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Abstract—We assess the reproducibility of the BugsInPy dataset
less than three years after its original publication. The bug
dataset provides some information about the software environment
in which the code should be run, but this information can
be incomplete or can decay into something uninstallable over
time. We rectify as many of these problems as we can and
redesign the original dataset to be more easily reusable and
reproducible by future research projects. Based on our experience,
we offer suggestions to authors of Python artifacts to improve
their reproducibility.

Index Terms—reproducibility, bug database, BugsInPy, Python,
package managers, Pip, Conda, containers, Docker

I. INTRODUCTION

BugsInPy [1] is a curated dataset of real-world bugs in large

Python projects, intended to be used by researchers to develop

and evaluate software testing and debugging tools for Python

on a diverse set of real-world bugs from multiple projects.

This dataset can be used to evaluate the efficacy of tools

in bug detection, fixing, software reliability, and more. For

example, several software engineering studies [2]–[6] already

use BugsInPy.

The BugsInPy dataset contains a variety of information about

each bug, and these bugs are organized by the project they

come from, including:

• A buggy commit

• A fixed commit

• Python version used

• One or more test cases that indicate the bug’s presence

The BugsInPy dataset includes a database abstraction layer

and a test execution framework. The database abstraction layer

provides a way to access the dataset in a structured way. The

test execution framework allows researchers to run test cases

relevant to a particular bug.

We sought to use the BugsInPy dataset to verify, for each

bug, that all the test cases could be set up, that the buggy

commit fails, and that the fixed commit passes. Our work is a

reproduction (using ACM’s 2020 definition [7]) because we

use the scripts from the original work. (In contrast, our work

would be a replication if we did not use any original scripts

but wrote all new scripts from scratch to attempt to repeat the

original results.)

Our contributions include:

• Improvements to the BugsInPy test execution framework,

which make it easier to run experiments en masse.

• Modifications to the BugsInPy test execution framework,

which install and use the correct version of Python.

• The results of which bugs were reproducible with and

without our improvements and modifications.

We evaluate the following research questions:

RQ1. How many bugs in BugsInPy are reproducible with

no “extra” work? For a bug to be reproducible, the software

environment should install without failure, the buggy version

should fail the identified test cases, and the fixed version should

pass these test cases.

RQ2. How many non-reproducible bugs can we rescue? We

rescue a bug by modifying the scripts and data such that the bug

that was initially not reproducible now becomes reproducible.

This article proceeds with the methodology section, which

explains how we first tried to reproduce BugsInPy and what

rescue procedures we took when bugs were not reproducible.

Then we summarize the results of our executions and analyze

the failures. Finally, we engage in an open-ended discussion

of our experiments with several pieces of advice to authors of

future reproducible artifacts in Python and those seeking to

reproduce such artifacts.

II. METHODOLOGY

We first tried to reproduce each bug using the original script

released with the BugsInPy dataset. We run the script on an

Ubuntu 18.04 distribution, because the Docker image mentioned

in the original BugsInPy paper used Ubuntu 18.04. For bugs

that were not reproducible using the original script, we analyzed

the problems to identify the root cause and then made changes

to try to rescue the bugs and make them reproducible.

As part of our rescue process, we made the following changes:

1. Added Dockerfile for containers: We use a Docker con-

tainer build script, Dockerfile, to build a Docker im-

age that provides a consistent starting point in which our

scripts can install the correct software environment. The

BugsInPy original paper and the current Git repository do

not mention or include any Dockerfile, but DockerHub



does have an image for BugsInPy published by one of

the authors of the BugsInPy original paper; however, we

could not find a Dockerfile corresponding to that image.

Moreover, we wanted our image to include other changes

mentioned below (e.g., Conda). The use of container

sandboxes modifications that the BugsInPy script makes

to the environment (e.g., modifying ˜/.bashrc). While

our image is available in the popular DockerHub registry

[8], we suggest that users seeking robust reproducibility

build the image from our Dockerfile available in our Git

repository rather than depending on an external registry.

