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Abstract—Quantum computing resources are now becoming
easily accessible from various cloud providers. Although still
in the Noisy Intermediate Scale Quantum regime, quantum
computers hold promise to be able to execute novel algorithms
and create invaluable data. However, just as with any other
type of computing resource, they may be vulnerable to security
attacks and should have defenses built into their design. This
paper explores a particular threat of untrusted cloud providers,
and how to protect user’s quantum programs and data from
the untrusted cloud provider. By leveraging trusted hardware in
the quantum computer, a new obfuscation-based protection is
developed based on switching of control pulses between different
drive and control channels of the quantum computer. This work
demonstrates that simple hardware modifications can enable
dynamic, run-time pulse switching, which makes it extremely
difficult for the cloud provider to decode what actual circuit
is executed on the quantum computer. This work presents a
basic architecture that employs pulse switching, and an extended
architecture that includes use of dummy qubits for increased
protection. The overhead of the proposed changes, as well
as attack complexity for different types of user circuits and
obfuscation levels is evaluated in this work.

I. INTRODUCTION

Quantum computing is one of the emerging technologies

which holds the promise to solve complex scientific, optimiza-

tions, and machine learning tasks [5]. With the progress in

quantum computing technology, multiple cloud providers have

opened up access to small and medium-scale quantum com-

puters to the customers as Infrastructure as a Service (IaaS).

For example, cloud-based services such as IBM Quantum,

Amazon Braket, and Azure Quantum already provide access

to the NISQ (Noisy Intermediate Scale Quantum) quantum

computers remotely for users.

Since today the quantum computer cloud provider can see

users’ circuits and all the control pulses, which define the

gates and operations of the circuit and as a result, the cloud

provider has full knowledge of what the user is executing. This

can endanger the privacy or intellectual property of the user’s

circuits and the data they contain. Therefore, there is a need

to protect users’ circuits from untrusted or malicious cloud

providers. To address this need, we propose CASQUE, which
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is a new hardware design to secure superconducting quantum

computers by leveraging trsuted hardware.

In the CASQUE design, we propose that trusted hardware

can be incorporated into the quantum computer to help protect

the user’s circuits and data. Similar to how the CPU package

in classical trusted execution environments forms the trust

boundary, we select the dilution refrigerator as the natural trust

boundary for the superconducting quantum computer. Opening

or manipulating the refrigerator will cause temperature and

pressure changes that destroy qubit states, and can be easily

sensed to trigger protection of our trusted classical hardware

in the refrigerator. Our trusted hardware consists of minimal

hardware changes to the quantum computer hardware and

leverages off-the-shelf components.

The main modification to a quantum computer hardware

that CASQUE introduces is a Beneš network of RF switches

to allow for switching of control pulses between different

qubit and coupling drive and control channels. The input

circuits are modified by our CASQUE software to randomly

switch control pulses between different channels, and only

inside the refrigerator, they are switched back to the correct

channels based on encrypted information received from the

user. The untrusted cloud provider cannot access the switching

information and does not know which pulses actually execute

on which qubits. In the extended CASQUE+ design, we also

introduce means of adding dummy qubits and dummy gates for

further increasing attack complexity. To support the switching

of control pulses, our modifications also account for adjusting

the frequency and amplitudes of the control pulses.

The hardware modifications are relatively minor in the

context of the complexity of the rest of the quantum computer

hardware. We are inspired to propose addition of the security

features and hardware based on classical security hardware,

such as Intel SGX [9], [43]. Cloud customers are today

willing to pay extra for additional protections in hardware,

and hardware providers have the motivation to add security

features in hardware to help protect the code. We assume

quantum computer cloud providers and hardware vendors are

motivated to provide such new hardware security features –

just as they provide such features for classical hardware today.



Classical 

Computers

Quantum 

Circuit

Padding

Pulse 

Change

Encryption

Dummy 

Circuit*

Decryption

Phase 

Adjustment

Pulse 

Switching

Amplitude 

Adjustment

Frequency 

Shifting

Switching
Output 

Processing
Output 

Obfuscation

Cloud-Based Quantum Computer Provider

CASQUE Hardware

Quantum Computer Dilution Refrigerator

CASQUE Software

Output

User9s Local Machine

Network Controller 

Electronics

Fig. 1: System overview of today’s cloud-based quantum computers, overlaid with the components of CASQUE, distinguishing trusted
(green) and untrusted (red) elements. Trust is assigned to CASQUE operations and the quantum computer (refrigerator), while transmission
links between users, cloud providers, and classical computers/controllers are considered untrusted.

A. Contributions

The contributions of this work are as follows:

• Design of CASQUE hardware architecture for supercon-

ducting qubit quantum computers which protects user’s

circuits and data with trusted hardware

• Development of novel qubit-switching as an obfuscation

mechanism for hiding control pulses from untrusted cloud

providers and malicious attackers

• Evaluation of hardware (FPGA) implementation of the

CASQUE logic

• Evaluation of security attack complexity

• Design of CASQUE+ with novel use of dummy qubits

and dummy gates for further increase of attack complex-

ity with low additional cost

II. BACKGROUND AND MOTIVATION

A. Control Pulses

Microwave pulses are typically used to control supercon-

ducting qubits. To operate each native gate on a quantum

computer, the necessary control pulses for each gate must be

created and supplied to the quantum computer. The pulses for

all native gates on IBM Quantum are published as part of the

specification of the quantum computers and their parameters

are routinely updated through calibrations to maintain fidelity

over time. A pulse is usually defined by the envelope, fre-

quency, and phase. As an instance of the superconducting qubit

control, the envelope specifies the shape of the signal which

is generated by the arbitrary waveform generator (AWG), a

common lab instrument, and the frequency and phase specify a

period signal that will be used to modulate the envelope signal.

