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Dashlet: Taming Swipe Uncertainty for Robust Short Video Streaming

Zhugqi Li, Yaxiong Xie, Ravi Netravali, Kyle Jamieson

Princeton University

Abstract

Short video streaming applications have recently gained sub-
stantial traction, but the non-linear video presentation they
afford swiping users fundamentally changes the problem of
maximizing user quality of experience in the face of the va-
garies of network throughput and user swipe timing. This
paper describes the design and implementation of Dashlet, a
system tailored for high quality of experience in short video
streaming applications. With the insights we glean from
an in-the-wild TikTok performance study and a user study
focused on swipe patterns, Dashlet proposes a novel out-of-
order video chunk pre-buffering mechanism that leverages a
simple, non machine learning-based model of users’ swipe
statistics to determine the pre-buffering order and bitrate. The
net result is a system that outperforms TikTok by 28-101%,
while also reducing by 30% the number of bytes wasted on
downloaded video that is never watched.

1 Introduction

Short video streaming applications like TikTok and YouTube
Shorts have rapidly risen in popularity, attracting billions of
active users per month [31,32,41] and consistently topping
popularity lists for mobile apps [33]. Unlike typical video
streaming, the median duration of short videos is around
14 seconds [4]. During operation, these apps generate an
ordered playlist of short videos (e.g., based on a search or
user-specific recommendations), and users watch them seri-
ally, with the ability to swipe from one to the next at any time.
To provide an immersive experience and keep users engaged,
short video streaming applications should minimize the video
rebuffering time and maximize the video bitrate, which is
modeled by quality-of-experience (QoE) [1,3,11,13].

Although the aforementioned goals are consistent with
those in traditional video streaming scenarios, existing ABR
algorithms [2,16,22,36,40] are ill-suited for interactive, short
videos. The reason is that predicting user swipes is difficult,
and swipe times dictate both which video content will be
viewed and when during a session. However, existing algo-
rithms assume that the user will watch content sequentially to
completion, and will hence buffer chunks (i.e., multi-second
blocks of video) in that order. The deleterious effects, shown
in Fig. 1, are twofold: (1) many chunks may be downloaded
in the current video but never viewed if the user swipes before
their playback, wasting resources and adding delays for the
chunks that are required, and (2) users may swipe to the next
video and incur significant rebuffering because that video’s
chunks have not been downloaded yet.

Video download Video download Video download
Waste of

) 1 )2 03 1] M download
Video 1 [N = llﬂgi-
Video 2 User swipe RN | | ) | User swipe [ 2 | User swipe

Video play Rebuffering Video play Video play

Figure 1: In short video apps, user swipes dictate the playing order
of video chunks (and thus, the optimal chunk downloading order).

The fundamental challenge is that there are far too many
possible chunk viewing sequences—the user may swipe at
any position in each short video, and expects seamless (i.e.,
no stalls) playback for both the current video, and the next
one upon a swipe. The problem thus becomes how to find (at
any time during playback) a buffering sequence of chunks
in this large search space that maximizes QoE by simultane-
ously minimizing rebuffering time and wasted bandwidth.

To understand how commercial short streaming platforms
attempt to address these challenges, we have conducted a
detailed examination of TikTok in the wild (§2). Our key
finding is that TikTok does download chunks out of order, but
follows a generic algorithm that hedges against immediate re-
buffering in the face of fast user swipes (it always pre-buffers
the first chunk for the next five videos regardless of network
conditions, user patterns, and/or video). This, however, en-
tails substantial QoE penalties and wasted data consumption,
as we will show via results from our own study of user swipe
patterns across two distinct sets of users on a college campus
and Amazon Mechanical Turk (§3). Specifically, we find
substantial heterogeneity in the swipe patterns across users,
with each warranting a different chunk downloading strategy.

A naive solution would be to simply predict user swipes—
if accurate, this would reduce the problem to a traditional
streaming setting since chunk viewing sequences would be
known a priori. However, predicting user behavior in in-
teractive applications has consistently proven to be diffi-
cult [6,21,26]. Instead, we take a more fundamental ap-
proach that is rooted in an understanding of where swipe
predictions are actually helpful (and actionable).

We present Dashlet, a new video streaming algorithm for
short video applications (§4). The underlying insight behind
Dashlet is that application playback constraints predetermine
the relative priorities between many chunks that are candi-
dates for buffering. More specifically, (1) later chunks in a
video are only reachable via earlier ones, and (2) later videos
are only reachable via swipes from earlier ones. To prioritize
among the remaining chunks, e.g., the next chunk in a given
video vs. the first chunk in the next video, only coarse grained
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information about swipe timings in videos is required. We
show, via our user study, that although users tend to exhibit
multimodal swipe patterns (complicating chunk prioritiza-
tion) across videos, distributions from aggregating users’
swipes per video provide a clear enough signal about which
mode to expect. This information is readily available to
current short video platforms, and our finding is spiritually
aligned with past studies that highlight similarities in user
engagement for certain video content [35,43].

Building on this, Dashlet develops functions that charac-
terize the expected rebuffering time for each potential chunk
that could be downloaded, as a continuous function over both
the expected download and playback times. These functions
embed the aforementioned inter-chunk relationships, as well
as rough swipe likelihoods at video start and end. Using
these functions, Dashlet employs a greedy algorithm to de-
termine the set of ordered chunks that should be downloaded
in the current time horizon to minimize expected rebuffer-
ing delays for a given network estimate and across potential
viewing sequences. This buffer sequence then feeds directly
into a traditional ABR algorithm, which determine bitrates
for those chunks that maximize overall QoE. Dashlet further
improves upon existing short video systems by not prema-
turely binding bit rate decisions across entire short videos,
and not letting the network idle at any point in time.

We have implemented Dashlet in the DASH framework [8],
and compare with the TikTok mobile app with both a human
subjects study and a trace-drive study'. Across these condi-
tions, we find that Dashlet outperforms TikTok by 28-101%
in QoE values, including 8-39% improvement on video bi-
trate, 1.6-8.9x reduction on rebuffering penalty, and 30%
reduction on data wastage. Dashlet’s QoE improvement
varies with the network throughput, i.e., 543.7%, 221.4%,
and 36.6% over TikTok when the throughput is 2-4, 4-6, and
10-12 Mbps, respectively. The improvement diminishes with
throughput approaching to 20 Mbps because both Dashlet
and TikTok are getting closer to optimum. Further, Dashlet
is tolerant to errors in swipe distributions: QoE degradations
are only 10% with distribution errors of 50%. We will open
source our datasets and implementation post publication.

2 A TikTok Case Study

We examine how TikTok, a state-of-the-art short video app,
operates. We first describe its basic architecture (§2.1), be-
fore analyzing its operation and limitations (§2.2).

2.1 Short Video Streaming Primer

Unlike traditional streaming apps that divide video into
chunks of equal time duration, TikTok splits each video into
size-based chunks. For each supported bitrate, if the video

'We release the code with the following url: https://github.com/
PrincetonUniversity/Dashlet under the MIT Open Source License.
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Figure 2: System architecture of TikTok and other short video apps.

aying orde

~

file is smaller than 1 MB, TikTok treats the entire video as one
chunk; else, the first chunk is the first MB, and the remaining
video becomes the second. This chunking strategy enhances
reliability, as TikTok pre-buffers first chunks (to cope with
swipe uncertainty) so chunking in terms of bytes eliminates
first-chunk size variance from variable bitrate encoding.

