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Abstract

Short video streaming applications have recently gained sub-

stantial traction, but the non-linear video presentation they

afford swiping users fundamentally changes the problem of

maximizing user quality of experience in the face of the va-

garies of network throughput and user swipe timing. This

paper describes the design and implementation of Dashlet, a

system tailored for high quality of experience in short video

streaming applications. With the insights we glean from

an in-the-wild TikTok performance study and a user study

focused on swipe patterns, Dashlet proposes a novel out-of-

order video chunk pre-buffering mechanism that leverages a

simple, non machine learning-based model of users’ swipe

statistics to determine the pre-buffering order and bitrate. The

net result is a system that outperforms TikTok by 28-101%,

while also reducing by 30% the number of bytes wasted on

downloaded video that is never watched.

1 Introduction

Short video streaming applications like TikTok and YouTube

Shorts have rapidly risen in popularity, attracting billions of

active users per month [31, 32, 41] and consistently topping

popularity lists for mobile apps [33]. Unlike typical video

streaming, the median duration of short videos is around

14 seconds [4]. During operation, these apps generate an

ordered playlist of short videos (e.g., based on a search or

user-specific recommendations), and users watch them seri-

ally, with the ability to swipe from one to the next at any time.

To provide an immersive experience and keep users engaged,

short video streaming applications should minimize the video

rebuffering time and maximize the video bitrate, which is

modeled by quality-of-experience (QoE) [1, 3, 11, 13].

Although the aforementioned goals are consistent with

those in traditional video streaming scenarios, existing ABR

algorithms [2,16,22,36,40] are ill-suited for interactive, short

videos. The reason is that predicting user swipes is difficult,

and swipe times dictate both which video content will be

viewed and when during a session. However, existing algo-

rithms assume that the user will watch content sequentially to

completion, and will hence buffer chunks (i.e., multi-second

blocks of video) in that order. The deleterious effects, shown

in Fig. 1, are twofold: (1) many chunks may be downloaded

in the current video but never viewed if the user swipes before

their playback, wasting resources and adding delays for the

chunks that are required, and (2) users may swipe to the next

video and incur significant rebuffering because that video’s

chunks have not been downloaded yet.
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Figure 1: In short video apps, user swipes dictate the playing order

of video chunks (and thus, the optimal chunk downloading order).

The fundamental challenge is that there are far too many

possible chunk viewing sequences—the user may swipe at

any position in each short video, and expects seamless (i.e.,

no stalls) playback for both the current video, and the next

one upon a swipe. The problem thus becomes how to find (at

any time during playback) a buffering sequence of chunks

in this large search space that maximizes QoE by simultane-

ously minimizing rebuffering time and wasted bandwidth.

To understand how commercial short streaming platforms

attempt to address these challenges, we have conducted a

detailed examination of TikTok in the wild (§2). Our key

finding is that TikTok does download chunks out of order, but

follows a generic algorithm that hedges against immediate re-

buffering in the face of fast user swipes (it always pre-buffers

the first chunk for the next five videos regardless of network

conditions, user patterns, and/or video). This, however, en-

tails substantial QoE penalties and wasted data consumption,

as we will show via results from our own study of user swipe

patterns across two distinct sets of users on a college campus

and Amazon Mechanical Turk (§3). Specifically, we find

substantial heterogeneity in the swipe patterns across users,

with each warranting a different chunk downloading strategy.

A naïve solution would be to simply predict user swipes—

if accurate, this would reduce the problem to a traditional

streaming setting since chunk viewing sequences would be

known a priori. However, predicting user behavior in in-

teractive applications has consistently proven to be diffi-

cult [6, 21, 26]. Instead, we take a more fundamental ap-

proach that is rooted in an understanding of where swipe

predictions are actually helpful (and actionable).