B. Pulse-Level Circuit Description

To fully describe a quantum program, all pulses for all the

channels need to be defined, including when the pulses should

start relative to the starting point of the circuit, to what qubits

the pulses will be applied, and other physical operations like

frequency or phase change, need to be specified. This informa-

tion, referred to as pulse information, along with other useful

information forms a so-called pulse-level circuit description.

Pulse-level circuits and pulse information are important and

valuable to be provided to users, because they enable users to

verify quantum circuits and check execution details.

C. From Gate-Level to Pulse-Level Circuits

In order to actually generate pulse-level circuits, a number

of steps are needed. The first step in developing a quantum

circuit or pro-gram is to build a logic-level circuit with a

quantum development kit, such as Qiskit [10], Amazon Braket

SDK [20], Q# [38] and Cirq [36]. Analogous to classical

computing, logic-level quantum circuits usually contain high-

level descriptions. A series of operations need to be done

to transform them into low-level and hardware-specific in-

structions, which is similar to the preprocessing, compilation

and assembly process for classical computing programs. The

second step is then to transpile the circuits, which is the term

used by Qiskit to represent the operations and transformations

that are like preprocessing and compilation. The process of

transpiling involves many steps, including decomposing non-

native quantum gates into groups of native gates, grouping

and removing quantum gates to reduce the number of gates,

mapping the logic qubits in the original circuits to the physical

qubits on the specified quantum computers, routing the circuit

under limited topologies, potentially optimizing circuits to

lower error, and so on. The third step is termed schedule

in Qiskit, which transforms gate-level circuits into pulse-

level circuits. Scheduling further maps quantum circuits to

microwave pulses, which are the ultimate physical operations

used to regulate and control qubits. Based on previously

calibrated data for each basis gate on each qubit or qubit pair,

scheduling creates microwave pulse sequences that are ready

to be carried out for quantum programs. The end result is

a circuit composed only of control pulses representing basis

gates that can be executed on the target quantum computer.

D. Prior Work

1) Blind Quantum Computing (BQC): BQC is a method

designed to enable a client to conduct quantum computations

on a distant server while maintaining the confidentiality of the

computation’s content. The primary goal of BQC is to uphold

the privacy of quantum computations, ensuring that, despite

the server executing the computation, it remains unaware of

its nature or purpose. Nevertheless, the majority of BQC

protocols currently in use assume that the client possesses

a basic quantum device and relies on the existence of a

quantum network for communication between the client and

the server [6], [8], [12], [13], [24], [32]. Recent research has



put forth BQC protocols that alleviate the requirement for

clients to host a quantum device on their premises [12], [17],

[18], [21], [27], [40]. However, these protocols introduce a

novel approach by depending on the existence of multiple

quantum servers. Notably, these protocols operate on the

assumption that these servers do not engage in communication

with each other, necessitating a level of trust in servers that

would otherwise be considered untrusted.

2) Quantum Homomorphic Encryption (QHE): Homomor-

phic encryption is a cryptographic technique enabling compu-

tations to occur on encrypted data, resulting in an encrypted

output that, upon decryption, corresponds to the outcome of

operations executed on the plaintext [4], [15], [25], [41], [44].

In contrast to the interactive computation inherent in BQC,

homomorphic encryption provides a distinct approach. How-

ever, the realization of fully-secure Quantum Homomorphic

Encryption (QHE), as indicated by the “no-go theorem,” intro-

duces exponential computational overhead. This impracticality

arises, especially in the near term, as noisy quantum devices

struggle to manage the substantial noise accumulation asso-

ciated with such computations. Furthermore, the prevailing

challenge lies in the fact that most homomorphic encryption

schemes are specifically designed for classical binary data.

This poses a significant hurdle when attempting to adapt these

schemes to the intricate landscape of quantum information,

which is characterized by principles such as superposition and

entanglement. The intricacies of quantum information make

the incorporation of homomorphic encryption into quantum

contexts demanding.

E. Goal of this Paper

Previous techniques aim to protect arbitrary quantum pro-

grams, necessitating a classical client to be augmented with

quantum capabilities and quantum networking (BQC), or

incurring exponential computational overhead (QHE). For the

aforementioned reasons, these techniques are rendered imprac-

tical. In this paper, our goal is to secure the quantum circuits

while they are running on an untrusted cloud provider’s end.

This work, aims to timely address an important problem due to

the emerging of quantum computers by introducing a number

of software and hardware steps for switching of control pulses

between different drive and control channels with minimal

hardware modifications. In this way, the cloud provider is

unable to retrieve information of what actual circuit is executed

on the quantum computer.

III. THREAT MODEL

A. Entities in the Threat Model

In our threat model, we consider three entities: users,

cloud provider and quantum computer manufacturer. Users

may have sensitive data and computation that they want to

run on a quantum computer. Cloud provider manages the

quantum computers. Quantum computer manufacturer is the

entity who makes the quantum computers. Despite sharing

names, such as IBM, we treat cloud providers and quantum

computer manufacturers as distinct entities, separating run-

time security threats (from the cloud provider) from supply

chain and manufacturing security concerns (from the quantum

computer manufacturer). Numerous examples, like Amazon

Braket or Microsoft Azure Quantum, illustrate this separation.

Importantly, any hardware modifications by the cloud provider

are viewed as analogous to an untrusted manufacturer, a threat

model currently outside our scope but a potential focus for

future research.

