptotically close to the non-private ﬁx. The key factors in
reducing the discrepancy are 71, 72. APM and SF-2 have combinato-
rially large 71, 7 due to the budget splits. TPM requires quadratically
more data than FPM to achieve the same level of 7y, 75.

Algorithm 2: FPM-OPT algorithm for Join
inputs :Relation R, Join Key A, Order k, DP budget (¢, 6)
output:Privatized Annotated Relation R
1 foreach i € {0,...,k} do
2 | A€,8 = (ifiodd: 2, else:V2) - B, e/(k +1),8/(k + 1);
0,R=1+/2In(1.25/8")A/€’, ya(R);
foreach a € dom(A) do
5 // add i.i.d. noises to each i order monomial s;
L R(a)={s : R(a)[s] + e~N (0, 0%) for i monomial s};

@

'S

7 return R;

4.3 Optimization: Better Noise Allocation

In Section 4.2, we analyzed the linear regression confidence bounds.
We propose to adjust noise allocation to improve the bounds further.

First, previous work (e.g., [15]) has shown that S is usually the
parameter of interest instead of f for linear regression over the
union. In this case, we suggest each provider adding noises directly
to O')ZC, O')zcy, rather than monomials x2, xy, x, y. This reduces 71 and
72 by a factor of O(B?+/In(1/8) In(1/p)/€) (Appendix E).

Second, optimizing joins is more difficult as we add noise locally
to monomials to circumvent combinatorially large DP costs. How-
ever, we can reduce 71, 72 by O(BZ) through smart budget allocation
(Appendix E). Our insight is that lower-order monomials are multi-
plied by more monomials than higher-order ones. For example, in
Figure 6, 0-order monomials are multiplied by 0, 1, 2, 3-order ones,
while 3-order monomials only multiply with 0-order ones. Hence,
we shall decrease the noise to lower-order ones. FPM-OPT in Algo-
rithm 2 achieves this by dividing the DP budget across orders; lower
order monomials have lower sensitivity and thus fewer noises.



5 EVALUATION

We evaluate FPM on NYC Open Data [11] corpus of 329 datasets
for an end-to-end dataset search. We then use ablation studies via
synthetic datasets to validate our theoretical analyses.

5.1 Real-world Experiments

Data and Workload. We construct a large data corpus of 329 NYC
Open Data [11] datasets. Since prior DP mechanisms need to know
the number of requests up front, we create a workload of 5 requests
using the following random datasets:

e Regents [4] contains 2014-17 regents exams data.

e ELA [1] contains 2013-18 Early Learning Assessment (ELA) data.
e Gender [3] contains 2013-16 ELA data by grades and gender.
e Grad [5] contains 2016-17 graduation outcomes.

e Math [2] contains 2013-18 Math grades.

For each request, we look for a single dataset to join/union with the
requested dataset. We turn off data discovery so every dataset in
the platform is considered. By default, each dataset has DP budget
(e = 1,6 = 107%). We report the final r2 score evaluated non-
privately. For reliability, we run each request 10 times.

Baselines. We consider different DP mechanisms. Non—P doesn’t
use DP and provides r2 upper bound. FPM applies Algorithm 2
to each dataset. APM (Aggregate Privacy Mechanism), following
Wang [59], applies Algorithm 2 to the augmented dataset to pri-
vatize the aggregated sufficient statistics (and requires a trusted
search platform). We use attribute max-frequence from Flex [36] to
bound join sensitivity. Note that APM requires budget splits across
all augmentations. TPM (Per-tuple Privacy Mechanism) applies
Algorithm 2 to each tuple and uses half the € to perturb the join
key with generalized random response [37]. SF is similar to TPM,
but applies the Laplace mechanism to each tuple with an amplified
budget then shuffles [26, 28]. Since SF doesn’t support joins (by
2"d_Jevel aggregator), we only shuffle each dataset locally by 15¢-
level aggregators. In each case, we use a failure mechanism that

reports r2 = 0 if the privatized X” X is not positive definite [15].

Results. Figure 7 shows the non-private r2 of 10 runs of private
data search for the 5 requests. FPM dominates the DP alternatives
and is ~50—90% of the non-DP case. FPM’s performance depends
on dataset cardinality: the Gender dataset contains on average ~40
tuples per join key (compared to >100 tuples per join key in other
datasets) and is more vulnerable to noise.

