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A B S T R A C T

This paper presents a new weak Galerkin (WG) method for elliptic interface problems on
general curved polygonal partitions. The method’s key innovation lies in its ability to transform
the complex interface jump condition into a more manageable Dirichlet boundary condition,
simplifying the theoretical analysis significantly. The numerical scheme is designed by using
locally constructed weak gradient on the curved polygonal partitions. We establish error
estimates of optimal order for the numerical approximation in both discrete H1 and L2 norms.
Additionally, we present various numerical results that serve to illustrate the robust numerical
performance of the proposed WG interface method.

1. Introduction

This paper focuses on the latest advancements in the weak Galerkin finite element method for solving elliptic interface problems
on curved polygonal partitions. To simplify our analysis, we concentrate on a model equation seeking an unknown function u that
satisfies:

*( � (a(u) = f , in ⌦, (1.1)
u = g, on )⌦ ‰ � , (1.2)

[[u]]
�
= u

⌦1 * u⌦2 = g
D
, on � , (1.3)

[[a(u � n]]
�
= a1(u⌦1 � n1 + a2(u⌦2 � n2 = g

N
, on � , (1.4)

where ⌦ œ R2, ⌦ = ⌦1 ‰⌦2, � = ⌦1 „⌦2, a1 = a
⌦1 , a2 = a

⌦2 , n1 and n2 represent the unit outward normal vectors to ⌦1 „ � and
⌦2 „ � , respectively. Assume the diffusion tensor a is symmetric and uniformly positive definite matrix in ⌦.

A weak formulation of the model Eqs. (1.1)–(1.4) is as follows: Find u À H
1(⌦), such that u = g on )⌦ ‰ � , [[u]]

�
= g

D
on � ,

satisfies

(a(u,(v) = (f , v) + Íg
N
, vÎ

�
, ≈v À H

1
0 (⌦), (1.5)
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where H1
0 (⌦) = {v À H

1(⌦), v = 0 on )⌦}.
Elliptic interface problems find applications in various fields of engineering and science, including biological systems [1], material

science [2], fluid dynamics [3], computational electromagnetic [4,5]. The presence of a discontinuous diffusion tensor in these
problems results in solutions that exhibit discontinuities and/or lack smoothness across the interface. This low regularity of the
solution presents a significant challenge in the development of high-order numerical methods. To address the mesh constraints
associated with interface problems effectively, researchers have proposed several numerical techniques. These methods include
interface-fitted mesh approaches, which involve modifying finite element meshes near the interface, and unfitted mesh methods,
which alter the finite element discretization around the interface.

Unfitted mesh methods have garnered significant attention for their ability to utilize finite element meshes independently of
the interface. They offer two primary strategies for handling interface elements. One approach involves adapting the finite element
basis near the interface to construct a finite element space that satisfies the interface jump condition. This strategy encompasses
methods like the immersed interface method [6–9], ghost fluid methods [10], multiscale finite element methods [11], hybridizable
discontinuous Galerkin methods [12,13]. Alternatively, another approach employs penalty terms across the interface to enforce
the interface jump condition. This category includes methods like extended finite element methods [14,15], unfitted finite element
methods [16], cut finite element methods [17], high-order hybridizable discontinuous Galerkin method [18]. Despite the successes
achieved by unfitted mesh methods, several challenges remain. In particular, accurately capturing interface information for problems
with highly complex interface geometries poses difficulties. Additionally, establishing rigorous convergence analyses for high-order
numerical methods remains a challenging task.

As an alternative approach, several interface-fitted mesh methods have been developed to tackle elliptic interface problems.
These methods aim to accommodate poorly generated meshes and situations with hanging nodes, particularly in the context of
complex interfaces. Some notable methods include the discontinuous Galerkin method [18–20], the matched interface and boundary
method [21,22], virtual element method [23] and weak Galerkin methods [24–27]. The WG methods, first introduced in [28] and
further developed in [29–36] represent a novel class of numerical techniques for solving partial differential equations. Their primary
innovation lies in the introduction of weak differential operators and weak functions, which grant WG methods several advantages.
Notably, constructing high-order WG approximating functions becomes straightforward, as the continuity requirements for numerical
approximations are relaxed. Furthermore, this relaxation of continuity requirements endows WG methods with high flexibility,
particularly on general polygonal meshes with straight edges. However, when employing straight-edge elements to discretize regions
with curved boundaries, high-order numerical methods may suffer from reduced accuracy. To mitigate geometric errors arising
from the transition between straight-edge and curved-edge regions, one approach is to directly utilize curved-edge elements for
discretizing curved geometries [37,38].

The objective of this paper is to introduce a novel weak Galerkin method designed for solving elliptic interface problems on
general curved polygonal partitions. The new WG method is designed by using a locally constructed weak gradient operator on
the curved elements. Moreover, the error estimates of optimal order are established for the high order numerical approximation in
discrete H1 norm and usual L2 norms. What sets our approach apart from existing results on standard weak Galerkin methods is
that it does not necessitate locally denser meshes near the interface. As a result, our proposed method not only significantly reduces
the storage space and computational complexity but also offers greater flexibility in addressing complex interface geometries.

The remainder of the paper is structured as follows: In Section 2, we provide a concise overview of the computation of the
weak gradient operator and its discrete counterpart. Section 3 outlines the application of the weak Galerkin method to solve the
model problem described by Eqs. (1.1) through (1.4), based on the weak formulation presented in Eq. (1.5). Section 4 derives an
error equation relevant to the weak Galerkin algorithm. Section 6 is focused on establishing error estimates of optimal order for
the corresponding numerical approximations, considering both discrete H1 and conventional L2 norms. Finally, in Section 7, we
illustrate the practical application of the theoretical results through several numerical examples.