2. Added Conda package manager: Each bug may

require a different version of Python, as specified in

the dataset, but the BugsInPy script ignores the specified

version of Python, deferring to the system default Python

instead. Presumably, the BugsInPy authors manually

changed their system’s version of Python according to

the specification of each bug, but this process is not

fully automated, making it difficult for future users. We

modified the main BugsInPy script to install the correct

version of Python using Conda. Conda is a cross-platform

package manager. Packages installed by Conda neither

use nor modify the system version of those packages,

so Conda can support different environments, each with

its own requirements that may potentially conflict with

the other environments. Conda package repositories store

packages containing prebuilt binaries and metadata for

each platform, so installing is much faster than compiling

from source code.

3. Replaced Pip with Conda where appropriate: The

original BugsInPy scripts install all Python packages

using Pip package manager. Pip can invoke the compiler

to build dependencies from source code [9] or download

prebuilt binary files. The most common usage of Pip

is to install packages from the Python Package Index

(PyPI) using requirement specifiers. As specified in the

official Python Packaging documentation, a requirement

specifier typically consists of a project name followed

by an optional version specifier. PEP 440 provides the

specification for requirement specifiers, including a com-

prehensive guide to the currently supported specifiers [10].

However, some packages may require additional system

libraries or dependencies that cannot be installed solely

through Pip. For example, Matplotlib, a popular Python

plotting library, has required system-level dependencies

that Pip cannot automatically handle, such as libpng,

freetype, or Tk. Consequently, if a bug in a project’s

environment depends on Matplotlib, attempting to install

and run that project on a vanilla Ubuntu or Debian

system without the necessary system libraries would

result in installation failures. In such cases, it becomes

the responsibility of the user or system administrator to

ensure that the required system libraries are installed

manually before attempting to install the package with

Pip. The Matplotlib documentation provides detailed

instructions on how to install the necessary system-level

dependencies for different platforms [11]. By following

these instructions and setting up the required libraries,

users can successfully install and utilize Matplotlib and

any other package with similar external dependencies.

Presumably, the original BugsInPy authors manually

modified their system to have these system libraries;

in our case, we identify packages that Pip cannot install

on vanilla Ubuntu or Debian and simply install those

with Conda instead.

4. Added caching of environments: Building the

environment from source code can be costly, so we

reuse environments across many bugs when their Python

package requirements and Python versions are identical.

This optimization helps reduce the time and resources

required for environment setup, as it bypasses the costly

process of building environments from source code.

While it is tempting to use the same Conda environment

for all bugs in each project (rather than for each bug),

there are multiple occasions where different bugs of the

same project require different dependencies. For example,

ansible/bugs/{1,11,14}/requirements.txt
all vary subtly.

5. Correct installation of requirements: The

BugsInPy dataset correctly recognizes that

installing the dependencies line-by-line cat

requirements.txt | filter | xargs -n

1 pip install, rather than using pip install

-r requirements.txt, bypasses certain restrictions

imposed by Pip. Specifically, when installing all

dependencies at once, Pip may ignore very old packages.

However, sequentially installing the dependencies allows

us to install these old packages and thus reproduce the

bugs accurately. However, installing the dependencies

line-by-line results in failed installations for projects

that include the -e git+https://... syntax in

their requirements.txt file, because they would

get passed along as pip install -e and pip

install git+https://.... Our revised script

ensures that each line from the requirements.txt

file is properly processed and passed as an argument to

the pip install command. To correct this issue in

the BugsInPy dataset, we have opened a pull request in

the original repository [12]. This fix is crucial, because

it impacts the reproducibility of bugs in several projects

such as black, cookiecutter, keras, luigi,

pandas, sanic, and thefuck. We have started from

this pull request because it is the simplest of our five

changes; if we receive some feedback from the original

BugsInPy authors, we plan to open pull requests for the

other four changes.