We next vary the number of datasets by sampling ncorp€{10, 50,
100, 300} datasets and rerunning each baseline over the smaller cor-
pus. Figure 8 reports the median r2. For a small corpus (ncorp = 10),
APM outperforms FPM because it imputes noise to the aggregated
statistics across join key values and there are fewer budget splits,
while FPM has to add noise to the individual statistics for each join
key. TPM and SF have low r2 due to high noise.

Finally, we vary the number of requests (n,¢q€{1, 10, 50, 100})
by sending the same request n,eq times, and report median r2.
Figure 9 shows that each baseline is almost invariant to neq, and
FPM dominates. In theory, APM is worse for more requests but is
already poor due to the large dataset corpus.
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5.2 Synthetic Dataset Experiments

We next validate our theoretical analysis of linear regression using
synthetic data, and conduct ablation tests to study the impact of
various parameters (number of tuples n, DP budget €, §, corpus size
Ncorp, number of requests nyeq and join key domain size d).

5.2.1 Setup. We generate datasets by first creating a symmetric
positive-definite matrix (make_spd_matrix in sklearn) as the covari-
ance X’TX’. We then sample from a multivariate normal distribu-
tion with this covariance to create a relation. To ensure the £, norms
of tuples < B=5, we resample for any tuples that exceed this limit.

By default, for union, we generate relations with n = 1000 tuples
and 3 numerical attributes [y, x1, x2]. For join, we generate relations
with n = 10000 tuples and include a categorical join key J uniformly
distributed with a domain size of d = 100 . We construct two vertical
partitions with projections [y, x1, J] and [x3, J], respectively. We
start with ncorp = 2 datasets, nyeq = 1 request.

We will report the ¢, distance to the non-private sufficient sta-
tistics (s error) and regression parameter (f error) as metrics. Each
experiment will be repeated 100 times, and we will present the
medians (dots), as well as the 25th and 75th percentiles (error bars).

5.2.2  DP for Union. Baselines include APM, TPM (same as in Sec-
tion 5.1), SF—1, which shuffles tuples locally, SF—2, which shuffles
the unioned dataset, and FPM using Algorithm 1 rather than Algo-
rithm 2 (which is for join).

First, we vary ne{10, 100, 500, 1K, 10K }. Figure 10a and Figure 10b
report s and 8 errors. Since there are ncorp=2 datasets, APM and
FPM perform similarly. In contrast, TPM requires quadratically more
data to achieve the same s errors, consistent with our analysis in
Section 3.4. SF’s amplification is not significant for small n, when
it’s needed most, and both variants have high s errors. § error
eventually converges to 0 for all baselines, but FPM does so at a
comparable rate to APM (n=500 vs. 10K for the others).

Figure 10c shows that § error naturally correlates with s error,
and higher s error increases the chance of failure (f error =co). The
remaining results will focus on f error, as it is of interest.

Next, we vary the DP budget €=0.1 or 6=0 (pure DP). The results
are shown in Figure 10d and Figure 10e, respectively. For €=0.1,
the plot shifts right due to a smaller budget. In the case of pure DP
with §=0, FPM, APM and TPM can adapt to it by applying Laplace
mechanism, achieving similar performance. In contrast, SF—1 and
SF-2 fail as only approximate DP is supported.

Figure 10f and Figure 10g vary the number of datasets and re-
quests neorp, nrqu{l, 5,10, 50, 100}, respectively. FPM’s § error is
flat. TPM, SF-1 and SF-2 frequently fail due to high noise, while
APM only performed well when n¢orp<5 or npeq<10. APMis hence
unsuitable for large data corpora.

Figure 10h reports linear regression optimization benefit in Sec-
tion 4.3. For a two-attribute dataset R[y, x|, while FPM adds noise
to monomials (x, y, x2, yz, xy), FPM-OPT adds noise to polynomials
(02, o,zcy) because we only care about fyx. We find that FPM-OPT
reduces the f error and failure likelihood, especially for n<100.

5.2.3 DP for Join. We evaluate different DP mechanisms over the
join. Baselines include FPM—OPT, which uses a smart allocation
strategy to reduce the noise of lower order statistics, as discussed
in Section 4.3. SF-2 doesn’t support joins, so it is not reported.
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Figure 7: Utility (non-privatized r2) of the returned combinations of datasets searched by different baselines over 10 runs, with
the median indicated by a red cross. FPM exhibits significantly better utility than the other baselines.
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Figure 8: Utility of the returned combinations of datasets searched by different baselines when varying the corpus size ncorp.
FPM is scalable for large corpus, while APM only performs well for small norp.
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The unbiased estimator dominates the naive one.