We present Dashlet, a new video streaming algorithm for

short video applications (§4). The underlying insight behind

Dashlet is that application playback constraints predetermine

the relative priorities between many chunks that are candi-

dates for buffering. More specifically, (1) later chunks in a

video are only reachable via earlier ones, and (2) later videos

are only reachable via swipes from earlier ones. To prioritize

among the remaining chunks, e.g., the next chunk in a given

video vs. the first chunk in the next video, only coarse grained
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information about swipe timings in videos is required. We

show, via our user study, that although users tend to exhibit

multimodal swipe patterns (complicating chunk prioritiza-

tion) across videos, distributions from aggregating users’

swipes per video provide a clear enough signal about which

mode to expect. This information is readily available to

current short video platforms, and our finding is spiritually

aligned with past studies that highlight similarities in user

engagement for certain video content [35, 43].

Building on this, Dashlet develops functions that charac-

terize the expected rebuffering time for each potential chunk

that could be downloaded, as a continuous function over both

the expected download and playback times. These functions

embed the aforementioned inter-chunk relationships, as well

as rough swipe likelihoods at video start and end. Using

these functions, Dashlet employs a greedy algorithm to de-

termine the set of ordered chunks that should be downloaded

in the current time horizon to minimize expected rebuffer-

ing delays for a given network estimate and across potential

viewing sequences. This buffer sequence then feeds directly

into a traditional ABR algorithm, which determine bitrates

for those chunks that maximize overall QoE. Dashlet further

improves upon existing short video systems by not prema-

turely binding bit rate decisions across entire short videos,

and not letting the network idle at any point in time.

We have implemented Dashlet in the DASH framework [8],

and compare with the TikTok mobile app with both a human

subjects study and a trace-drive study1. Across these condi-

tions, we find that Dashlet outperforms TikTok by 28-101%

in QoE values, including 8-39% improvement on video bi-

trate, 1.6-8.9× reduction on rebuffering penalty, and 30%

reduction on data wastage. Dashlet’s QoE improvement

varies with the network throughput, i.e., 543.7%, 221.4%,

and 36.6% over TikTok when the throughput is 2-4, 4-6, and

10-12 Mbps, respectively. The improvement diminishes with

throughput approaching to 20 Mbps because both Dashlet

and TikTok are getting closer to optimum. Further, Dashlet

is tolerant to errors in swipe distributions: QoE degradations

are only 10% with distribution errors of 50%. We will open

source our datasets and implementation post publication.

2 A TikTok Case Study

We examine how TikTok, a state-of-the-art short video app,

operates. We first describe its basic architecture (§2.1), be-

fore analyzing its operation and limitations (§2.2).

2.1 Short Video Streaming Primer

Unlike traditional streaming apps that divide video into

chunks of equal time duration, TikTok splits each video into

size-based chunks. For each supported bitrate, if the video

1We release the code with the following url: https://github.com/

PrincetonUniversity/Dashlet under the MIT Open Source License.
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Figure 2: System architecture of TikTok and other short video apps.

file is smaller than 1 MB, TikTok treats the entire video as one

chunk; else, the first chunk is the first MB, and the remaining

video becomes the second. This chunking strategy enhances

reliability, as TikTok pre-buffers first chunks (to cope with

swipe uncertainty) so chunking in terms of bytes eliminates

first-chunk size variance from variable bitrate encoding.

Upon receiving a client session request either via a

keyword search or category selection (e.g., recommended

videos), the server generates an ordered list of short videos

to serve (Fig. 2). The server then ships a manifest file to the

client which embeds the URL, as well as information about

the number of chunks (multi-second blocks of video) and

available bitrates, per video in the ordered list. The client op-

erates much like a traditional streaming player (e.g., DASH),

maintaining a playback buffer for downloaded video and em-

ploying an adaptive bitrate (ABR) algorithm to determine

what chunk to download next, when, and at what bitrate.

A key difference between traditional and short video

streaming is that the client maintains one logical buffer per

video in the server-provided manifest file, which contains

information for an ordered group of 10 videos. The client

requests a new manifest file after it downloads all the first

chunks of the videos in the current manifest. Video playback

operates sequentially within each logical buffer and across

buffers (in the specified order); user swipes and video com-

pletion trigger the playback to move to the head of the buffer

for the next video. To cope with such semantics, ABR algo-

rithms for short videos have the ability to download chunks

for any of the videos in the manifest file at any time.

