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ABSTRACT

Recent data search platforms use ML task-based utility measures
rather than metadata-based keywords, to search large dataset cor-
pora. Requesters submit a training dataset, and these platforms
search for augmentations—join or union-compatible datasets—that,
when used to augment the requester’s dataset, most improve model
(e.g., linear regression) performance. Although e�ective, providers
that manage personally identi�able data demand di�erential pri-
vacy (DP) guarantees before granting these platforms data access.
Unfortunately, making data search di�erentially private is nontriv-
ial, as a single search can involve training and evaluating datasets
hundreds or thousands of times, quickly depleting privacy budgets.

We present Saibot, a di�erentially private data search platform
that employs Factorized Privacy Mechanism (FPM), a novel DP
mechanism, to calculate su�cient semi-ring statistics for ML over
di�erent combinations of datasets. These statistics are privatized
once, and can be freely reused for the search. This allows Saibot to
scale to arbitrary numbers of datasets and requests, while minimiz-
ing the amount that DP noise a�ects search results. We optimize
the sensitivity of FPM for common augmentation operations, and
analyze its properties with respect to linear regression. Speci�cally,
we develop an unbiased estimator for many-to-many joins, prove
its bounds, and develop an optimization to redistribute DP noise to
minimize the impact on the model. Our evaluation on a real-world
dataset corpus of 329 datasets demonstrates that Saibot can return
augmentations that achieve model accuracy within 50−90% of non-
private search, while the leading alternative DP mechanisms (TPM,
APM, shu�ing) are several orders of magnitude worse.
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1 INTRODUCTION

Augmenting training data with additional samples or features can
signi�cantly enhance ML performance [50]. However, sourcing
such data in large corpora—public portals [10, 11], or enterprise
data warehouses—is a complex task. To address this, a new form
of data search platform [19, 34, 43, 45, 51] is emerging, wherein a
requester submits a search request comprising training and test-
ing datasets for augmentation. The platform then �nds provider
datasets that augment the training dataset in a way that improves
utility (e.g., ML performance). This involves using a data discov-
ery tool [17, 29] to locate a set of union- or join-compatible tables
(augmentations), augmenting the training set with each candidate,
and then retraining and evaluating the model to assess its utility.
The augmentations are subsequently ranked by utility. Platforms
largely di�er in the discovery tool procedure, the models they sup-
port, and how they accelerate model retraining and evaluation.
Recent works [18, 34, 51] suggest that using linear regression as a
model proxy provides a good balance of search quality and runtime.

Unfortunately, privacy is a major barrier to sharing for many
potential data providers and requesters with sensitive data (e.g.,
personally identi�able information (PII), and protected health in-
formation (PHI)). In these cases, providers are legally obligated to
prevent personal data leakage [6, 7, 9]. Rather than prohibit access
outright, di�erential privacy (DP) [22] supports data analysis on
sensitive data while bounding the degree of privacy loss based on
the budget n set by the data provider. Each query on the dataset adds
noise to the results, inversely proportional to the budget consumed;
when n = 0, the dataset becomes inaccessible.

Ideally, a di�erentially private data search platform would let
providers and requesters set privacy budgets for their datasets, and
enforce these budgets as new datasets and requests arrive. More-
over, since the platform is often a third-party service that may not
be trusted by data providers (and the individuals they collect data
from), it should not have access to raw data. Unfortunately, inte-
grating DP with data search platforms is non-trivial. To illustrate,
Figure 1 shows where existing mechanisms would add noise in a
two-level data-sharing architecture that matches many real-world
settings. In this architecture, individuals (e.g., patients) generate
sensitive data aggregated by providers/requesters (e.g., hospitals),
and the search platform further aggregates their datasets.

Global DP (GDP) is a DP de�nition widely used by private DBM-
Ses [36, 40, 61], where the employed mechanisms add noise after
executing, e.g., a query over private data by a trusted central DBMS.
However, when applied to data search, previous GDP mechanisms
need to “split the budget” across every candidate augmentation on
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• We design an optimization that carefully redistributes noise
across su�cient statistics to improve linear regression accuracy.

• We thoroughly evaluate FPM across a real-world data corpus
with >300 datasets. Our results show that FPM can accurately
identify augmentations that achieve A2 scores close to (∼50−90%)
those of a non-private search. We further use ablation studies to
validate our theoretical analyses and study the sensitivity.

Note: The paper is self-contained. References to appendices can be
disregarded or located in the technical report [12].

2 PRIVATE TASK-BASED DATA SEARCH

In this section, we formalize the problem of task-based private data
search. We start with an introduction of the non-private problem
and current solutions. We then provide the primer of di�erential
privacy, and present the di�erentially private data search problem.

2.1 Non-Private Task-based Data Search

We provide the background of previous task-based data search prob-
lem [19, 43, 45, 51], which is non-private, and previous solutions.

Data Model.We follow the standard relational data model. Rela-
tions are denoted as ', attributes as �, and domains as 3><(�). '’s
schema is represented by (' = [�1, · · · , �=], with tuples labeled as
C and attribute values as C [�]. For clarity, the schema is included in
square brackets following the relation in examples ' [�1, · · · , �=].
The domain of a relation is the Cartesian product of attribute do-
mains: 3><(') = 3><(�1) × · · · × 3><(�=). We consider each
dataset as a relational table and use these terms interchangeably.

Machine Learning. AML task" , like linear or logistic regression,
aims to �t a good model based on feature-target attribute pairs.
A training dataset 'CA08= comprises features - ⊂ (' and a target
attribute ~ ∈ (' . The task " has a training function ".)A08=(·)
that inputs 'CA08= and outputs a model< that optimally predicts
~ from - , even for unseen -,~ pairs. To assess<, " uses a func-
tion".�E0;D0C4 (·) which inputs< and a testing dataset 'C4BC , and
outputs the model’s performance on 'C4BC , typically measured by
accuracy, which is to be maximized.

Task-based Data Search. Given a data corpus with datasets from
di�erent providers, requesters send a request with datasets to aug-
ment and a task (e.g., ML). Task-based data search aims to identify a
set of augmentable (join/union) datasets that maximize task utility.

To formalize this, let R = {'1, '2, ...} be a data corpus with a set
of relations, with each from some provider. Requester sends a re-
quest with training and testing dataset ('CA08=, 'C4BC ), and chooses
a model " . Requester’s goal is to train model " on 'CA08= and
maximize its performance on 'C4BC , which we call the task’s utility.

To improve the utility, the requester aims to �nd a set of provider
datasets in R that can be used to augment their data and enhance
model performance. The function �8B2>E4A (', 0D6)~?4) is used to
�nd datasets in the data corpusR that can be joined or unioned with
', given 0D6)~?4 ∈ {Z,∪}. The requester wants to try di�erent
combinations of subsets of these datasets to augment1 and �nd the
combination that maximizes utility.

1For simplicity, we consider datasets that can be directly joined or unioned with
requester 'CA08= . The search space could be further expanded by, e.g., 1BC joining
provider datasets; our solution can be easily adapted to this larger search space.

Putting everything together, the problem can be formulated as:

Problem 1 (Task-BasedData Search.). For request ('CA08=, 'C4BC , "),
�nd the set of datasets R∗∪,R

∗
Z
⊆ R from data corpus such that

R
∗
∪,R

∗
Z
= argmax

R∪,RZ
".�E0;D0C4 (<,'C4BC�D6)

B .C . R∪ ⊆ �8B2>E4A (',∪),RZ ⊆ �8B2>E4A (',Z),
'CA08=�D6 = ('CA08= ∪'1∈R∪ '1) Z'2∈RZ '2
'C4BC�D6 = 'C4BC Z'∈RZ '

< = ".)A08=('CA08=�D6)

Solutions. Current task-based data search platforms [19, 43, 45, 51]
follow the architecture illustrated in black in Figure 2. O�ine, when
providers upload raw datasets to Data storage, the platform com-
putes minhashes for data discovery [17, 29], and sketches to acceler-
ate retraining [19, 34, 45, 51]. Online, the platform solves Problem 1
for each request ('CA08=, 'C4BC , "). First, data discovery [17, 29] uses
the minhashes or sketches to return a set of candidate datasets.Data
search then identi�es a subset that maximizes task utility. The brute-
force search evaluates all possible combinations and can be expen-
sive due to retraining costs and the large set of combinations, so ap-
proaches use various heuristics and greedy algorithms [19, 43, 51].