B. Honest-but-Curious Cloud Provider

Our work considers the threat model of an honest-but-

curious cloud provider. The honest-but-curious cloud provider

assumption encompasses different attacks, ranging from the

cloud provider spying on users for intellectual property to po-

tential malicious insider actions. Our threat model treats these

scenarios as isomorphic, grouping them under the honest-but-

curious cloud provider category. In this model, cloud providers

are untrusted and capable of spying on quantum computer

operations without modification. The assumption of untrusted

cloud providers extends to the possibility of collusion and

our work operates independently of relying on non-colluding

cloud providers.

C. Threat Model Details

Our research is dedicated to safeguarding users’ quan-

tum circuits from untrusted cloud-based quantum computing

providers, focusing on defense against passive attacks like

eavesdropping and side channels. Active attack protection,

involving digital or analog data and signal modification, is

considered separately. In our system architecture, shown in

Figure 1, trusted and untrusted components overlay the cloud-

based quantum computer.

Assumptions include a trusted user and compiler generating

transpiled circuits implementing our obfuscation technique for

execution by the cloud provider. Correct information about

the quantum computers is assumed, allowing proper circuit

transpilation. The user verifies the public encryption key

for the new CASQUE hardware from a trusted authority.

Unencrypted, transpiled circuits are accessible to the cloud

provider for scheduling and execution, except for the encrypted

CASQUE pulse protection map (PPM), decrypted only by our

trusted hardware in the quantum computer.

The untrusted cloud provider is restricted from manipulat-

ing circuits or control pulses, but can observe information.

Classical data, including the encrypted pulse protection map,

is safeguarded with quantum-safe cryptography. Trusted hard-

ware within the quantum computer cannot be manipulated

without detection. For superconducting qubit machines, the

dilution refrigerator serves as the trust boundary, with any

intrusion causing detectable disturbances, ensuring the cloud

provider cannot access it without destroying the quantum

computation. All hardware within the dilution refrigerator is

assumed correct, verified and bug-free.
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Fig. 2: Overview of the software steps for the update of user’s circuits for CASQUE protection.

IV. CASQUE MAIN FEATURES

Our proposed architecture addresses protection against an

untrusted quantum computer cloud provider conducting pas-

sive attacks. By obfuscating and randomizing control pulses,

we aim to confuse the provider about executed quantum gates

and qubit assignments. This entails user-side software mod-

ifications involving random switching of transpiled program

control pulses and the generation of control information for

reassignment. Hardware alterations include incorporating RF

switches inside the quantum computer’s dilution refrigerator,

creating a network to switch incoming signals among qubits

or couplings. Notably, these modifications within the dilution

refrigerator require no additional signal generators, minimizing

power consumption within cooling constraints.

A. Pulse Switching

The key idea is pulse switching. Today, a cloud provider can

directly see which pulses execute on which qubit. However, if

new hardware is added to allow to switch any control pulse

to any channel, then for each time period there are
(

n
k

)

, i.e. n

choose k, possibilities that k pulses can execute on n qubits;

a more detailed evaluation of the complexity is presented in

Section VI-B. Within limitations discussed later, after a circuit

is transpiled, the control pulses can be re-arranged in
(

n
k

)

ways

in each time period and the re-arrangement information can be

saved so that the pulses can be switched back during execution.

The re-arrangement in software is a simple modification of

digital data representing the circuit. In the hardware, the re-

arrangement can be achieved by use of a Beneš Networks.

1) Single-Qubit Gates: Single qubit gates such as X and

SX gates can be switched between any qubit channel. The

amplitude of the pulses is different for different qubits, thus

if there is any switching, the amplitude has to be adjusted.

To simplify the CASQUE design, we assume all single qubit

pulses on all channels will be initially sent at maximum

amplitude, and then the trusted hardware attenuates them

according to the target qubit. Since each incoming pulse

regardless of the channel will have the same initial amplitude,

the attenuation hardware does not need to know the initial

amplitude or the channel, only the target channel. More details

are presented in the Section IV-F.

2) Two-Qubit Gates: Two qubit gates such as CNOT gate

cannot be switched between channels, at least in current IBM

Quantum computer designs. The reason is that for different

qubits and couplings, the exact pulses, not just their ampli-

tudes, are different for different couplings. In base CASQUE,

we assume that CNOT gates will not be switched. However, as

an extension, we present the CASQUE+ design in Section VII.

In CASQUE+ we discuss how to increase attack complexity

by adding dummy qubits to the user’s programs (as long as

the quantum computer backend has sufficient physical qubits

to accommodate the original qubits and the dummy qubits).

Dummy qubits increase the number of possible locations for

switching pulses, increasing n in the
(

n
k

)

number of possible

combinations. We further leverage the dummy qubits to enable

the addition (and elimination) of dummy single-qubit gates, as

well as two-qubit gates, such as CNOT gates. The dummy gates

can be switched to the dummy qubits, effectively removing

them – while the cloud provider does not know this is

happening since they can only see the input circuit which

includes the actual and dummy qubits and actual and dummy

gates in the transpiled circuit specification.

B. Pulse Protection Map (PPM)

We propose to save the re-arrangement information in a new

data structure called Pulse Protection Map (PPM). The PPM

can be viewed as a list containing switching information for

each time period. The transpiled circuit can be easily modified

to quantize the time into fixed time periods. For example,

single-qubit gates on IBM Quantum today execute in 160dt

time, while two-qubit gates have variable timing, but can be

easily padded so that each two-qubit gate takes a duration

that is a fixed multiple of 160dt. As a result, the PPM can

be viewed as a list of control bits specifying the switching of

pulses at each time period. The PPM needs to be encrypted so

that the cloud provider does not access it. Inside the trusted

hardware, the PPM can be decrypted. The decrypted control

bits can be used directly to control the Beneš Network, and

no real-time computation is needed – simply the control bits

from PPM can be sent to the RF switches.