III. RESULTS

This section presents and discusses our results on reproducing

bugs in BugsInPy before and after our changes. Table I shows

the results without our modifications, and Table II shows the



results after our modifications. The outcomes that we can get

for bugs are:

• Error (Err): Some step in the installation of the software

environment needed to reproduce the bug failed.

• Both-pass (B-pass): Both versions pass, although we

would expect the buggy version to fail.

• Both-fail (B-fail): Both versions fail, although we would

expect the fixed version to pass.

• Expected (Exp): The buggy version fails, and the fixed

version passes. We consider only these bugs as actually

“reproduced”.

The tables show, for each project, the raw count and percentage

of outcomes for all bugs in that project. The last, summary

rows show the raw count and percentage of outcomes for all

bugs in the BugsInPy dataset.

TABLE I
REPRODUCTION OF BUGS IN BUGSINPY WITHOUT OUR MODIFICATIONS

Project Err B-pass B-fail Exp Total

PySnooper 2 (67%) 0 (0%) 0 (0%) 1 (33%) 3 (100%)

ansible 3 (17%) 0 (0%) 0 (0%) 15 (83%) 18 (100%)

black 1 (4%) 0 (0%) 0 (0%) 22 (96%) 23 (100%)

cookiecutter 2 (50%) 0 (0%) 0 (0%) 2 (50%) 4 (100%)

fastapi 0 (0%) 0 (0%) 0 (0%) 16 (100%) 16 (100%)

httpie 4 (80%) 0 (0%) 0 (0%) 1 (20%) 5 (100%)

keras 14 (31%) 0 (0%) 0 (0%) 31 (69%) 45 (100%)

luigi 33 (100%) 0 (0%) 0 (0%) 0 (0%) 33 (100%)

matplotlib 29 (97%) 0 (0%) 0 (0%) 1 (3%) 30 (100%)

pandas 47 (28%) 0 (0%) 0 (0%) 122 (72%) 169 (100%)

sanic 5 (100%) 0 (0%) 0 (0%) 0 (0%) 5 (100%)

scrapy 11 (28%) 0 (0%) 0 (0%) 29 (72%) 40 (100%)

spacy 2 (20%) 0 (0%) 0 (0%) 8 (80%) 10 (100%)

thefuck 8 (25%) 0 (0%) 0 (0%) 24 (75%) 32 (100%)

tornado 1 (6%) 0 (0%) 0 (0%) 15 (94%) 16 (100%)

tqdm 2 (22%) 0 (0%) 0 (0%) 7 (78%) 9 (100%)

youtube-dl 0 (0%) 0 (0%) 0 (0%) 43 (100%) 43 (100%)

Total 164 (33%) 0 (0%) 0 (0%) 337 (67%) 501 (100%)

RQ1. We can reproduce 67% of the expected results in

the unmodified BugsInPy dataset.

TABLE II
REPRODUCTION OF BUGS IN BUGSINPY AFTER RESCUING

Project Err B-pass B-fail Exp Total

PySnooper 1 (33%) 0 (0%) 1 (33%) 1 (33%) 3 (100%)

ansible 0 (0%) 0 (0%) 0 (0%) 18 (100%) 18 (100%)

black 0 (0%) 0 (0%) 1 (4%) 22 (96%) 23 (100%)

cookiecutter 0 (0%) 0 (0%) 0 (0%) 4 (100%) 4 (100%)

fastapi 0 (0%) 0 (0%) 0 (0%) 16 (100%) 16 (100%)

httpie 0 (0%) 0 (0%) 0 (0%) 5 (100%) 5 (100%)

keras 3 (7%) 0 (0%) 1 (2%) 41 (91%) 45 (100%)

luigi 0 (0%) 6 (18%) 0 (0%) 27 (82%) 33 (100%)

matplotlib 3 (10%) 1 (3%) 0 (0%) 26 (87%) 30 (100%)

pandas 4 (2%) 0 (0%) 0 (0%) 165 (98%) 169 (100%)

sanic 0 (0%) 0 (0%) 0 (0%) 5 (100%) 5 (100%)