Our work primarily builds on Kitana [34], which follows the
architecture in Figure 2 and uses specialized sketches for factorized
ML. factorized ML trains models over joins without materializing
them, which speeds up model retraining and evaluation after any
candidate augmentation. This allows Kitana to execute task-based
searches much faster, while maintaining competitive task utility.
Our insight is that these sketches boost performance and act as the
ideal su�cient statistics for DP, as detailed in Section 3.2.

2.2 Di�erential Privacy Primer

Before delving into our solution to di�erentially private dataset
search, we �rst introduce di�erential privacy (DP). We focus on the
Gaussian mechanism, a common, straightforward technique o�er-
ing comparable performance and guarantee with other baselines
(e.g., it o�ers the same approximate DP by shu�ing [26]). In prac-
tice, our solution can also support pure DP by Laplace mechanism
(Section 5.2), where shu�ing falls short.

Di�erential Privacy. DP [22] is a technique used to protect recon-
struction, membership, and inference attacks [24] by bounding the
information leakage from individual records. DP guarantees that
the probability that an algorithm will produce the same output on
two datasets that di�er by only one record is bounded. Formally:

Definition 1 ((n, X) −�% ). Let 5 be a randomized algorithm that

takes a relation ' as input. 5 is (n, X) − �% if, for all relations '1, '2
that di�er by adding or removing a row, and for every set ( of outputs

from 5 , the following holds: %A [5 ('1) ∈ (] ≤ 4n%A [5 ('2) ∈ (] + X ,
where n and X are non-negative real numbers (called privacy budget). n

controls the level of privacy, and X controls the level of approximation.

For the special case when X = 0, (n, 0) − �% is also called pure DP.

DP de�nitions can be global (GDP) or local (LDP) depending
on inputs: GDP applies to randomized algorithms that process an
entire relation (as an aggregator) described above. In contrast, LDP
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private data search (Section 2.3) while maintaining high utility. The
primary algorithmic challenge FPM addresses is designing su�-
cient statistics that are composable (through semi-ring operators)
and reusable (as post-processing without additional privacy cost)
to support ML across various join and union augmentations.

We make the following simpli�cations: (1). Features consist only
of numerical attributes, and join keys consist only of categorical at-
tributes. Section 3.5 describes preprocessing to support categorical
features. (2). Group-by operator W has been extended to annotate
group-by keys without tuples with zero elements (group-by at-
tribute domains are assumed public in Section 2.3). (3). Datasets
are preprocessed so that the ℓ2 norm of the features in each tuple is
bounded by a constant value �, following previous works [25, 59].

Algorithms. The FPM mechanism, detailed in Algorithm 1, is ap-
plied locally by either the requester or provider before dataset
upload to the search platform. It uses as inputs: (1) the relation ' to
be privatized (2) the join key�2, which = =D;; if ' is only for union,
(3) the order of monomials, : , based on the model to support, and
(4) the DP budget (n, X) for '. FPM computes locally aggregated
monomialsW (') and applies the Gaussian mechanism to these, with
sensitivity optimized based on order parity and feature count (line
2, 7): For even-order monomials, sensitivity is reduced by

√
2, and

if there’s only one feature, sensitivity is reduced by another
√
2.

Theorem 4. FPM is (n, X) − �% .

Proof Sketch. FPM applies the Gaussian mechanism [21] to
the aggregated monomials for (n, X) −�% . Therefore, we only need
to show the correctness of Δ. We present simple cases illustrating
proof concepts for the union and join of 1 feature (with lower Δ),
and the union of 2 features with 1/2-order monomial semiring.
These cases are meant to illustrate the key intuitions; full proofs
and generalizations are available in Appendix A due to space limits.
• (1 feature, Union, any order) For union, count (0-order monomial)
remains unchanged as we consider bounded DP, where the neigh-
bour relation has one tuplemodi�ed (instead of removed/added). Let
the modi�ed feature value be 0 → 0′ where both 0 and 0′ have a do-
main of [−�, �]. Then, for the 8-th monomial, the squared di�erence
is (08 −0′8 )2. When 8 is odd, 08 ∈ [−�8 , �8 ], and (08 −0′8 )2 ≤ (2�8 )2.
When 8 is even, 08 ∈ [0, �8 ], and (08 − 0′8 )2 ≤ (�8 )2.
•(1 feature, Join, any order) For join, the query also groups results
by join key �. This can be considered as a histogram [63], where
each bin is a join key, and the value is the :-order monomial semi-
ring. The neighbouring relation has two cases: the modi�ed tuple
has changed the join key or not. If the join key doesn’t change,
this is the same as the union case. If the join key changes, there
are two bins with a maximum square di�erence of

∑:
8=0 �

28 (note
that, unlike the union, the counts change). Thus, the sensitivity is

bounded by
√
2
∑:
8=0 �

28 . Finally, we take the maximum.

•(2 features, Union, 1-order) Let themodi�ed feature value be (0, 1) →
(0′, 1′) where both 02 + 12 and 0′2 + 1′2 are ≤ �2. Then, consider
the 1-order monomials (0, 1), (0′, 1′). The squared di�erence is:

(0 − 0′)2 + (1 − 1′)2 ≤(202 + 20′2) + (212 + 21′2) = 4�2

2� could be composite. To support multiple join keys, the DP budget can be split among
di�erent key combinations. Additionally, optimization techniques can be applied to
take advantage of the correlations between join keys [49].

The sensitivities for higher odd orders are similar.
• (2 features, Union, 2-order) For even-orders, we can obtain a tighter
bound. Consider the 2-order monomials (02, 01, 12), (0′2, 0′1′, 1′2).
The squared di�erence is:

(02 − 0′2)2 + (01 − 0′1′)2 + (12 − 1′2)2

≤(02 − 0′2)2 + 2(01 − 0′1′)2 + (12 − 1′2)2

=(04−2020′2+0′4)+(20212−4010′1′+20′21′2)+(14−2121′2+1′4)
=(02 + 12)2 + (0′2 + 1′2)2 − 2(00′ + 11′)2 ≤ �4 + �4 − 0 = 2�4

For higher even orders, we can similarly amplify the monomials
by the binomial coe�cients (second line) to �nd a non-negative
red term for even-order monomials, resulting in a tighter bound.
Extending to joins follows a similar approach as the single feature
case, where we consider group-by queries as histograms. □

Algorithm 1: FPM mechanism

inputs :Relation ', Join Key �, Order : , DP budget (n, X)
output :Privatized Aggregated Relation '̃

1 if � = =D;; (Union Only) then

2 Δ =

√∑:
8=1 (if i odd: 4, elif #fea=1: 1, else: 2) · �28 ;

3 f, '̃ =

√
2 ln(1.25/X)Δ/n,W (');

4 // add i.i.d. noises to each 1 − : order monomial B;

5 '̃ = {B : '̃ [B] + 4∼N(0, f2) for 1 − : monomial B};

6 else

7 Δ=<0G (
√∑:

8=1 (if i odd: 4, elif #fea=1: 1, else: 2) · �28 ,

√
2
∑:

8=0 �
28 ) ;

8 f, '̃ =

√
2 ln(1.25/X)Δ/n,W� (');

9 foreach 0 ∈ 3><(�) do
10 // add i.i.d. noises to each 0 − : order monomial B;

11 '̃(0)={B:'̃(0) [B]+4∼N(0, f2) for 0 − : monomial B};

12 return '̃;

3.4 Comparison with Other Mechanisms

We next analyze the error of FPM in estimating the statistics B
(expected values of monomials). Generally, the expected errors of B
are correlated with the error of the target model parameter V and
accuracy; we will study the con�dence bound for linear regression
parameter in the next section, where the B error is the key factor.

Setting. We consider a data corpus with size =2>A? (de�ned as
the number of provider datasets) and has received =A4@ requests.
To simplify the analysis, we assume that: (1) the search only uses
union operations (and we will discuss the extension to join). (2)
each dataset has one feature, = tuples, and a DP budget of (n, X).
The search platform evaluates all possible augmentations, each
corresponding to a unique combination of provider datasets.