This paper will adhere to the standard notations for Sobolev spaces and norms, as detailed in [39]. Let D be an open bounded
domain with a Lipschitz continuous boundary denoted as )D in R2. We employ the symbols (�, �)s,D,  � s,D, and Ò�Òs,D to represent
the inner product, seminorm, and norm within the Sobolev space Hs(D) where s g 0 is an integer. In the case of s = 0, we denote
the inner product and norm as (�, �)D and Ò � Ò

D
, respectively. When D = ⌦, we omit the subscript D in the corresponding inner

product and norm notations. For the sake of simplicity, we use the notation ‘‘A ø B’’ to express the inequality ‘‘A f CB’’, where C
represents an arbitrary positive constant that remains independent of meshsize or functions involved in the inequalities.

2. Weak gradient and discrete weak gradient

The objective of this section is to provide a review of the definitions for the weak gradient operator and its discrete counterpart,
as outlined in [28,40]. To facilitate this review, consider a polygonal domain T with a boundary )T that is Lipschitz continuous.

In this context, a weak function defined on T is represented as v = {v0, vb}, where v0 À L
2(T ) and v

b
À L

2()T ). The first
component v0 and the second component vb correspond to the values of v within the interior of T and on the boundary of T ,
respectively. It is worth noting that v

b
may not necessarily be the trace of v0 on )T .

Let W(T ) be the space encompassing all such weak functions on T :

W(T ) = {v = {v0, vb}, v0 À L
2(T ), v

b
À L

2()T )}.
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Fig. 3.1. Depiction of a shape-regular polygonal element ABCDEFA.

Definition 2.1 (Weak Gradient). For any v À W(T ), the weak gradient of v, denoted as (
w
v, is defined as a linear functional in the

dual space of [H1(T )]2 such that

((
w
v, )

T
= *(v0,( �  )

T
+ Ív

b
, � nÎ

)T
, ≈ À [H1(T )]2, (2.1)

where n denotes the unit outward normal vector to )T .

For any non-negative integer r, we denote by P
r
(T ) the set of polynomials defined on the polygonal domain T with a degree not

exceeding r.

Definition 2.2 (Discrete Weak Gradient). A discrete form of (
w
v for v À W(T ), denoted by (

w,r,T
v, is defined as a unique polynomial

vector in [P
r
(T )]2 satisfying

((
w,r,T

v, )
T
= *(v0,( �  )

T
+ Ív

b
, � nÎ

)T
, ≈ À [P

r
(T )]2. (2.2)

3. Weak Galerkin scheme

In this section, we present the weak Galerkin scheme for the model problems described by Eqs. (1.1) through (1.4). Let T
h
be a

curved finite element partition of ⌦ consisting of curved elements which are closed and not necessarily simply connected polygons;
see Fig. 3.1. We denote E

h
as the set encompassing all edges within T

h
, and E0

h
as the set of all interior edges, excluding those along

)⌦. Additionally, �
h
is defined as the set of interface edges within E

h
. h

T
represents the diameter of an element T À T

h
, and h is the

meshsize, defined as the maximum of h
T
over all T À T

h
, respectively. Lastly, e denotes the length of an edge e À E

h
. The curved

finite element partition T
h
is said to be shape regular if the following conditions (A1)–(A4) are satisfied [41].

A1: For each element T À T
h
, there exists a positive constant %

v
such that

%
v
h
2
T
f T .

A2: For each element T À T
h
, there exist positive constants  and < such that

h
T
f h

e
f 

<
h
T
,

for each edge e œ )T .

A3: For each element T À T
h
and each edge e œ )T , there exists a ‘‘pyramid’’ P (e, T ,A

e
) contained in T such that its curved base

is identical with e, its apex is A
e
À T , and its height is proportional to h

T
with a proportionality constant �

e
bounded by a

fixed positive number �< from below. In other words, the height of the ‘‘pyramid’’ is given by �
e
h
T
such that �

e
g �

<
> 0.

The ‘‘pyramid’’ is also assumed to stand up above the curved base e in the sense that the angle between the vector ôôôôôôôôíA
e
x
e
, for

any x
e
À e, and the outward normal direction of e (i.e., the vector n in Fig. 3.1) is strictly acute by falling into an interval

[0, ✓0] with ✓0 <
⇡

2 .

A4: For each element T À T
h
, there is a triangle S(T ) circumscribing T that is shape regular and the diameter of S(T ), denoted

by h
S(T ), is proportional to the diameter of T ; i.e., hS(T ) f �<hT with a constant �< independent of T . Furthermore, assume

that each circumscribing triangle S(T ) intersects with only a fixed and small number of such triangles for all other elements
T À T

h
.
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Fig. 3.2. The geometry of domain ⌦ = ⌦1 ‰⌦2 ‰ � with smooth interface � (Left) and a fitted partition (Right).

For the sake of simplicity, Fig. 3.2 displays a curved triangular partition of a square domain, denoted as ⌦. It is worth noting
that when the interface � is curved, T

h
fits seamlessly along the interface.

Let e be the curved edge of the curved element T . Suppose that the parametric representation for edge e is given by:

x = F
e
(Çt), Çt À Çe = [0, e],

where x = (x, y) À e, F
e
(Çt) = (�(Çt), (Çt)), �(Çt) À C

n( Çe),  (Çt) À C
n( Çe) for some n g 1. In this context, F

e
:= (�, ) represents the mapping

that transforms the curved edge e to its corresponding straight edge Çe, and we assume that this mapping F
e
is globally invertible

on the reference edge Çe. Then, F
e
and its inverse mapping öF

e
:= F

*1
e

can be extended to encompass the entire ‘‘pyramid’’ region,
as discussed in [41].

For any function öw À L
2( Çe), we can use the mapping öF

e
to obtain a function w À L

2(e) as follows:

w(x) := öw( öF
e
(x)), x À e. (3.1)

Similarly, any function w À L
2(e) can be transformed into a function öw À L

2(öe) given by

öw(Çt) := w(F
e
(Çt)), Çt À öe. (3.2)

Consequently, we have the relationships:

w = öw ˝ öF
e
, öw = w ˝F

e
.