C. Attenuation and Phase Map (APM)

While control pulses can be easily switched between dif-

ferent channels, the same control pulse on different channels

is slightly different. For example, the control pulse specifying

X gate executing on qubit 0 may have a different amplitude

than the control pulse specifying X gate executing on qubit 1.

The phase of the pulses may also have to be adjusted. Further,

since we want to enable switching any pulse to any channel,

the input pulse should have the maximum amplitude of all the

channels. Thus, in the transpiled circuit, all the control pulses

are at maximum amplitude. This means, regardless of the



circuit, the input pulses going to the quantum computer will be

at maximum amplitude, and the attenuation amount does not

depend on the circuit. The attenuation amount and any phase

change information can be stored in the Attenuation and Phase

Map (APM). This is public information, since the properties

of the quantum computer, such as shapes and amplitudes of

control pulses, are known. The APM can be stored on trusted

hardware without any protection. The APM is used by our

trusted CASQUE logic for amplitude and phase controller

(APC) which we introduce into the dilution refrigerator.

D. Measurement Obfuscation

After all the pulses are switched and the circuit finishes

execution, there is a need to protect the measurements. To

obfuscate the measurement results, the best approach is to

randomly flip qubits before measurement by using X gates

at the end of the circuit. However, gates cannot be simply

“added” to the circuit in the dilution refrigerator. As an

alternative, we assume the user transpiles his or her circuit

with a layer of X gates at the end of the circuit, on half of

the qubits used by the circuit qubits. During execution of the

circuit, each X gate will be randomly switched to a different

channel. Half of the qubits will not have X gate applied and

their output is not flipped, while the other half will have the

X gate applied and the output will be flipped. Assuming there

are n qubits used, then there are
(

n
(n/2)

)

possibilities for which

qubits are flipped and which are not.

The switching of the final gates can be further determined

at run-time, so for each shot different qubits have their output

flipped. To support this, TRNG can be used to generate

randomness used to determine which qubits to flip. This

information about which X gates actually, i.e. which qubits

were flipped, needs to be encrypted and sent back to the user

so he or she can recover the correct outputs. We note that, as a

side benefit, the addition of X before measurements may also

help to reduce measurement errors [45].

E. Software Overview

To realize the CASQUE architecture, both software and

hardware modifications are needed. On the user’s software

end, there are a number of modifications that are required

by CASQUE to be made to the user’s circuits. First, the user

needs to transpile their circuit for the target quantum computer.

Then, subsequent steps required by CASQUE are listed below

and shown schematically in Figure 2.

1) Pad each CNOT gate with delays such that all CNOT gates

with their associated padding take the same amount of

time, the duration including padding should be a fixed

multiple of single-qubit gate duration

2) Add padding between other gates if necessary to “line

up” all the gates so that each gate starts at a time that is

a multiple of single-qubit gate duration

3) Increase the amplitude of each control pulse to the

maximum amplitude needed by any channel

4) For each time period, randomly switch the pulses between

channels and add a layer of gates for flipping the output

5) Save the switching information in the pulse protection

map (PPM)

6) Encrypt PPM with the cryptographic key associated with

the trusted CASQUE hardware inside the target

The transpiled circuit (with all the modifications and with

pulses switched between channels) is sent to the cloud

provider, along with the encrypted PPM.

F. Hardware Overview

On the hardware end, the pulses need to be switched to the

correct channels, and possibly have their amplitude or phase

adjusted. We assume the control pulses are correctly generated

by the cloud provider, based on the user’s transpiled circuit that

they received. The untrusted cloud provider who we assume

can passively try to spy on the information should not learn

details of the circuit since they do not know how the pulses

are switched and on which qubits they actually execute. The

encrypted PPM cannot be read by the cloud provider who

does not have the decryption keys. However, the encrypted

PPM is sent to the hardware before the circuit executes so

that the trusted CASQUE Logic hardware can decrypt the PPM

and send the control bits to the switches and amplitude and

phase control. Compared to an unmodified quantum computer,

a number of operations are performed on the control pulses

which are input to the dilution refrigerator.

1) For each time period, based on the control bits from the

PPM, the incoming pulses need to be switched to the

correct channels; at each time period, the control bits are

loaded into the Beneš Network to re-configure the routing

of the incoming signals

2) After the pulses pass the Beneš Network, they pass

through amplitude and phase control; the APM specifies

the attenuation and any phase shifting needed

3) Finally, the control pulses are now sent to the mixers so

that the incoming control signals can be mixed with the

carrier signal at the frequency matching the channel

4) For the output protection, at runtime, TRNG generates

random bits used to determine how the final X gates will

be switched, this information is also encrypted and sent

back to the user

The details of the hardware design, as well as the reasons

for including the mixers inside the dilution refrigerator (while

keeping the waveform generators outside), are discussed next.

V. DESIGN OF CASQUE HARDWARE

Switching control pulses requires more than just redirecting

the control signals to different qubits. We need to consider

other features of the control signals, such as the frequency or

amplitude of the signals.

A. Pulse Switching with Beneš Network

Swapping of the control pulses between qubits and cou-

plings can be realized by a Beneš network. A Beneš network

can be used to switch signals between N inputs and N outputs,

where any rearrangement of the inputs can be achieved without

blocking. Beneš network of N inputs has 2 × log2(N)− 1



… …

…

… ……

Fig. 3: Schematic of a typical superconducting quantum computer
showing arbitrary waveform generators (AWGs) with local oscillators
(LOs) and mixers used to mix the I,Q pulses onto the target qubit’s
or coupling’s frequency.

stages, each containing N/2 two-by-two crossbar switches,

and use a total of N × log2(N)− N/2 two-by-two crossbar

switches. For specifying switching, rather than specify for

each qubit or coupling channel its target channel, we can

instead directly provide control bits for each switch in the

Beneš network at each time period. Recall that all gates in

transpiled circuit are padded to that they each start at a time

that is multiple of single-qubit duration. In effect, the circuits

are quantized into fixed time periods. In each time period,

N × log2(N)−N/2 bits are needed (i.e. one bit per switch to

determine if the switch should exchange its inputs, or let them

pass unchanged).