Metrics. The goal is to evaluate, for each augmentation, the ex-
pected ℓ2 error of the privatized set of monomials B̃: � [∥B − B̃ ∥2].
Mechanisms. We compare FPM with standard DP mechanisms
used in various existing trust models:

• For Saibot’s trust model (Section 2.3), FPM (Algorithm 1) pri-
vatizes local aggregates independently for each dataset, and
combines the aggregates with factorized ML.
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• For the local model, the Per-tuple Privacy Mechanism (TPM)3

applies Algorithm 1 to privatize each tuple [64].
• For the global model, the Aggregate Privacy Mechanism (APM)4

�rst computes the union result '∪ after augmentation, and then
applies Algorithm 1 to W ('∪) [59]. To ensure (n, X) − �% for all
=A4@ (2=2>A?−1 − 1) augmentations, the DP budget has to be split.

• For the shu�e model, shu�ing [26] privatizes each tuple, similar
to TPM, but applies Laplace mechanism with the ampli�ed pri-
vacy budget. These tuples are shu�ed either at the 1BC - (SF-1)
or 2=3 -level (SF-2); akin to APM, SF-2 requires budget splits.

Proposition 5. For the estimation of each augmentation (as-

suming that the number of augmented datasets and the order of B

are small constants), FPM/SF-1 has expected ℓ2 error of $̃ (Δ/=n),
while TPM has an error of $̃ (Δ/

√
=n) and APM/SF-2 has an error of

$̃ (=A4@2=2>A?Δ/=n), where $̃ (·) hides at most a logarithmic term.

The proof is in Appendix B.

Remark. Proposition 5 highlights prior mechanisms’ limitations:
APM/SF-2 are competitive only for small corpora and quickly ex-
haust budget for larger requests/corpus sizes due to budget split for
all possible augmentations, and require trust in centralized aggre-
gators/shu�ers. TPM adds excessive noise to each tuple, requiring
quadratically more tuples to achieve the same level of error as FPM.
Although SF-1 can theoretically match FPM’s complexity with
privacy ampli�cation, it’s signi�cant only for large numbers of
tuples. For instance, given n=1 and X=10−6, n is ampli�ed when =
reaches ∼650 [26, 28]. However, small = needs ampli�cation most,
where SF-1 provides much larger errors than FPM (Section 5.2).

3.5 Di�erentially Private Data Search Platform

In this section, we discuss Saibot, a data search platform that inte-
grates FPM to ensure di�erential privacy.

Provider. The architecture of the Saibot, which uses FPM for DP,
is illustrated in Figure 2. For each dataset ' data provider owns,
the supported operation (Z /∪5 or ∪-only) is decided. If join is
supported, the join key�must also be speci�ed. FPM is then applied

locally to ' to privatize the su�cient statistics W̃ ('), which are then
uploaded to Saibot. As Saibot is not trusted, data storage only stores

privatized statistics, but not raw data. All operations over W̃ (') are
post-processing without additional DP costs.

Requester. The requester has model type" and 'CA08= , and wants
to improve accuracy on 'C4BC . The requester computes and submits

to Saibot the privatized su�cient statistics �W ('CA08=) and �W ('C4BC ).
Data discovery returns a set of joinable or unionable relations' from
data storage. Then, Data search applies greedy algorithm (following
Kitana [34]): in each iteration, it evaluates each candidate and adds
the one that most improves the model accuracy. Saibot is agnostic
to the search algorithm, and others [19, 56] can also be used.

Data Discovery. Previous data discovery systems [17, 29] leverage
MinHash sketches, column type and data distribution statistics;
Saibot supports all of them. Speci�cally, for categorical attributes,

3An alternative is to apply Gaussian mechanism to raw tuples and then compute
monomial semi-ring; this, however, results in an even larger error.
4There are other alternatives like perturbing objectives and gradients; however they
are similarly limited by the combinatorially large number of models to train.
5Any dataset supports join also supports union by aggregating out the join key.

we utilize minhash sketches, computed from public domains, to
measure set similarity. For numerical attributes, we rely on public
schemas for column names and types.

Preprocessing. Before applying FPM, requesters and providers
can locally preprocess datasets to enhance utility and robustness.
For instance, datasets may have categorical features not directly
supported by the proxy model (linear regression). Standard one-hot
encoding can be applied, treating the encoded features as numeri-
cal for privatization by FPM. Saibot also applies two steps to boost
DP robustness. First, it removes outliers (>1.5 std from the mean),
which typically improves model performance and reduces the tuple
ℓ2 norms, enhancing DP noise robustness [42]. Second, all DPmech-

anisms (including ours) degrade with increasing dimensionality due
to the increased tuple ℓ2 norms. Thus, Saibot applies dimensionality
reduction [44] to retain the top principal components ( =1 works
best in our experiments), and rescales tuples to bound max ℓ2 norm
≤�. These steps are applied to all datasets and DP baselines in our
real-world experiments (Section 5.1).

Supporting Varied Privacy Needs. A unique bene�t of Saibot’s
design is that it can adapt to di�erent privacy needs. In cases
where pure DP (X=0) is required, FPM can be modi�ed to apply
Laplace mechanisms [22]. In situations where individuals don’t
trust providers or requesters, FPM can be reduced to LPM to priva-
tize individual tuples. Conversely, shu�ing only guarantees approx-
imate DP and GPM always requires a trusted centralized aggregator.

ML training after data search. After Saibot �nds predictive aug-
mentations using a di�erentially private proxy model (linear regres-
sion), the model could be directly returned to requesters. However,
requesters may need more complex model" , and the training shall
also satisfy DP. To achieve this, Saibot can be integrated within a
larger di�erentially private federated ML system [55, 58, 60, 65],
where Saibot �rst locates augmentations, and then the ML systems
use the augmented dataset to train sophisticated models, such as
deep neural networks, via di�erentially private gradient descent.

Scope. While Saibot can employ FPM to support a wide range of
models [52] and approximate GLM [41], this paper focuses on linear
regression [53] because it’s widely used and is adopted by previous
data search [18, 34, 51]. Next, we dive deep into linear regression
to analyze the task utility and propose further optimizations.

4 DIVING DEEP INTO LINEAR REGRESSION

This section examines the ML task utility FPM provides and sug-
gests optimizations for linear regression. We start with the assump-
tion of linear regression on many-to-many join (as opposed to
one-to-one [32, 58]), which is challenging due to unexpected dupli-
cation and independence. We then propose an unbiased estimator.
Next, we explore the con�dence bounds for the linear regression
parameters and propose optimizations to tighten the bound further.

4.1 Linear Regression on Many-to-Many Join

Linear regression assumes a noisy linear relationship between the
features and target variable: y = XV + e, where e is the error
term. This is consistent with our assumption so far if 'Z = '1 Z

. . . ': is the population, and let us use the monomial semi-ring
to compute the expected B . However, when many-to-many joins
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are involved, 'Z often doesn’t represent the population as joins
generate Cartesian products for each matching key. This leads
to (1) duplicated tuples (the same y values are repeated) and (2)
unexpected independence between features from di�erent relations
with the same join key, leading to biased estimation.

Our analysis focuses on an easy-to-explain case inspired by verti-
cal federated ML [32, 58], where we want to train linear regression
over relation '. However, ' is not directly observable, and each
party can only access a projection c ('). Multiple c (') may have
many-to-many relationships on the common attribute (join key)
instead of the one-to-one relationships studied by federated ML.
The objective is to train linear regression on ' collectively.

Unbiased Estimator. Given ' of cardinality =, suppose there are
two parties holding di�erent projections c�1 (') and c�2 ('), and the
goal is to compute the 2-order monomial semi-ring W (c�1∪�2 (')).
However, factorized ML is trained on 'Z = c�1,� (') Z� c�2,� (')
with join key � = �1 ∩ �2; 'Z is likely to di�er from c�1∪�2 (')
(unless � is primary key), resulting in bias. To address this, we
propose an unbiased estimator for B based on B′ = W ('Z).