Let l g 0 be any non-negative integer. We denote by Pl(öe) the set of polynomials defined on the straight edge öe with a degree no
greater than l. By utilizing the mapping öF

e
:= F

*1
e
, we can transform the set of polynomials Pl(öe) into a space of functions defined

on the curved edge e. This transformed space is denoted as follows:

V
b
(e,l) = {w = öw ˝ öF

e
: öw À Pl(öe)}.

Moreover, when the edge e is a straight edge, we make the assumption that the mapping F
e
is an affine transformation. Consequently,

the inverse mapping öF
e
is also an affine transformation. In this special case, it follows that

V
b
(e,l) = Pl(e).

Let k g 1 be any given integer. Denote by V
k
(T ) the local discrete weak finite element space on T given by

V
k
(T ) = {v = {v0, vb} : v0 À P

k
(T ), v

b

e
À V

b
(e, k * 1), e œ )T }.

By patching V
k
(T ) over all the elements T À T

h
through a common value v

b
on each interior edge in E0

h
‰ �

h
, we arrive at a global

weak finite element space V
h
:

V
h
= {v = {v0, vb} : v

T
À V

k
(T ), v

b
is single-valued on E

h
‰ �

h
,

v
b

TL„e ë v

b

TR„e, e À �

h
},

(3.3)

where the edge e À �
h
is shared by two adjacent elements T

L
œ ⌦1 and TR œ ⌦2, vbTL„e and vbTR„e represent the values of v on

the edge e À �
h
as seen from the left element T

L
and from the right element T

R
, respectively.

Denote by V 0
h
a subspace of V

h
with homogeneous boundary value for v

b
; i.e.,

V
0
h
= {v À V

h
, v

b

e
= 0, e œ )⌦}.

For simplicity of notation, denote by (
w
v the discrete weak gradient (

w,r,T
v defined by (2.2) on each element T with r = k* 1;

i.e.,

((
w
v)

T
= (

w,r,T
(v

T
), v À V

h
. (3.4)
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For each edge e À E
h
, denote by Q

b
the projection operator mapping from L

2(e) to V
b
(e, k * 1) given by

Q
b
w ˝F

e
:= öQ

b
(w ˝F

e
), w À L

2(e),

where öQ
b
is the weighted L2 projection operator onto P

k*1(öe) with the corresponding Jacobian as the weight function. Note that
when e is a straight edge, the operator Q

b
represents the standard L2 projection operator onto P

k*1(e).
Denote by [[v

b
]]
�h
the jump of v

b
on e À �

h
; i.e.,

[[v
b
]]
�h

= v
b

)TL„�h * vb)TR„�h .

For any v,w À V
h
, let us introduce the following bilinear forms:

s(v,w) = ⇢

…
TÀTh

h
*1
T
ÍQ

b
v0 * vb,Qbw0 *wbÎ)T ,

a(v,w) =
…
TÀTh

(a(
w
v,(

w
w)

T
+ s(v,w),

where ⇢ > 0 is the stabilization parameter.

Weak Galerkin Algorithm 1. A weak Galerkin numerical scheme for the weak formulation (1.5) of the model problem (1.1)–(1.4)
can be obtained by seeking u

h
= {u0, ub} À V

h
such that u

b
= Q

b
g on )⌦ ‰ �

h
, [[u

b
]]
�h

= Q
b
g
D
satisfying

a(u
h
, v) =(f , v0) +

…
eÀ�h„⌦1

Íg
N
, v
b
Î
e
+

…
eÀ�h„⌦2

Íg
N
, v
b
Î
e
, ≈v À V

0
h
. (3.5)

For any v À V
h
, the weak Galerkin scheme (3.5) induces a seminorm given by

v2 = a(v, v). (3.6)

Lemma 3.1. For any v À V
0
h
, the seminorm defined in (3.6) is a norm, provided that the meshsize h is sufficiently small.

Proof. The proof is similar to the proof of Lemma 5.1 in [41]. ∏

Theorem 3.2. The weak Galerkin scheme (3.5) has one and only one numerical solution.

Proof. It suffices to prove the uniqueness. Assume that u(1)
h
and u(2)

h
are two different solutions of (3.5), then the function "

h
= u

(1)
h
*u(2)

h

satisfies the following equation:

a("
h
, v) = 0, ≈v À V

0
h
. (3.7)

By letting v = "
h
À V

0
h
in (3.7) yields

a("
h
, "
h
) = 0,

which, together with (3.6) and Lemma 3.1, gives rise to "
h
= 0 and further u(1)

h
= u

(2)
h
. This completes the proof of the theorem. ∏

4. Error equation

This section aims to derive an error equation for the weak Galerkin scheme (3.5). For simplicity of analysis, we assume that
the coefficient tensor a in the model problem (1.1)–(1.4) is piecewise constant with respect to the finite element partition T

h
. The

following analysis can be generalized to piecewise smooth tensor a without technical difficulty.
Let u and u

h
À V

h
be the exact solution of the model problem (1.1)–(1.4) and the numerical solution of the WG scheme (3.5),

respectively. On each element T À T
h
, denote by Q0 the usual L2 projection operator onto P

k
(T ). Recall that Q

b
u takes different

values as seen from the left side and right side of the edge e œ �
h
and takes a single value on the edge e œ E

h
‰�

h
. We further define

a projection Q
h
u onto V

h
such that

Q
h
u = {Q0u,Qbu}.

Denote by Q
h
the L2 projection operator onto [P

k*1(T )]2.
Let e

h
be the error function defined by

e
h
= Q

h
u * u

h
= {e0, eb} = {Q0u * u0,Qbu * ub}.

Lemma 4.1 ([41]). For any  À [P
k*1(T )]2, there holds

((
w
Q
h
u, )

T
= ((u, )

T
+ ÍQ

b
u * u, � nÎ

)T
.