The Beneš network’s switches can be realized with standard

RF switches. For example, the CMD272P3 [39] is a low loss

broadband positive control double-pole, double-throw (DPDT)

transfer switch. The CMD272P3 covers DC to 10GHz and

offers a low insertion loss of 1.6dB and high isolation of 43dB

at 5GHz, which is the target frequency for many superconduct-

ing qubit quantum computers. The CMD272P3 operates using

complementary control voltage logic lines of 0/+5V that can

be easily generated by the control logic by converting typical

single-ended outputs to differential pair outputs.

B. Frequency Adjustment

In a superconducting qubit quantum computer, each qubit

has a target frequency. Pulses generated for one qubit will not

work on another if the frequency is incorrect. Figure 3 shows

a schematic of a typical superconducting quantum computer

showing arbitrary waveform generators (AWGs) with local

oscillators (LOs) and mixers used to mix the I,Q pulses onto

the target qubit’s or coupling’s frequency. The AWGs, LOs,

and mixers are located outside the dilution refrigerator.

In CASQUE, the Beneš network can switch pulses, but can-

not adjust the frequency. Further, we do not want to introduce

any high-power equipment, such as signal generators, into the

dilution refrigerator. A solution we propose for CASQUE is

to move the mixers into the dilution refrigerator. The I and Q

pulses are at the same frequency for all qubits, it is only the

frequency of the LO that changes for each qubit. Thus, the

I and Q pulses can be sent through the switching network to

switch the gates. Once the pulses are switched, they can be

mixed with the LO signal.

C. Amplitude and Phase Adjustment

One of the main differences between the control pulses,

besides the frequency, is the amplitude of the pulse. As

discussed before, in CASQUE all pulses are sent at the highest

amplitude, and then attenuated. The amplitude adjustment can

be achieved with a voltage-controlled attenuator, for example,

F2258NLGK8 from Renesas [35]. The example attenuator

works in range up to 6GHz, with 1.4dB insertion loss and

the control voltage can be from 0V to 3.6V. To generate the

attenuation control voltage from digital information, a digital-

to-analog converter is needed. Assuming 10 bits of resolution

for the digital-to-analog, we can control the amplitude with

resolution of over 0.001%. Detailed analysis of the type of

the needed attenuation levels, and any residual impact of the

attenuation on the control signals, is left for future work.

The phase of the control pulses also affects their operation.

The phase information is stored in I and Q signals. If needed,

the phase may have to be modified before the I and Q

signals reach the mixers. Phase adjustment can be achieved

with a phase shifter, for example, HMC649A from Analog

Devices [3]. The example phase shifter works in 3GHz to

6GHz frequency range, with 8dB insertion loss, and has a

resolution of 6 bits, corresponding to phase adjust resolution

of 5.625 degrees.

D. Combined Hardware Modifications

Figure 4a shows the combined modifications to the quantum

computer hardware that CASQUE introduces. The additions

inside the dilution refrigerator include the CASQUE logic,

switching network, APC and mixers. These are the trusted

components. Further, the CASQUE logic is made of one or

more decryption tiles and engines discussed later to support

various sizes of switching networks (and the number of control

bits they require). The only modification to the untrusted

hardware outside the dilution refrigerator is the removal of

the mixers, which are now moved inside the fridge.

E. PPM and APM Data Size and Bandwidth

The Beneš network requires N × log2(N)− N/2 control

bits for each time period to allow for arbitrary switching of

N channels. Further, 10×N control bits are needed for the

amplitude control on N channels, and 6×N control bits may

be needed for phase adjustment.

The control bits for Beneš network are stored in PPM, and at

each time period The Beneš network requires N × log2(N)−
N/2 bits need to be provided from the PPM to switch the

switches. Meanwhile, control data related to amplitude and

phase is stored in the APM. These control bits from APM

only need to be provided before the circuit starts to execute.

At each time period, for each channel, it is only needed to

specify the type of gate, so the appropriate APM data can be

used to adjust the amplitudes, for example. In IBM Quantum

there are X, SX, and CX basis gates that use real control

pulses, thus 2×N = log2(3)×N control bits are needed for

each time period, in addition to the switching bits. The time

period corresponding to the duration of single-qubit gates is
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today 160dt in IBM quantum computers, which is equivalent

to 35.5ns. This corresponds to a frequency of 28.5MHz and

which the switching network control bits need to be provided.

1) Kookaburra Example: As an example, we can consider

1,386-qubit Kookaburra quantum processing unit, which ac-

cording to IBM roadmap [16] should be available in a few

years. For 1,386-qubit Kookaburra, we have 1,386 qubit drive

channels, and a similar number of control channels. Because

Beneš network requires a power-of-two number of inputs, we

can use the next closest power of two, which is N = 2,048 for

a number of inputs for qubit channel switching.

With N = 2,048, the number of control bits needed at each

time period is 21,504 for determining swapping qubits. The

size of PPM for Kookaburra would then be on the order of

21,504×D, where D is the depth of the transpiled circuit.

Regardless of the depth of the transpiled circuit, at each time

period, Kookaburra would need 21,504 control bits sent to the

switching network plus 2,772 bits for specifying gate type (for

amplitude and phase adjustment). At 28.5MHz, this is approx-

imately 75GB/s bandwidth that is needed for communication

between the CASQUE logic and the switching network.