Upon receiving a client session request either via a
keyword search or category selection (e.g., recommended
videos), the server generates an ordered list of short videos
to serve (Fig. 2). The server then ships a manifest file to the
client which embeds the URL, as well as information about
the number of chunks (multi-second blocks of video) and
available bitrates, per video in the ordered list. The client op-
erates much like a traditional streaming player (e.g., DASH),
maintaining a playback buffer for downloaded video and em-
ploying an adaptive bitrate (ABR) algorithm to determine
what chunk to download next, when, and at what bitrate.

A key difference between traditional and short video
streaming is that the client maintains one logical buffer per
video in the server-provided manifest file, which contains
information for an ordered group of 10 videos. The client
requests a new manifest file after it downloads all the first
chunks of the videos in the current manifest. Video playback
operates sequentially within each logical buffer and across
buffers (in the specified order); user swipes and video com-
pletion trigger the playback to move to the head of the buffer
for the next video. To cope with such semantics, ABR algo-
rithms for short videos have the ability to download chunks
for any of the videos in the manifest file at any time.

TikTok provides four bitrate options for each video: 480p,
560p low, 560p high, and 720p, with bitrate adaptation occur-
ring only at video-level (and not chunk-level) granularity. We
hypothesize this is because the first 1 MB of a video encoded
at different bitrates corresponds to different time durations,
precluding seamless bitrate switches for the latter chunk, i.e.,
content would be missed or repeated. As we will discuss,
such constraints significantly limit TikTok from adapting to
variations in network capacity during user sessions.

2.2 Analysis of TikTok

To study TikTok in a controlled and systematic manner,
we perform our analysis over emulated networks using
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(a) Video chunk downloading and playing timeline: video index within a group-of-10 versus wall clock time. The left and right edge of the
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second chunks (if a second chunk exists), and box color indicates bitrate. The solid red line plots video playback.

5
T 4 L I Rebuffering since TikTok is busy
%’ é g Maintaining 5 buffered first chunks and downloading the 2 chunk Fast swipes
g S (1) replenish if the playback consumes one chunk drain the
= L buffer
0 20 40 60 100 120

Time (s)

(b) Client-side buffer occupancy as a function of time, the gap between playback and highest chunk downloaded in (a).

Figure 3: An illustrative video downloading and video playing trace of TikTok, with associated video bitrate and buffer occupancy statistics.

Mahimahi [23]. We log in to TikTok with a two-year old
account and mirror its screen to a Linux desktop with scr-
cpy [28] and use the pyautogui tool [24] to replay aggregated
user swipe traces that were collected from our user study
(described in §3). During experiments, we use the mitm-
proxy [5] to collect and decrypt TikTok’s network traffic.
From the deciphered HTTP messages and headers, we are
able to extract for each requested chunk, the video that it per-
tains to, its index in that video, the requested bitrate, and the
download start/end time. Finally, we develop a screen analy-
sis tool using pyautogui and opencv [17] to record duration
of each rebuffering event (§5.1 further details our setup).

2.2.1 Chunk Download Control

TikTok’s download control algorithm depends both on instan-
taneous network throughput and the client’s internal buffer
status: Fig. 3a illustrates its decisions (i.e., order and timing
of chunk downloads across videos, bitrates used each time)
during a representative two-minute session. We plot client-
side playback buffer occupancy in Fig. 3b, which shows
the number of videos with at least one downloaded (but un-
played) chunk. We see that TikTok spends most of its time
downloading the first chunk of videos, and downloads the
second chunk when and only when the video starts to play,
e.g., the download of the second chunk of video two and the
play-start of video two start simultaneously at r = 22 s.

Our analysis indicates that TikTok proceeds according to
three discrete states, cycling among the three in order to han-
dle one group-of-ten videos. At startup and the start of every

group-of-ten, the ramping-up state continuously downloads
first chunks to build up buffers. After accumulating five first
chunks at r = 18 seconds, TikTok starts to play the buffered
video and enters the maintaining state, where it aims to
maintain a constant five buffered first chunks. Upon play-
ing a new video (due to user swipe or reaching the end of a
video), the client fetches one first chunk from the buffer, trig-
gering TikTok to immediately initiate download of the first
chunk of the next video in the manifest, as indicated by the
additional download events corresponding to either swipes or
video changes due to end of video in the green “maintaining
state” regions of Fig. 3a. We see in Fig. 3b that as the down-
loading of each first chunk finishes, buffer levels return to
five, the high water mark buffering level TikTok has chosen.
The advantage of the maintaining state is resilience to quick
user swipes: in the second group-of-ten of Fig. 3 (r = 110),
the user swipes early in multiple consecutive videos, quickly
draining the buffer, but TikTok experiences no rebuffering
since its buffer contains the five first chunks.

Finally, after downloading all the first chunks of the 10
videos listed in the current manifest file, TikTok enters the
prebuffer-idling state, where it stops initiating any new
downloads of first chunks. Meanwhile, TikTok continues
video playback, consuming video chunks in its buffer, so
buffer occupancy decreases monotonically in this state, as
shown in Fig. 3b. Our hypothetical explanation of this idle
period is that TikTok is waiting to measure the user’s reaction
(swiping early means they might not be interested in the
content) to the videos TikTok recommends in last round
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Figure 4: The number of downloaded videos inside the buffer
when TikTok starts to download the first chunk of a new video via
networks with capacity of (a) 10 Mbit/s and (b) 3 Mbit/s.

(manifest file), so it can assess its recommendation quality
and adjust the subsequent round’s recommendation before
sending the next manifest file.

In contrast to the resilience of the maintaining state, Tik-
Tok becomes somewhat vulnerable in the prebuffer-idling
state, where TikTok drains the buffer by itself. For example,
TikTok experiences rebuffering in the middle of two video
groups in Fig. 3. At that moment, TikTok has no buffered
first chunk and at the same time spends a long time down-
loading the second chunk of the current video, leaving no
time budget for downloading the first chunk of next video.
In such a case, one user swipe results in rebuffering.

When the user starts to watch the ninth of the group-of-ten
videos listed in a manifest, TikTok exits prebuffer-idle and
begins afresh in the ramp-up state to download the videos
listed in the next manifest file. The cycle through these three
states repeats for each group-of-ten.

2.2.2 Network and Swipe Input Adaptation

We now investigate the effects of swipes, buffer occupancy,
and the network on TikTok’s bitrate and buffering choices. To
measure the impact of the network on buffering strategy, we
control network capacity to 10 and 3 Mbit/s using Mahimahi
and plot the number of buffered first chunks at the moment
TikTok initiates a download of the first chunks, in Fig. 4.
Combing Fig. 4a and 4b, we see that TikTok adopts the same
buffering strategy regardless of network capacity.