scrapy 0 (0%) 2 (5%) 0 (0%) 38 (95%) 40 (100%)

spacy 1 (10%) 0 (0%) 0 (0%) 9 (90%) 10 (100%)

thefuck 0 (0%) 0 (0%) 0 (0%) 32 (100%) 32 (100%)

tornado 0 (0%) 0 (0%) 0 (0%) 16 (100%) 16 (100%)

tqdm 0 (0%) 0 (0%) 0 (0%) 9 (100%) 9 (100%)

youtube-dl 0 (0%) 0 (0%) 0 (0%) 43 (100%) 43 (100%)

Total 12 (2%) 9 (2%) 3 (1%) 477 (95%) 501 (100%)

RQ2. We were able to rescue 85% of the non-reproducible

bugs in the original BugsInPy, resulting in a total repro-

duction rate of 95%.

With over 95% of bugs being successfully reproduced (passing

the test cases in the fixed commit and failing test cases in the

buggy commit), researchers have more bugs at their disposal

for using BugsInPy, e.g., for evaluating fuzzing, automatic

program repair, and other research techniques.

Table III presents the running time taken to run the respective

containers that attempt to reproduce bugs in each project within

the BugsInPy dataset. We include the time for both bugs that

we could reproduce and bugs that we could not reproduce.

These times are important to help researchers estimate the

resources needed for running their future experiments; the

original BugsInPy paper did not include these running times.

The provided running times are specific to the reproduction

procedure on the given VM configuration, which had 4 cores of

CPU AMD Ryzen 5 3600, 8GB of RAM, and 100GB of free

disk space. Reproduction times can vary depending on hardware

resources, system configurations, and other environmental

factors. The projects are sorted based on their running time in

descending order, with the project pandas having the highest

running time of 963 minutes, followed by luigi, scrapy,

and so on.

TABLE III
REPRODUCTION TIME FOR BUGS IN EACH PROJECT

Project Running Time (minutes)

pandas 963
luigi 510
scrapy 268
keras 230
black 214
fastapi 197
thefuck 195
sanic 136
spacy 131
ansible 80
tqdm 36
youtube-dl 59
cookiecutter 40
httpie 39
matplotlib 26
tornado 14
pysnooper 5

IV. DISCUSSION

A. What makes reproduction easy?

The ease of bug reproduction in the BugsInPy dataset can be

attributed to several factors:

1. Automation: Our bugsinpy-testall script pro-

vides an automated approach to reproducing and testing

all bugs in all projects included in the BugsInPy dataset.

The script streamlines the overall reproduction process,

minimizes manual effort, and ensures we use a consistent

procedure on each project. The script also allows to select



reproduction of only some of the bugs in some of the

projects. The automation script must be carefully written

and maintained to handle various possible errors. For

example, the original script did not have set -e, so

some intermediate step may fail without alerting the user.

2. Environment/package manager: The Conda environ-

ment/package manager simplifies the management of

project dependencies. The crucial insight is that Conda

can install packages in a local environment without

interfering with global, system-wide packages. Conda

makes it possible to define project-specific versions of

libraries that a platform-specific system-wide package

manager would normally manage.

3. Lack of non-deterministic bugs: All bugs in the

BugsInPy dataset are supposed to be deterministic. Our

scope is limited to constructing a reproducible software

environment consistent with the original bug, where the

bug can manifest itself deterministically.

These factors collectively contribute to the ease of reproducing

bugs in the BugsInPy dataset, providing a reliable and efficient

dataset for bug analysis and investigation.

B. What makes reproduction hard?

Despite the easy-to-reproduce factors mentioned above, bug

reproduction can still present challenges due to the following

factors:

1. Resource constraints during building: The software

environment can involve a computationally expensive

step of building software from source code. Reproducing

and testing many bugs within limited resources may

result in longer reproduction times and potential resource

limitations. Our script creates many Conda environments.

These environments can be expensive to store, and we

cannot, for example, archive our environments in GitHub

due to space constraints.