Note that ÍQ
b
u * u, � nÎ

)T
ë 0 when the boundary )T consists of at least one curved edge.
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Lemma 4.2. For any v À V
0
h
, the error function e

h
satisfies the following equation

a(e
h
, v) = s(Q

h
u, v) + l1(u, v) + l2(u, v),

where l1(u, v) and l2(u, v) are given by

l1(u, v) =
…
TÀTh

Í(a(u * aQ
h
(u) � n, v0 * vbÎ)T ,

l2(u, v) =
…
TÀTh

ÍQ
b
u * u, a(

w
v � nÎ

)T
.

Note that the last term l2(u, v) = 0 when the boundary )T is straight edge.

Proof. By testing the model Eq. (1.1) against v0 and then using the usual integration by parts, there holds
…
TÀTh

(*( � (a(u), v0)T

=
…
TÀTh

(a(u,(v0)T * Ía(u � n, v0Î)T

=
…
TÀTh

(a(u,(v0)T * Ía(u � n, v0 * vbÎ)T *
…
eÀ�h

Ía(u � n, v
b
Î
e

=
…
TÀTh

(a(u,(v0)T * Ía(u � n, v0 * vbÎ)T *
…

eÀ�h„⌦1

Í[[a(u � n]], v
b
Î
e

*
…

eÀ�h„⌦2

Í[[a(u � n]], v
b
Î
e

=
…
TÀTh

(a(u,(v0)T * Ía(u � n, v0 * vbÎ)T *
…

eÀ�h„⌦1

Íg
N
, v
b
Î
e

*
…

eÀ�h„⌦2

Íg
N
, v
b
Î
e
,

(4.1)

where we also used the boundary condition (1.4) and the fact that v
b
is single valued on e À E

h
‰ �

h
.

For the first term on the last line of (4.1), using the definition of Q
h
, the usual integration by parts and (2.2) yields

(a(u,(v0)T =(aQ
h
(u,(v0)T

= * (( � (aQ
h
(u), v0)T + ÍaQ

h
(u � n, v0Î)T

=(aQ
h
(u,(

w
v)
T
* Ív

b
, aQ

h
(u � nÎ

)T
+ ÍaQ

h
(u � n, v0Î)T

=(aQ
h
(u,(

w
v)
T
+ ÍaQ

h
(u � n, v0 * vbÎ)T .

(4.2)

Substituting (4.2) into (4.1) and then using the definition of Q
h
, Lemma 4.1 with  = a(

w
v give

…
TÀTh

(*( � (a(u), v0)T

=
…
TÀTh

(aQ
h
(u,(

w
v)
T
* Ív0 * vb, a((u *Q

h
(u) � nÎ

)T

*
…

eÀ�h„⌦1

Íg
N
, v
b
Î
e
*

…
eÀ�h„⌦2

Íg
N
, v
b
Î
e

=
…
TÀTh

(a(u,(
w
v)
T
* l1(u, v) *

…
eÀ�h„⌦1

Íg
N
, v
b
Î
e
*

…
eÀ�h„⌦2

Íg
N
, v
b
Î
e

=
…
TÀTh

((
w
Q
h
u, a(

w
v)
T
* ÍQ

b
u * u, a(

w
v � nÎ

)T
* l1(u, v)

*
…

eÀ�h„⌦1

Íg
N
, v
b
Î
e
*

…
eÀ�h„⌦2

Íg
N
, v
b
Î
e

=
…
TÀTh

((
w
Q
h
u, a(

w
v)
T
* l2(u, v) * l1(u, v) *

…
eÀ�h„⌦1

Íg
N
, v
b
Î
e

*
…

eÀ�h„⌦2

Íg
N
, v
b
Î
e
.

(4.3)

Using (1.1), (3.5) and e
h
= Q

h
u * u

h
, one arrives at

a(e
h
, v) = s(Q

h
u, v) + l1(u, v) + l2(u, v),

which completes the proof of the lemma. ∏
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5. Technical results

This section is devoted to presenting some technical results. To this end, let T
h
be a curved shape regular partition satisfying the

shape regularity assumptions A1–A4. For any T À T
h
and � À H

1(T ), the following trace inequality holds true [41]:

Ò�Ò2
e
ø h

*1
T
Ò�Ò2

T
+ h

T
Ò(�Ò2

T
. (5.1)

If � is a polynomial on any T À T
h
, using the inverse inequality, there holds [41]

Ò�Ò2
e
ø h

*1
T
Ò�Ò2

T
. (5.2)

Lemma 5.1. Let T
h
be a curved finite element partition of ⌦ that is shape regular as described in [41]. For any � À H

k+1(⌦), there
holds [41]

…
TÀTh

h
2s
T
ÒQ0� * �Ò2

s,T
ø h

2k+2Ò�Ò2
k+1, 0 f s f 2, (5.3)

…
TÀTh

h
2s
T
Ò(� *Q

h
(�Ò2

s,T
ø h

2kÒ�Ò2
k+1, 0 f s f 2, (5.4)

…
TÀTh

ÒQ
b
� * �Ò2

)T
ø h

2k*1Ò�Ò2
k
. (5.5)

Lemma 5.2. For any v À V
h
, � À H

1(T ) and q À [P
k*1(T )]2, there holds [41]

h
*1
T
Òv0 * vbÒ2)T ø Ò(v0Ò2T + h*1

T
ÒQ

b
v0 * vbÒ2)T , (5.6)

Ò(v0Ò2T ø Ò(
w
vÒ2

T
+ h*1

T
ÒQ

b
v0 * vbÒ2)T , (5.7)

Í� *Q
b
�,q � nÎ

e
 ø

T
h
1_2
e Ò� *Q

b
�Ò

)T
ÒqÒ

T
, for k g 1,

h
3_2
e Ò� *Q

b
�Ò

)T
(ÒqÒ

T
+ Ò(qÒ

T
), for k g 2.

(5.8)

Lemma 5.3. For any u À H
k+1(⌦

i
) for i = 1, 2 and v À V

h
, there holds

s(Q
h
u, v) ø h

k(ÒuÒ
k+1,⌦1 + ÒuÒ

k+1,⌦2 )v, (5.9)
ÛÛl1(u, v)ÛÛ ø h

k(ÒuÒ
k+1,⌦1 + ÒuÒ

k+1,⌦2 )v, (5.10)
ÛÛl2(u, v)ÛÛ ø h

k(ÒuÒ
k+1,⌦1 + ÒuÒ

k+1,⌦2 )v, (5.11)

where l1(u, v) and l2(u, v) are given by Lemma 4.2.