Next, we analyze the joint impact of network throughput
and buffering status on Tiktok’s bitrate decisions. We collect
instantaneous network throughput and buffer status coupled
with TikTok’s bitrate decisions, for 5,300 videos, and plot
the results in Fig. 6. In the figure, the x-axis is the network
throughput of the one-second period before the downloading
of that video, i.e., the time period within which TikTok makes
its decisions about the bitrate. The y-axis is the number of
downloaded first chunks in the buffer. The color of a tile
represents the average bitrate R of the video, which is given
by R = S/L where S is the size of the video in bits and
L is the length of the video in seconds. Some tiles are not
colored because the combination of the throughput and buffer
status is not seen during our measurement, e.g., when the
throughput is 16 Mbit/s, we always observe four downloaded
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data modulo by 20 MB for TikTok Figure 6: Impact of network
v20.9.1 and TikTok v26.3.3 when throughput and client video
playing the same video sequence at buffer occupancy on TikTok’s
the same swipe pace. chosen video bitrate.

first chunks in the buffer. We observe that bitrate decisions
correlate positively with network throughput, but observe no
evidence for correlation with buffer status.

2.2.3 Buffering logic on different versions of TikTok

Our reverse engineering tool can only decipher complete
TikTok telemetry information up to version v20.9.1. To
investigate whether there are any updates in the buffering
algorithm between v20.9.1 and the newest TikTok version
(v26.3.3), we use scripts to watch the same videos on differ-
ent versions, under the same network throughput and swipe
pace. We record the number of bytes downloaded versus time
with tcpdump. Fig. 5 shows an example trace for the two
versions of TikTok. By correlating the downloading traces at
different throughput and swipe speed, we infer that v20.9.1
and v26.3.3 use similar or identical buffering logic. In the
rest of the paper, we only present v20.9.1 results.

2.2.4 Limitations of Current Short Video Streaming

Despite pre-buffering the beginnings of short videos, TikTok
has a fundamentally static approach to coping with swipe
uncertainty, with no evidence for adaptation across differ-
ent videos or users. This approach is often too cautious or
aggressive, manifesting in two particular ways:

Lack of swipe prediction. TikTok prioritizes the download-
ing of the first chunk, assuming that the user always swipes
frequently, and delays the downloading of the second to the
beginning of video playback. As we will show next however,
there are indeed some users who swipe early when watching
a video, but there also a significant number of users who
watch most of many videos and swipe at the end or not at
all. So, the urgency of downloading the second chunk varies
with users and videos: a fixed rule cannot handle all cases.
Premature bitrate binding. TikTok groups the first MB
of video data into the first chunk but selects the bitrate for
both chunks according to the network conditions present
during the first, prematurely binding the system into that
bitrate for both. By design, there is often a large time lag
between the downloading of the first and second chunks, as
discussed above (the median gap between first and second
chunk downloads is 25 s., with an interquartile range of 23 s.),
resulting in a potential mismatch with network conditions
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that change in the meantime.

Network Idling. As shown in Fig. 3a, TikTok has a prebuffer
idling state. In the contrast, the buffer is not full and the
bitrate of videos still has room to improve. This also calls
for a better ABR algorithm to stream higher bitrate video by
utilizing the idle time in a better way.

To understand the mismatch between TikTok’s generic rule
and the varying user swipe patterns, in the next section, we
characterize the swipe patterns across real users and videos
via two user studies.

3 Characterizing User Swipes

To better understand the nature of user interactions (i.e.,
swipes) with short video applications, we conducted two
IRB-approved user studies. In each study, we present users
with a web-based short video streaming service that resem-
bles the interface offered by TikTok We considered 500 pop-
ular short videos gathered by crawling the videos displayed
on the TikTok landing page over time. The videos were
randomly ordered per session, and each user watches 20 min-
utes of video with the ability to swipe freely (all swipes are
recorded). Note that the number of videos watched by a
given user depends on the number of swipes they performed.

For generality, we performed two versions of this study:

1. College campus: we recruit 25 student volunteers who
collectively swipe 3,069 times during the study.

2. Amazon Mechanical Turk (“MTurk”): we recruit 258
different users. To ensure active user participation, we aug-
ment our web application to inject random interactivity tests
that ask users to swipe within 10 seconds. Users who fail
to swipe in time are entirely excluded from the study; users
who do swipe continue the experience, but we exclude the
forced swipe(s) from our final dataset. In total, we retain data
from 133 workers, which covers 15,344 swipes.

Overall swipe distributions. Fig. 7 shows the distribution of
swipe times across all video-user pairs in both studies. Users

are most likely to swipe either soon after video playback be-
gins or at the end of the video (manually or via auto-swiping
once the video completes); this is consistent with prior stud-
ies on user swipe patterns [44]. For instance, 29% and 42% of
swipes from MTurk users are within the first 20% or last 20%
of videos, respectively. Swipes between these two endpoints
occur, but far less often and with increasingly low likelihood
as users watch more videos, e.g., only 6% of swipes in the
College Campus dataset are in the 60—80% of videos.

Swipe distributions per video. Fig. 8 shows swipe prob-
abilities for four representative videos, aggregated across
users who watched each one in the two studies. Differ-
ent videos yield significantly different swipe distributions:
over 60% of swipes in videos (a) and 80% of swipes in
videos (d) come within the last few seconds (indicating low
swipe probabilities for these). Video (c) exhibits the opposite
pattern—60% of swipes in the first 20% of the video (in-
dicating high swipe probabilities)—while swipes in (b) are
more evenly distributed in time. Perhaps more importantly,
we observe substantial stability in the swipe distributions per
video across different user datasets: KL divergence values
between the MTurk and College Campus datasets are 0.2 and
0.8 for the median and 95th percentile videos, respectively.

Conclusions. Despite general similarities in swipe patterns,
users follow a few different modes of swiping (e.g., swiping
early in the chunk vs. not at all), each of which warrants a
different buffering strategy to ensure high QoE. Fortunately,
cross-user swipe data that is aggregated per video provides
a relatively stable indicator as to how likely swipes are (and
will be) in a given video, and (more coarsely) at what part
of the video they will occur. We show in §4 how Dashlet
leverages this coarse information — which is readily available
at existing short video servers — to make robust buffering
decisions that handle cross-user swipe traces.

4 Design

Dashlet leverages swipe distribution stability across videos
(§3) to get a coarse sense of the likelihood of swipes at differ-
ent video chunks. Coupling this information with constraints
on inter-chunk viewing sequences intrinsic to short video
applications, Dashlet models the expected rebuffering time
for each potential chunk as a continuous function over the ex-
pected download and playback times (§4.1), then employs a
greedy algorithm atop those functions to find a chunk buffer-
ing sequence that minimizes expected rebuffering delay over
a time horizon for a given network throughput estimate, and
across different user viewing sequences. Lastly, Dashlet
feeds that buffering sequence into a bitrate selection algo-
rithm (RobustMPC [40] in our implementation) to control
video chunk bitrate and optimize overall QoE (§4.2).
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player plays videos sequentially, switching to on the order between the play start time 7, and quences that start from chunk c¢;; and end

the first chunk of the next video after a swipe. the download finish time 7.

4.1 Forecasting Rebuffering Delay

Dashlet’s expected rebuffering functions aim to quantify user-
perceived delays across different chunk download times and
viewing sequences. We begin by explaining the construction
of these functions in a discrete setting where users can only
swipe at chunk boundaries; we then extend the discussion to
incorporate arbitrarily-timed user swipes.

