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Abstract

Player goals in games are often framed in terms of achieving something in the game world, but this framing can fail to
capture goals centered on the player’s own mental model, such as seeking the answers to questions about the game world.
We use a least-commitment model of interactive narrative to characterize these knowledge goals and the problem of knowledge
goal recognition. As a first attempt to solve the knowledge goal recognition problem, we adapt a classical goal recognition
paradigm, but in our empirical evaluation the approach suffers from a high rate of incorrectly rejecting a synthetic player’s
true goals; we discuss how handling of player goals could be made more robust in practice.
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1. Introduction

Goal recognition is the task of inferring the intentions be-
hind an agent’s actions. When the agent in question is a
human game-player, it can serve as a form of player mod-
eling [1] that helps the system predict what the player
will do next. Proposed applications have included tailor-
ing procedurally-generated quests to a player’s prefer-
ences in an adventure game [2], assessing the player’s
understanding in an educational application [3], or de-
tecting when the player’s actions threaten to derail the
authorial intent in a story-focused experience [4].

Goal recognition has been studied extensively in a
games context [2], but the work so far has largely cen-
tered around goals about the state of the game world:
achievement goals to make a particular fact about the
world state true or maintenance goals to prevent a fact
from being undone [5]. Although many goals in games
fit into this framework—e.g., obtaining an item, getting
to a location, or defeating an adversary are achievement
goals; keeping a character alive is a maintenance goal—
players may also pursue goals that cannot be expressed
solely in terms of world state.

For instance, Ram [6] defines knowledge goals as the in-
tentions of an agent to extend or organize its own mental
structures. Knowledge goals encompass players’ desire
to explore the game world, uncover mysteries about past
occurrences, and explain unexpected findings. They are
central to genres such as mystery games [7] as well as
tutoring and training systems [8]. A goal recognition ap-
proach that does not account for exploratory behavior is
liable to fail even when dealing with an accomplishment-
focused player, since a knowledge goal can be instrumen-
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tal to a world-state goal: Obtaining the item involves
figuring out where to find it, and staying alive involves
figuring out which characters have harmful intent.

In interactive narrative games, the line between knowl-
edge goals and non-knowledge goals is further blurred:
As gameplay progresses, the player extends their model
of the story by discovering new information through
their interactions while at the same time their choices
constrain the range of possible stories that could emerge.
In an interactive narrative architecture using an experi-
ence manager—an artificially intelligent agent that con-
trols the non-player elements of the game to adapt to the
player’s decisions—the experience manager may have its
own goals for the story, reflecting the game designers’ in-
tent for the player’s experience. An experience manager
that recognizes the player’s goals can find the overlap
with its own goals and guide the story down a path that
satisfies both [9, 10].

This paper’s contributions are as follows. First, we
provide a framework for characterizing knowledge goals
and knowledge goal recognition in an interactive narra-
tive environment. Because the player may have limited
awareness of how the game will respond to their deci-
sions, classical frameworks that make strong assump-
tions about an agent’s model of environment dynamics
are inadequate. Instead, we draw on a formal model of
discourse from semantics and pragmatics that has the
asking and answering of questions as its basic opera-
tions [11]. Analogous to how a question prompts the
respondent to extend the body of information mutually
known to both parties in the dialogue, a player acting
in an interactive narrative game prompts the game to
extend the mutually-known body of information about
the story. Our model can capture traditional goal types,
but also knowledge goals reflecting implied questions for
the story to answer; we define these goals with reference
to a cognitive model of literal, spoken questions [12].

Second, we present a preliminary study of algorithms
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for identifying a player’s knowledge and achievement
goals from the player’s actions. We adapt a planning-
based goal recognition paradigm [13] into our frame-
work to define these algorithms, and empirically evalu-
ate them on synthetic player agents. Our experiments
reveal important shortcomings in the algorithms; robust
goal recognition for diverse goal types remains an open
problem, so we conclude by discussing a research agenda
for addressing it.

