Reproducing and Improving the BugsInPy Dataset

Faustino Aguilar
Dept. of Computer Engineering
University of Panama
Panama City, Panama
orcid.org/0009-0000-1375-1143

Abstract—We assess the reproducibility of the BugsInPy dataset
less than three years after its original publication. The bug
dataset provides some information about the software environment
in which the code should be run, but this information can
be incomplete or can decay into something uninstallable over
time. We rectify as many of these problems as we can and
redesign the original dataset to be more easily reusable and
reproducible by future research projects. Based on our experience,
we offer suggestions to authors of Python artifacts to improve
their reproducibility.

Index Terms—reproducibility, bug database, BugsInPy, Python,
package managers, Pip, Conda, containers, Docker

I. INTRODUCTION

BugsInPy [1] is a curated dataset of real-world bugs in large
Python projects, intended to be used by researchers to develop
and evaluate software testing and debugging tools for Python
on a diverse set of real-world bugs from multiple projects.
This dataset can be used to evaluate the efficacy of tools
in bug detection, fixing, software reliability, and more. For
example, several software engineering studies [2]-[6] already
use BugsInPy.

The BugsInPy dataset contains a variety of information about
each bug, and these bugs are organized by the project they
come from, including:

o A buggy commit

o A fixed commit

o Python version used

« One or more test cases that indicate the bug’s presence

The BugsInPy dataset includes a database abstraction layer
and a test execution framework. The database abstraction layer
provides a way to access the dataset in a structured way. The
test execution framework allows researchers to run test cases
relevant to a particular bug.

We sought to use the BugsInPy dataset to verify, for each
bug, that all the test cases could be set up, that the buggy
commit fails, and that the fixed commit passes. Our work is a
reproduction (using ACM’s 2020 definition [7]) because we
use the scripts from the original work. (In contrast, our work
would be a replication if we did not use any original scripts
but wrote all new scripts from scratch to attempt to repeat the
original results.)

Samuel Grayson
Dept. of Computer Science
University of Illinois Urbana-Champaign
Urbana, IL, USA
orcid.org/0000-0001-5411-356X

Darko Marinov
Dept. of Computer Science
University of Illinois Urbana-Champaign
Urbana, IL, USA
orcid.org/0000-0001-5023-3492

Our contributions include:

o Improvements to the BugsInPy test execution framework,
which make it easier to run experiments en masse.

o Modifications to the BugsInPy test execution framework,
which install and use the correct version of Python.

e The results of which bugs were reproducible with and
without our improvements and modifications.

We evaluate the following research questions:

RQ1. How many bugs in BugsInPy are reproducible with
no “extra” work? For a bug to be reproducible, the software
environment should install without failure, the buggy version
should fail the identified test cases, and the fixed version should
pass these test cases.

RQ2. How many non-reproducible bugs can we rescue? We
rescue a bug by modifying the scripts and data such that the bug
that was initially not reproducible now becomes reproducible.

This article proceeds with the methodology section, which
explains how we first tried to reproduce BugsInPy and what
rescue procedures we took when bugs were not reproducible.
Then we summarize the results of our executions and analyze
the failures. Finally, we engage in an open-ended discussion
of our experiments with several pieces of advice to authors of
future reproducible artifacts in Python and those seeking to
reproduce such artifacts.

II. METHODOLOGY

We first tried to reproduce each bug using the original script
released with the BugsInPy dataset. We run the script on an
Ubuntu 18.04 distribution, because the Docker image mentioned
in the original BugsInPy paper used Ubuntu 18.04. For bugs
that were not reproducible using the original script, we analyzed
the problems to identify the root cause and then made changes
to try to rescue the bugs and make them reproducible.

As part of our rescue process, we made the following changes:

1. Added Dockerfile for containers: We use a Docker con-
tainer build script, Dockerfile, to build a Docker im-
age that provides a consistent starting point in which our
scripts can install the correct software environment. The
BugsInPy original paper and the current Git repository do
not mention or include any Dockerfile, but DockerHub

does have an image for BugsInPy published by one of
the authors of the BugsInPy original paper; however, we
could not find a Dockerfile corresponding to that image.
Moreover, we wanted our image to include other changes
mentioned below (e.g., Conda). The use of container
sandboxes modifications that the BugsInPy script makes
to the environment (e.g., modifying ~/ .bashrc). While
our image is available in the popular DockerHub registry
[8], we suggest that users seeking robust reproducibility
build the image from our Dockerfile available in our Git
repository rather than depending on an external registry.