F. Security-Performance Tradeoff with Tiled Switching Net-

work Design

According to recent IBM roadmaps, large quantum com-

puter systems will be built from smaller quantum computers or

quantum computer chips on the order of 1000 qubits, such as

the 1,386-qubit Kookaburra quantum processing unit that can

be replicated multiple times to build a larger computer. In a ba-

sic approach, CASQUE hardware can be instantiated for each

quantum processing unit. Multiple CASQUE hardware can

work in parallel, each with its associated quantum processing

unit. While approximately 75GB/s bandwidth between each

CASQUE logic and its associated switching network is high, it

is within reach of today’s electronics (e.g. DDR5 can provide

51 GB/s data bandwidth per module, or HBM can provide

256 GB/s data bandwidth). However, so many switches are

not needed in practice. From a security perspective, if we

consider even circuits with an order of 6 qubits and 100s of

gates, our evaluation in Section VI, shows the complexity can

be above 2256. Thus, if we only switch a few channels, the

attack complexity is huge and there is no need to switch all

the channels each time and the 75GB/s bandwidth is unlikely

TABLE I: Number of control bits, number of possible permutations,
and corresponding bandwidth for different sizes of Beneš network.
Bandwidth computation is based on the number of control bits that
need to be provided in each 35.5ns time period.

Size Perm. Ctrl. Bits Bandwidth Num. Dec. Tiles

2×2 21 1 3.5MB/s 1

4×4 ∼ 24.5 6 21.1MB/s 1

8×8 ∼ 215.3 20 70.4MB/s 1

16×16 ∼ 244.3 56 197.2MB/s 1

32×32 ∼ 2117.6 144 507.0MB/s 2

64×64 ∼ 2296.0 352 1,873.0MB/s 3

to be actually needed, order or two smaller bandwidth could

be sufficient when only smaller number of qubits are switches

– while still having high security level.

1) Tiling of the Switching Network: N×N Beneš network is

actually built from two N/2×N/2 networks with added layers.

An example of 8× 8 a network built from 4× 4 networks is

shown in Figure 4b. As a result, it is simple to trade off the

number of possible permutations vs. the number of control bits

(and thus bandwidth) needed. Table I shows different sizes of

networks and the associated number of permutations, needed

control bits, and bandwidth. Based on the different sizes of the

network, a different number of control bits is needed. We note

that in our design of the decryption engine which decrypts the

PPM, discussed next, we use the AES algorithm, which has a

block size of 128 bits. Each decryption tile can provide 128

bits in a time period. Depending on the size of the switching

network, multiple tiles can be used in parallel.

G. CASQUE Logic and Decryption Engine Design

In this work, we also implement a hardware design for the

decryption engine, which is a key part of the CASQUE logic.

The decryption engine helps decrypt the encrypted PPM inside

the trusted hardware. For our evaluation, we consider AES-

GCM algorithm to encrypt the PPM on the user’s end. We use

an existing AES-GCM module [22] which can perform both

encryption and decryption and implement a wrapper consisting

of a controller which helps in loading the encrypted PPM from

the BRAM or DRAM, decrypt it, and write it back to the same

memory location block by block. We name this module as

decrypt_tile (shown in Figure 5). The decrypt_tile



has the capability of generating parameterized output width

for these decrypted PPM bits. Users can choose the width

arbitrarily based on the bandwidth requirement. Furthermore,

the decrypt_tile also supports a high-performance mode

where multiple decrypt_tile could be stacked together to

decrypt large PPMs efficiently. The key required by the AES-

GCM module is established using a quantum-safe public key

algorithm, e.g., Classic McEliece [2]. In our hardware design,

for the public key algorithm, we use the mceliece38864

decapsulation module described in Section 5.4 of [7]. Other

quantum-safe algorithms could be used as well.

In addition to the decryption engine, to protect the output

generated from the quantum computer (discussed in Sec-

tion IV-D), we also implement a True Random Number

Generator (TRNG). For the TRNG module, we use an existing

SHAKE256 module [7] and implement a wrapper around it to

feed an arbitrary size seed (we assume that there is a random

number generator (RNG) inside the trusted hardware boundary

that provides uniformly distributed random bits to our module

as an initial seed) and squeeze out the required number (N)

of random bits (RB), where N is the number of qubits for

the given quantum computer. As discussed in Section IV-D,

based on these bits, an X gate is either applied or not on the

output of the quantum circuit. The wrapper also facilitates

the encryption of RB using the AES-GCM module from the

decrypt_tile, which is sent to the user.

The TRNG module uses the SHAKE256 with the

smallest performance parameter configuration, i.e,

parallel_slices = 1 (described in [7]). The

top_module combines all other modules as shown in

Figure 5. The hardware utilization of our CASQUE hardware

module is as follows: 3,340 LUTs, 1,158 FFs, 10 BRAMs,

and it operates at a frequency of 103 MHz when targeted

to Xilinx Artix 7 xc7a100t. To handle a 1 MB PPM, our

hardware module takes 7.7 ns. These results do not include

the resources used for the public-key algorithm. we do not

report the BRAM utilization required for the PPM storage.

This is because the size of the PPM changes as per the target

quantum computer and quantum circuit. For large quantum

computers and large circuits, the size of the on-chip BRAM

may not be enough for the PPM storage, in which case

we could use off-chip storage units such as DRAM. Our

CASQUE hardware design supports the usage of either of

them. We also note that we chose to target a lightweight

hardware implementation for this evaluation. However, the

parameterizable capability of our design allows switching to

a high-speed parallel implementation easily.