2. Related Work

Our model of interactive narrative draws from others that
treat the story world as only “existing” as far as the player
is aware of it, rather than simulating the entire world. By
modeling the player’s knowledge of the story so far, an
experience manager can delay decisions about proper-
ties and events outside the player’s perception and use
those decisions as tools to adjust the course of the story
in response to the player’s actions. This idea has been
the basis of approaches to preventing player derailment
of experience manager goals [14], saving computational
resources by deferring [15] or shortcutting [16] how off-
screen events are decided, and increasing the depth [17]
and diversity [18] of generated stories.

Horswill [19] introduces the term story state to refer
to the evolving set of design decisions about a story over
the course of its creation, whether the creation involves
the changing decisions of an external author or improvi-
sation of story-world background within an interactive
narrative during the unfolding of the narrative events
themselves. The state-transition model we use in our
framework operates on a form of story state.

Baikadi et al. [7] present a machine learning model
for recognizing player goals where the player may not
be aware of all game-supplied goals at the start, and
may take exploratory actions to discover new gameplay
goals for themself. Interactive narratives are modeled
as a graph of narrative discovery events where story-
driving information is revealed; with the testbed of the
Crystal Island [20] educational mystery game, Baikadi
et al. allude to the idea we build on here of handling
knowledge-seeking and objective-achieving in a unified
framework. However, their approach uses training data
to build domain-specific goal recognition models, while
ours uses domain-independent planning to try to recog-
nize goals in the absence of training data.

Goal recognition has been explored in a planning-
centric narrative context before, albeit focused on world-
state models of planning. Farrell and Ware [21] take a
narrative generation framework that models story char-
acters’ beliefs and intentions [22], and build upon it to
identify the intentions and beliefs of an existing agent
from its actions. Cardona-Rivera and Young [9] present

algorithms to recognize a player’s intentions for the nar-
rative trajectory, and also propose that interactive narra-
tive players predict an experience manager’s intentions
for the narrative trajectory, and that plan recognition
algorithms can serve as a proxy for how players make
these predictions.

Meneguzzi and Pereira [13] give a survey of planning-
oriented approaches to goal recognition in general. They
taxonomize the approaches by the type of environment
(stochasticity/determinism and complete/incomplete in-
formation), extent of the goal recognizer’s information
(complete awareness of the target agent’s actions vs. miss-
ing or noisy information), the target agent’s behavior
(whether it plans optimally and whether it tries to thwart
goal recognition), and form of the solution (whether can-
didate goals are assigned a probability or qualitative or-
dering for how likely they are to be the true goal, or
else a binary accept/reject decision). Recently active
goal elicitation has been proposed by Amos-Binks and
Cardona-Rivera [23] where the recognizer affects the
agent’s environment.

Building on the analogy of interactive narrative as a di-
alogue between player and game [24], player and author
[10], or player and co-participants [25], our framework
borrows from a model of explicit dialogue from semantics
and pragmatics by Roberts [11] with foundations from
Stalnaker [26]. We adapt the concept of the common
ground, the set of propositions that dialogue participants
mutually accept as true, and the progression of a dia-
logue as a sequence of moves from among two types,
assertions that add to the common ground (analogous
to our observation sets) and questions that define which
subsequent moves are relevant (analogous to our player
actions). However, a key difference between our assump-
tions and those of the dialogue models is that moves in an
interactive narrative can constrain or determine which
facts are true rather than simply revealing static facts
that were already true.

Another perspective on explicit question-asking comes
from Rothe et al. [27], who ask what humans are likely
to ask in the context of the game Battleship. They define
a “good” question in terms of maximizing information
gain. By studying players empirically, they conclude that
people tend to choose the most informative questions
when presented with a list of question options, but not
when generating their own questions from scratch. Their
environment is restricted compared to our interactive
narrative focus: They assume that the Battleship play-
ers are asking questions solely to optimize their chances
of winning the game, and informativeness of questions
translates directly to increased ability to win, whereas we
consider knowledge goals that sometimes reflect ques-
tions asked simply for their own sake.



3. A Model of Interactive Narrative
and Goals

In Section 3.1, we propose a representation for how in-
formation is revealed over the progression of interactive
narrative. In Section 3.2, we define a class of knowledge
goals with respect to this framework.