System Model. Short video apps follow the flow shown
in Fig. 9. Each video consists of multiple chunks of chunk
time T. Within the i video with N; chunks, if the user does
not swipe, the video player plays its chunks c;; sequentially,
where j € [0,N;] is the chunk index. When playback reaches
the end of the video or the user swipes, the player jumps to the
first chunk of the next video. Since user swipe distributions
vary across videos (§3), we denote the probability that the
user swipes after watching chunk ¢;; as p;;. The list of the
chunks the user watches is a viewing sequence

‘/S:[C117"'3C1k,‘7C213"'7CK17"'3CK]€L] (1)

where the user views the first k; chunks of the i video,
assuming that the user watches L videos in total. Then the
probability distribution of k; is P, = {pi1, pi2,...,pin; }. We
define D;;, the number of chunks that a user has watched
prior to chunk ¢;;:

i—1
Dij=Y k+(j—1). 2)
[

By knowing the number of chunks that a user has watched
before c;;, the playback start time of ¢;; then will be D;; - T.
As shown in Fig. 10, the expected rebuffering delay for some
chunk ¢ depends on the relationship between the chunk’s
play start time 1, and download finish time tJCC. There exists
no rebuffering if the chunk downloading finishes before the
play start time. Otherwise, rebuffering happens and the time
difference between 7, and t; tells us ¢’s rebuffering delay:

0 1o <t
Trebuf(tc Z,C) _ { ’ f p (3)
¢ Fp 1=ty 15>15

The play start time of each chunk is determined by the view-
ing sequence Vj, as shown in Fig. 10. Since our goal is to

at chunk c¢;.

schedule ¢’s download to minimize rebuffering, we now for-
mulate a reward function to meet this goal, parameterized on
17 and averaging over all possible viewing sequences (which
are not under our control). The expected rebuffering delay of
chunk c given that chunk’s download finish time t}', across
all possible viewing sequences, is:

ZPr

Vied

Erebuf TgebUf(l}Cc, t,C, (Vs)) “4)

where probability Pr(V;) represents how likely a specific
viewing sequence V will appear based on user swipe distri-
bution data, t[C,(VS) is ¢’s play start time in Vi, and @ is the set
of all possible viewing sequences.

To calculate the expected rebuffering delay for a specific
chunk, we enumerate all possible viewing sequences that
reach this chunk, as Eq. 4 shows. For each sequence, we
compute how likely this sequence will appear based on user
swipe distributions, and then determine the play start time
of that specific chunk. Based on short video chunk playback
constraints (§1, p. ), we propose separate algorithms for
calculating the expected rebuffering delay of a video’s first
chunk, and remaining chunks, respectively.

First chunk of a video. The number of possible viewing se-
quences between chunk one of video one (c11) and chunk one
of video i (c;1) increases exponentially with i. On the other
hand, the number of sequences from the first chunk of the
previous to the first chunk of the current video is bounded by
the number of chunks in the former. For example (see Fig. 9),
there are three possible viewing sequences from chunk ¢y
to c31. We therefore enumerate the viewing sequences in a
recursive manner: deriving the viewing sequences that reach
the first chunk of the i video based on the viewing sequence
of the first chunk of the (i — 1)* video.

We start from the base case, viewing sequences from ¢y
to c21. Fig. 11 lists all three possible viewing sequences
that start from c;;: we see that random variable D> = ky

(cf- Eq. 2). Similarly, as shown in Fig. 10, D3; = D) + k>
(cf- Eq. 1). The distribution of D3 is then:
ny—1
PD%] no Z PDzl sz no —l} 5)
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Figure 12: Convolution of the Pp,,[-] and P, [-] provides us the
probability distribution Pp,, [].

where Pp,, [no] means the probability of there are ng chunks
before chunk c3; is viewed. This formula by definition is
the operation of convolution between D,; and k3, as shown
in Fig. 12. Without losing generality, the number of chunks
that user watches before chunk c;;, D;i, is D(i,l)l +ki 1.
Therefore the distribution of D;; is:

PDil = PD(; *Pki—l . (6)

—1)1
With the knowledge of D;;’s distribution for the first chunk
of all the videos, we calculate the expected rebuffering delay
of chunk ¢;;, as the function of download finish time:

Erebuf ZPD” Trebuf tf7 (f’l + 1)T) (7)

Remaining chunks in a video. There exists only one view-
ing sequence from the first to later chunks of the same video:
Fig. 13 shows that cy3 will be played when and only when
the user watches the i = 2" video continuously without swip-
ing. For non-first chunk c;;, the number of chunks that user
watched before it, D;;, is the summation of D;; and j—1
since the user has to watch the first j — 1 chunks in video i
before starting to watch it. Then the distribution of D;; is that
of D;j, delayed by j — 1 chunks. In addition, the user might
swipe to the next video before watching c¢;;:

Jj—1

(1=Y pim)-  ®

m=1

PDij [no] = Pp, [no

—(j=D]x

With the distribution of D;;, we follow the same procedure
to calculate expected rebuffering time for remaining chunks
in a video, according to Eq. 7.

Arbitrary user swipes. In reality, swipes do not only happen
after a chunk finishes. If the continuously-valued viewing
time for video i is ¥;, the PDF of k; is f, (t9). The play start
time of ¢;j, A;j, is a random variable, with PDF fy,; (t). For
the first chunk of video i, its playing start time t;“ is also the
summation of the playing start time of the previous video
t;("f')' and the time the user spends watching the previous
video K;_1. Following a similar principle, we compute fa,, (¢)
for the first chunk of a video i as

fAn (t) :fA(i—l)l(t)*fKi—l(t)‘ )]

D;; =1

D,.+1
o1 21
>P21
Swipe

Figure 13: Starting from chunk ¢;1, the user must watch the second
video continuously with swiping to reach chunk c;3.

Dy 42

P22
Swipe

>

For subsequent chunks c;;, we also calculate the playing start
distribution based on the first chunk

) (=1L
fAij(t):fA(i,l)[(ti(jil)'L)' <1/0 fKi(x)) dx
(10)
Then the expected rebuffering function can be calculated
similarly to Eq. 7:

b, b,
E; (x T (x / g (6) X TS I (x,0)dt (11)
In the implementation, we approximate the continuous value
swipe distribution with a discrete distribution with the time
granularity of 0.1 seconds. The integral then can be approxi-
mated by the summation in the discrete distribution.

4.2 Determining Buffering Sequences

Given the preceding computation of expected rebuffering
delay for each chunk, Dashlet’s next task is to determine
an order of chunks to download (i.e., a buffering sequence)
that minimizes expected rebuffering delay over a lookahead
horizon. Prior schemes (e.g., MPC [40]) can then be used to
determine the bitrates for those chunks to optimize overall
QoE for the horizon. However, unlike prior schemes, the
horizon that we use is based on time (not chunks), since dif-
ferent user swipe patterns can translate into different numbers
of viewed chunks. Using a horizon sized to a fixed number of
chunks could result in optimization over very short viewing
times (negating the effects of longer-term planning). Our cur-
rent implementation uses a lookahead window of 25 seconds
based on empirical observations, which is equivalent to the
five chunks MPC uses. Chunk ordering relies primarily on
whether the user swipes near the beginning of the video or
not: e.g. if the user is highly likely to not swipe in c;1, the
algorithm then needs to prioritize c15 over cp.

4.2.1 Selecting the candidate chunk set

To determine the set of chunks to consider, we enforce a
threshold on the minimum rebuffering penalty that each
chunk is expected to incur at the end of the horizon if it is not
included in the buffer sequence (Fig. 14(a)). Chunks whose
rebuffering penalty falls below the threshold are deemed as
unlikely to be viewed during the horizon (c3; in Fig. 14(a)),
and thus low priority for inclusion in the buffer sequence.
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Figure 14: An example to illustrate Dashlet’s algorithm.