2. Added Conda package manager: Each bug may

require a different version of Python, as specified in
the dataset, but the BugsInPy script ignores the specified
version of Python, deferring to the system default Python
instead. Presumably, the BugsInPy authors manually
changed their system’s version of Python according to
the specification of each bug, but this process is not
fully automated, making it difficult for future users. We
modified the main BugsInPy script to install the correct
version of Python using Conda. Conda is a cross-platform
package manager. Packages installed by Conda neither
use nor modify the system version of those packages,
so Conda can support different environments, each with
its own requirements that may potentially conflict with
the other environments. Conda package repositories store
packages containing prebuilt binaries and metadata for
each platform, so installing is much faster than compiling
from source code.

. Replaced Pip with Conda where appropriate: The
original BugsInPy scripts install all Python packages
using Pip package manager. Pip can invoke the compiler
to build dependencies from source code [9] or download
prebuilt binary files. The most common usage of Pip
is to install packages from the Python Package Index
(PyPI) using requirement specifiers. As specified in the
official Python Packaging documentation, a requirement
specifier typically consists of a project name followed
by an optional version specifier. PEP 440 provides the
specification for requirement specifiers, including a com-
prehensive guide to the currently supported specifiers [10].
However, some packages may require additional system
libraries or dependencies that cannot be installed solely
through Pip. For example, Matplotlib, a popular Python
plotting library, has required system-level dependencies
that Pip cannot automatically handle, such as libpng,
freetype, or Tk. Consequently, if a bug in a project’s
environment depends on Matplotlib, attempting to install
and run that project on a vanilla Ubuntu or Debian
system without the necessary system libraries would
result in installation failures. In such cases, it becomes
the responsibility of the user or system administrator to
ensure that the required system libraries are installed

dependencies for different platforms [11]. By following
these instructions and setting up the required libraries,
users can successfully install and utilize Matplotlib and
any other package with similar external dependencies.
Presumably, the original BugsInPy authors manually
modified their system to have these system libraries;
in our case, we identify packages that Pip cannot install
on vanilla Ubuntu or Debian and simply install those
with Conda instead.

. Added caching of environments: Building the

environment from source code can be costly, so we
reuse environments across many bugs when their Python
package requirements and Python versions are identical.
This optimization helps reduce the time and resources
required for environment setup, as it bypasses the costly
process of building environments from source code.
While it is tempting to use the same Conda environment
for all bugs in each project (rather than for each bug),
there are multiple occasions where different bugs of the
same project require different dependencies. For example,
ansible/bugs/{1,11,14}/requirements.txt
all vary subtly.

. Correct installation of requirements: The

BugsInPy dataset correctly recognizes that
installing the dependencies line-by-line cat
requirements.txt | filter | xargs -n

1 pip install, rather than using pip install
-r requirements.txt, bypasses certain restrictions
imposed by Pip. Specifically, when installing all
dependencies at once, Pip may ignore very old packages.
However, sequentially installing the dependencies allows
us to install these old packages and thus reproduce the
bugs accurately. However, installing the dependencies
line-by-line results in failed installations for projects
that include the —-e git+https://... syntax in
their requirements.txt file, because they would
get passed along as pip install -e and pip
install git+https://.... Our revised script
ensures that each line from the requirements.txt
file is properly processed and passed as an argument to
the pip install command. To correct this issue in
the BugsInPy dataset, we have opened a pull request in
the original repository [12]. This fix is crucial, because
it impacts the reproducibility of bugs in several projects
such as black, cookiecutter, keras, luigi,
pandas, sanic, and thefuck. We have started from
this pull request because it is the simplest of our five
changes; if we receive some feedback from the original
BugsInPy authors, we plan to open pull requests for the
other four changes.