3.1. Interactive Narrative Domains

At a high level, we model an interactive narrative domain
as a state-transition model similar to a Markov decision
process, but nonstochastic: there is a known set of possi-
ble outcomes for taking a given action in a given situation,
but no assignment of probabilities to outcomes.

The domain is a tuple (P, S, A, L, O). P is a universe
of propositions. S is a universe of proposition sets s C P.
We call s the common ground in reference to the discourse
model by Stalnaker [26], as it represents the information
about a story mutually known between the player and
game at a given time during a playthrough. Besides not
being self-contradictory, we place no general restrictions
on the contents of a common ground, although we pro-
pose a more restricted implementation later in this sec-
tion. A common ground functions like a state, but unlike
a world state which only tracks facts that are true in the
present moment of the story, a common ground in de-
scribes the story as a whole and will only grow over time;
if a propositional representation of world state needs to
be tracked within the model, the propositions should be
defined to contain time indices or other ordering con-
straints that distinguish the past of the story from the
present in which the player is currently interacting.

A s a set of player actions. L(s) is a function mapping
a common ground s € S to the set of player actions that
are legal from that common ground. O(s, a) is a function
that maps a common ground s € S and action a € L(s)
to a set of possible resultant observation sets, each of
which takes the form of a proposition set 0 C P where
(sUo) € S.

We use this formalism to model the evolution of a
player’s knowledge over the course of a playthrough
of an interactive narrative game. At any given time,
the current common ground s encompasses all of the
facts revealed to the player about the story so far. When
the player chooses an action a, they know the result
will be some observation set in O(s, a), but they can-
not necessarily predict which one. This can model game
architectures where the actual results of actions are pre-
determined but depend on information unknown to the
player (and therefore unmodeled in the common-ground
representation), but also architectures that use least- or
late-commitment experience management or dynamic
procedural content generation where that information
is altogether undecided by the system until it is needed.

After a is taken, the game determines and reveals the
chosen observation set o € O(s, a). This encompasses
the direct results of the player action as well as anything
else that happens in the story world before the player is
able to act next (e.g., NPC actions). The new common
ground then becomes s’ = (s U o).

As a more specific language for representing the com-
mon ground, we consider the knowledge representation
from QUEST [12], which has seen prior use for model-
ing audience reasoning about narratives [28] and can
encode the causal relationships [29] and character inten-
tions [30] commonly emphasized in plan-based narrative
generation.

A QUEST knowledge structure (QKS) is a directed
graph where nodes are annotated with semantic informa-
tion and where nodes and arcs each have one of several
predefined types; see Graesser et al. [31] for an extended
account of types and their constraints. We focus on a few
types: event nodes which correspond to character actions
or happenings in the world, state nodes which correspond
to something being true in the world, consequence arcs
which express a causal relationship between two nodes,
goal nodes which define in-story character goals (distinct
from our model of player goals; we omit these from our
examples for brevity and clarity), and outcome arcs show-
ing motivation of event nodes by goal nodes, and reason
arcs linking goal nodes together as character plans.

To relate this to the abstract model from above, we can
define the propositions in P to indicate the existence of
QKS nodes and edges, so a common ground in s € S
corresponds to a QKS. When the player takes an action a
in s, each observation set in O(s, a) will include at mini-
mum a new event node expressing that a took place and
consequence arcs to that event node from prior events
or facts that made the player action possible.

We describe an example of how we represent a
common-ground change in a hypothetical adventure
game. To start, the player is informed that their charac-
ter is at their cottage and that a bandit has just broken
into the cottage and left with some stolen money. These
facts make up the common ground s. We illustrate an
initial QKS representation in Figure 1, including a state
node reflecting the player’s location, and a network of
state and event nodes reflecting the burglary backstory.
(Depending on the architecture, the game may have pre-
determined where the coin and the bandit went after the
burglary, but this information is not yet part of the story
as far as the player is aware so it is not modeled in the
common ground.)