1) Serializer-Deserializer for Outputs: Although the oper-

ating frequency of the CASQUE hardware module is higher

(103 MHz), the frequency at which the pulse switching

happens is much slower (i.e., 28.5 MHz, as described in

Section V-E). One possible solution to tackle this is to run

the complete design at the (slower) switching frequency, but

the bandwidth requirement of the Beneš network may not be

met. Consequently, we run our design at the fast frequency

and use an asynchronous FIFO (ASYNC_FIFO) to handle

Fig. 5: Top-level design of CASQUE hardware module, which
implements key parts of the CASQUE logic. Quantum-safe public-
cryptographic modules (mceliece38864 decapsulation) for estab-
lishing the shared secret for use in the AES would be extra hardware.

the crossing clock domains. Figure 5 shows usage of two

sets of ASYNC_FIFOs, one for switching network and the

other to control the application of X gate on the output.

From the (ASYNC_FIFO), the decrypted PPM output is then

loaded into the Serializer-Deserializer to arrange bits as per

required bandwidth. We note that we successfully conducted

practical experiments by running our hardware design on

Xilinx Artix 7 xc7a100t FPGA and interfacing them with

the RF switches (described in Section V-A). We simulate the

quantum computer control pulses, going into the RF switches,

using a lab signal generator; and an oscilloscope is used to

validate that the switches attenuate the pulses when needed.

VI. EVALUATION

Our evaluation focuses on fidelity evaluation using Varia-

tional Distance (VD), as well as computation of complexity

of how many circuit the attacker would have to try based on

the obfuscation provided by the switching of the pulses. We

use selected QASMBench benchmarks [23] for the evaluation.

Fidelity evaluation is done on the 7-qubits real IBM Perth

quantum machine.

A. Fidelity Evaluation

Assuming ideal operation of the switches and other added

components, we focus on the impact of added delays due

to “lining up” of gates done as part of CASQUE software

steps. When CNOT gates are padded with delays to have fixed

duration, we observe that with more delays, the variational

distance increases, i.e. the fidelity decreases. For this reason,

we measure the Variational Distance (VD) between each of

the eight selected benchmarks and the unmodified benchmark

from the QASMBench benchmarks suite. Informally, the vari-

ational distance of two output probability distributions is the

measure of how one probability distribution is different from

the other. In general, the total variation distance between P

and Q is defined as: δ (P,Q) = 1
2 ∑ |P−Q|.

The impact of the extended duration of the selected bench-

marks is presented in Table II.

B. Security Analysis

In the computation of the security level and the security

analysis, we take into account the following aspects: number of
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TABLE II: Variational Distance (VD) metric for selected QASM-
Bench benchmarks [23]. The Qubits, Gates (single-qubit gates) and
CNOT numbers are pre-transpilation.

Benchmark Qubits Gates CNOT VD

wstate 3 30 9 0.126
basis change 3 53 10 0.116

variational 4 54 16 0.080
vqe 4 89 9 0.195

qec en 5 25 10 0.642
error correctiond3 5 114 49 0.184

simon 6 44 14 0.195
qaoa 6 270 54 0.203

qubits (nqubits), total number of single-qubit slots (p), number

of single-qubit gate pulses in each slot (msi), total number of

CNOT slots (q), number of single-qubit slots within duration

of a CNOT slot (r), number of CNOT gate pulses we have in

each CNOT slot (c j), number of single-qubit gate pulses in

each slot within a CNOT slot (mc j,k):

C =
p−1

∏
i=0

(

nqubits

msi

)

×
q−1

∏
j=0

(

r−1

∏
k=0

(

(nqubits − (2× c j))

mc j,k

)

)

(1)

In the above equation, we use
(

n
k

)

notation to represent n

choose k computation. In our implementation, each CNOT gate

slot is padded with delays such that all CNOT gates within the

circuit take the same duration of time (equal to the duration

of the longest CNOT gate on any of the coupling in the target

quantum computer). The CNOT gate duration of time including

padding is set to be a multiple of the single-qubit gate slot

duration, currently 160dt. Since all CNOT gate slots are of the

same duration, regardless which CNOT slot j is considered,

the number of single-qubit gate slots that fit within the CNOT

slot is the same and equal to r. As result r depends on the

quantum computer backend which determines the duration of

CNOT gates. Meanwhile, p, q, msi, mc j,k, and c j depend on the

user’s circuit, its structure and the gates used. nqubits depends

on the number of qubits used by the user’s circuit, but clearly

cannot be larger than the number of qubits available on the

target quantum computer. The approximate attack complexity

on selected bencharks is shown in Table III. The table also

shows the complexity for CASQUE+ extended architecture,

discussed next.

VII. CASQUE+ ARCHITECTURE

Our proposed CASQUE provides very good protection at a

very high obfuscation level. However, we observed that a novel

application of the switches can be realized if we assume that

additional dummy qubits can be added to the user’s circuit.

Specifically, if dummy qubits (qubits not otherwise used by

the original circuit) are added to the design, then it is possible

to switch control pulses from the other qubits to the dummy

qubits. Pulses switched to the dummy qubits do not affect nor

perform any useful computation, and thus they are effectively

eliminated from the circuit. Further, pulses can be added to the

dummy qubits, and pulses can be switched among the dummy

qubits, which also does not affect the actual computation.