Proof. To derive the first inequality (5.9), it follows from the Cauchy–Schwarz inequality, the property of Q
b
, (5.1) and (5.3) that

s(Q
h
u, v) = ⇢

…
TÀTh

h
*1
T
ÍQ

b
(Q0u) *Qbu,Qbv0 * vbÎ)T 

ø

⇠
⇢

…
TÀTh

h
*1
T
ÒQ

b
(Q0u * u)Ò2)T

⇡ 1
2
⇠
⇢

…
TÀTh

h
*1
T
ÒQ

b
v0 * vbÒ2)T

⇡ 1
2

ø

⇠ …
TÀTh

h
*1
T
ÒQ0u * uÒ2)T

⇡ 1
2 v

ø

⇠ …
TÀTh

h
*2
T
ÒQ0u * uÒ2T + Q0u * u21,T

⇡ 1
2 v

ø h
k(ÒuÒ

k+1,⌦1 + ÒuÒ
k+1,⌦2 )v.
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To analyze the second inequality (5.10), using the Cauchy–Schwarz inequality (5.1), (5.4), (5.5), (5.7) and (3.6), there holds

l1(u, v)
=

…
TÀTh

Ía(u � n * aQ
h
(u � n, v0 * vbÎ)T 

ø

⇠ …
TÀTh

h
T
Òa(u * aQ

h
(uÒ2

)T

⇡ 1
2
⇠ …
TÀTh

h
*1
T
Òv0 * vbÒ2)T

⇡ 1
2

ø

⇠ …
TÀTh

Òa(u * aQ
h
(uÒ2

T
+ h2

T
a(u * aQ

h
(u21,T

⇡ 1
2

�
⇠ …
TÀTh

h
*1
T
ÒQ

b
v0 * vbÒ2)T + h*1

T
Òv0 *Qbv0Ò2)T

⇡ 1
2

øh
k(ÒuÒ

k+1,⌦1 + ÒuÒ
k+1,⌦2 )

⇠
v2 +

…
TÀTh

Ò(v0Ò2T
⇡ 1

2

øh
k(ÒuÒ

k+1,⌦1 + ÒuÒ
k+1,⌦2 )

⇠
v2 +

…
TÀTh

Ò(
w
vÒ2

T
+ h*1

T
ÒQ

b
v0 * vbÒ2)T

⇡ 1
2

øh
k(ÒuÒ

k+1,⌦1 + ÒuÒ
k+1,⌦2 )

⇠
v2 + v2 + v2

⇡ 1
2

øh
k(ÒuÒ

k+1,⌦1 + ÒuÒ
k+1,⌦2 )v.

(5.12)

To estimate the last estimate (5.11), from (5.8), the Cauchy–Schwarz inequality, (5.5) and (3.6), there yields

l2(u, v) = 
…
TÀTh

ÍQ
b
u * u, a(

w
v � nÎ

)T


ø

…
TÀTh

h

1
2
T
ÒQ

b
u * uÒ

)T
Òa(

w
vÒ

T

ø h

1
2
⇠ …
TÀTh

ÒQ
b
u * uÒ2

)T

⇡ 1
2
⇠ …
TÀTh

Òa(
w
vÒ2

T

⇡ 1
2

ø h
k(ÒuÒ

k+1,⌦1 + ÒuÒ
k+1,⌦2 )v.

This completes the proof of the lemma. ∏

6. Error estimates

The objective of this section is to establish some optimal order error estimates for the numerical approximation.

Theorem 6.1. Let u and u
h
À V

h
be the exact solution of the model problem (1.1)–(1.4) and the numerical solution of the WG scheme

(3.5), respectively. Assume that the exact solution u satisfies u À H
k+1(⌦

i
) for i = 1, 2. Then, the following error estimate holds true

e
h
 ø hk(ÒuÒ

k+1,⌦1 + ÒuÒ
k+1,⌦2 ). (6.1)

Proof. By taking v = e
h
in Lemma 4.2, one arrives at

a(e
h
, e
h
) = s(Q

h
u, e

h
) + l1(u, eh) + l2(u, eh).

It follows from (3.6) and Lemma 5.3 with v = e
h
that

e
h
2 ø hk(ÒuÒ

k+1,⌦1 + ÒuÒ
k+1,⌦2 )eh.

This completes the proof. ∏

Corollary 6.2. Under the assumptions of Theorem 6.1, the following error estimate holds true
Ò(e0Ò ø hk(ÒuÒk+1,⌦1 + ÒuÒ

k+1,⌦2 ). (6.2)

Proof. It follows from (5.7) and (3.6) that

Ò(e0Ò ø

⇠ …
TÀTh

Ò(
w
e
h
Ò2
T
+ h*1

T
ÒQ

b
e0 * ebÒ2)T

⇡ 1
2

ø e
h
,

which, together with Theorem 6.1, gives rise to (6.2). This completes the proof of the corollary. ∏



Journal of Computational and Applied Mathematics 450 (2024) 115995

9

D. Li et al.

Fig. 7.1. The interface � and the first three grids for the computation in Tables 7.1–7.5.