IIT. RESULTS

manually before attempting to install the package with This section presents and discusses our results on reproducing
Pip. The Matplotlib documentation provides detailed bugs in BugsInPy before and after our changes. Table I shows
instructions on how to install the necessary system-level the results without our modifications, and Table II shows the

results after our modifications. The outcomes that we can get
for bugs are:

o Error (Err): Some step in the installation of the software
environment needed to reproduce the bug failed.

+ Both-pass (B-pass): Both versions pass, although we
would expect the buggy version to fail.

o Both-fail (B-fail): Both versions fail, although we would
expect the fixed version to pass.

« Expected (Exp): The buggy version fails, and the fixed
version passes. We consider only these bugs as actually
“reproduced”.

The tables show, for each project, the raw count and percentage
of outcomes for all bugs in that project. The last, summary
rows show the raw count and percentage of outcomes for all
bugs in the BugsInPy dataset.

TABLE I
REPRODUCTION OF BUGS IN BUGSINPY WITHOUT OUR MODIFICATIONS

Project Err B-pass B-fail Exp Total
PySnooper 2(67%) 0(0%) 0 (0%) 1 (33%) 3 (100%)
ansible 3(17%) 0(0%) 0 (0%) 15 (83%) 18 (100%)
black 1(4%) 0(0%) 0 (0%) 22 (96%) 23 (100%)
cookiecutter 2 (50%) 0 (0%) 0 (0%) 2 (50%) 4 (100%)
fastapi 0(0%) 0% 0(0%) 16 (100%) 16 (100%)
httpie 4(80%) 0(0%) 0 (0%) 1 (20%) 5 (100%)
keras 14 31%) 0(0%) 0 (0%) 31 (69%) 45 (100%)
luigi 33 (100%) 0 (0%) 0 (0%) 0 (0%) 33 (100%)
matplotlib 29 97%) 0 (0%) 0 (0%) 1 (3%) 30 (100%)
pandas 47 28%) 0 (0%) 0 (0%) 122 (72%) 169 (100%)
sanic 5(100%) 0 (0%) 0 (0%) 0 (0%) 5 (100%)
scrapy 11 28%) 0 (0%) 0 (0%) 29 (72%) 40 (100%)
spacy 2 (20%) 0 (0%) 0 (0%) 8 (80%) 10 (100%)
thefuck 8 (25%) 0 (0%) 0 (0%) 24 (75%) 32 (100%)
tornado 1(6%) 0(0%) 0 (0%) 15 (94%) 16 (100%)
tqdm 2 (22%) 0(0%) 0 (0%) 7 (78%) 9 (100%)
youtube-dl 0(0%) 0(0%) 0(0%) 43 (100%) 43 (100%)
Total 164 (33%) 0(0%) 0(0%) 337 (67%) 501 (100%)

RQ1. We can reproduce 67% of the expected results in
the unmodified BugsInPy dataset.

TABLE 11
REPRODUCTION OF BUGS IN BUGSINPY AFTER RESCUING
Project Err B-pass B-fail Exp Total
PySnooper 1 (33%) 0 (0%) 1 (33%) 1 (33%) 3 (100%)
ansible 0 (0%) 0 (0%) 0 (0%) 18 (100%) 18 (100%)
black 0 (0%) 0 (0%) 1 (4%) 22 (96%) 23 (100%)
cookiecutter 0 (0%) 0 (0%) 0 (0%) 4 (100%) 4 (100%)
fastapi 0 (0%) 0 (0%) 0 (0%) 16 (100%) 16 (100%)
httpie 0 (0%) 0 (0%) 0 (0%) 5 (100%) 5 (100%)
keras 3 (7%) 0 (0%) 1 (2%) 41 91%) 45 (100%)
luigi 0(0%) 6 (18%) 0 (0%) 27 (82%) 33 (100%)
matplotlib 3 (10%) 1 (3%) 0 (0%) 26 (87%) 30 (100%)
pandas 4 (2%) 0 (0%) 0 (0%) 165 (98%) 169 (100%)
sanic 0 (0%) 0 (0%) 0 (0%) 5 (100%) 5 (100%)
scrapy 0 (0%) 2 (5%) 0 (0%) 38 (95%) 40 (100%)
spacy 1 (10%) 0 (0%) 0 (0%) 9 (90%) 10 (100%)
thefuck 0 (0%) 0 (0%) 0(0%) 32 (100%) 32 (100%)
tornado 0 (0%) 0 (0%) 0 (0%) 16 (100%) 16 (100%)
tqdm 0 (0%) 0 (0%) 0 (0%) 9 (100%) 9 (100%)
youtube-dI 0 (0%) 0 (0%) 0(0%) 43 (100%) 43 (100%)
Total 12 (2%) 9 (2%) 3 (1%) 477 (95%) 501 (100%)

RQ2. We were able to rescue 85% of the non-reproducible
bugs in the original BugsInPy, resulting in a total repro-
duction rate of 95%.