2. Missing packages in Conda: Unfortunately, not all

Pip packages and versions exist in our selected Conda

repositories.

Addressing these challenges requires careful consideration of

project-specific factors and may involve additional research,

debugging techniques, and resources to ensure accurate and

reliable bug reproduction.

C. Recommendations to Python artifact authors

For authors providing Python research artifacts, the following

recommendations can enhance the reproducibility of their

artifacts:

1. Make it automatic/easy to use: The BugsInPy dataset

has Python versions, but there is no automation to switch

to a specific version, so users are unlikely to do so. Our

improved version uses Conda to switch to the correct

Python version automatically.

2. requirements.txt is not enough: Pip cannot han-

dle library dependencies. Researchers should provide

a container, a Conda lockfile, Spack lockfile, or other

detailed environment specification.

3. Archival storage: Ensure that the artifact repository

is archived in long-term storage, such as Zenodo or

FigShare, so it does not disappear. For example, some

of our non-reproducible bugs are due to dependency

versions that are not available, including flake8 project

that moved from GitLab to GitHub [13].

D. Threats to Validity

Some of the bugs that we find unreproducible could be actually

reproduced with more effort than we expanded. Our effort may

reflect an “average” user with limited resources, not a researcher

with much more available time and resources.

While we show how to increase reproducibility of the BugsInPy

dataset, our own work may not be reproducible for the following

reasons:

1. Although we pin the exact version of our Docker base

image, the image location (DockerHub) may stop hosting

this base image (e.g., goes out of business, ends free tier).

In this case, one would need to change the base image,

but it could still work, so long as that base image has

Conda. We find that Conda is still able to easily install

rather old versions of Python.

2. Conda package repositories can stop existing (e.g., if

Anaconda goes out of business), or they can drop the

old package versions that our scripts use. However, the

definition of Conda packages describes how to build the

packages from source code. The package definitions are

smaller than the binaries, so these package definitions

may remain longer.

3. The reseachers trying to reproduce the results may need

more computational resources to do the reproduction in

a timely manner. We reduce the resource demands by

reusing Conda environments. Furthermore, our scripts

support reproducing just one project or just one bug from

one project.

V. CONCLUSION

The study presented in this paper demonstrates the effectiveness

of the BugsInPy dataset in reproducing and testing bugs in

Python projects. The original BugsInPy dataset included highly

useful information that aids in reproduction of these bugs, but

the scripts had some issues that limited reproduction to 67%

of the bugs in our experiments, before our modifications. Our

modifications, embodied in the automated approach provided

by our bugsinpy-testall script, coupled with the use of

Conda for dependency management and Dockerfile for building

images/containers, streamline the bug reproduction process and

enhance its ease. The high success rate in reproducing bugs,

with over 95% of bugs reproduced, indicates the reliability

and accuracy that our modifications provided to the BugsInPy

dataset. Our approach could be useful not only for BugsInPy

but possibly also for other bug datasets to validate the reliability

and accuracy in a more user friendly manner.



However, our experiments still depend on commercial orga-

nizations continuing to store software for free (GitHub, PyPI,

Anaconda, DockerHub). Challenges still exist in creating a

truly long-term reproducible software environment.
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APPENDIX

CODE, DATA, AND REPRODUCING

A rolling release of all our code and data can be found at

https://github.com/reproducing-research-projects/BugsInPy.

Our code includes:

• Dockerfile docker file setup to build projects images.

• docker-compose.yml orchestration to run containers.

• framework/bin/bugsinpy-testall script to au-

tomate execution of BugsInPy framework scripts.

To reproduce all bugs in a project, for example httpie, run:

$rm -f projects/bugsinpy-index.csv

$docker compose up setup httpie --build

Cleaning up temp folder ...

Reproducing bugs please wait ...

-------------------------

httpie,1,buggy,fail

...

After these commands, the new results will be in the file

named bugsinpy-index.csv. See README.md for more

detailed information.
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