Theorem 6.3. Let u À H
k+1(⌦

i
) for i = 1, 2 be the exact solution of (1.1)–(1.4) and u

h
À V

h
be the numerical solution of WG scheme

(3.5), respectively. Assume that the dual problem of (1.1)–(1.4) with � = Á satisfies the H2 regular property as described in [28]. Then,
the following error estimate holds true

Òe0Ò ø hk+1(ÒuÒk+1,⌦1 + ÒuÒ
k+1,⌦2 ). (6.3)

Proof. The proof is similar to the proof of Theorem 6.4 in [42]. ∏

To establish the error estimate for e
b
, we define the following semi-norm

Òe
b
ÒEh =

⇠ …
TÀTh

h
T
Òe
b
Ò2
)T

⇡1_2
. (6.4)

Theorem 6.4. In the assumptions of Theorem 6.3, we have the following error estimate
Òe
b
ÒEh ø hk+1(ÒuÒk+1,⌦1 + ÒuÒ

k+1,⌦2 ). (6.5)

Proof. Using the triangle inequality, the trace inequality (5.2), Theorem 6.1 and Theorem 6.3, there holds

Òe
b
ÒEh =

⇠ …
TÀTh

h
T
Òe
b
Ò2
)T

⇡ 1
2

ø

⇠ …
TÀTh

h
T
ÒQ

b
e0Ò2)T + h

T
Òe
b
*Q

b
e0Ò2)T

⇡ 1
2

ø

⇠ …
TÀTh

Òe0Ò2T
⇡ 1

2 +
⇠ …
TÀTh

⇢1hT Òeb *Qbe0Ò2)T
⇡ 1

2

øÒe0Ò + heh
øh

k+1(ÒuÒ
k+1,⌦1 + ÒuÒ

k+1,⌦2 ).

This completes the proof of the theorem. ∏

7. Numerical experiments

This section presents some numerical experiments to validate the accuracy of the developed convergence theory.
In the first numerical test, we solve the elliptic interface problem (1.5) in a global weak formulation: Find u À H

1(⌦) with

⌦ = (*2, 2) ù (*2, 2),

such that u
)⌦

= 2 * (x2 + y2)3 and

(a(u,(v) = (36(x2 + y2)2, v), ≈v À H
1
0 (⌦), (7.1)

where

a(x, y) =
T
�, if x2 + y2 f 1,
1, if x2 + y2 > 1.

(7.2)

(7.2) implicitly defines � = {(x, y) : x2 + y2 = 1}.
The weak solution of (7.1) is

u(x, y) =
h
n
l
nj

�
*1(1 + � * (x2 + y2)3) if x2 + y2 < 1,

1 if x2 + y2 = 1,
2 * (x2 + y2)3 if x2 + y2 > 1.

(7.3)
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Table 7.1
The error of P1 elements for (7.1) on triangular grids (Fig. 7.1).

G
i

ÒQ0u * u0Ò0,a Rate Ò(
w
(Q

h
u * u

h
)Ò0,a2 Rate

By the P1-P2-P 2
2 finite element, � = 10*4 in (7.2).

4 0.1024E*01 4.0 0.1348E+00 2.9
5 0.6225E*03 4.0 0.1662E*01 3.0
6 0.3837E*04 4.0 0.2062E*02 3.0

By the P1-P2-P 2
2 finite element, � = 1 in (7.2).

4 0.4209E*02 4.0 0.1348E+00 2.9
5 0.2675E*03 4.0 0.1733E*01 3.0
6 0.1688E*04 4.0 0.2200E*02 3.0

By the P1-P2-P 2
2 finite element, � = 104 in (7.2).

4 0.1503E+00 4.0 0.1348E+00 2.9
5 0.9339E*02 4.0 0.1733E*01 3.0
6 0.5956E*03 4.0 0.2200E*02 3.0

Table 7.2
The error of P2 elements for (7.3) on triangular grids (Fig. 7.1).

G
i

ÒQ0u * u0Ò0,a Rate Ò(
w
(Q

h
u * u

h
)Ò0,a2 Rate

By the P2-P3-P 2
3 finite element, � = 10*4 in (7.2).

3 0.3400E*02 5.0 0.2364E*01 4.0
4 0.1032E*03 5.0 0.1406E*02 4.1
5 0.3095E*05 5.1 0.8373E*04 4.1

By the P2-P3-P 2
3 finite element, � = 1 in (7.2).

3 0.1092E*02 4.9 0.2361E*01 4.0
4 0.3545E*04 4.9 0.1488E*02 4.0
5 0.1141E*05 5.0 0.9387E*04 4.0

By the P2-P3-P 2
3 finite element, � = 104 in (7.2).

2 0.5463E*01 5.2 0.3779E+00 4.1
3 0.1317E*02 5.4 0.2363E*01 4.0
4 0.3647E*04 5.2 0.1488E*02 4.0

We note that with the careful construction (7.3), the weak solution of (7.1) is the strong solution of (1.1)–(1.4) as

u
�
ë 0, �)

(n)
n u

�* = )
(n)
n u

�* , n = 1, 2,… ,

where the interface � = {(x, y) : x2 + y2 = 1}, n is the unit outward normal vector on � , and )(n)n u is the nth directional derivative
of u in the direction n.

Since the significant digits of the computer double precision format are limited, we could not reach enough levels of order five
or above convergence for the P

k
-P
k*1-P 2

k*1 weak Galerkin finite elements. Instead, we use a two-order superconvergent Pk-Pk+1-P
2
k+1

weak Galerkin method, i.e., v
b

e
À V

b
(e, k + 1) in (3.3) and (

w
v = (

w,k+1,T in (3.4). This way, using lower-degree polynomials, we
can compute order-eight convergent solutions for the curved-edge interface problem (7.1).

In Table 7.1, we list the results of the P1-P2-P 2
2 finite element for solving the interface problem (7.1) on meshes shown in Fig. 7.1.

Here, to cancel somewhat the difference of solutions with different �, we use a weighted norm to measure the error,

ÒuÒ20,a =  
⌦

a(x, y)u2(x, y)dx dy.

Supposedly the P1 finite element converges at order 2 in L
2 norm and order 1 in H

1 norm, respectively. But as the method
of two-order superconvergence, the P1 finite element solution converges two orders above the optimal order, in both norms, in
Table 7.1.

In Table 7.2, we list the results of the P2-P3-P 2
3 finite element for solving the interface problem (7.1) on meshes shown in Fig. 7.1.