TikTok provides four bitrate options for each video: 480p,

560p low, 560p high, and 720p, with bitrate adaptation occur-

ring only at video-level (and not chunk-level) granularity. We

hypothesize this is because the first 1 MB of a video encoded

at different bitrates corresponds to different time durations,

precluding seamless bitrate switches for the latter chunk, i.e.,

content would be missed or repeated. As we will discuss,

such constraints significantly limit TikTok from adapting to

variations in network capacity during user sessions.

2.2 Analysis of TikTok

To study TikTok in a controlled and systematic manner,

we perform our analysis over emulated networks using
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Figure 3: An illustrative video downloading and video playing trace of TikTok, with associated video bitrate and buffer occupancy statistics.

Mahimahi [23]. We log in to TikTok with a two-year old

account and mirror its screen to a Linux desktop with scr-

cpy [28] and use the pyautogui tool [24] to replay aggregated

user swipe traces that were collected from our user study

(described in §3). During experiments, we use the mitm-

proxy [5] to collect and decrypt TikTok’s network traffic.

From the deciphered HTTP messages and headers, we are

able to extract for each requested chunk, the video that it per-

tains to, its index in that video, the requested bitrate, and the

download start/end time. Finally, we develop a screen analy-

sis tool using pyautogui and opencv [17] to record duration

of each rebuffering event (§5.1 further details our setup).

2.2.1 Chunk Download Control

TikTok’s download control algorithm depends both on instan-

taneous network throughput and the client’s internal buffer

status: Fig. 3a illustrates its decisions (i.e., order and timing

of chunk downloads across videos, bitrates used each time)

during a representative two-minute session. We plot client-

side playback buffer occupancy in Fig. 3b, which shows

the number of videos with at least one downloaded (but un-

played) chunk. We see that TikTok spends most of its time

downloading the first chunk of videos, and downloads the

second chunk when and only when the video starts to play,

e.g., the download of the second chunk of video two and the

play-start of video two start simultaneously at t = 22 s.

Our analysis indicates that TikTok proceeds according to

three discrete states, cycling among the three in order to han-

dle one group-of-ten videos. At startup and the start of every

group-of-ten, the ramping-up state continuously downloads

first chunks to build up buffers. After accumulating five first

chunks at t = 18 seconds, TikTok starts to play the buffered

video and enters the maintaining state, where it aims to

maintain a constant five buffered first chunks. Upon play-

ing a new video (due to user swipe or reaching the end of a

video), the client fetches one first chunk from the buffer, trig-

gering TikTok to immediately initiate download of the first

chunk of the next video in the manifest, as indicated by the

additional download events corresponding to either swipes or

video changes due to end of video in the green “maintaining

state” regions of Fig. 3a. We see in Fig. 3b that as the down-

loading of each first chunk finishes, buffer levels return to

five, the high water mark buffering level TikTok has chosen.

The advantage of the maintaining state is resilience to quick

user swipes: in the second group-of-ten of Fig. 3 (t = 110),

the user swipes early in multiple consecutive videos, quickly

draining the buffer, but TikTok experiences no rebuffering

since its buffer contains the five first chunks.

Finally, after downloading all the first chunks of the 10

videos listed in the current manifest file, TikTok enters the

prebuffer-idling state, where it stops initiating any new

downloads of first chunks. Meanwhile, TikTok continues

video playback, consuming video chunks in its buffer, so

buffer occupancy decreases monotonically in this state, as

shown in Fig. 3b. Our hypothetical explanation of this idle

period is that TikTok is waiting to measure the user’s reaction

(swiping early means they might not be interested in the

content) to the videos TikTok recommends in last round
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Figure 4: The number of downloaded videos inside the buffer

when TikTok starts to download the first chunk of a new video via

networks with capacity of (a) 10 Mbit/s and (b) 3 Mbit/s.

(manifest file), so it can assess its recommendation quality

and adjust the subsequent round’s recommendation before

sending the next manifest file.

In contrast to the resilience of the maintaining state, Tik-

Tok becomes somewhat vulnerable in the prebuffer-idling

state, where TikTok drains the buffer by itself. For example,

TikTok experiences rebuffering in the middle of two video

groups in Fig. 3. At that moment, TikTok has no buffered

first chunk and at the same time spends a long time down-

loading the second chunk of the current video, leaving no

time budget for downloading the first chunk of next video.