We use ncorp = 2 datasets: we fix cardinality n = 10K but vary
join key domain size d € {10, 50, 100, 200}, then fix d = 100 but
vary n € {100, 5K, 10K, 50K }. The results are shown in Figure 11a
and Figure 11b, respectively. FPM, FPM-OPT and APM have low
error, while TPM and SF have high failure rates. FPM-OPT outper-
forms FPM due to better noise allocation. APM outperforms FPM
and FPM-OPT at large d or small n because APM adds noise directly
to the aggregated statistics across join keys, resulting in a smaller
amount of noise. In contrast, FPM adds noise for each join key value.
However, for large n, FPM and FPM-OPT outperform APM because
it has high sensitivity due to high join fanouts [36].

Figure 11c and Figure 11d respectively vary the number of datasets
and requests: ncorp, Nreq€{1, 5, 10, 50, 100}. Both TPM and SF have

high failure rates, and FPM-OPT outperforms FPM. FPMand FPM-OPT

scale to arbitrary numbers of datasets and requests, while APM is
restricted to ncorp <5 OF npeq<10.

5.2.4  Join Unbiased estimator. Here, we compare the f error of
the unbiased estimator proposed in Section 4.1 to the naive esti-
mator over many-to-many joins. We first fix the number of tuples
n = 10K but vary join key domain size d € {10, 50, 100, 200}, then
fix d = 100 but vary n € {100, 5K, 10K, 50K}, and report the re-
sults in Figure 12a and Figure 12b respectively. As d increases, the
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errors of the unbiased estimator converge to 0, while the biased
estimator diverges as it fails to account for many-to-many join.
When n = 100, the naive estimator achieves similar performance, as
each join key has only one tuple (so one-to-one join without bias).
However, increasing n introduces duplications and independence
(for many-to-many join). The unbiased estimator reduces the noise
and performs better than the naive estimator.

6 RELATED WORKS

Dataset search. Traditional data discovery focuses on augmentable
(i.e., joinable or unionable) datasets [17, 29], whereas recent dataset
search platforms [19, 43, 45, 51] are based on data augmentation
for ML tasks. However, none addresses privacy concerns.
Differential Privacy for Databases. Differentially private databases
can query over multiple tables [36, 40, 61]. They apply DP mecha-
nisms to query results over joins and unions. Notably, join poses a
significant DP challenge due to the exponential sensitivity growth
along the join path. FPM may offer a solution by decomposing join
query into smaller, bounded-sensitivity statistics.

Federated ML. These methods let each untrusted party compute
and privatize their local gradients for horizontal [54, 55, 60, 65] or
vertical [32, 58] federated ML, which are then combined to train the
final model. However, the gradient is specific to training a single
model. In contrast, data search repeatedly trains new models to
evaluate candidate augmentations, requiring budget splits.
Differentially Private Sufficient Statistics. Previous works use
sufficient statistics [35] for generalized linear models and apply per-
turbations [41] to guarantee DP. For linear regression, sufficient sta-
tistics perturbation, particularly with regularization, outperforms
other GDP mechanisms including objective perturbation and noisy
SGD [14, 59]. However, they only consider ML on a single dataset.
Factorized ML. Factorized ML decomposes ML models into semi-
ring queries, designs algebraic operators to combine them, and
achieves asymptotically lower time complexity. They support mod-
els like ridge regression [53], random forests [33], SVM [38], and
factorization machine [52]. None are differentially private.

7 CONCLUSIONS

Saibot is a differentially private data search platform that searches
large corpora to find datasets to improve ML performance via aug-
mentation. Saibot employs FPM, a novel mechanism that privatizes
sufficient semi-ring statistics.. In a deep study of linear regression,
we propose an unbiased estimator for many-to-many joins, prove
parameter bounds under augmentations, and propose an optimiza-
tion to allocate DP budget better. On a >300 dataset corpus, FPM
achieves an r2 score (~50—90%) of non-private search, while other
mechanisms report negligible r2 scores <0.02.
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Table 1: Notation

Notation Description

R; relations of providers/requesters.
n size of each relation.
J.Dom(J),d join key, domain of join key, domain size.
B the ¢, distance upper bound of each tuple in each
relation.

o2, afy the empirical estimation of the variance and covari-

ance.

a2, afy the privatized empirical estimation of the variance

and covariance.