The optimal order of convergence of the P2 finite element is order 3 and order 2 in L2 norm and H1 norm, respectively. Here in
Table 7.2, the finite element solution converges two orders above the optimal order. It seems from Table 7.2 that the error bound
is independent of the size of jump of the coefficient a in the interface problem (7.1).

In Fig. 7.2, we plot the P2 solution for the interface problem (7.1), where � = 10*3, on the third grid G3 in Fig. 7.1. We can see
that the normal derivative of the solution jumps to one thousand times large at the interface circle, i.e., a sharp turn there. Also
in Fig. 7.2, we plot the error of above solution on the same mesh. The error indicates that the method matches the interface curve
well and the error bound is truly independent of the �-jump.

In Table 7.3, we list the results of the P3-P4-P 2
4 finite element for solving the interface problem (7.1) on meshes shown in Fig. 7.1.

Again in Table 7.4, the finite element solution converges at two orders above the optimal order, in both norms.
In Table 7.4, we list the results of the P4-P5-P 2

5 finite element for solving the interface problem (7.1) on meshes shown in Fig. 7.1.
Again in Table 7.4, the finite element solution converges at two orders above the optimal order.
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Fig. 7.2. Top: The P2 finite element solution for (7.1) with � = 10*3 in (7.2) on the third grid G3 in Fig. 7.1. Bottom: The error of the solution above.

Table 7.3
The error of P3 elements for (7.1) on triangular grids (Fig. 7.1).

G
i

ÒQ0u * u0Ò0,a Rate Ò(
w
(Q

h
u * u

h
)Ò0,a2 Rate

By the P3-P4-P 2
4 finite element, � = 10*4 in (7.2).

3 0.5685E*04 6.1 0.3073E*03 5.0
4 0.8292E*06 6.1 0.9668E*05 5.0
5 0.1210E*07 6.1 0.3021E*06 5.0

By the P3-P4-P 2
4 finite element, � = 1 in (7.2).

3 0.8999E*05 6.0 0.3068E*03 5.0
4 0.1441E*06 6.0 0.9655E*05 5.0
5 0.2360E*08 5.9 0.3052E*06 5.0

By the P3-P4-P 2
4 finite element, � = 102 in (7.2).

2 0.5741E*03 6.2 0.1006E*01 5.2
3 0.8996E*05 6.0 0.3072E*03 5.0
4 0.1441E*06 6.0 0.9665E*05 5.0

Table 7.4
The error of P4 elements for (7.1) on triangular grids (Fig. 7.1).

G
i

ÒQ0u * u0Ò0,a Rate Ò(
w
(Q

h
u * u

h
)Ò0,a2 Rate

By the P4-P5-P 2
5 finite element, � = 10*4 in (7.2).

2 0.1010E*03 7.3 0.8618E*04 6.5
3 0.6374E*06 7.3 0.1009E*05 6.4
4 0.4795E*08 7.1 0.1258E*07 6.4

By the P3-P4-P 2
4 finite element, � = 1 in (7.2).

1 0.3672E*03 0.0 0.7482E*02 0.0
2 0.2404E*05 7.3 0.8498E*04 6.5
3 0.1695E*07 7.1 0.1042E*05 6.3

By the P3-P4-P 2
4 finite element, � = 10 in (7.2).

1 0.3406E*03 0.0 0.7541E*02 0.0
2 0.2254E*05 7.2 0.8560E*04 6.5
3 0.1612E*07 7.1 0.1049E*05 6.4

Finally, in Table 7.5, we list the results of the P5-P6-P 2
6 finite element for solving the interface problem (7.1) on meshes shown

in Fig. 7.1. The finite element solution converges at order eight, two orders above the optimal order, in L2 norm, when � = 10*1.
But when the error reaches 10*9 size, the computer accuracy is exhausted that we have a slightly less order of convergence at the
last level, when � = 1 (smooth solution) and � = 2 (a derivative jump solution.)
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Fig. 7.3. The interface � and the first three grids for the computation in Tables 7.6–7.9.

Table 7.5
The error of P5 elements for (7.1) on triangular grids (Fig. 7.1).

G
i

ÒQ0u * u0Ò0,a Rate Ò(
w
(Q

h
u * u

h
)Ò0,a2 Rate

By the P5-P6-P 2
6 finite element, � = 10*4 in (7.2).

1 0.9320E*03 0.0 0.5672E*03 0.0
2 0.2808E*05 8.4 0.3440E*05 7.4
3 0.1028E*07 8.1 0.3200E*07 6.7

By the P5-P6-P 2
6 finite element, � = 1 in (7.2).

1 0.2238E*04 0.0 0.5576E*03 0.0
2 0.8150E*07 8.1 0.3325E*05 7.4
3 0.4517E*09 7.5 0.2190E*07 7.2

By the P5-P6-P 2
6 finite element, � = 2 in (7.2).

1 0.2159E*04 0.0 0.5585E*03 0.0
2 0.7879E*07 8.1 0.3335E*05 7.4
3 0.4194E*09 7.6 0.2230E*07 7.2

Table 7.6
The error of P1 elements for (7.6) on grids shown in Fig. 7.3.

G
i

ÒQ0u * u0Ò0,a Rate Ò(
w
(Q

h
u * u

h
)Ò0,a2 Rate

By the P1-P2-P 2
2 finite element, � = 10*2 in (7.5).

4 0.5271E*02 4.0 0.1129E+00 3.0
5 0.3371E*03 4.0 0.1386E*01 3.0
6 0.2174E*04 4.0 0.1716E*02 3.0

By the P1-P2-P 2
2 finite element, � = 1 in (7.5).

4 0.4209E*02 4.0 0.1348E+00 2.9
5 0.2675E*03 4.0 0.1733E*01 3.0
6 0.1688E*04 4.0 0.2200E*02 3.0

By the P1-P2-P 2
2 finite element, � = 102 in (7.5).