Proposition 6 (Unbiased Estimator of B over '). We make

the simplifying assumption that � is uniformly distributed (if 3 =

|3><(� ) |, each 9 ∈ � appears =/3 times in ') and is not correlated

with any other attribute. Let B′ = W ('Z). Then,

B̂ =



51 52 =

1−=
1−3

B′ [ 51 52 ]
B′ [2 ] + =−3

1−3
B′ [ 51 ]
B′ [2 ]

B′ [ 52 ]
B′ [2 ]

for 51 ∈ �1 − � , 52 ∈ �2 − �
? = B′ [?]/B′ [2] for any other monomial ?

B̂ is an unbiased estimator of monomial semi-ring B = W (c�1∪�2 (')).
The proof is in Appendix C. We assume vertical partitions of ',

but real-world datasets may also be horizontally partitioned; the
estimators could be re�ned for these cases. Our analysis studies the
base case, and the unbiased estimator can be recursively applied
for multiple joins and unions. Note that the estimators are post-
processing steps without compromising DP.

4.2 Simple Linear Regression Analysis

Building on the assumption in the previous section, this section stud-
ies the con�dence bound of factorized linear regression. Compared
to [59], our analysis focuses on simple linear regression with one
feature, under less stringent assumptions; this scenario is su�cient
to show FPM’s advantages over other mechanisms, and motivates
optimization. We �rst consider a single relation case, then extend
to union and join. We’ll begin with de�ning the con�dence bound,
which will be used to evaluate the utility of private estimators.

Definition 4 (Confidence Bound). Given parameter \ , the

(1 − ?) con�dence bound �\̃
\̂
(?) for an private estimator \̃ is:

�\̃
\̂
(?) = inf {1 : P[|\̃ − \̂ | ≤ 1] ≥ 1 − ?}

where \̂ is the non-private estimator.

We consider relation ' [G,~] with one feature G , target variable
~, and cardinality =. We want to train ~ = VG · G + V0, and focus
on the parameter VG ; VG has an optimal non-privitized estimator

V̂G =

�� [G~ ]−�� [G ]�� [~ ]�� [G2 ]−�� [G ]2 = f̂2xy/f̂2x , where f̂2xy and f̂2x are polynomials

that can be derived from aggregeted 2-order monomials W ('). We
apply FPM to compute the privatized 2-order W (') and study the
con�dence bound of the privatized estimator ṼG . Note that more
familiar error de�nitions like mean-squared-error can be upper
bounded, roughly, by the square of the con�dence bound.

Theorem 4.1 (Confidence Bound of ṼG ). For every ? where

g1 < 1 holds, the (1 − ?) con�dence bound for ṼG is:

�
ṼG

V̂G
(?) ≤ g2 +

g1

1 − g1

(
V̂G + g2

)

where ṼG (V̂G ) is the private (non-private) estimate of VG . Let �1

and �2 be the (1 − ?) con�dence bounds for f̃2x and f̃2xy respectively.

Then g1 = �1/f̂2x and g2 = �2/f̂2x are both$
(
�4 ln(1/X ) ln(1/? )

n2=f̂2
x

)
. The

probability is taken over the randomness of FPM.

The proof and extension to multi-features can be found in Ap-
pendix D. Theorem 4.1 demonstrates that the private estimator ṼG
is asymptotically close to the non-private V̂G . The key factors in
reducing the discrepancy are g1, g2. APM and SF-2 have combinato-
rially large g1, g2 due to the budget splits. TPM requires quadratically
more data than FPM to achieve the same level of g1, g2.

Algorithm 2: FPM-OPT algorithm for Join

inputs :Relation ', Join Key �, Order : , DP budget (n, X)
output :Privatized Annotated Relation '̃

1 foreach 8 ∈ {0, . . . , :} do
2 Δ, n′, X ′ = (if i odd: 2, else:

√
2) · �8 , n/(: + 1), X/(: + 1);

3 f, '̃ =

√
2 ln(1.25/X ′)Δ/n′, W� (');

4 foreach 0 ∈ 3><(�) do
5 // add i.i.d. noises to each 8 order monomial B;

6 '̃(0)={B : '̃(0) [B] + 4∼N(0, f2) for 8 monomial B};

7 return '̃;

4.3 Optimization: Better Noise Allocation

In Section 4.2, we analyzed the linear regression con�dence bounds.
We propose to adjust noise allocation to improve the bounds further.

First, previous work (e.g., [15]) has shown that VG is usually the
parameter of interest instead of V0 for linear regression over the
union. In this case, we suggest each provider adding noises directly
to f2G , f

2
G~ , rather than monomials G2, G~, G,~. This reduces g1 and

g2 by a factor of $ (�2
√
ln(1/X) ln(1/?)/n) (Appendix E).

Second, optimizing joins is more di�cult as we add noise locally
to monomials to circumvent combinatorially large DP costs. How-
ever, we can reduce g1, g2 by$ (�2) through smart budget allocation
(Appendix E). Our insight is that lower-order monomials are multi-
plied by more monomials than higher-order ones. For example, in
Figure 6, 0-order monomials are multiplied by 0, 1, 2, 3-order ones,
while 3-order monomials only multiply with 0-order ones. Hence,
we shall decrease the noise to lower-order ones. FPM-OPT in Algo-
rithm 2 achieves this by dividing the DP budget across orders; lower
order monomials have lower sensitivity and thus fewer noises.
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5 EVALUATION

We evaluate FPM on NYC Open Data [11] corpus of 329 datasets
for an end-to-end dataset search. We then use ablation studies via
synthetic datasets to validate our theoretical analyses.

5.1 Real-world Experiments

Data andWorkload.We construct a large data corpus of 329 NYC
Open Data [11] datasets. Since prior DP mechanisms need to know
the number of requests up front, we create a workload of 5 requests
using the following random datasets:

• Regents [4] contains 2014-17 regents exams data.
• ELA [1] contains 2013-18 Early Learning Assessment (ELA) data.
• Gender [3] contains 2013-16 ELA data by grades and gender.
• Grad [5] contains 2016-17 graduation outcomes.
• Math [2] contains 2013-18 Math grades.

For each request, we look for a single dataset to join/union with the
requested dataset. We turn o� data discovery so every dataset in
the platform is considered. By default, each dataset has DP budget
(n = 1, X = 10−6). We report the �nal A2 score evaluated non-
privately. For reliability, we run each request 10 times.

Baselines. We consider di�erent DP mechanisms. Non-P doesn’t
use DP and provides A2 upper bound. FPM applies Algorithm 2
to each dataset. APM (Aggregate Privacy Mechanism), following
Wang [59], applies Algorithm 2 to the augmented dataset to pri-
vatize the aggregated su�cient statistics (and requires a trusted
search platform). We use attribute max-frequence from Flex [36] to
bound join sensitivity. Note that APM requires budget splits across
all augmentations. TPM (Per-tuple Privacy Mechanism) applies
Algorithm 2 to each tuple and uses half the n to perturb the join
key with generalized random response [37]. SF is similar to TPM,
but applies the Laplace mechanism to each tuple with an ampli�ed
budget then shu�es [26, 28]. Since SF doesn’t support joins (by
2=3 -level aggregator), we only shu�e each dataset locally by 1BC -
level aggregators. In each case, we use a failure mechanism that

reports A2 = 0 if the privatized �X)X is not positive de�nite [15].

Results. Figure 7 shows the non-private A2 of 10 runs of private
data search for the 5 requests. FPM dominates the DP alternatives
and is ∼50−90% of the non-DP case. FPM’s performance depends
on dataset cardinality: the Gender dataset contains on average ∼40
tuples per join key (compared to >100 tuples per join key in other
datasets) and is more vulnerable to noise.

We next vary the number of datasets by sampling =2>A?∈{10, 50,
100, 300} datasets and rerunning each baseline over the smaller cor-
pus. Figure 8 reports the median A2. For a small corpus (=2>A? = 10),
APM outperforms FPM because it imputes noise to the aggregated
statistics across join key values and there are fewer budget splits,
while FPM has to add noise to the individual statistics for each join
key. TPM and SF have low A2 due to high noise.