The player is presented with a choice of actions to go
to one of the two other locations in the game world—the
market and the camp. The player chooses to go to the
market (action a). From their perspective, there may be
one of multiple outcomes (the full range of possibilities
makes up O(s, a)): They may encounter the bandit there,



[state]
Coin at
Cottage

[state]
Bandit at
Cottage

[event]
Bandit steals
Coin

[state]
Player at
Cottage

[state]
Coin with
Bandit

[event]
Bandit leaves
Cottage

Figure 1: Example of a common ground in the QKS represen-
tation.

and may or may not witness the bandit spending the
stolen money there, or else they may not find the bandit
and therefore conclude that the bandit went to the camp
instead. These map to candidates for how to update the
common ground, as illustrated in Figure 2.

The game mechanics resolve what the actual outcome
should be: For instance, the player is informed that they
see the bandit buying a potion with the money. We up-
date the QKS to include the corresponding observation
set to represent the new situation, as with the top-right
QKS in Figure 2. The observation set adds information
both forward in time, such as the event node for the
player’s action of traveling, and backward in time, such
as the consequence arc reflecting the past occurrence of
the bandit’s arrival at the market.

3.2. Goals

Abstractly, we define a player goal as a formula over
propositions in P. We say that a goal G is satisfied in
common ground s if s = G. In the QKS model, this
translates to a goal specifying what nodes and arcs can be
added to make the QKS satisfactory. This representation
does not lose generality over a world-state model since
it can specify world-state goals using state nodes for the
desired facts, but we focus this section on how it can be
used to define a certain class of knowledge goals.

An advantage of the QKS representation is that it can
make direct use of QUEST’s question-answering proce-
dures to determine whether the present common ground
answers certain kinds of questions about the story. For
instance, a question of the form “How did [event/state]
happen?” can be answered by following consequence
arcs backward from the node; a question of the form
“What are the consequences of [event/state]?” can be an-
swered by following consequence arcs forward from the
node; or a question of the form “Why did the character

want (via [goal node]) to do [event linked by outcome arc to
the goal node]?” can be specified by following reason arcs
forward from the goal node. The QUEST cognitive model
predicts that among the neighboring nodes returned this
way, humans will rate nearer neighbors as better answers
than more distant ones.

In the situation where we ask a QUEST-style question
about a common ground that does not yet contain an
answer, we can model the question as a goal to reach a
common ground where the answer exists. For instance,
consider the example from Section 3.1. The player could
have the question: “What are the consequences of the
bandit having the coin?” The question starts out unan-
swered in the initial QKS of Figure 1; but by going to
the Market, the player may witness the bandit using the
coin as in the top-right QKS of Figure 2, in which case
a consequence arc from the bandit-has-coin state node
now exists and the question is answered.

Formally, let s be the QKS representation of the current
common ground. We define a QUEST question goal as
a tuple (ng, t,, dr,tq), where ng is an existing node in
s, dr is an arc direction among incoming or outgoing,
t, is an arc type, and ¢, is a node type. We say that a
state s’ D s satisfies (ng, t-,d,,t,) if the QKS for s’
contains an arc of type ¢, going direction d, from n,
such that the node on the other end of the arc has type
t,. ng constitutes the subject of the question (e.g., an
event/state node in the how case) and the others define
the form of an answer (e.g., incoming consequence arc
from a state/event node).

4. Goal Recognition

Suppose we have a log of actions the player has taken
during an interactive narrative. The log may end be-
fore the player has completed any identifiable goals,
but an observer—e.g., a game designer analyzing the
playthrough in hindsight or an experience manager try-
ing to adapt to the player for later interactions—may
nonetheless need to reason about the player’s inten-
tions. How do we identify possible player goals, including
knowledge goals, motivating the actions?

Our first attempt to solve this problem is a goal recog-
nition as planning [32] approach: We model the player
with an artificial agent which we call an agent model, hy-
pothesize that the player has a specific goal, simulate the
agent model’s reasoning about how to pursue that goal,
and determine whether the agent could have chosen the
same course of action that the player did in the logs; if
so, we conclude the player had that goal.