Note that buffer sequences are constructed each time a chunk
download completes, so an excluded chunk for one hori-
zon may still be downloaded shortly (via inclusion in the
next horizon’s buffer sequence). We use an empirically-
configured value of 1/u for threshold, which is the inverse
of the rebuffering penalty weight in our target QoE function.

Using the set of chunks to consider, our final task is to
order them in a manner that minimizes expected rebuffer-
ing penalties. We assign a bitrate to each chunk, and then
use estimated network bandwidth to determine when it will
complete donwloading (assuming some start time). This
allows us to compute expected rebuffering time per chunk
(§4.1). However, to bound computational complexity (since
download decisions must be fast) we temporarily assume an
equal bitrate per chunk that is set to the maximum bitrate,
which ensures that all chunks in the list will complete down-
loading before the horizon completes. Although exclusion
of per-chunk bitrate decisions here can result in suboptimal
orderings, these effects are marginal (evidenced by Dashlet’s
closeness to the Optimal scheme in §5.2), as priorities be-
tween chunks (and potential per-chunk viewing times) are
largely dictated by viewing constraints imposed by the appli-
cation (§4.1). Thus, minor discrepancies in bitrates across
chunks are unlikely to flip the priority order among them.

4.2.2 Priority-ordering the buffer sequence

To sort our list of chunks into a buffer sequence, we follow
a greedy algorithm, whereby we partition the horizon into
chunk-sized slots. For a given slot i, we select the chunk that
will incur the largest additional rebuffering penalty if it were
to be scheduled in slot i 4 1 rather than i. Fig. 14(b) shows
this process for a scenario in which chunk cq; just completed
downloading: c;; is assigned to slot 1 as its rebuffering
penalty jumps the most between slots 1 and 2; ¢y; is next as
it has the highest penalty for not going in slot 2, and so on.
Finally, using the generated buffer sequence, Dashlet applies
MPC'’s algorithm to determine the bitrate for each chunk in
the buffer sequence in a way that optimizes the entire QoE
(not just minimizing rebuffering) for the horizon according to
the forecasted network throughput, i.e., the harmonic mean

over the observed throughputs in the last 5 chunk downloads.
We describe the above algorithm with a pseudo code in §A.

4.3 Implementation

Dashlet’s implementation includes one control module and
multiple buffer modules. The control module schedules
the chunk downloading and the buffer modules reuses the
DASH_js playback management implementation to download
video chunks. §B provides more implementation details.

5 [Evaluation

We evaluate Dashlet across a variety of mobile network con-
ditions, real user swipe traces, and videos. Our key findings:
* Dashlet outperforms TikTok by 28-101% in terms of
average QOE, including 8-39% improvement on video
bitrate, 1.6-8.9x reduction on rebuffering penalty, and
30% reduction on data wastage.

e Dashlet’s QoE improvement varies with the network
throughput, i.e., 543.7%, 221.4%, and 36.6% over Tik-
Tok when the throughput is 2-4, 4-6, and 10-12 Mbps,
respectively. The improvement diminishes with through-
put approaching to 20 Mbps because both Dashlet and
TikTok are getting closer to optimum.

 Dashlet tolerates errors in swipe distributions: with errors
of 50%, Dashlet makes the correct buffering decisions
96.5% of the time, yielding an QoE reductions of only
10%. compared to cases with no distribution errors.

5.1 Methodology

Baselines. We compare Dashlet with the following systems:
* TikTok. We compare with TikTok App (version v.20.9.1).

* Oracle. We also run an ‘oracle’ baseline that serves as
an upper bound for QoE. The oracle is the RobustMPC
algorithm [40] running with perfect (a priori) knowledge
of both the user swipe traces and network throughput in
each experiment. With that information, the algorithm
knows the upcoming video viewing sequence at all times,
and can thus pick the buffer sequences (and bitrates) that
directly optimize QoE for the current network conditions.

Overall setup. All video clients run on a rooted Pixel 2
phone (Android 10). The Oracle algorithm and Dashlet run
in the Google Chrome browser (v. 97.0.4692.87), and contact
a local desktop which houses the videos accessed in each
experiment (described below). In contrast, TikTok runs as an
unmodified, native Android app and contacts Akamai CDNs
to fetch video content as it normally does. We checked the
location of the CDN content server node and verified it was
local to our area. All traffic to and from the phone passes over
emulated mobile networks (which run atop WiFi connections
with average speeds of ~300 Mbps); to compensate for the
discrepancy in video servers, we added 6 ms of round trip
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delay to traffic for Dashlet and the Oracle algorithm, which
reflects the maximum ping time we observed to the CDN
used by TikTok.

Evaluation metrics. Short videos share similar goals of tra-
ditional video streaming [22,40]: maximizing video bitrate,
minimizing rebuffering delays, and avoiding frequent bitrate
fluctuations, so we adopt a widely used QoE metric:

QoFE = Rpitrate — M- Prehuffer =N Psmooth (12)

where Rpitrqre 15 the average video bitrate, Propyffer is the
cumulative penalty for rebuffering (i.e., stalled playback),
and P00 18 the penalty for frequent bitrate switching across
adjacent chunks. We use the same values for u and | as prior
work [40], i.e., u=3000 and n = 1.

Human subjects study for QoE. We conduct a small-scale
human study, where we recruit ten participants’. We ask
them to log in their own accounts to use TikTok under em-
ulated mobile networks (the videos are recommended by
TikTok)’. We randomly choose three network traces with
average throughput of 44+0.1, 64+0.1, 12+ 0.1 Mbps re-
spectively. We record the content, quality, order of videos
TikTok streams to each user, and swipe timestamps. For the
evaluation of Dashlet, we first download every video that
users have watched in TikTok experiments and collect per-
video user swipe distributions with Amazon Mturk. We then
stream the same videos in the same order as TikTok using
Dashlet, under the same emulated network, during which we
replay the user swipes recorded in the TikTok experiment.
Take the analogy to machine learning: the “training set” we
use for Dashlet is collected by MTurk, and the testing set is
real users’ swipe. To quantify performance, we record the
quality of every video chunk and the rebuffering event to
calculate the QoE for both TikTok and Dashlet.

Human subjects study for users’ satisfaction. We let the
same group of participants use TikTok and Dashlet for in
total 30 minutes and ask them to rate the video quality and
smoothness after they finish. Each participant used both Tik-
Tok and Dashlet for three five-minute sessions under three
different network traces. Notice that the videos played in
TikTok and Dashlet are different in the study since the users
would behave differently if shown the same video once more,
e.g., users tend to swipe fast when they are already familiar
with the content in a video. For Dashlet, the swipe distribu-
tion is pre-collected with MTurk before the study.

Trace-driven study. We run a trace-driven study to scale up
the evaluation under different user swipe speed and network
traces. We use a script to automatically swipe in TikTok

2 Among the ten participants, three of them are new users, three of them
are occasional users, and four of them are daily users.