B1,B2 1-—p confidence bound on |0'X - 0'X| and |ny - ny|

A FPMSENSITIVITY

For union, query gy, : D" — S where datasets in D" contains
m featuresand S = {v |v € R™', i € {0,...,k}}. qu returns a set
of vectors s € S containing the sum of k-order monomial semi-
ring across all tuples. For analysis convenience, we will overload
the notation a bit and treat s as a single vector by concatenating
{v}yes. Let t1, 12 € D™ and t{, té- be vectors of i-order monomial
with respect to t1[fi],...,ti[fm] and t2[fi], ..., t2[fm]- Let o (k)
denote the set of series [ki,. .., km]| such that k; € Nand ) k; = k.
The squared distance between tf and té‘ can be computed as

> [atgk -] [ rlfir*)?
[k1yeeskm] =1 i=1

eo(k)
< 3 )(]‘[tl[ﬁ [ Jetart
[késo—(allzgn] i=1

By multinomial theorem, we may rewrite the last equation as
m
() nlAl’ +(th 1k —2(Zt1
i=1

< 2B% — z(Z nlfilelfiD*
i=1

That is, when k is even, the latter term is strictly positive. Hence
||t{c - té‘H2 < 2B%_ Let Dy, Dy € D" be two neighbouring datasets
differ in one tuple, ¢; and t2. The sensitivity of g, () can be com-
puted as

k

D Taz41 ()4B% + 1y7(i)2B%
i=1

Aqu = max[|qy(D1) — qu(D2)|l <

For join, we inherit the notations from the union case and let
¢ be the number of join keys. g; : D" — S returns a set of
vectors s € S where s concatenates vectors returned by g;, on each
partition of tuples for each join key. Consider two cases: (1) t; and
t2 have the same join key (2) t; and ¢, have different join keys. In
the former case,

Ag;

max [|¢;(D1) - q;j(D2) |2

IA

k
D Taz41 (4B + 157(1)2B%
i=1

In the latter case,

Ag; = max lq;(D1) — q;(D2)|l2
x k
= maxq| 12 + Y 112
i i
k k
max Y ||t]|2 +max " [25]]2
i i
k
< \ZZBZi
i=0

Hence, Ag, = max(y/SX, 1zz1 (1)4B2 + 152(i)2B%, |2 5K B2

IN
-

B ERROR ANALYSIS

For a single data provider, with relation R where |R| = nand i be any
integer from 1 to k. LDP computes [f, f2, ..., f¥] for each tuple and
adds noise to each of them. By similar analysis to that of FPM, LDP’s
sensitivity is the same as A in FPM for both union and join. Hence,
for each tuple, ¢, from R, t[fi] ~ t[f*] + N(0, (2In(1.25/8)A?/€?).
The empirical expectation of f? can be computed as

- 1 .
fioe = 0 (Zt[fl]) +ei
teR
Putting everything together, and by the assumption that k is a small

constant, we have

~ N(0,21In(1.25/5)A% /ne?)

k 2
Eflls{pp —$l1 = E Z(pr ;(Zt[fi]))

i=1 teR

IA

Jole o)

=1

= 0(A/ne)

For FPV, the only difference is that

- 1 .

fioy ~ = (Z t[fl]) +e e~ N(0,2In(1.25/8)A%/n?€?)
" teR

Following the same line of derivation,

E[liseem — $ll] = O(A/ne)

However, GDP needs to account for any possible combination of
a single buyer and a subset of sellers, where each party’s privacy
needs to be protected. Specifically, each buyer appears in 2"corr — 1
combinations, since each buyer requires at least one seller. On the
other hand, for a fixed buyer, each seller is involved in 2Meorp~1
combinations. Hence, each seller will appear in nreqz"ww‘1 combi-
nations in total. Because each seller and buyer have privacy budget
(€, 8), in order to provide privacy guarantees for each party in any



combination, the amount of privacy budget spent on perturbing
pre-normalized s is €’ = min(e/(2"corr — 1), e/nrqu”wW—l) and
& = min(8/(2"orr — 1), 5/nyeq2"orr ™)

fie = (Zt[f"]) ter

teR

~ N(0,21In(1.25/8") A% /n€e'?)