However, agent models for existing goal-recognition-
as-planning approaches prescribe behavior in a determin-
istic or stochastic environment, whereas our framework
treats the game as a nondeterministic, nonstochastic envi-
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Figure 2: Example of possible observation sets (highlighted) and resulting QKS structures from one player action after the

QKS in Figure 1.

ronment: players know the range of possible observation
sets that could result from their action but have no reli-
able way of anticipating which specific observation set
will be chosen. An agent model now needs to account
for how a player might handle this unpredictability.

In our framework, we define a goal recognition prob-
lem instance as a tuple (D, T, C). D is an interactive
narrative domain (P, S, A, L, O, M) as defined in Sec-
tion 3.1. T is a trajectory consisting of a sequence
$1,0a1,82,a2, " Sp, Gn, where s; € S and a; € A for
i = 1 to n. This represents (chronologically) the com-
mon grounds that the player has experienced so far and
the actions the player took in response. C'is a set of
candidate goals. M is an agent model as elaborated later
in this section.

Assume T' comes from a game log, presenting a snap-
shot of an in-progress playthrough where the player is

acting toward some goal in C' but has not yet achieved
it. The solution to a goal recognition problem is the set
C’ C C of candidate goals such that an agent modeled
by M acting in domain D pursuing any goal g € C’
could produce trajectory 7.

Algorithm 1 sketches the goal-recognition-as-planning
process. For each player action so far in 7', it checks the
consistency of that action with each goal; assume the sub-
routine VERIFY is a search process that returns whether
the action could be selected by the agent model. (We
check each action individually instead of the whole se-
quence of actions at once because an agent may plan with
the expectation of a certain observation set but receive a
different observation set in actuality and have to revise
its plan.)

We spend the rest of this section discussing specific
agent models that the goal recognizer could assume.



Algorithm 1 Goal recognition for the common ground

Input: Domain D, common-ground/player-action tra-
jectory T', candidate goals C, agent model M
Output: A set of goals C' C C that an agent modeled
by M could have been pursuing if it took the action
sequence in T’
¢+« C
. forall s; € T do
forall g € C’' do
if —verirY(D, s;, a;, g, M) then
C' "\ {g}

: return C’

AN AN o

First we propose goal recognition using an optimistic
planning agent model where the agent plans for the best
case, hoping that its action will result in a specific ob-
servation set that gets it closer to the goal. Given a cur-
rent common ground s;, for an optimistic-planning agent
with goal g, the agent can take an action a; iff there exists
some hypothetical plan a;, si+1, @i+1, - - - a;, s; where
s; satisfies g; we also require the plan to be nonredun-
dant in that no strict subsequence of a;, ai+1, - - - a; also
satisfies g. This definition is based on Sabre’s character
model [22, 33].

We also propose an adversarial planning agent model
that plans for the worst case, trying to act according to
a policy that can eventually satisfy the goal even when
its actions result in the worst-case observation sets. For
some goal g, define a safe common ground s as (base case)
one that satisfies g or (recursively) for which there exists
an action a € L(s) such that all outcomes in O(s, a)
result in safe common grounds. Given a current common
ground s;, for an adversarial-planning agent with goal
g, the agent can take an action a; if all possible result-
ing common grounds are safe. However, because this
definition alone could easily result in situations where
the agent would have no valid action choices defined
(because the agent will eventually have to take an ac-
tion where at least one possible outcome could prevent
the goal), we generalize this definition—we model an
agent who believes the observation sets are chosen uni-
formly at random, and the agent follows an expectimax-
style [34] policy that it thinks will maximize the worst-
case probability of satisfying the goal. Define the score
EXPECTIMAX(S) of a common ground s for goal ¢ as 1
if g satisfies s, or 0 if g can never be satisfied from s
(e.g., because s is a leaf in a finite tree of possible tra-
jectories); otherwise, define ExPECTIMAX( ) as the aver-

age score of common grounds reached from choosing
ZoEO(s,a) EXPECTIMAX(sUo0) An

[O(s,a)]
adversarial-planning agent can take an action a; if a;

maximizes the average in this manner.

a best action, max,er(s)

5. Experiments

There are many risks to the robustness of a goal recog-
nition model when applied to real human players: the
player acting toward a goal outside of the candidates con-
sidered, changing goals, behaving in a non-goal-directed
way, missing or misunderstanding information the model
assumes is available to them. This preliminary study con-
siders synthetic players that do not yet incorporate these
risks, but we acknowledge the importance of human fac-
tors for our future work.