In such a case, one user swipe results in rebuffering.

When the user starts to watch the ninth of the group-of-ten

videos listed in a manifest, TikTok exits prebuffer-idle and

begins afresh in the ramp-up state to download the videos

listed in the next manifest file. The cycle through these three

states repeats for each group-of-ten.

2.2.2 Network and Swipe Input Adaptation

We now investigate the effects of swipes, buffer occupancy,

and the network on TikTok’s bitrate and buffering choices. To

measure the impact of the network on buffering strategy, we

control network capacity to 10 and 3 Mbit/s using Mahimahi

and plot the number of buffered first chunks at the moment

TikTok initiates a download of the first chunks, in Fig. 4.

Combing Fig. 4a and 4b, we see that TikTok adopts the same

buffering strategy regardless of network capacity.

Next, we analyze the joint impact of network throughput

and buffering status on Tiktok’s bitrate decisions. We collect

instantaneous network throughput and buffer status coupled

with TikTok’s bitrate decisions, for 5,300 videos, and plot

the results in Fig. 6. In the figure, the x-axis is the network

throughput of the one-second period before the downloading

of that video, i.e., the time period within which TikTok makes

its decisions about the bitrate. The y-axis is the number of

downloaded first chunks in the buffer. The color of a tile

represents the average bitrate R of the video, which is given

by R = S/L where S is the size of the video in bits and

L is the length of the video in seconds. Some tiles are not

colored because the combination of the throughput and buffer

status is not seen during our measurement, e.g., when the

throughput is 16 Mbit/s, we always observe four downloaded
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chosen video bitrate.

first chunks in the buffer. We observe that bitrate decisions

correlate positively with network throughput, but observe no

evidence for correlation with buffer status.

2.2.3 Buffering logic on different versions of TikTok

Our reverse engineering tool can only decipher complete

TikTok telemetry information up to version v20.9.1. To

investigate whether there are any updates in the buffering

algorithm between v20.9.1 and the newest TikTok version

(v26.3.3), we use scripts to watch the same videos on differ-

ent versions, under the same network throughput and swipe

pace. We record the number of bytes downloaded versus time

with tcpdump. Fig. 5 shows an example trace for the two

versions of TikTok. By correlating the downloading traces at

different throughput and swipe speed, we infer that v20.9.1

and v26.3.3 use similar or identical buffering logic. In the

rest of the paper, we only present v20.9.1 results.

2.2.4 Limitations of Current Short Video Streaming

Despite pre-buffering the beginnings of short videos, TikTok

has a fundamentally static approach to coping with swipe

uncertainty, with no evidence for adaptation across differ-

ent videos or users. This approach is often too cautious or

aggressive, manifesting in two particular ways:

Lack of swipe prediction. TikTok prioritizes the download-

ing of the first chunk, assuming that the user always swipes

frequently, and delays the downloading of the second to the

beginning of video playback. As we will show next however,

there are indeed some users who swipe early when watching

a video, but there also a significant number of users who

watch most of many videos and swipe at the end or not at

all. So, the urgency of downloading the second chunk varies

with users and videos: a fixed rule cannot handle all cases.

Premature bitrate binding. TikTok groups the first MB

of video data into the first chunk but selects the bitrate for

both chunks according to the network conditions present

during the first, prematurely binding the system into that

bitrate for both. By design, there is often a large time lag

between the downloading of the first and second chunks, as

discussed above (the median gap between first and second

chunk downloads is 25 s., with an interquartile range of 23 s.),

resulting in a potential mismatch with network conditions
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that change in the meantime.

Network Idling. As shown in Fig. 3a, TikTok has a prebuffer

idling state. In the contrast, the buffer is not full and the

bitrate of videos still has room to improve. This also calls

for a better ABR algorithm to stream higher bitrate video by

utilizing the idle time in a better way.

To understand the mismatch between TikTok’s generic rule

and the varying user swipe patterns, in the next section, we

characterize the swipe patterns across real users and videos

via two user studies.