Based on the same line of analysis above
= O(nrqu”C"’P_lA/ne)

Now we consider SF-1, based on [26], it suffice to guaran-
tee €/4/n-DP for local responses to achieve (e, §)-DP from the

central’s perspective, where each tuple ¢ in R satisfies t[fi] ~
t[f'] + Lap(A/+/ne). Then we have

fﬁsl:F‘i—l = %Z(t[fl] +er) e ~Lap(A/vne)

teR

E[llscoe —3lI]

Then, we have

E[ISF1 -8l = Ji(fw : Z(Zt[fi]))z

i=1 teR

Since E [(% DteR et)] = 0, it follows that

2
E (%Zet

teR

2

12)—

teR

>

=Var

Substituting back to the equation, and based on assumption that
k is small, we have

E[llssr—1 =3Il = O(A/ne)

For SDP-2, just like GDP, it also needs to account for all pos-
sible combination of a single buyer and any subsets of sellers in
the centralized shuffler. However, the differences are that SF-2
allows each combination’s privacy guarantee to be amplified by
an amount of O(4/n), and that SF-2 draw random noises from
Laplace distribution instead of Gaussian distribution. That is,

Z(t [f']+e) e ~Lap(A/Vne')

i
fer 2=
teR
Hence, the expected utility can be computed following the same
line of derivation of SF-1. That is

Elllssr—2 = $ll] = O(A/ne’) = O(nreq2"eor? ™' A/ne)

C UNBIASED PROOF

We make the simplifying assumption that J is uniformly distributed:
if d = |dom(]J)|, then each j € J appears n/d times in R. More-
over, the projection operator 7 will not remove duplicates in R so
175 R)| = L g, (R)| = .
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PROPOSITION 7 (EXPECTED $ OVER Ry). Assume that Ry is the
population. For any other 1,2-order monomial p,

Elp] =slpl/sle]
where c is the count (0-order monomial). Then E[p] is the expected s
over Ryq.

PROPOSITION 8 (UNBIASED ESTIMATOR OF s OVER R).

slfifal —d slfil slfz]
fife= 1376 + 00T ST

forfi e Fi, fo € Fy
for any other monomial p

Elpl =
=slpl/slel
§ is an unbiased estimator of's.

ProoF. We demonstrate that, for any 1,2-order monomial where
features are from the same relation, E[s[p]/s[c]] = E[p].

sle] =n-n/d
E[s[f1/slell =E[(Z t[f1-n/d)/(n-n/d)] = ZE[t[f]]/n =

teR teR

Els[fifel/sle]] = EL(Y tIA] - tlfel - nfd)/(n - n/d)]
teR
= D ELtIA] - t1f11/n = ELfi £]
teR

The first equality is because for each join key, the cartesian product
is computed, leading to duplication of tuples with the same join
key in both tables by n/d times. The count is also increased by n/d,
thus resulting in the equality s[p]/s[c] = E[p].

However, this equality does not hold for the fi f2, where fi and
f> are from different relations. In this case, fi from R; is paired with
all f> from Ry with the same join key, but the information about
which f; is paired with f in original R is lost. Nonetheless, we can
still estimate E|[ fi f2] by exploiting the covariance across groups.

We first analyze E[ fi f2] for a single join key value j. We use
notation s/ to denote the monomial semi-ring for the join key value
k. Consider random variable of the average:

i =sf[ﬁ]/sf[c1=( > t[fl]'n/d)/(n/d)2= Y, A
tea;(R) teo;(R)

J =g el = 2 _ t[fa]

s =5 RIS el = D el n/d | jd)? = D) S
teoj(R) teoj(R)

s{ and sg can be understood as the mean of f; and f from the
sample ¢;(R). It is obvious that E[s{] =E[fi] and E[sé] =E[f2].
From the definition of covariance, we have:

E[s{sé] = cov(s{,sé) + E[s{]E[sé]

:( y 4aly ”fd]) ELAIELS]
teoj(R)

teoj(R)
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We next compute the cov:

t[fi] tlfa] | _ 4
co —, == coo(t1[fil, t2[f2])
teo;(R) n/d t€a(R) nfd | n? tle%:(R)
t;€0;(R)
dZ
== >, cou(tlfil.t[fa])
fEO’j(R)

= Teon(fi o)

The first line is by the property of covariance and the second line
is by the independence between tuples. Therefore,

—coa(fl,fz) +E[A]E[f2]