3The only action that users perform in the study is to swipe to the next
video based on their watching experiences
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Figure 15: Throughput distribution for our network dataset.
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Figure 16: End-to-end result for human subjects study. (a) QoE (b)
Rebuffer percentage. (c) Bitrate reward (d) Smoothness penalty

based on the distribution shown in Fig. 7. In order to enforce
the same playing sequence (i.e., ordered list) of videos across
the considered systems, we exploit the fact that the order in
which videos are streamed with TikTok for a given keyword
search remains unchanged on the order of many days. We use
that same order across all systems and across experiments
with different network and swipe traces. Each experiment
considers 10 minutes of viewing time to match the average
session time for TikTok users [34]. Similar to our human
subjects study, we replay the same traces recorded from
TikTok experiments to evaluate Dashlet and Oracle. The
swipe distribution used for Dashlet in replay is collected
from another batch of user study via Amazon Mturk.

Network conditions. We consider the combination of two
sets of mobile network traces: (1) the FCC LTE dataset [9]
that is widely used in prior work [22,40], and (2) a WiFi
trace dataset that we collected in January 2022 in a shopping
mall. Fig. 15 shows the average and standard deviation of
throughput traces in the combined dataset.

5.2 End-to-End performance

Human subjects study. Fig. 16 shows the end-to-end re-
sult for human subjects study, including QoE, rebuffering

USENIX Association

20th USENIX Symposium on Networked Systems Design and Implementation 1591



I TikTok EEN Dashlet E=3 Oracle
1)
[}
2| | A RE
504 £ 0.1%;
|l il
0- =t
= © Jf.if.if.'f. E (d)
£ 100 Iﬂ 221
- LR -
[}
E 507 £ 11
A g
0 &l
o 0.5 O 0 XAk N o 0% O 0>l D
Q f\, " &° & \U\\'\;\ 5> & \OD”\» Q r\, " o> Q,\ 0,\\&\\‘0,\\%9’

Net. Throughput (Mbps)

Net. Throughput (Mbps)

Figure 17: End-to-end result for trace-driven study. (a) QoE. * is the outlier data point with average QoE at -389 due to rebuffer (b) Rebuffer
percentage (of total time). Note log ordinate axis; * denotes zero rebuffering. (c) Bitrate reward. (d) Smoothness penalty

Network throughput (Mbps) 4 + 0.1 6+0.1 12+ 0.1

TikTok quality 31+083 321087 4.0+£0.89
Dashlet quality 3.6£0.80 3.94+0.70 4.1+0.94
TikTok stall 28+ 1.08 3.0+0.77 424099
Dashlet stall 35+£1.02 394094 434090

Table 1: User survey for TikTok and Dashlet. Each participant is
asked to score 1 (worst) to 5 (best) in terms of video quality (reso-
lution) and stall (rebuffer) under three different network throughput.
The sample questionnaire is shown in §D. Table summarizes the
average and standard deviation of the score.

Network throughput (Mbps) 4+0.1 6+0.1 12+0.1
QoE -363.2  -287.9  -1335
Rebuffer percentage 28.0% 248% 143%
Bitrate reward 77.2 96.6 97.8
Smoothness Penalty 0.38 0.12 0.02

Table 2: End-to-end result for MPC.

percentage, bitrate reward and smoothness penalty. There
are two key takeaways from these results. First, Dashlet
consistently outperforms TikTok across different network
throughput. Dashlet improve the average QoE over TikTok
by 101%, 64%, 28% on 4 Mbps, 6 Mbps, 12 Mbps respec-
tively. When break down the QoE into the components,
Dashlet reduces the rebuffering by 1.6-8.9x compared with
TikTok and improve the QoE by 8% - 39% with the cost of
marginal smoothness penalty. Second, Dashlet can reach the
close-to-optimal performance starting from 6 Mbps. While
TikTok does not achieve that even at 12 Mbps.

We also run experiments on MPC [40], a state of art tra-
ditional video streaming algorithm, on the same setup men-
tioned above. As a traditional video streaming algorithm,
MPC only prebuffers chunks for the current video. Table 2

summarizes the end-to-end result. Compared with Dash-
let, MPC incurs a much higher rebuffering as it experiences
rebuffer delay every time the user swipes to a new video.,
leading a significant lower QoE compared with Dashlet.

We also perform a experiment to understand the partic-
ipants’ satisfaction of the service provided by TikTok and
Dashlet. We let the participants watch videos using Tik-
Tok and Dashlet for five minutes, after which we conduct a
user survey by asking the participant to report their satisfac-
tion scores in terms of video quality (resolution) and stall
(rebuffer) conditions for both TikTok and Dashlet. Table 1
shows the users’ satisfaction towards the video resolution and
rebuffer for both TikTok and Dashlet on the human subjects
study. From the figure, we can see that Dashlet improves the
users satisfaction on both video resolution and rebuffering.

Trace-driven study. Fig. 17 shows the result for trace-driven
study. Key results are: (1) Dashlet’s QoE improvement
varies with the network throughput, i.e., 543.7%, 221.4%,
and 36.6% over TikTok when the throughput is 2-4, 4-6,
and 10-12 Mbps, respectively. The improvement diminishes
with throughput approaching to 20 Mbps. (2) Dashlet can
reach the optimal QoE at a much lower network throughput
than TikTok, i.e. Dashlet reaches the optimal at throughput
8-10 Mbps. While TikTok is close to the optimal at the
throughput 18-20 Mbps. (3) Dashlet consistently incurs a
lower rebuffering compared with TikTok.

5.3 Ablation study

We further perform an ablation study to understand the con-
tribution of five design components (detailed in Table 3).
Idle: TikTok has a prebuffer idle state as described in §2.2.1
while Dashlet does not. Chunking: TikTok splits the video
into one or two chunks while Dashlet splits the video into
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2-4 46

System Name Idle Chunking bi]t:;:te ]z:;i;r 53:2:[:11
(1) Dashlet+Prebuffer idle (DID) T D D D D
(2) Dashlet+TikTok Chunking(DTCK) D T T D D
(3) Dashlet+TikTok buffer order (DTBO) D D D T D
(4) Dashlet+TikTok bitrate (DTBS) D D D D T
(5) TikTok+Dashlet bitrate (TDBS) T T T T D

Table 3: Setup for ablation study. We summarize the difference in
design components between Dashlet and TikTok and evaluate the
impact of corresponding design components. “T” and “D” denote
TikTok’s and Dashlet’s design components respectively.

various number of equal-length chunks. Notice that Tiktok’s
chunking also leads to a fix bitrate for chunks in the same
video. Buffer order: whether the system follows TikTok or
Dashlet’s buffer order. Bitrate selection. whether the system
follows TikTok or Dashlet’s bitrate selection. We implement
the TikTok’s logic for the corresponding design components
according to our TikTok analysis in §2.2. For the bitrate
selection, we use a lookup table to record the TikTok’s bi-
trate decision under different network throughput and buffer
level. Our implementation for TikTok’s bitrate choice will
then make the decision according to the look-up table.