3 Characterizing User Swipes

To better understand the nature of user interactions (i.e.,

swipes) with short video applications, we conducted two

IRB-approved user studies. In each study, we present users

with a web-based short video streaming service that resem-

bles the interface offered by TikTok We considered 500 pop-

ular short videos gathered by crawling the videos displayed

on the TikTok landing page over time. The videos were

randomly ordered per session, and each user watches 20 min-

utes of video with the ability to swipe freely (all swipes are

recorded). Note that the number of videos watched by a

given user depends on the number of swipes they performed.

For generality, we performed two versions of this study:

1. College campus: we recruit 25 student volunteers who

collectively swipe 3,069 times during the study.

2. Amazon Mechanical Turk (“MTurk”): we recruit 258

different users. To ensure active user participation, we aug-

ment our web application to inject random interactivity tests

that ask users to swipe within 10 seconds. Users who fail

to swipe in time are entirely excluded from the study; users

who do swipe continue the experience, but we exclude the

forced swipe(s) from our final dataset. In total, we retain data

from 133 workers, which covers 15,344 swipes.

Overall swipe distributions. Fig. 7 shows the distribution of

swipe times across all video-user pairs in both studies. Users

are most likely to swipe either soon after video playback be-

gins or at the end of the video (manually or via auto-swiping

once the video completes); this is consistent with prior stud-

ies on user swipe patterns [44]. For instance, 29% and 42% of

swipes from MTurk users are within the first 20% or last 20%

of videos, respectively. Swipes between these two endpoints

occur, but far less often and with increasingly low likelihood

as users watch more videos, e.g., only 6% of swipes in the

College Campus dataset are in the 60–80% of videos.

Swipe distributions per video. Fig. 8 shows swipe prob-

abilities for four representative videos, aggregated across

users who watched each one in the two studies. Differ-

ent videos yield significantly different swipe distributions:

over 60% of swipes in videos (a) and 80% of swipes in

videos (d) come within the last few seconds (indicating low

swipe probabilities for these). Video (c) exhibits the opposite

pattern—60% of swipes in the first 20% of the video (in-

dicating high swipe probabilities)—while swipes in (b) are

more evenly distributed in time. Perhaps more importantly,

we observe substantial stability in the swipe distributions per

video across different user datasets: KL divergence values

between the MTurk and College Campus datasets are 0.2 and

0.8 for the median and 95th percentile videos, respectively.

Conclusions. Despite general similarities in swipe patterns,

users follow a few different modes of swiping (e.g., swiping

early in the chunk vs. not at all), each of which warrants a

different buffering strategy to ensure high QoE. Fortunately,

cross-user swipe data that is aggregated per video provides

a relatively stable indicator as to how likely swipes are (and

will be) in a given video, and (more coarsely) at what part

of the video they will occur. We show in §4 how Dashlet

leverages this coarse information – which is readily available

at existing short video servers – to make robust buffering

decisions that handle cross-user swipe traces.

4 Design

Dashlet leverages swipe distribution stability across videos

(§3) to get a coarse sense of the likelihood of swipes at differ-

ent video chunks. Coupling this information with constraints

on inter-chunk viewing sequences intrinsic to short video

applications, Dashlet models the expected rebuffering time

for each potential chunk as a continuous function over the ex-

pected download and playback times (§4.1), then employs a

greedy algorithm atop those functions to find a chunk buffer-

ing sequence that minimizes expected rebuffering delay over

a time horizon for a given network throughput estimate, and

across different user viewing sequences. Lastly, Dashlet

feeds that buffering sequence into a bitrate selection algo-

rithm (RobustMPC [40] in our implementation) to control

video chunk bitrate and optimize overall QoE (§4.2).
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Figure 10: Chunk rebuffering delay depends

on the order between the play start time tp and

the download finish time t f .
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Figure 11: Three possible viewing se-

quences that start from chunk c11 and end

at chunk c21.

4.1 Forecasting Rebuffering Delay

Dashlet’s expected rebuffering functions aim to quantify user-

perceived delays across different chunk download times and

viewing sequences. We begin by explaining the construction

of these functions in a discrete setting where users can only

swipe at chunk boundaries; we then extend the discussion to

incorporate arbitrarily-timed user swipes.