A. Increasing Obfuscation with Added Dummy Qubits and

Dummy Gates

Adding dummy qubits and dummy gates increases the

number of possibilities for switching the gates – increasing the

complexity for the attacker. Considering our prior Equation 1,

adding dummy qubits increases nqubits. Adding dummy single-

qubit gates increases msi and mc j,k. Adding two-qubit gates

increases c j. However, the complexity increases further as in

Equation 1 and baseline CASQUE design we do not alter the

two-qubit CNOT gates. Now, with dummy qubits, we can add

dummy two-qubit gates on original qubits and then switch

them to the dummy qubits to eliminate them. As a result, the

attacker (cloud provider) no longer is certain that a CNOT gate

will execute (as it did in CASQUE). Rather, each CNOT could

be a real gate that executes or could be a gate that is eliminated

(by switching it to a dummy qubit) before execution. The

updated complexity for the number of possible circuits that

the untrusted cloud provider would have to guess from is:

C′ =
p−1

∏
i=0

(

nqubits

msi

)

×
q−1

∏
j=0

((

r−1

∏
k=0

(

(nqubits − (2× c j))

mc j,k

)

)

×2c j

)

(2)

B. Preventing Dummy Qubit Detection

Although the attacker does not know which are the dummy

qubits from the input circuit, they could use the circuit

structure to guess the dummy qubits. First, if the circuit can

be partitioned into two disjoint circuits not connected by a

two-qubit gate, then the attacker could easily say that one of

the two circuits is made up of the dummy qubits. Thus, we



TABLE III: Approximate attack complexity on selected QASMBench benchmarks [23]. Complexity calculated for zero, two, four and eight
number of added dummy qubits. The Qubits, Gates (single-qubit gates) and CNOT gates numbers are pre-transpilation.

Benchmark Qubits Gates CNOT Complexity
0 dummy qubits w/ 2 dummy qubits w/ 4 dummy qubits w/ 8 dummy qubits

(CASQUE) (CASQUE+) (CASQUE+) (CASQUE+)

wstate 3 30 9 28 215 219 225

basis change 3 53 10 243 266 280 2100

variational 4 54 16 220 226 230 236

vqe 4 89 9 245 264 277 295

qec en 5 25 10 217 222 226 232

error correctiond3 5 114 49 2103 2132 2155 2191

simon 6 44 14 220 225 228 233

qaoa 6 270 54 2268 2324 2365 2428

must ensure that there is at least one dummy two-qubit gate

that connects one of the original qubits with one of the dummy

qubits. Second, if there is no measurement on a qubit, it can be

identified as an ancillary qubit (actually used by the circuit, but

not measured) or as the dummy qubit. Thus, we must ensure

there is a measurement gate on all qubits, so that all qubits

look like they are part of the circuit, even if the measurement

will be discarded by the user.

C. Switching of Multi-qubit Gates

The current design of CASQUE does not switch multi-

qubit gates due to the complexity of the waveform of the

multi-qubit gates. However, this can also be done with enough

knowledge of the waveform of the multi-qubit gates. For

example, if the CNOT gates on different qubit pairs have the

same waveform, then this can be easily done with the same

scheme as in CASQUE. Nevertheless, the current design of

the CNOT gate on the IBM cloud introduces different duration

and pulse patterns, which may require additional hardware,

such as the hardware to change the duration of pulses. The

study of switching multi-qubit gates is left for future work,

but we acknowledge that switching CNOT gates would further

increase attack complexity.

D. Operation of CASQUE+

Figure 6 shows schematically the steps of extending the

user’s circuit with CASQUE+ protections. We assume that the

input is the CASQUE protected circuit. The steps are done on

top of, or in addition to, the protection applied by CASQUE.

The steps to add dummy qubits and dummy gates are:

1) Add dummy qubits to the circuit

2) Randomly add two-qubit gates in CNOT gate slots, ensure

that at least in one slot one of the added gates uses both

real and dummy qubits

3) Randomly add single qubit gates

4) Add measurement gates on all qubits

5) Update pulse protection map

E. Analysis of Increased Complexity

Based on Table III, we can achieve higher complexity by

adding additional dummy qubits to the circuits. We tested

for two, four, and eight additional dummy qubits for every

application. We observe the highest complexity for the 6-qubit

benchmark qaoa, as this benchmark has the highest number

of gates and CNOT gates among all the tested benchmarks.

We acknowledge that in CASQUE+ architecture, some extra

qubits for the machine are occupied and prevented from being

used by other applications to run in parallel, however, we

consider this to be a minor issue in larger quantum machines.

VIII. RELATED WORK

Relevant sets of research include work on blind quantum

computation, quantum homomorphic encryption and obfus-

cation of quantum computation. Considering protection of

programs from untrusted cloud computing providers, BQC

has been explored by various researchers [1], [6], [11], [14],

[19], [26], [28]–[31], [33], [34], [42]. Unlike our work,

blind quantum computation remains mostly theoretical since

it assumes existence of quantum networking to connect to

the cloud-based quantum computer, as well as, a trusted

quantum computer owned by the user. On the other hand, QHE

facilitates the inclusion of classical clients on a single server,

yet it encounters significant challenges, including exponen-

tial computational overheads and the necessity for advanced

quantum error correction [4], [15], [25], [41], [44]. Our work

removes need for these assumptions by leveraging trusted

hardware inside the quantum computer.

Our research aligns with recent works on arXiv, par-

ticularly [37], which lacks trusted hardware and adopts a

compile-time strategy, allowing users to insert RX gate pairs

for confusion. In contrast, our dynamic approach forces the

untrusted provider to test an exponential number of gate-

switching combinations. In [46], [47], trusted hardware is used

to attenuate decoy control pulses, akin to our work, but we

employ additional trusted hardware without extending user

circuits with idle decoy pulses.

IX. CONCLUSION

This work introduced a novel hardware architecture,

CASQUE, for securing computation on superconducting qubit

quantum computers by enabling dynamic runtime pulse

switching. CASQUE+ enhanced the protections further by

allowing users to add dummy qubits and dummy gates for

heightened security. The proposed protections can be espe-

cially useful in cloud-based quantum computing systems to

help protect from untrusted cloud providers. The architectures

allow users to select different obfuscation levels to balance

security and resource use.
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