There is a wide spectrum of ways even idealized ar-
tificial agents can handle the nondeterministic environ-
ments of our framework, as shown by the contrast be-
tween the highly risk-taking optimistic-planning agent
model and the highly risk-averse adversarial-planning
agent model described in Section 4. A mismatch between
the agent model assumed by the goal recognizer and the
decision-making criteria of the actual player can result
in wrong conclusions about the player goals—false posi-
tives where a candidate goal is wrongly attributed to the
player, and false negatives where the player’s actual goal
is wrongly rejected as a possibility.

Our experiment seeks to quantify the error-proneness
of goal recognition that assumes one agent model when
the player acts according to another agent model. By us-
ing an optimistic planner as the “real” player and trying to
identify that player’s goals using the opposite extreme of
an adversarial-planning goal recognizer, and the reverse,
we aim to establish upper bounds on goal recognition
error before human factors are applied.

We generated goal recognition problem instances as
follows: To derive the domain D, we started with depth-
limited, tree-structured story graphs [35] from a narra-
tive planning [36] problem, generated using the Sabre
narrative planner [33]; these graphs consist of nodes rep-
resenting world states and edges representing player or
non-player actions, annotated with information such as
whether the player observed a given non-player action.
We restructured the story graphs to alternate between
branching on a choice of player actions and branching
on a choice of non-player macro-actions containing any
number of non-player actions. At each node, we used
previously-proposed mappings [29, 30] to derive a QKS
equivalent of the story so far. We also used an approach
similar to Robertson and Young [37] and Fisher et al. [38]
to allow uncertainty about which of multiple story-graph
nodes the player was in, due to possible unobserved past
events; we derived the final QKS common ground rep-
resenting the player knowledge by taking the maximal
subgraph that is shared by the original stories.

To obtain a trajectory 7' of player actions so far,
we sampled and truncated goal-satisfying playthroughs
given a goal g and agent model M. We manually defined
the set of candidate goals C' for the domain.



As a source for our domain, we used the narrative
planning problem from the Grandma adventure game
used by Ware et al. [39]. We retained the same characters,
actions, locations, and items, but modified the initial
state and NPC goals to create the initial setup as follows:
Known to the player in the initial QKS, three actions have
already happened in the backstory: The bandit character
has stolen a sword and a coin from the player character’s
house and left the house. The merchant character is at the
market and the guard character is at the bandit’s camp,
both locations reachable from a crossroads reachable
from the cottage. Unknown to the player and thus not
represented in the initial QKS, the bandit intends to use
the sword to kill the guard and/or rob the merchant,
and/or use the coin to buy from the merchant.

We defined four possible goals that the synthetic player
would try to satisfy and that the goal recognizer would
try to distinguish between as the candidate goal set C":
achievement goals to get the stolen coin and to get the
stolen sword, and knowledge goals in the form of QUEST
question goals for “Why did the bandit steal the coin?”
and “Why did the bandit steal the sword?” These goals
overlap in some of the player actions that can be used in
the course of satisfying them, e.g., following the bandit
can support any of the goals, but diverge in others, e.g.,
killing the bandit enables taking back the stolen items
but eliminates opportunities to watch the bandit’s plans
unfold and learn their intentions.