With over 95% of bugs being successfully reproduced (passing
the test cases in the fixed commit and failing test cases in the
buggy commit), researchers have more bugs at their disposal
for using BugsInPy, e.g., for evaluating fuzzing, automatic
program repair, and other research techniques.

Table III presents the running time taken to run the respective
containers that attempt to reproduce bugs in each project within
the BugsInPy dataset. We include the time for both bugs that
we could reproduce and bugs that we could not reproduce.
These times are important to help researchers estimate the
resources needed for running their future experiments; the
original BugsInPy paper did not include these running times.
The provided running times are specific to the reproduction
procedure on the given VM configuration, which had 4 cores of
CPU AMD Ryzen 5 3600, 8GB of RAM, and 100GB of free
disk space. Reproduction times can vary depending on hardware
resources, system configurations, and other environmental
factors. The projects are sorted based on their running time in
descending order, with the project pandas having the highest
running time of 963 minutes, followed by 1uigi, scrapy,
and so on.

TABLE III
REPRODUCTION TIME FOR BUGS IN EACH PROJECT

Project Running Time (minutes)
pandas 963
luigi 510
scrapy 268
keras 230
black 214
fastapi 197
thefuck 195
sanic 136
spacy 131
ansible 80
tqdm 36
youtube-dl 59
cookiecutter 40
httpie 39
matplotlib 26
tornado 14
pysnooper 5

IV. DISCUSSION
A. What makes reproduction easy?

The ease of bug reproduction in the BugsInPy dataset can be
attributed to several factors:

1. Automation: Our bugsinpy-testall script pro-
vides an automated approach to reproducing and testing
all bugs in all projects included in the BugsInPy dataset.
The script streamlines the overall reproduction process,
minimizes manual effort, and ensures we use a consistent
procedure on each project. The script also allows to select

reproduction of only some of the bugs in some of the
projects. The automation script must be carefully written
and maintained to handle various possible errors. For
example, the original script did not have set -e, so
some intermediate step may fail without alerting the user.

2. Environment/package manager: The Conda environ-
ment/package manager simplifies the management of
project dependencies. The crucial insight is that Conda
can install packages in a local environment without
interfering with global, system-wide packages. Conda
makes it possible to define project-specific versions of
libraries that a platform-specific system-wide package
manager would normally manage.

3. Lack of non-deterministic bugs: All bugs in the
BugsInPy dataset are supposed to be deterministic. Our
scope is limited to constructing a reproducible software
environment consistent with the original bug, where the
bug can manifest itself deterministically.

These factors collectively contribute to the ease of reproducing
bugs in the BugsInPy dataset, providing a reliable and efficient
dataset for bug analysis and investigation.

B. What makes reproduction hard?

Despite the easy-to-reproduce factors mentioned above, bug
reproduction can still present challenges due to the following
factors:

1. Resource constraints during building: The software
environment can involve a computationally expensive
step of building software from source code. Reproducing
and testing many bugs within limited resources may
result in longer reproduction times and potential resource
limitations. Our script creates many Conda environments.
These environments can be expensive to store, and we
cannot, for example, archive our environments in GitHub
due to space constraints.

2. Missing packages in Conda: Unfortunately, not all
Pip packages and versions exist in our selected Conda
repositories.

Addressing these challenges requires careful consideration of
project-specific factors and may involve additional research,
debugging techniques, and resources to ensure accurate and
reliable bug reproduction.

C. Recommendations to Python artifact authors

For authors providing Python research artifacts, the following
recommendations can enhance the reproducibility of their
artifacts:

1. Make it automatic/easy to use: The BugsInPy dataset
has Python versions, but there is no automation to switch
to a specific version, so users are unlikely to do so. Our
improved version uses Conda to switch to the correct
Python version automatically.