4 0.4062E*02 3.9 0.1162E+00 3.1
5 0.2727E*03 3.9 0.1408E*01 3.0
6 0.1816E*04 3.9 0.1731E*02 3.0

In the second numerical test, we solve the interface problem (1.5) with a lightly irregular interface curve: Find u À H
1(⌦) such

that u
)⌦

= r
4(r * 3 + cos(4✓)) and

(a(u,(v) = (48r2 * 25r3, v) ≈v À H
1
0 (⌦), (7.4)

where r =
˘
x2 + y2, tan ✓ = y_x and

a(x, y) =
T
� if r < 3 * cos(4✓),
1 if r g 3 * cos(4✓),

⌦ = (*4, 4) ù (*4, 4).
(7.5)

The weak solution of (7.4) is

u(x, y) =
T
�
*1
r
4(r * 3 + cos(4✓)) if r < 3 * cos(4✓),

r
4(r * 3 + cos(4✓)) if r g 3 * cos(4✓).

(7.6)

The interface is � = {(x, y) : r = 3 * cos(4✓)}, shown in Fig. 7.3.
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Table 7.7
The error of P2 elements for (7.6) on grids shown in Fig. 7.3.

G
i

ÒQ0u * u0Ò0,a Rate Ò(
w
(Q

h
u * u

h
)Ò0,a2 Rate

By the P2-P3-P 2
3 finite element, � = 10*2 in (7.5).

3 0.6259E*02 5.1 0.2519E*01 4.6
4 0.2035E*03 4.9 0.1214E*02 4.4
5 0.7258E*05 4.8 0.6503E*04 4.2

By the P2-P3-P 2
3 finite element, � = 1 in (7.5).

3 0.9359E*03 5.4 0.2179E*01 4.5
4 0.2705E*04 5.1 0.1101E*02 4.3
5 0.9088E*06 4.9 0.6097E*04 4.2

By the P2-P3-P 2
3 finite element, � = 102 in (7.5).

3 0.5124E*03 5.3 0.2464E*01 4.6
4 0.1606E*04 5.0 0.1203E*02 4.4
5 0.5719E*06 4.8 0.6470E*04 4.2

Fig. 7.4. Top: The P2 finite element solution for (7.4) with � = 10*2 in (7.5) on the second grid G2 in Fig. 7.3. Bottom: The error of the solution above.

In Table 7.6, we list the computational errors of the P1-P2-P 2
2 finite element for solving the interface problem (7.4) on meshes

shown in Fig. 7.3. The result is perfect, showing two-order superconvergence, jump-independent error bounds, and accurate interface
approximation.

In Table 7.7, we list the errors of the P2-P3-P 2
3 finite element for solving the interface problem (7.4) on meshes shown in Fig. 7.3.

The computation is accurate enough to show two-order superconvergence, jump-independent error bounds, and accurate interface
approximation.

In Fig. 7.4, the P2 solution for the second interface problem (7.4) is plotted. The solution jumps downward at the interface curve.
We can see from the error graph of Fig. 7.4 that the error is independent of jump size of the coefficient �. It is surprising that the
error at the edge of the center hexagon (see the third graph in Fig. 7.3) is even larger than that at the interface. In fact, it shows
our method approximates the interface very well so that the solution error is independent of the interface jump. On the other side,
it shows our method is very accurate that the underline meshes must be smooth. Here, due to the geometry limitation, the meshes
changed the pattern near the origin that even the regular hexagon and regular triangles are not the best mesh shapes there.

In Table 7.8, we list the errors of the P3-P4-P 2
4 finite element for solving the interface problem (7.4) on meshes shown in Fig. 7.3.

The computation is barely accurate enough to show two-order superconvergence, jump-independent error bounds, and accurate
interface approximation.

In Table 7.9, we list the errors of the P4-P5-P 2
5 finite element for solving the interface problem (7.4) on meshes shown in Fig. 7.3.

The computation accuracy is reached that the third level L2 errors do not reach the two orders above the optimal order, due to
computer round-off. It is supposedly of order 7, if computed in a better accuracy computer.
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Table 7.8
The error of P3 elements for (7.6) on grids shown in Fig. 7.3.

G
i

ÒQ0u * u0Ò0,a Rate Ò(
w
(Q

h
u * u

h
)Ò0,a2 Rate

By the P3-P4-P 2
4 finite element, � = 10*2 in (7.5).

1 0.7386E+00 0.0 0.1385E+01 0.0
2 0.1382E*01 5.7 0.4572E*01 4.9
3 0.1904E*03 6.2 0.1572E*02 4.9

By the P3-P4-P 2
4 finite element, � = 1 in (7.5).

1 0.1078E+00 0.0 0.1190E+01 0.0
2 0.2541E*02 5.4 0.4101E*01 4.9
3 0.4467E*04 5.8 0.1349E*02 4.9

By the P3-P4-P 2
4 finite element, � = 102 in (7.5).

1 0.5595E*01 0.0 0.1412E+01 0.0
2 0.1201E*02 5.5 0.4627E*01 4.9
3 0.2476E*04 5.6 0.1615E*02 4.8

Table 7.9
The error of P4 elements for (7.6) on grids shown in Fig. 7.3.

G
i

ÒQ0u * u0Ò0,a Rate Ò(
w
(Q

h
u * u

h
)Ò0,a2 Rate

By the P4-P5-P 2
5 finite element, � = 2*1 in (7.5).

1 0.2601E*01 0.0 0.2876E+00 0.0
2 0.1893E*03 7.1 0.3930E*02 6.2
3 0.4570E*05 5.4 0.3638E*04 6.8

By the P4-P5-P 2
5 finite element, � = 1 in (7.5).

1 0.2173E*01 0.0 0.2818E+00 0.0
2 0.1599E*03 7.1 0.3831E*02 6.2
3 0.3966E*05 5.3 0.3579E*04 6.7

By the P4-P5-P 2
5 finite element, � = 2 in (7.5).

1 0.1799E*01 0.0 0.2876E+00 0.0
2 0.1344E*03 7.1 0.3941E*02 6.2
3 0.3679E*05 5.2 0.3643E*04 6.8

Data availability

Data will be made available on request.
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