Finally, we vary the number of requests (=A4@∈{1, 10, 50, 100})
by sending the same request =A4@ times, and report median A2.
Figure 9 shows that each baseline is almost invariant to =A4@ , and
FPM dominates. In theory, APM is worse for more requests but is
already poor due to the large dataset corpus.

5.2 Synthetic Dataset Experiments

We next validate our theoretical analysis of linear regression using
synthetic data, and conduct ablation tests to study the impact of
various parameters (number of tuples =, DP budget n, X , corpus size
=2>A? , number of requests =A4@ and join key domain size 3).

5.2.1 Setup. We generate datasets by �rst creating a symmetric
positive-de�nite matrix (make_spd_matrix in B:;40A=) as the covari-
ance X′)X′. We then sample from a multivariate normal distribu-
tion with this covariance to create a relation. To ensure the ℓ2 norms
of tuples ≤ �=5, we resample for any tuples that exceed this limit.

By default, for union, we generate relations with = = 1000 tuples
and 3 numerical attributes [~, G1, G2]. For join, we generate relations
with = = 10000 tuples and include a categorical join key � uniformly
distributed with a domain size of3 = 100 .We construct two vertical
partitions with projections [~, G1, � ] and [G2, � ], respectively. We
start with =2>A? = 2 datasets, =A4@ = 1 request.

We will report the ℓ2 distance to the non-private su�cient sta-
tistics (B error) and regression parameter (V error) as metrics. Each
experiment will be repeated 100 times, and we will present the
medians (dots), as well as the 25Cℎ and 75Cℎ percentiles (error bars).

5.2.2 DP for Union. Baselines include APM, TPM (same as in Sec-
tion 5.1), SF-1, which shu�es tuples locally, SF-2, which shu�es
the unioned dataset, and FPM using Algorithm 1 rather than Algo-
rithm 2 (which is for join).

First, we vary=∈{10, 100, 500, 1 , 10 }. Figure 10a and Figure 10b
report B and V errors. Since there are =2>A?=2 datasets, APM and
FPM perform similarly. In contrast,TPM requires quadraticallymore
data to achieve the same B errors, consistent with our analysis in
Section 3.4. SF’s ampli�cation is not signi�cant for small =, when
it’s needed most, and both variants have high B errors. V error
eventually converges to 0 for all baselines, but FPM does so at a
comparable rate to APM (==500 vs. 10 for the others).

Figure 10c shows that V error naturally correlates with B error,
and higher B error increases the chance of failure (V error =∞). The
remaining results will focus on V error, as it is of interest.

Next, we vary the DP budget n=0.1 or X=0 (pure DP). The results
are shown in Figure 10d and Figure 10e, respectively. For n=0.1,
the plot shifts right due to a smaller budget. In the case of pure DP
with X=0, FPM, APM and TPM can adapt to it by applying Laplace
mechanism, achieving similar performance. In contrast, SF-1 and
SF-2 fail as only approximate DP is supported.

Figure 10f and Figure 10g vary the number of datasets and re-
quests =2>A? , =A4@∈{1, 5, 10, 50, 100}, respectively. FPM’s V error is
�at. TPM, SF-1 and SF-2 frequently fail due to high noise, while
APM only performed well when =2>A?≤5 or =A4@≤10. APM is hence

unsuitable for large data corpora.

Figure 10h reports linear regression optimization bene�t in Sec-
tion 4.3. For a two-attribute dataset ' [~, G], while FPM adds noise
to monomials (G,~, G2, ~2, G~), FPM-OPT adds noise to polynomials
(f2G , f

2
G~ ) because we only care about VG . We �nd that FPM-OPT

reduces the V error and failure likelihood, especially for =<100.

5.2.3 DP for Join. We evaluate di�erent DP mechanisms over the
join. Baselines include FPM-OPT, which uses a smart allocation
strategy to reduce the noise of lower order statistics, as discussed
in Section 4.3. SF-2 doesn’t support joins, so it is not reported.
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Table 1: Notation

Notation Description

'8 relations of providers/requesters.
= size of each relation.

� , �><(� ), 3 join key, domain of join key, domain size.
� the ℓ2 distance upper bound of each tuple in each

relation.

f̂2x, f̂
2
xy the empirical estimation of the variance and covari-

ance.

f̃2x, f̃
2
xy the privatized empirical estimation of the variance

and covariance.

�1, �2 1−? con�dence bound on |f̂2x − f̃2x | and |f̂2xy − f̃2xy |.

A FPM SENSITIVITY

For union, query @D : D= −→ S where datasets in D= contains

< features and S = {E | E ∈ R<8
, 8 ∈ {0, . . . , :}}. @D returns a set

of vectors B ∈ S containing the sum of :-order monomial semi-
ring across all tuples. For analysis convenience, we will overload
the notation a bit and treat B as a single vector by concatenating
{E}E∈B . Let C1, C2 ∈ D= and C81, C

8
2 be vectors of 8-order monomial

with respect to C1 [51], . . . , C1 [5<] and C2 [51], . . . , C2 [5<]. Let f (:)
denote the set of series [:1, . . . , :<] such that :8 ∈ N and

∑
:8 = : .

The squared distance between C:1 and C:2 can be computed as

∑
[:1,...,:< ]
∈f (: )

(
<∏
8=1

C1 [58 ]:8 −
<∏
8=1

C2 [58 ]:8 )2

≤
∑

[:1,...,:< ]
∈f (: )

(
:

:1, . . . , :<

)
(
<∏
8=1

C1 [58 ]:8 −
<∏
8=1

C2 [58 ]:8 )2

By multinomial theorem, we may rewrite the last equation as

(
<∑
8=1

C1 [58 ]2): + (
<∑
8=1

C2 [58 ]2): − 2(
<∑
8=1

C1 [58 ]C2 [58 ]):

≤ 2�2: − 2(
<∑
8=1

C1 [58 ]C2 [58 ]):

That is, when : is even, the latter term is strictly positive. Hence
∥C:1 − C:2 ∥

2 ≤ 2�2: . Let �1, �2 ∈ D= be two neighbouring datasets
di�er in one tuple, C1 and C2. The sensitivity of @D (·) can be com-
puted as

Δ@D = max ∥@D (�1) − @D (�2)∥ ≤

√√√
:∑
8=1

12Z+1 (8)4�28 + 12Z (8)2�28

For join, we inherit the notations from the union case and let
ℓ be the number of join keys. @ 9 : D= −→ S returns a set of
vectors B ∈ S where B concatenates vectors returned by @D on each
partition of tuples for each join key. Consider two cases: (1) C1 and
C2 have the same join key (2) C1 and C2 have di�erent join keys. In
the former case,

Δ@ 9 = max ∥@ 9 (�1) − @ 9 (�2)∥2

≤

√√√
:∑
8=1

12Z+1 (8)4�28 + 12Z (8)2�28

In the latter case,

Δ@ 9 = max ∥@ 9 (�1) − @ 9 (�2)∥2

= max

√√√
:∑
8

∥C81∥2 +
:∑
8

∥C82∥2

≤

√√√
max

:∑
8

∥C81∥2 +max

:∑
8

∥C82∥2

≤

√√√
2

:∑
8=0

�28

Hence,Δ@ 9 = max(
√∑:

8=1 12Z+1 (8)4�28 + 12Z (8)2�28 ,
√
2
∑:
8=0 �

28 )

B ERROR ANALYSIS

For a single data provider, with relation' where |' | = = and 8 be any
integer from 1 to : . LDP computes [5 , 5 2, . . . , 5 : ] for each tuple and
adds noise to each of them. By similar analysis to that of FPM, LDP’s
sensitivity is the same as Δ in FPM for both union and join. Hence,

for each tuple, C , from ', C [ 5̃ 8 ] ∼ C [5 8 ] + N (0, (2 ln(1.25/X)Δ2/n2).
The empirical expectation of 5 8 can be computed as

5̃ 8LDP =

1

=

(∑
C ∈'

C [5 8 ]
)
+ 48 48 ∼ N(0, 2 ln(1.25/X)Δ2/=n2)

Putting everything together, and by the assumption that : is a small
constant, we have

� [∥B′LDP − B̂ ∥] = �


√√√
:∑
8=1

(
5̃ 8LDP − 1

=

(∑
C ∈'