2. requirements.txt is not enough: Pip cannot han-
dle library dependencies. Researchers should provide

a container, a Conda lockfile, Spack lockfile, or other
detailed environment specification.

3. Archival storage: Ensure that the artifact repository
is archived in long-term storage, such as Zenodo or
FigShare, so it does not disappear. For example, some
of our non-reproducible bugs are due to dependency
versions that are not available, including f1ake8 project
that moved from GitLab to GitHub [13].

D. Threats to Validity

Some of the bugs that we find unreproducible could be actually
reproduced with more effort than we expanded. Our effort may
reflect an “average” user with limited resources, not a researcher
with much more available time and resources.

While we show how to increase reproducibility of the BugsInPy
dataset, our own work may not be reproducible for the following
reasons:

1. Although we pin the exact version of our Docker base
image, the image location (DockerHub) may stop hosting
this base image (e.g., goes out of business, ends free tier).
In this case, one would need to change the base image,
but it could still work, so long as that base image has
Conda. We find that Conda is still able to easily install
rather old versions of Python.

2. Conda package repositories can stop existing (e.g., if
Anaconda goes out of business), or they can drop the
old package versions that our scripts use. However, the
definition of Conda packages describes how to build the
packages from source code. The package definitions are
smaller than the binaries, so these package definitions
may remain longer.

3. The reseachers trying to reproduce the results may need
more computational resources to do the reproduction in
a timely manner. We reduce the resource demands by
reusing Conda environments. Furthermore, our scripts
support reproducing just one project or just one bug from
one project.

V. CONCLUSION

The study presented in this paper demonstrates the effectiveness
of the BugsInPy dataset in reproducing and testing bugs in
Python projects. The original BugsInPy dataset included highly
useful information that aids in reproduction of these bugs, but
the scripts had some issues that limited reproduction to 67%
of the bugs in our experiments, before our modifications. Our
modifications, embodied in the automated approach provided
by our bugsinpy-testall script, coupled with the use of
Conda for dependency management and Dockerfile for building
images/containers, streamline the bug reproduction process and
enhance its ease. The high success rate in reproducing bugs,
with over 95% of bugs reproduced, indicates the reliability
and accuracy that our modifications provided to the BugsInPy
dataset. Our approach could be useful not only for BugsInPy
but possibly also for other bug datasets to validate the reliability
and accuracy in a more user friendly manner.

However, our experiments still depend on commercial orga-
nizations continuing to store software for free (GitHub, PyPI,
Anaconda, DockerHub). Challenges still exist in creating a
truly long-term reproducible software environment.

VI. ACKNOWLEDGMENTS

We thank Asif Zubayer Palak, Md. Wahiduzzaman, Mehzabin
Haque, Rohit Naidu, Sugam Adhikari and Vedant Rathi for
comments on an earlier draft of this paper and the initial help
in reproducing some bugs from BugsInPy. This work was
partially supported by NSF grants CCF-1763788 and CCF-
1956374. We also acknowledge support for research on flaky
tests from Google and Meta.

REFERENCES

[1] R. Widyasari, S. Q. Sim, C. Lok, et al., “BugsInPy:
A database of existing bugs in python programs to
enable controlled testing and debugging studies,” in
Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ser. ESEC/FSE
2020, New York, NY, USA: Association for Computing
Machinery, Nov. 8, 2020, pp. 1556-1560, ISBN: 978-1-
4503-7043-1. po1: 10.1145/3368089.3417943. [Online].
Available: https://doi.org/10.1145/3368089.3417943
(visited on 07/08/2023).

E. N. Akimova, A. Y. Bersenev, A. A. Deikov, et al., “A
survey on software defect prediction using deep learning,”
Mathematics, vol. 9, no. 11, p. 1180, May 24, 2021,
ISSN: 2227-7390. DOI: 10.3390/math9111180. [Online].
Available: https://www.mdpi.com/2227-7390/9/11/1180
(visited on 07/17/2023).