We first investigate the performance drop when replacing
Dashlet’s design components with the corresponding Tik-
Tok’s design component. Fig. 18 shows the QoE difference
compared to Dashlet. Dashlet+Prebuffer idle (DID) curve
shows that having a prebuffer idle state will have a signifi-
cant negative impact at low throughput (e.g. 0-2 Mbps). But
when the impact diminishes as the network throughput is
above 4 Mbps. Similarly, TikTok’s chunking also has a
significant negative impact at the low network throughput.
The low network throughput forces TikTok to choose a low
video bitrate, but consequently increases the first chunk du-
ration, making TikTok more vulnerable to rebuffering when
swipe happens. TikTok’s buffering order (DTBO) selection
has significant negative impact on QoE until the throughput
reaches 14 Mbps. The bitrate selection (DTBS) have the
most significant impact on the QoE. Its impact to the QoE
dominants as the network throughput reaches 4-6 Mbps. By
digging deep in the reason, we find TikTok is very conser-

Net. Throughput (Mbps)

Figure 19: Ablation study for bitrate choice.
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vative in choosing high bitrate. We show the detail in §C.
One natural next question arises is that could we just simply
increase the request bitrate to improve the QoE. To answer
this question, we consider another ablation study case TDBS,
which includes TikTok’s design for all other components but
keeps the high bitrate choices as Dashlet. Fig. 19 shows
the comparison between TDBS and TikTok. with the higher
bitrate choices, TDBS performs worse than TikTok when the
network throughput is less than 12 Mbps. The key reason be-
hind is that TDBS has a higher rebuffer percentage compared
with TikTok. The takeaway is that TikTok’s low bitrate is a
result of adaptation to avoid rebuffering. Simply increase the
downloading bitrate could lead to a worse QoE.

5.4 Micro Benchmarks

Impact of Swipe and Network Speeds on QoE. Patterns
in network throughput and user swipes largely influence the
performance of short video streaming algorithms. To under-
stand the effect of each, we report Dashlet’s and TikTok’s
results for different network throughputs and swipe rates.
As shown in Fig. 20, the major factor that affects QoE with
Dashlet is the network throughput. Importantly, swipe speed
does not have a significant impact on Dashlet’s performance,
validating its robustness under different swipe patterns. In
contrast, both network throughput and swipe speed have a
large impact on TikTok’s QoE.
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tribution errors. on Dashlet.
Network Idle and Data Waste. To dig deeper into Dashlet’s
performance gain over TikTok, we investigate network idling
and data wastage for both systems. Fig. 21 shows our re-
sults; note that the Oracle algorithm does not incur any data
wastage since it has perfect knowledge of user swipe times.
As shown, median data wastage and idle time for Dashlet are
29.4% and 45.5%, respectively, which are 30.0% and 35.9%
lower than those with TikTok. These improvements enable
Dashlet to stream video at higher bitrates than TikTok while
keeping rebuffering delays low.

The impact of chunk size on Dashlet’s QoE. Unlike TikTok
which breaks up videos by bytes, Dashlet (by default) breaks
up videos into 5-second chunks. We evaluated the impact that
chunk sizes have on Dashlet’s performance by considering
the following chunk sizes (based on prior work [42]): {2, 5,
7, 10} seconds. Note that we did not modify chunk sizes
for TikTok as we could not alter its video servers. As shown
in Fig. 22, Dashlet’s performance decreases as chunk sizes
grow, e.g., average QoE drops by 35.4% as chunk sizes grow
from 5 to 10 seconds. The reason is that data wastage grows
with larger chunk sizes: a user swipe at 1 second into a chunk
will result in more wasted bytes with a larger chunk size.
Decision Stability with Swipe Prediction Errors Dashlet
determines buffer sequences by leveraging (coarse informa-
tion from) users’ swipe distributions for each video. Thus,
a natural question is how robust are Dashlet’s decisions to
errors in those distributions, i.e., does it make the right deci-
sions even with different degrees of errors?

Recall that there are three inputs to Dashlet’s algorithm at
any time: the swipe distribution for each considered video,
the estimated network throughput, and the client-side player’s
current buffer state. The algorithm uses this information and
returns a buffer sequence of chunks to download, with the
first chunk in the ordered list indicating the action to perform
immediately, i.e., the chunk to download now. To answer
the above question, we profiled the above inputs throughout
our experiments, and then compared the actions selected by
Dashlet with those that it would select if the input swipe
distribution involved errors. In particular, we considered 10
versions of each video’s distribution by (roughly) modeling

rors on Dashlet.

its original distribution as an exponential one, and then alter-
ing the corresponding A value to change the average swipe
time by 1+{0-50%} (in 10% increments).

Fig. 23 shows our results. As shown, 83.7% of Dashlet’s

decisions are unchanged across all of the considered distri-
bution errors. The values remain relatively stable as errors
grow —e.g., 96.5% of Dashlet’s decisions are unchanged with
errors of 50% — but begin to grow after 82%. These results
illustrate that Dashlet only relies on coarse information from
swipe distributions (e.g., about whether a user is likely to
swipe early or late in the video); it is for this reason that
decisions are varied only when errors are very high (and even
the coarse information that Dashlet uses has changed).
QokE sensitivity with Swipe and Network Errors Build-
ing on the previous results, we now analyze how errors in
swipe distribution affect the QoE that Dashlet delivers. We
ran Dashlet on all videos and the network traces using same
faulty distributions from above. Fig. 24 shows the results,
breaking them down in terms of scenarios with over esti-
mation of swipe times (longer average viewing time than
the correct distribution, i.e., later swipes) and under estima-
tion (shorter average viewing time). As shown, Dashlet is
quite tolerant to such errors, delivering 87% and 91% of
its full QoE (with no errors) when the traces are over- and
under-estimating swipe times by 50%.

We perform a similar analysis to evaluate Dashlet in the
presence of network prediction errors. Specifically, we re-
place the network predictor in RobustMPC [40] with one that
reads in the actual instantaneous throughput from the current
Mahimabhi trace, and multiplies that value by between 1+{0-
50%}. Overall, as per Fig. 25, we find that Dashlet’s QoE
drops to 88% and 76% of its values without network errors
when the network estimate is over- or under-estimating by
50%. These results highlight that Dashlet is more robust to
errors in swipe distributions than network forecasts.

6 Related work

Traditional adaptive video streaming Traditional video
streaming services deliver video content from the CDN to
the user with adaptive bitrate system with the objective of
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maximizing the quality of experience for users [20]. Re-
search effort has been made to improve the quality of ex-
perience from different perspectives, including streaming
algorithm [18, 19,22,29,40], video codec [7, 10], network
prediction [30,36], protocol design [14,45], and video super
resolution [38,39]. But all these optimization is for the same
video streaming model: the video download sequence is the
same as the video playing sequence. Dashlet also uses QoE
as the optimization goal but tackles a different problem as
in the short video streaming the video download sequence is
the same as the video playing sequence due to users’ swipes.
Streaming new form of video There are also rising in-
terest on 360 degree video [12,26] and volumetric video
streaming [25]. These systems need to handle the uncertainty
from the users’ head position or location. Dashlet’s design
also models the uncertainty from the user swipe patterns.
But Dashlet targets on a different problem compared with
360 degree or volumetric video streaming. Some existing
works [15,27] also try to apply reinforcement learning algo-
rithms from traditional video streaming [22] to short video
streaming. However, these works do not factor in the impact
of user swipes on buffering decisions as Dashlet does.

7 Discussion

TikTok version. Our reverse engineering tool can only de-
ciphers the HTTPS messages transmitted by TikTok with
version up to v20.9.1. As a result, we cannot conduct our
case study (§2) using the up-to-date TikTok v26.3.3, which
adopts a different encryption method as V20.9.1. We leave
the task of deciphering the HTTPS messages and thus study-
ing the streaming algorithm of the newest version of TikTok
as our future work.