We generated the narrative planning problem’s story
graph to a fixed depth of 6 steps, based on available com-
putation time, and converted it to the graph of QKS com-
mon grounds as described above. We then collected all
trajectories for each agent model and each goal and ana-
lyzed them in the following process:

Suppose the real player is an optimistic-planning agent
and the goal recognizer assumes an adversarial-planning
agent model, or the reverse. Let T be a trajectory; let C'
be all the goals, let C4,.,,. be the set of goals for which
the player generated 7" and let C{,utput be the set of
goals identified by the goal recognizer for 7. We counted
goals in C},.,e N Cyipus as true positives for which the
goal recognizer would correctly identify a player goal
for T; Clrue \ Coutpur Was false negatives for which the
recognizer failed to identify a goal that was consistent
with the true player model; Clyipus \ Cirue was false
positives for which the recognizer identified a goal that
was actually inconsistent with the true player model;
and C'\ (Cfrye U Coyipur) Was true negatives where the
recognizer correctly did not identify a goal that would
have been inconsistent with the true player model.

We show confusion matrices for the results across all
goals and trajectory lengths: Figure 3 shows the per-
formance of a goal recognizer assuming an adversarial-
planning agent model if the actual player acts like an
optimistic-planning agent model, and Figure 4 shows the
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Figure 3: Adversarial-planning goal recognizer on optimistic-
planning player over all goals and trajectories

Goal recognizer output
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Figure 4: Optimistic-planning goal recognizer on adversarial-
planning player over all goals and trajectories

reverse. We show standard measures of performance for
a test to distinguish positive from negative cases: sensi-
tivity (how often the recognizer concluded the player had
the goal, given that the goal was consistent with the true
player model), and specificity (how often the recognizer
concluded the player did not have the goal, given that
the goal was inconsistent with the true player model).
Both of the player-recognizer combinations had worse-
than-random sensitivity and better-than-random speci-
ficity; the recognizers skewed toward correctly rejecting
candidate goals when the player did not have those goals,
but failing to detect the true goals. The difference was
especially strongly pronounced in a goal recognizer that
assumed an optimistic-planning agent model when the
actual player used the adversarial-planning agent model;
that is, when considering a goal that the player actually
had, the optimistic-planning goal recognizer was highly
likely to erroneously reject that goal. These instances
came from the fact that our optimistic-planning agent
model attempts to be as efficient as possible by avoiding



actions that could be redundant to the goal, while the
adversarial-planning model accepts longer paths in favor
of safety; the simulated adversarial-planning player often
took actions that were unexplainable to the optimistic-
planning recognizer because there was a more direct
route available. This experiment suggests that strict as-
sumptions about agent efficiency—which are common in
existing goal recognition approaches—are too brittle in
practice, and future goal recognition approaches should
be designed to handle cautious or meandering players.

6. Conclusions

This paper highlighted an underexplored class of goals
important to interactive narratives—player goals to fill
the gaps in their knowledge about the story so far. We
extended goal recognition to these goals by defining a
planning framework over the space of player mental mod-
els rather than over the space of world states, drawing
on representations of discourse and question-answering
from linguistics and cognitive science.

Accurate algorithms for knowledge goal recognition
are still an open problem. An approach based on sim-
ulating a hypothetical player and comparing its deci-
sions to the real player’s can easily fail to detect goals
of a player whose playstyle does not match the algo-
rithm’s assumptions. However, the desiderata for a goal
recognition algorithm depend on how that algorithm
will be used. For instance, high-specificity but low-
sensitivity goal recognition could be acceptable for an
experience manager whose objective is to find a small
handful of the player’s interests and use them to offer
the player mutually-beneficial opportunities. Conversely,
low-specificity but high-sensitivity goal recognition can
still be useful for a highly-improvisational experience
manager deciding when to fix “plot holes” in its stories
that may be exposed by player knowledge goals [40].

Reasoning about player goals will ultimately require
considering the context that goals come from. In the case
of knowledge goals, aside from offering models, the liter-
ature we reference goes on to emphasize that reasoning
effectively about questions requires understanding why
they were asked: Roberts [11] and Ram [41] frame ba-
sic questions as part of strategies to answer higher-level
questions, and Graesser et al. [42] and Ram [6] discuss
the functions of questions to support the asker’s goals
and explain anomalous findings. In the long term, we aim
to take theories of when knowledge goals are likely to
occur, and integrate them with mechanisms for confirm-
ing those knowledge goals from a player’s actions and
for using this information to shape the story in concert
with the player.
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