C [5 8 ]
))2

≤

√√√√√
�


:∑
8=1

(
5̃ 8LDP − 1

=

(∑
C ∈'

C [5 8 ]
))2

=

√√√
:∑
8=1

� [428 ]

= $ (Δ/
√
=n)

For FPM, the only di�erence is that

5̃ 8FPM ∼ 1

=

(∑
C ∈'

C [5 8 ]
)
+ 48 48 ∼ N(0, 2 ln(1.25/X)Δ2/=2n2)

Following the same line of derivation,

� [∥ ˜BFPM − B̂ ∥] = $ (Δ/=n)
However, GDP needs to account for any possible combination of

a single buyer and a subset of sellers, where each party’s privacy
needs to be protected. Speci�cally, each buyer appears in 2=2>A? − 1

combinations, since each buyer requires at least one seller. On the
other hand, for a �xed buyer, each seller is involved in 2=2>A?−1

combinations. Hence, each seller will appear in =A4@2=2>A?−1 combi-
nations in total. Because each seller and buyer have privacy budget
(n, X), in order to provide privacy guarantees for each party in any
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combination, the amount of privacy budget spent on perturbing
pre-normalized B is n′ = min(n/(2=2>A? − 1), n/=A4@2=2>A?−1) and
X ′ = min(X/(2=2>A? − 1), X/=A4@2=2>A?−1)

5̃ 8
GDP

=

1

=

(∑
C ∈'

C [5 8 ]
)
+ 48 48 ∼ N(0, 2 ln(1.25/X ′)Δ2/=2n′2)

Based on the same line of analysis above

� [∥ ˜BGDP − B̂ ∥] = $ (=A4@2=2>A?−1Δ/=n)
Now we consider SF-1, based on [26], it su�ce to guaran-

tee n/
√
=-DP for local responses to achieve (n, X)-DP from the

central’s perspective, where each tuple C in ' satis�es C [ 5̃ 8 ] ∼
C [5 8 ] + Lap(Δ/

√
=n). Then we have

�5 8
SF-1

=

1

=

∑
C ∈'

(C [5 8 ] + 4C ) 4C ∼ Lap(Δ/
√
=n)

Then, we have

� [∥ �SF-1 − B̂ ∥] = �


√√√
:∑
8=1

( �5 8
SF-1

− 1

=

(∑
C ∈'

C [5 8 ]
))2

≤

√√√√√ :∑
8=1

�


(
1

=

∑
C ∈'

4C

)2
Since �

[(
1
=

∑
C ∈' 4C

)]
= 0, it follows that

�


(
1

=

∑
C ∈'

4C

)2
= +0A

(
1

=

∑
C ∈'

4C

)
=

Δ
2

=2n2

Substituting back to the equation, and based on assumption that
: is small, we have

� [∥ �BSF-1 − B̂ ∥] = $ (Δ/=n)
For SDP-2, just like GDP, it also needs to account for all pos-

sible combination of a single buyer and any subsets of sellers in
the centralized shu�er. However, the di�erences are that SF-2
allows each combination’s privacy guarantee to be ampli�ed by
an amount of $ (

√
=), and that SF-2 draw random noises from

Laplace distribution instead of Gaussian distribution. That is,

�5 8
SF-2

=

1

=

∑
C ∈'

(C [5 8 ] + 4C ) 4C ∼ Lap(Δ/
√
=n′)

Hence, the expected utility can be computed following the same
line of derivation of SF-1. That is

� [∥ �BSF-2 − B̂ ∥] = $ (Δ/=n′) = $ (=A4@2=2>A?−1Δ/=n)

C UNBIASED PROOF

Wemake the simplifying assumption that � is uniformly distributed:
if 3 = |3><(� ) |, then each 9 ∈ � appears =/3 times in '. More-
over, the projection operator c will not remove duplicates in ' so
|c � ,51 (') | = |c � ,52 (') | = =.

Proposition 7 (Expected B over 'Z). Assume that 'Z is the

population. For any other 1,2-order monomial ? ,

� [?] = B [?]/B [2]
where c is the count (0-order monomial). Then � [?] is the expected B
over 'Z .

Proposition 8 (Unbiased Estimator of B over ').

�� [?] =


51 52 =

1−=
1−3

B [ 51 52 ]
B [2 ] + =−3

1−3
B [ 51 ]
B [2 ]

B [ 52 ]
B [2 ]

for 51 ∈ �1, 52 ∈ �2
? = B [?]/B [2] for any other monomial ?

B̂ is an unbiased estimator of B .

Proof. We demonstrate that, for any 1,2-order monomial where
features are from the same relation, � [B [?]/B [2]] = � [?].

B [2] = = · =/3

� [B [5 ]/B [2]] = � [(
∑
C ∈'

C [5 ] · =/3)/(= · =/3)] =
∑
C ∈'

� [C [5 ]]/= = � [5 ]

� [B [51 52]/B [2]] = � [(
∑
C ∈'

C [51] · C [52] · =/3)/(= · =/3)]

=

∑
C ∈'

� [C [51] · C [52]]/= = � [51 52]

The �rst equality is because for each join key, the cartesian product
is computed, leading to duplication of tuples with the same join
key in both tables by =/3 times. The count is also increased by =/3 ,
thus resulting in the equality B [?]/B [2] = � [?].

However, this equality does not hold for the 51 52, where 51 and
52 are from di�erent relations. In this case, 51 from '1 is paired with
all 52 from '2 with the same join key, but the information about
which 52 is paired with 51 in original ' is lost. Nonetheless, we can
still estimate � [51 52] by exploiting the covariance across groups.

We �rst analyze � [51 52] for a single join key value 9 . We use
notation B 9 to denote the monomial semi-ring for the join key value
: . Consider random variable of the average:

B
9
1 =B 9 [51]/B 9 [2] = ©­«

∑
C ∈f 9 (')

C [51] · =/3ª®¬
/(=/3)2 =

∑
C ∈f 9 (')

C [51]
=/3

B
9
2 =B 9 [52]/B 9 [2] = ©­«

∑
C ∈f 9 (')

C [52] · =/3ª®¬
/(=/3)2 =

∑
C ∈f 9 (')

C [52]
=/3

B
9
1 and B 92 can be understood as the mean of 51 and 52 from the

sample f 9 ('). It is obvious that � [B 91] = � [51] and � [B
9
2] = � [52].

From the de�nition of covariance, we have:

� [B 91B
9
2] = 2>E (B

9
1, B

9
2) + � [B

9
1]� [B

9
2]

= 2>E
©­
«

∑
C ∈f 9 (')

C [51]
=/3 ,

∑
C ∈f 9 (')

C [52]
=/3

ª®
¬
+ � [51]� [52]
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We next compute the 2>E :

2>E
©­«

∑
C ∈f 9 (')

C [51]
=/3 ,

∑
C ∈f 9 (')

C [52]
=/3

ª®¬
=

32

=2

∑
C1∈f 9 (')
C2∈f 9 (')

2>E (C1 [51], C2 [52])

=

32

=2

∑
C ∈f 9 (')

2>E (C [51], C [52])

=

3

=
2>E (51, 52)

The �rst line is by the property of covariance and the second line
is by the independence between tuples. Therefore,

� [B 91B
9
2] =

3

=
2>E (51, 52) + � [51]� [52]

Next, consider the random variables across join keys:

B1 =B [51]/B [2] =
∑
C ∈'

C [51]/=

B2 =B [52]/B [2] =
∑
C ∈'

C [52]/=

B1,2 =B [51 52]/B [2] =
∑

9∈3>< ( � )
B
9
1 · B

9
2/3

where B1 and B2 are the average across join keys. B1,2 is the average
products across join keys. It is obvious that � [B1] = � [51], � [B2] =
� [52]. We next study � [B1B2] and � [B1,2]:

� [B1B2] = 2>E (B1, B2) + � [B 91]� [B
9
2]

= 2>E

(∑
C ∈'

C [51]/=,
∑
C ∈'

C [52]/=
)
+ � [51]� [52]

Similar as before,

2>E

(∑
C ∈'

C [51]/=,
∑
C ∈'

C [52]/=
)
=

1

=2

∑
C1∈'
C2∈'

2>E (C1 [51], C2 [52])

=

1

=2

∑
C ∈'

2>E (C [51], C [52]) =
1

=
2>E (51, 52)

Therefore:

� [B1B2] =
1

=
2>E (51, 52) + � [51]� [52]

Finally,

� [B1,2] =
∑

9∈3>< ( � )
� [B 91 · B

9
2]/3 =

3

=
2>E (51, 52) + � [51]� [52]

Putting everything together, we show that 1−=
1−3 B1,2 +

=−3
1−3 B1 · B2

is an unbiased estimator of � [51 52]:

� [ 1 − =
1 − 3 B1,2 +

= − 3
1 − 3 B1 · B2] =

1 − =
1 − 3 � [B1,2] +

= − 3
1 − 3 � [B1B2]

=

1 − =
1 − 3 (

3

=
2>E (51, 52) + � [51]� [52])+

= − 3
1 − 3 (

1

=
2>E (51, 52) + � [51]� [52])

=2>E (51, 52) + � [51]� [52] = � [51 52]

The �rst line is by the linearity of expectation, and the last line is
by the de�nition of covariance.