Next, consider the random variables across join keys:

st =s[Al/sle] = ) tlfil/n

teR

= > tlhl/n

teER
siesslfiplfsled = > sl -sl/d
jedom(]J)

E[s{sé]

sz =s[f2]/sle]

where s1 and s; are the average across join keys. s1 2 is the average
products across join keys. It is obvious that E[s;] = E[fi], E[s2] =
E[f2]. We next study E[s;s2] and E[s12]:

E[si52] = cou(s1, 52) + E[s]]E[s]]

= cov (Z ALY t[fz]/n) +E[AELf]

teR teR
Similar as before,

cov (Z t[fl]/n,zt[fz]/n)

— Z coo(t1[fil. t2[f2])

teR teR t1€ER
tyeR
= Y conCtlfil tLBD) = eov(fi fo)

teR

Therefore:

Elsis2] = cov(f, ) + ELAIELE]
Finally,
Blsial= Y Els] s]1/d = Scoo(fi, ) + ELAIELA]
jedom(J)

Putting everything together, we show that }:—Zsl,g + '1’%331 - 52
is an unbiased estimator of E[ fi f2]:

E[i : ZSI,Z + rll:ZS] . Sz] =1 : ZE[SLz] + HE[Slsz]
= oot f) + ELAIEL
n—d
"G con(f ) + ELATELS))

=coo(f1, f2) + ELAIELf2] = E[f1f2]

The first line is by the linearity of expectation, and the last line is

by the definition of covariance.
o

D CONFIDENCE BOUND OF LINEAR
REGRESSION

Leto = \/WA/G where A = O(B?). We are interested in

B*in(1/5)

n,B — coande, §, p — 0inouranalysis. Hence o = O -
The privatized empirical expectation of the moments are defined as
E[X] = E[X] + e1, E[X?] = E[X?] + e3, E[XY] = E[XY] + e3 and

E[Y] = E[Y] + e4. Then, we have ey, es, e3, e4 ~ N (0, 0% /n?)

LEmMA D.1 (HIGH-PROBABILITY BOUND ON Oy). Gwen o2 = E[X 2] -
mz and }Z = EF[;(T] ];"TXi]z, with probability at least 1 — p,
|62 — 62| = O(By) where

_ B*In(1/6) In(1/p)

2

€“n

Proor. By assumption that each tuple’s £, norm is bounded by
B, each feature must also be bounded by B. Based on Gaussian tail

bound, with probability at least 1 — p/4, |e;| < am/n.
07 ~ 02| = lex — 2¢2 Y\ x/n — €3]

lex| + [2e2 )" x/nl + e}

< —Um (1 +2B+ —Jm)

IN

n n

€2n?

“o B2\/In(1/8)In(1/p) . B%In(1/6) In(1/p)
en
(B4 In(1/6) In(1/p) )
= O _—
€?n
m}
Similarly, D.1 can be used to derive the high probability bound
on o;zcy, that is
- 5 B*In(1/8) In(1/p)
2 2 -
|O-Xy - O'Xyl < B2 =0 (T
Since the condition to satisfy both bounds coincide, with probability
atleast 1 — p, |02 — 02| < By and |0')ch - o;zcy| < Bs.
Let

B0 (34 1n<1/6>31(1/p>) _
€2no?

When 71, 72 < 1 and with probability at least 1 — p, we may prove
4.1as



Proor.
) 2 2 2 2 2
|l§ /} | oYy Oxy Oy Oxy Oxy Oy
x —Px|l == === - = — - =
o2 o2 o2 o2 o2 o2
2 _ 2
|ny ny' —-1
2 2 2
< = Xy 1 |0x 0%
O.X
2 _ 2 < 3
_ |0-xy o-xy| 2 |O')% - 0')%|
B 2 YOS5
O-X GXO-X
102

ST2+(J,%Y+TZ-0'§) —
(1-11)(cf)?