S. Mukherjee, A. Almanza, and C. Rubio-Gonzilez, “Fix-
ing dependency errors for python build reproducibility,”
in Proceedings of the 30th ACM SIGSOFT International
Symposium on Software Testing and Analysis, Virtual
Denmark: ACM, Jul. 11, 2021, pp. 439-451, ISBN:
978-1-4503-8459-9. DOI: 10.1145/3460319.3464797.
[Online]. Available: https://dl.acm.org/doi/10.1145/3460
319.3464797 (visited on 07/17/2023).

T. Hirsch and B. Hofer, “A systematic literature review
on benchmarks for evaluating debugging approaches,”
Journal of Systems and Software, vol. 192, p. 111423,
Oct. 2022, 1SSN: 01641212. pot1: 10.1016/j.jss.2022
.111423. [Online]. Available: https://linkinghub.elsev
ier.com/retrieve/pii/S0164121222001303 (visited on
07/17/2023).

M. Smytzek and A. Zeller, “SFLKit: A workbench for
statistical fault localization,” in Proceedings of the 30th
ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software En-
gineering, Singapore Singapore: ACM, Nov. 7, 2022,
pp. 1701-1705, 1SBN: 978-1-4503-9413-0. por: 10.1
145/3540250.3558915. [Online]. Available: https://d
l.acm.org/doi/10.1145/3540250.3558915 (visited on
07/17/2023).

(2]

(3]

(4]

(5]

[6] S. Lukasczyk, F. Kroif, and G. Fraser, “An empirical
study of automated unit test generation for python,”
Empirical Software Engineering, vol. 28, no. 2, p. 36,
Mar. 2023, 1SSN: 1382-3256, 1573-7616. DoI: 10.1007
/s10664-022-10248-w. [Online]. Available: https://link.s
pringer.com/10.1007/s10664-022-10248-w (visited on
07/17/2023).

A. L. staff. “Artifact review and badging.” (Aug. 24,
2020), [Online]. Available: https://www.acm.org/pub
lications/policies/artifact-review-and-badging- current
(visited on 01/19/2023).

“Faustinoag/bugsinpy-testall - docker image — docker
hub.” (), [Online]. Available: https://hub.docker.com/r/f
austinoaq/bugsinpy-testall (visited on 07/17/2023).
“Cmdoption-no-binary - pip install - pip documentation
v23.2.” (), [Online]. Available: https://pip.pypa.io/en/s
table/cli/pip_install/#cmdoption-no-binary (visited on
07/17/2023).

“Installing packages — python packaging user guide.”
(), [Online]. Available: https://packaging.python.org/en/l
atest/tutorials/installing- packages/#installing-from-pypi
(visited on 07/17/2023).

“Installation — matplotlib 3.7.2 documentation.” (),
[Online]. Available: https://matplotlib.org/stable/use
rs/installing/index.html (visited on 07/17/2023).

“Fixes -e option requires 1 argument. by faustinoaq - pull
request #68 - soarsmu/BugsInPy,” GitHub. (), [Online].
Auvailable: https://github.com/soarsmu/BugsInPy/pull/68
(visited on 07/17/2023).

“4.0.0 — 2021-10-10 — flake8 6.1.0 documentation.” (),
[Online]. Available: https://flake8.pycqa.org/en/latest/rel
ease-notes/4.0.0.html (visited on 08/23/2023).

(7]

(8]

[9]

APPENDIX
CODE, DATA, AND REPRODUCING

A rolling release of all our code and data can be found at
https://github.com/reproducing-research-projects/BugsInPy.

Our code includes:

e Dockerfile docker file setup to build projects images.

e docker—compose.yml orchestration to run containers.

e framework/bin/bugsinpy—-testall script to au-
tomate execution of BugsInPy framework scripts.

To reproduce all bugs in a project, for example httpie, run:

$rm_-f_projects/bugsinpy-index.csv
$docker_compose_up, ,setup_httpie —--build
Cleaning_up, temp_folder ...
Reproducing,_bugs please_wait_...

httpie, 1,buggy, fail

After these commands, the new results will be in the file
named bugsinpy-index.csv. See README .md for more
detailed information.

	Introduction
	Methodology
	Results
	Discussion
	What makes reproduction easy?
	What makes reproduction hard?
	Recommendations to Python artifact authors
	Threats to Validity

	Conclusion
	Acknowledgments
	Appendix: Code, Data, and Reproducing