□

D CONFIDENCE BOUND OF LINEAR

REGRESSION

Let f =

√
2 ln(1.25/X)Δ/n where Δ = $ (�2). We are interested in

=, � → ∞ and n, X, ? → 0 in our analysis. Hencef = $

(
�2
√
ln(1/X )
n

)
.

The privatized empirical expectation of the moments are de�ned as�� [- ] = �� [- ] + 41,�� [- 2] = �� [- 2] + 42, �� [-. ] = �� [-. ] + 43 and�� [. ] = �� [. ] + 44. Then, we have 41, 42, 43, 44 ∼ N(0, f2/=2)

LemmaD.1 (High-probability boundon f̃G ). Given f̂
2
x =

�� [- 2]−�� [- ]2 and f̃2x =
�� [- 2] − �� [- ]2, with probability at least 1 − ? ,

|f̂2x − f̃2x | = $ (�1) where

�1 =
�4 ln(1/X) ln(1/?)

n2=

Proof. By assumption that each tuple’s ℓ2 norm is bounded by
�, each feature must also be bounded by �. Based on Gaussian tail
bound, with probability at least 1 − ?/4, |48 | ≤ f

√
2 ln(8/?)/=.

|f̂2x − f̃2x | = |41 − 242

∑
G/= − 422 |

≤ |41 | + |242
∑

G/= | + |422 |

≤
f
√
2 ln(8/?)
=

(
1 + 2� +

f
√
2 ln(8/?)
=

)

= $

(
�2

√
ln(1/X) ln(1/?)

n=
+ �

2 ln(1/X) ln(1/?)
n2=2

)

= $

(
�4 ln(1/X) ln(1/?)

n2=

)
□

Similarly, D.1 can be used to derive the high probability bound

on f̃2G~ , that is

|f̂2xy − f̃2xy | ≤ �2 = $

(
�4 ln(1/X) ln(1/?)

n2=

)
Since the condition to satisfy both bounds coincide, with probability

at least 1 − ? , |f̂2G − f̃2G | ≤ �1 and |f̂2G~ − f̃2G~ | ≤ �2.
Let

g1 = �1/f̂2G = $

(
�4 ln(1/X) ln(1/?)

n2=f̂2x

)
= g2

When g1, g2 < 1 and with probability at least 1 − ? , we may prove
4.1 as
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Proof.

|V̂G − ṼG | =

������
f̂2xy

f̂2x

−
f̃2xy

f̃2x

������ =
������
f̂2xy

f̂2x

−
f̃2xy

f̂2x

+
f̃2xy

f̂2x

−
f̃2xy

f̃2x

������
≤

|f̃2xy − f̂2xy |

f̂2x

+ f̃2xy ·
����f̃2x−1 − f̂2x−1

����
=

|f̃2xy − f̂2xy |

f̂2x

+ f̃2xy ·
|f̃2x − f̂2x |
f̃2xf̂

2
x

≤ g2 + (f̂2xy + g2 · f̂2x)
g1f̂

2
x

(1 − g1) (f̂2x)2

= g2 +
g1

1 − g1
©­«
f̂2xy

f̂2x

+ g2ª®¬
= g2 +

g1

1 − g1

(
V̂G + g2

)

□

Extension to Factorized ML. The con�dence bounds can be ex-
tended for factorized ML. The di�erence boils down to �1, and the
rest are the same. For union, let ' = '1 ∪ '2 ... ∪ ': where |'8 | = =
and : → ∞. Then, for 48 ∼ N(0, f2),

�� [G2] =
∑:
8 (

∑
G2 + 48 )
:=

∼ �� [- 2] + N (0, f2/:=2)

Therefore, with probability at least 1 − ?/4, |�� [- 2] − �� [- 2] | ≤

f
√
2 ln(8/?)/

√
:= = $

(
�2
√
ln(1/X ) ln(1/? )

n
√
:=

)
(same for all other 3

moments � [- ], � [. ], � [-. ]), by minor changes in D.1, yielding
new bounds on g1 and g2 as

g1 = �1/f̂2G = $

(
�2

√
ln(1/X) ln(1/?)

n
√
:=f̂2x

+ �
4 ln(1/X) ln(1/?)

n2:=2f̂2x

)

= $

(
�4 ln(1/X) ln(1/?)

n2
√
:=f̂2x

)
= g2

For join, consider ' [G,~, � ] = '1 [G, � ] Z '2 [~, � ] and 3 =

|3><(� ) | where 3 → =. In contrast to union, there is additional
noise added to the zero-th moment of each join key. i.e. the count
of tuples within each join key. To avoid the scenario where this
number is non-positive, an additional assumption is required [59]
that the noise is bounded by > (=/3). Note that in the unbiased
estimation, the privatized B [2] is computed as

B̃ [2] =
∑
8∈ �

(=/3 + > (=/3)) (=/3 + > (=/3))

=

∑
8∈ �

(=/3 + > (=/3))2

= 3 (=/3 + > (=/3))2

Then, for 48,1, 48,2, 48,3 ∼ N(0, f2) de�ned as the Gaussian noise
added to

∑
C ∈'1 .8 G

2,
∑
C ∈'1 .8 G,

∑
C ∈'2 .8 ~ for each join key 8 ∈ � ,

with probability at least 1−?/4,∑8∈ � 48, 9 ∼ N(0, 3f2) and∑
8∈ � 48, 9 ≤

f
√
23 ln(8/?) = $

(
�2
√
3 ln(1/X ) ln(1/? )

n

)
for 9 = {1, 2, 3}

�� [- 2] =
∑
8∈ � (

∑
C ∈'1 .8 G

2)=/3
=2/3

=

∑
G2

=

�� [- 2] =
∑
8∈ �

(
(∑C ∈'1 .8 G

2) + 48,1
)
(=/3 + > (=/3))∑

9∈ � (=/3 + > (=/3)) (=/3 + > (=/3))

By expanding �� [- 2], we have

�� [- 2] =
(=/3)∑G2 + (=/3) · ∑8∈ � 48,1 + > (=/3)

∑
G2 + > (=/3)∑8∈ � 48,1

=2/3 + 2= · > (=/3) + 3 · > (=2/32)

=

(
∑
G2

= + (∑8∈ � 48,1)/=) (1 + > (=/3) (3/=))
1 + 2(3/=) · > (=/3) + (32/=2) · > (=2/32)

=

∑
G2

= + (∑8∈ � 48,1)/= + > (1) (
∑
G2

= + (∑8∈ � 48,1)/=)
1 + > (1)

= (1 + > (1)) ©­«
∑
G2

=
+ (

∑
8∈ �

48,1)/= + > (1) (
∑
G2

=
+ (

∑
8∈ �

48,1)/=)ª®¬
Hence

|�� [- 2] − �� [- 2] | = $
(∑

8∈ � 48,1
=

)

= $

(
�2

√
3 ln(1/X) ln(1/?)

n=

)

Similarly, and based on 3 → =

|�� [- ]2 − �� [- ]2 | = $
(
2

(∑
G

=

) (∑
8∈ � 48,1
=

)
+

(∑
8∈ � 48,1
=

)2)