Extension to Factorized ML. The confidence bounds can be ex-
tended for factorized ML. The difference boils down to By, and the
rest are the same. For union, let R = Ry U Ry... U Ry where |R;| = n
and k — co. Then, for e; ~ N(0, 62),

E[X2] + N (0, 2 /kn?)

k 2 .
] = 2 (ZkJ; ter)

Therefore, with probability at least 1 — p/4, |E[X?] — E[X?]| <
In(1/6) In(1/p)

o/2In(8)p)/Vkn = o(Bz 1)

moments E[X], E[Y], E[XY]), by minor changes in D.1, yielding
new bounds on 7; and 7, as

(Bzw/ln(l [(i/p) B*In(1/5) In(1/p)

For join, consider R[x,y,J] = Ri[x,J] >~ Ry[y,J] and d =
|dom(J)| where d — n. In contrast to union, there is additional
noise added to the zero-th moment of each join key. i.e. the count
of tuples within each join key. To avoid the scenario where this
number is non-positive, an additional assumption is required [59]

that the noise is bounded by o(n/d). Note that in the unbiased
estimation, the privatized s[c] is computed as

slel = Y (n/d +o(n/d))(n/d + o(n/d))
icJ
= D (n/d+o(n/d))’
icJ
=d(n/d + o(n/d))?

) (same for all other 3

11 =B1/62=0

eﬁngz ezknzg'z
4
o (B In(1/6) 1nA(1/p)) Y
ez\/EnO',%

Then, for e; 1, €2, ei3 ~ N (0, 5?) defined as the Gaussian noise
added to Ycr, i X% YreRr,.i X LreR,.i Y for each join key i € J,
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with probability atleast 1-p/4, 3;c y €, j ~ N (0, do?)and 2iejeij <
2\/dn(1/3) In(1/p)
0+/2d1n(8/p) = O M for j ={1,2,3}

RS

E[X?] = ZI'EJ(ZteRl.ixz)n/d _ 3 x2

n?/d
Yie ((Zrer,.ix?) +ein) (n/d+o(n/d))
2jej(nfd+o(n/d))(n/d +o(n/d))

By expanding E[X?], we have
_ (n/d) Y x* +(n/d) - Tieyein +o(n/d) Tx* +0(n/d) Siey ein

n

E[X?] =

EX) n?/d+2n-o(n/d)+d-o(n®/d?)
_ (szz +(Zieyei)/n)(1+o(n/d)(d/n))
" 1+2(d/n) - o(n/d) + (d%/n?) - o(n?/d?)
I (Siepen)/nto()(EE + (Sieyein)/n)
- 1+0(1)
2 2
= (1+0(1)) (sz H(Y enintoM(Z + (Y e/
ie] ie]
Hence
87 - BTl - 0 | 22
o B2\/dIn(1/8) In(1/p)
- en
Similarly, and based ond — n
. . . .\ 2
A - 1T -0 o[£ (B (22
(33 dIn(1/6)In(1/p)  B*dIn(1/8)In(1/p)
=0 + 2,2
en €E“n
(B‘*«/Eln(ua) ln(l/p))
=0
€2n
By triangle inequality, we have
o2 — 2| < |E[X?] — E[X?]| + |E[X]" - E[X] |
(B‘*«/Eln(l/a) ln(l/p))
= O B
€°“n
and
"o (34«/31n(1/§11n(1/p))
e?no?

For E[XY] where X € Ry and Y € Ry, the privatized n in the
unbiased estimation is computed as

sle]

d
d

=n+o(n)=0(n)
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Thus, the privatized and non-privatized estimation of E[XY] can
be computed as

1-nZiey (Zeer.iX) (Zeer,.iv)

-

EXYl =15 n?/d
N n—d . 2ie] (ZteRl.i x) ) 2iej (ZteRz.iy)
1-d n2/d n%/d

_ 1- (n+o(n)) Ziey ((ZteRl.i x) +ei2) ((ZtERg.i y) +ei3)
1-d Yjey(n/d+o(n/d))(n/d+o(n/d))
Lt o(n) —d Ziey ((Zeer,.ix) +€i2) Ziey ((Zeer,.iy) +e€i3)

E[XY]

1-d 2
(Zjes(n/d +o(n/d) (nfd +o(n/d)))
_d(=(n+o(n)) Yies (Zrery.ix) +ei2) (Zrery.iy) +ei3)

n2(1-d) 1+0(1)

d*(n+o(n) —d) ies (Zrer.ix) +ei2) Tiey ((Xrer,.iy) +¢i3)

This yields
Z( Z y) ei2 < By2In(16d/p)n/d Z €i2
ieJ \teR,.i icJ
o (BWn In(d/p) In(1/3) 1n(1/p>)
€

Giving a bound that scale with the size of the relation

T ATV B*In(1/p) In(1/8)y/dIn(d
|E[XY]—E[XY]I:O( n(1/p) n(z/ )vdIn( /p))
e2\n
Putting everything together, with probability at least 1 — p, we
have
-0 (B“ In(1/p) In(1/8)+/d ln(d/_p))

e?ynoy

nt(1-d) (1+0(1))?