Backward swipes, fast-forwarding, and pause. Our current
model only allows forward swipes, i.e., swipes to watch next
videos. The newest version of TikTok also allows backward
swipes where the user swipes to watch the previous video
and fast-forwarding, where the user speeds up the playback
of the current video: we will study these in future work. In
addition, our model does not consider the video pause. The
pausing of videos will make it easier for the system since it
gives the player more time to download videos. For Dashlet’s
design, we focus on a harder problem, which assumes no
pause in the video.

Diminished gain at higher network speeds. We observe a
diminished improvement for Dashlet over TikTok at higher
network speeds. At higher network speeds, mistakes made
by TikTok are masked by higher network throughput. As
network speed increases, TikTok can pick up the highest
bitrate but still have enough time to react to users’ wipes.
In our evaluation, we use the bitrates that TikTok’s CDN
offers, which are capped at 720P video quality. We expect
the gap between Dashlet and TikTok will widen if higher

bitrate videos are used to evaluate both systems, which we
expect will happen in the future.
Generalization of Dashlet design. The Dashlet design does
not rely on the design of TikTok but only relies on a sequence
of videos that are played in chunks. Therefore, it should be
able to generalize to other platforms like YouTube Shorts
and Instagram Reels.
Energy implication to smartphones. Dashlet could poten-
tially reduce the energy consumption for short video appli-
cations. The energy cost includes both the cost to run the
algorithm and the cost to download the video content. Dash-
let uses a simple non-machine learning algorithm, which
causes minimal extra energy overhead. For the cost to down-
load the video content, Dashlet has less energy overhead
since its waster download is much less than TikTok.
Evaluation generalizability. We have conducted a small
scale human study to compare the performance of Dashlet
and TikTok, where ten participants log into their own ac-
count to watch TikTok video on a emulated mobile network,
repeating the experiments using Dashlet. The personality of
the recruited user may lead to biased results, for example, a
patient user may tend to not swipe or swipe at the end of the
video, leaving larger time window for TikTok to download
the second chunk. A larger scale human study that involves
more diverse users is needed to eliminate this potential bias.
We conduct our evaluation under emulated mobile net-
works, but prior work [36,37] has pointed out that the emula-
tion based evaluation of network applications and congestion
control schemes may not always be indicative of real-world
performance. For example, although we compensate the av-
erage round trip delay to the CDN server in the emulated
environment, the variation in the round trip delay might po-
tentially impact the results. While we note that Dashlet does
not input network measurements into an ML model, we ac-
knowledge that large-scale evaluation in the wild may be
required to verify the full generalizability of our results.

8 Conclusion

In this paper, we design and implement Dashlet with the in-
sight provided by measurement for a commercial short video
app and a user study on general user swipe pattern. Dashlet’s
algorithm strategically determines the buffer order with the
input from a coarse-grained swipe distribution. Evaluation
result shows Dashlet significantly improves video quality and
reduces rebuffering compared with the baseline system.
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A Dashlet Pseudocode

Algorithm 1: Dashlet’s ABR algorithm

Input : 1) Buffer status ry ...r,
2) Video bitrate B = {b; — b1x...by1 —bpi }
3)The probability distribution of play start time for
each chunk G = g11(t) ... 8nc, (1)
4) network throughput estimation T
5) The look-ahead time length F'
6) Chunk length L
Output :The location and bitrate to buffer next

1 foreachi,j e {1...n} do
2 | if f§ (F—1)gc,(t)dt > 1/uand j > r; then
3 L candidateList.append(c;);

//Add the chunk to the candidate list if
there is significant penalty for not
downloading it

targetBitrate = F X T [ len(candidateList) / L;

5 do

6 Cmin = minRebufferCost (targetBitrate, bufferOrder,

candidatelList) ;,

7 bufferOrder.append(cpin);

8 candidateList.remove(cpi,);

while len(candidateList) > 0;

//use greedy algorithm to put chunks from
candidateList into bufferOrder

0 bitrateList = getMaxBitrate (bufferOrder, B, T);

//Enumerate all the bitrate combination for
chunks 1n bufferOrder to maximize the QoE

Return bufferOrder[0], bitrateList[0]

-

e

—

—
o

B Dashlet Implementation Further Detail

Dashlet makes no change to the CDN/server side so our sys-
tem can be easily deployed client side. Dashlet includes one
control module and multiple buffer modules. Each buffer
module manages the video playback of one short video, in-
cluding downloading chunks, tracking playback progress,
and reporting buffer status. We reuse the DASH.js playback
management for the buffer modules. The control module
manages scheduling across short videos, collecting estimated
throughput and buffer length from each buffer module. With
the collected data, control module runs Dashlet’s algorithm
to schedule the video buffering. Based on the algorithm’s
output, it assigns the quota to the buffer module that is as-
signed to download the next video chunk. The quota includes
the target video bitrate and the target download finish time.
Once the buffer module receives the quota, it sends an HTTP
request with target bitrate to the CDN to download s the
corresponding video chunk. A call back function is set to
report the status to control module in case the download time
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Figure 26: Bitrate choice made by Dashlet and TikTok. The x-axis
is the network throughput and the y-axis is the highest available
bitrate to choose. The color is the ratio between the chosen bitrate
and the highest available bitrate. The red color means the highest
available bitrate is chosen.

1. How will you rate the quality of the video you watched on TikTok

Excellent, all the videos are high quality (5)

Good, the video quality is generally good (4)

OK, there are some blur videos but do not affect my watching experience (3)

. Need improve, there are a lot of blur videos and affect my watching experience (2)
Bad, the videos are not clear at all (1)

opo o

2. How will you rate the quality of the video you watched on Dashlet

Excellent, all the videos are high quality (5)

. Good, the video quality is generally good (4)

OK, there are some blur videos but do not affect my watching experience (3)
Need improve, there are a lot of blur videos and affect my watching experience (2)
Bad, the videos are not clear at all (1)

opo ow

3. How will you rate the smoothness of the video you watched on TikTok

Excellent, I did not experience any rebuffer (5)

Good, the video plays smoothly except only a few short rebuffer (4)

OK, the video stalls sometime, but it does not affect my watching experience (3)
. Need improve, the video stalls a lot, it affects my watching experience (2)

Bad, the video has lots of stall and can hardly be played (1)

opooe

4. How will you rate the smoothness of the video you watched on Dashlet

Excellent, I did not experience any rebuffer (5)

Good, the video plays smoothly except only a few short rebuffer (4)

OK, the video stalls sometime, but it does not affect my watching experience (3)
. Need improve, the video stalls a lot, it affects my watching experience (2)

Bad, the video has lots of stall and can hardly be played (1)

opo o

Figure 27: Questionnaire for user survey.

exceeds the target download finish time. The control module
schedules the video buffering when the call back function

for target download time is triggered, the chunk download
finishes, or the user swipes. Similar to Pensieve [22], we also
use an ABR server to run Dashlet’s algorithm on the same
machine as the client. The control module communicates
with the ABR server using XMLHttpRequests locally.

C TikTok is conservative in video bitrate se-
lection.

We show every bitrate that TikTok and Dashlet has selected
in the section with Fig. 26. We can conclude from the figure
that TikTok limits its bitrate even if the network throughput is
high enough. This then leads to a significant negative impact
on the QoE.
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D Questionnaire sample.

We show the sample of the questionnaire we used in the user
survey in Figure 27.
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