= $

(
�3

√
3 ln(1/X) ln(1/?)

n=
+ �

43 ln(1/X) ln(1/?)
n2=2

)

= $

(
�4

√
3 ln(1/X) ln(1/?)

n2=

)

By triangle inequality, we have

|f̃2x − f̂2x | ≤ |�� [- 2] − �� [- 2] | + |�� [- ]2 − �� [- ]2 |
= $

(
�4

√
3 ln(1/X) ln(1/?)

n2=

)

and

g1 = $

(
�4

√
3 ln(1/X) ln(1/?)

n2=f̂2x

)

For �� [-. ] where - ∈ '1 and . ∈ '2, the privatized = in the
unbiased estimation is computed as

3

√
B̃ [2]
3

= = + > (=) = $ (=)
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Thus, the privatized and non-privatized estimation of � [-. ] can
be computed as

�� [-. ] = 1 − =
1 − 3

∑
8∈ �

(∑
C ∈'1 .8 G

) (∑
C ∈'2 .8 ~

)
=2/3

+ = − 3
1 − 3 ·

∑
8∈ �

(∑
C ∈'1 .8 G

)
=2/3

·
∑
8∈ �

(∑
C ∈'2 .8 ~

)
=2/3

�� [-. ] = 1 − (= + > (=))
1 − 3

∑
8∈ �

( (∑
C ∈'1 .8 G

)
+ 48,2

) ( (∑
C ∈'2 .8 ~

)
+ 48,3

)
∑

9∈ � (=/3 + > (=/3)) (=/3 + > (=/3))

+ = + > (=) − 3
1 − 3

∑
8∈ �

( (∑
C ∈'1 .8 G

)
+ 48,2

) ∑
8∈ �

( (∑
C ∈'2 .8 ~

)
+ 48,3

)
(∑

9∈ � (=/3 + > (=/3)) (=/3 + > (=/3))
)2

=

3 (1 − (= + > (=)))
=2 (1 − 3)

∑
8∈ �

( (∑
C ∈'1 .8 G

)
+ 48,2

) ( (∑
C ∈'2 .8 ~

)
+ 48,3

)
1 + > (1)

+ 3
2 (= + > (=) − 3)
=4 (1 − 3)

∑
8∈ �

( (∑
C ∈'1 .8 G

)
+ 48,2

) ∑
8∈ �

( (∑
C ∈'2 .8 ~

)
+ 48,3

)
(1 + > (1))2

Based on the same �ow of logic as |�� [- 2]−�� [- 2] |, we would like
to bound

∑
8∈ �

( (∑
C ∈'1 .8 G

)
48,3 +

(∑
C ∈'2 .8 ~

)
48,2 + 48,248,3

)
. Note that

∑
8∈ �

©­«
∑

C ∈'2 .8

~
ª®¬
48,2 ≤ =�

3

∑
8∈ �

48,2 = $

(
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Hence the �rst two terms are bounded by $
(
�4 ln(1/X ) ln(1/? )√

3n2

)
.

For the last term, we may also bound as
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So the last term is$

(
=�33

√
3 ln(1/X ) ln(1/? )

n=3 + �432 ln(1/X ) ln(1/? )
n2=3

)
,

which can be combined as $
(
�432 ln(1/X ) ln(1/? )

n2=3

)
. Therefore
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Based on the similar analysis as |�� [- ]2−�� [- ]2 |, we have |�� [- ]�� [. ]−
�� [- ]�� [. ] | = $ (

�4
√
3 ln(1/X ) ln(1/? )

n2=

)
. This yields

|f̂2xy − f̃2xy | = $
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�4 ln(1/X) ln(1/?)

√
3n2

)

With an extra assumption that - and . are 0-centered and each
tuple within '1 and '2 is independent and the join key is uncorre-
lated with - and . . By the Cherno�-Hoe�ding’s inequality, with
probability at least 1 − ?/4, we have������

∑
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Giving a bound that scale with the size of the relation
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√
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Putting everything together, with probability at least 1 − ? , we
have

g2 = $

(
�4 ln(1/?) ln(1/X)

√
3 ln(3/?)

n2
√
=f̂2x

)

Extension to multi-features. The extension of our analysis to
multi-dimensional features involves two modi�cations. Firstly, the
bounds �1 and �2 are determined by matrix norm bounds through
random matrix theory [57] instead of the absolute value of single

random variable . Secondly, the bound of the inverse of f̃2x is re-

quired, where f̃2x was scalar but now is a matrix; the inverse of f̃2x
may become unboundedly large if its minimum eigenvalue is close
to 0. To address this, Wang [59] makes an additional assumption

that the noises to f̂2x has a minimum eigenvalue _<8= of > ( |f̂2x |).

E ALLOCATION OF NOISES

We analyze the implication of dynamic allocation of privacy budget
for moments on linear regression con�dence bound appendix D.

For union, it is possible to impute noise directly to (f̂2x)8 , (f̂2xy)8 ,
empirical variance, and covariance for each dataset '8 . Each of

(f̂2x)8 , (f̂2xy)8 has sensitivityΔ′
= $ (�2/=). Thus, letf′ =

√
2 ln(1.25/X)Δ′/n

and

f̃2x ∼

∑:
8

(
(f̂2x)8 + N(0, f′2)

)
:

Applying gaussian tail bound and the independency assumption

yields |f̃2x − f̂2x | = $ (�2
√
ln(1/X) ln(1/?)/n

√
:=), and |f̃2xy − f̂2xy | =

$ (�2
√
ln(1/X) ln(1/?)/n

√
:=). This reduces the bound on g1 and

g2 by a factor of $ (�2
√
ln(1/X) ln(1/?)/n). Based on appendix A,

consider the query @ 9,8 : D= −→ S8 where S8
= {E | E ∈ R8 }.

@ 9,8 returns a vector B8 ∈ S8 containing the sum of the 8-order
monomials across each join key.

Δ@ 9,8 =

√
12Z+1 (8)4�28 + 12Z (8)2�28

For linear regression, it is feasible to decomposite @ 9 into 3
sequential queries, @ 9,0, @ 9,1 and @ 9,2, each with privacy budget
(n/3, X/3). Inheriting notations from appendixD,Δ = Δ@ 9 ,$ (�2Δ@ 9,0 ) =
$ (�Δ@ 9,1 ) = $ (Δ@ 9,2 ) = $ (�2), note that although there is less
privacy budget on releasing the count of tuples within each join
key, the sensitivity is also reduced by a magnitude of �2, i.e. from
Δ to Δ@ 90 . Hence, it is reasonable to assume that the noise on
this number is small, and bounded by > (=/3). The main impli-
cation is that 48,2, 48,3 = N(0, 2 ln(1.25/(X/3))Δ2

@ 9,1
/(n/3)2), and

48,1 = N(0, 2 ln(1.25/(X/3))Δ2
@ 9,2

/(n/3)2), and no more change to
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the analysis is required. Following the computations in appendix D,
we have

g1 = $ (�
2
√
3 ln(1/X) ln(1/?)

n2=f̂2x

), g2 = $ (�
2 ln(1/X) ln(1/?)

√
3f̂2G

)


	Abstract
	1 Introduction
	2 Private Task-based Data Search
	2.1 Non-Private Task-based Data Search
	2.2 Differential Privacy Primer
	2.3 Private Task-based Data Search

	3 Factorized Privacy Mechanism
	3.1 Factorized Machine Learning Primer
	3.2 Monomial Semi-ring
	3.3 FPM Mechanism
	3.4 Comparison with Other Mechanisms
	3.5 Differentially Private Data Search Platform

	4 Diving Deep Into Linear Regression
	4.1 Linear Regression on Many-to-Many Join
	4.2 Simple Linear Regression Analysis
	4.3 Optimization: Better Noise Allocation

	5 Evaluation
	5.1 Real-world Experiments
	5.2 Synthetic Dataset Experiments

	6 Related Works
	7 Conclusions
	Acknowledgments
	References
	A FPM Sensitivity
	B Error Analysis
	C Unbiased proof
	D Confidence Bound of linear regression
	E Allocation of noises