-

Based on the same flow of logic as |E[ X%] —E[X?2]|, we would like
tobound Yie 7 ((Xrer,.i X) €3 + (Zrer,.i Y) €2 + €izei3). Note that

Z( )y y)ewS?Zei,Fo("me

ie] \teRy.i ic] Vde

B*VdIn(1/p) In(1/8
Zei,zem < ov/In(8/p) Zei,z = O( ( /Zp) S ))
icJ icJ €
Hence the first two terms are bounded by O (W)
€

For the last term, we may also bound as

(Z Z X)Z es =0 (nB%/dln(l/(S) ln(l/p))

€
ie] teR,.i | ieS

B*d1n(1/6) In(1
Zei,3zei,2=0( (/2) (/p))
icJ icJ €
/A (1/8) n(1/p)
So the last term is O | 24 dlne(rllga) In(/p) , B'd” ln(igig 1“(1/,0)),
which can be combined as O (W) Therefore
Y B*In(1/8) In(1
E[XY] - E[XY]| = O (M)
Vde?

Based on the similar analysis as |E[ X ? —-E[X] : |, we have |[E[X]E[Y]-
(101
€’n : y

B*In(1/6) ln(l/p))
Vde?

With an extra assumption that X and Y are 0-centered and each
tuple within R; and Ry is independent and the join key is uncorre-
lated with X and Y. By the Chernoff-Hoeffding’s inequality, with
probability at least 1 — p/4, we have

>0 x| >y < BV2In(16d/p)njd Vie ]

tERy.i tERy.i

E[X]JE[Y]|= O

|U)%y - 0—)%y| =0 (

Extension to multi-features. The extension of our analysis to
multi-dimensional features involves two modifications. Firstly, the
bounds B; and B; are determined by matrix norm bounds through
random matrix theory [57] instead of the absolute value of single

random variable . Secondly, the bound of the inverse of ¢ is re-

quired, where 62 was scalar but now is a matrix; the inverse of o2

may become unboundedly large if its minimum eigenvalue is close
to 0. To address this, Wang [59] makes an additional assumption

that the noises to o2 has a minimum eigenvalue Am;n of o(|o2]).

E ALLOCATION OF NOISES

We analyze the implication of dynamic allocation of privacy budget
for moments on linear regression confidence bound appendix D.
For union, it is possible to impute noise directly to (o2);, (o;%y)i,
empirical variance, and covariance for each dataset R;. Each of

(;E),-, (1;)2;,),- has sensitivity A’ = O(B?/n). Thus, let o’ = /21n(1.25/85)A’ /e

and

o

S5 (@i + N (0,02)

Applying gaussian tail bound and the independency assumption
yields |62 — 62| = O(B?4/In(1/6) ln(l/p)/e\/ﬁn), and |crfy - cr)%y| =
O(B?4/In(1/5) ln(l/p)/e\/En), This reduces the bound on 71 and
72 by a factor of O(B?4/In(1/6) In(1/p)/e). Based on appendix A,
consider the query gj; : D" — Si where 8! = {0 | v € R}.
qj,i returns a vector s; € S containing the sum of the i-order
monomials across each join key.

gy = V1az41 ()4B% + 1y7(i)2B%

For linear regression, it is feasible to decomposite g; into 3
sequential queries, gj0, gj,1 and g2, each with privacy budget
(€/3,6/3). Inheriting notations from appendix D, A = A, O(Bqujyo) =
O(BAg;,) = O(Ag;,) = O(B?), note that although there is less
privacy budget on releasing the count of tuples within each join
key, the sensitivity is also reduced by a magnitude of B?, i.e. from
A to quo. Hence, it is reasonable to assume that the noise on
this number is small, and bounded by o(n/d). The main impli-
cation is that e;2,e;3 = N(0, 2111(1.25/(5/3))A2j’1/(6/3)2), and
ei1 =N(0,2 ln(1.25/(5/3))Aéj32/(6/3)2), and no more change to




Zezhou Huang, Jiaxiang Liu, Daniel Gbenga Alabi, Raul Castro Fernandez, and Eugene Wu

the analysis is required. Following the computations in appendix D,
we have

2 2
o8 «/Elnu@lnu/p) 111 = 0 (/) In(1/p)

€no? Vdo?

1 =
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