System Model. Short video apps follow the flow shown

in Fig. 9. Each video consists of multiple chunks of chunk

time T . Within the ith video with Ni chunks, if the user does

not swipe, the video player plays its chunks ci j sequentially,

where j ∈ [0,Ni] is the chunk index. When playback reaches

the end of the video or the user swipes, the player jumps to the

first chunk of the next video. Since user swipe distributions

vary across videos (§3), we denote the probability that the

user swipes after watching chunk ci j as pi j. The list of the

chunks the user watches is a viewing sequence

Vs = [c11, . . . ,c1ki
,c21, . . . ,cK1, . . . ,cKkL

] (1)

where the user views the first ki chunks of the ith video,

assuming that the user watches L videos in total. Then the

probability distribution of ki is Pki
= {pi1, pi2, . . . , piNi

}. We

define Di j, the number of chunks that a user has watched

prior to chunk ci j:

Di j =
i−1

∑
l

kl +( j−1). (2)

By knowing the number of chunks that a user has watched

before ci j, the playback start time of ci j then will be Di j ·T .

As shown in Fig. 10, the expected rebuffering delay for some

chunk c depends on the relationship between the chunk’s

play start time tc
p and download finish time tc

f . There exists

no rebuffering if the chunk downloading finishes before the

play start time. Otherwise, rebuffering happens and the time

difference between tc
p and tc

f tells us c’s rebuffering delay:

T rebuf
c (tc

f , t
c
p) =

{

0, tc
f < tc

p

tc
f − tc

p, tc
f ≥ tc

p

(3)

The play start time of each chunk is determined by the view-

ing sequence Vs, as shown in Fig. 10. Since our goal is to

schedule c’s download to minimize rebuffering, we now for-

mulate a reward function to meet this goal, parameterized on

tc
f and averaging over all possible viewing sequences (which

are not under our control). The expected rebuffering delay of

chunk c given that chunk’s download finish time tc
f , across

all possible viewing sequences, is:

Erebuf
c (tc

f ) = ∑
Vs∈Φ

Pr(Vs) ·T
rebuf

c (tc
f , t

c
p(Vs)) (4)

where probability Pr(Vs) represents how likely a specific

viewing sequence Vs will appear based on user swipe distri-

bution data, tc
p(Vs) is c’s play start time in Vs, and Φ is the set

of all possible viewing sequences.

To calculate the expected rebuffering delay for a specific

chunk, we enumerate all possible viewing sequences that

reach this chunk, as Eq. 4 shows. For each sequence, we

compute how likely this sequence will appear based on user

swipe distributions, and then determine the play start time

of that specific chunk. Based on short video chunk playback

constraints (§1, p. ), we propose separate algorithms for

calculating the expected rebuffering delay of a video’s first

chunk, and remaining chunks, respectively.

First chunk of a video. The number of possible viewing se-

quences between chunk one of video one (c11) and chunk one

of video i (ci1) increases exponentially with i. On the other

hand, the number of sequences from the first chunk of the

previous to the first chunk of the current video is bounded by

the number of chunks in the former. For example (see Fig. 9),

there are three possible viewing sequences from chunk c21

to c31. We therefore enumerate the viewing sequences in a

recursive manner: deriving the viewing sequences that reach

the first chunk of the ith video based on the viewing sequence

of the first chunk of the (i−1)st video.

We start from the base case, viewing sequences from c11

to c21. Fig. 11 lists all three possible viewing sequences

that start from c11: we see that random variable D21 = k1

(cf. Eq. 2). Similarly, as shown in Fig. 10, D31 = D21 + k2

(cf. Eq. 1). The distribution of D31 is then:

PD31
[n0] =

n0−1

∑
i=1

PD21
[i] ·Pk2

[n0 − i] (5)
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Figure 12: Convolution of the PD21

[·] and PK2
[·] provides us the

probability distribution PD31
[·].

where PD31
[n0] means the probability of there are n0 chunks

before chunk c31 is viewed. This formula by definition is

the operation of convolution between D21 and k2, as shown

in Fig. 12. Without losing generality, the number of chunks

that user watches before chunk ci1, Di1, is D(i−1)1 + ki−1.

Therefore the distribution of Di1 is:

PDi1
= PD(i−1)1

∗Pki−1
. (6)

With the knowledge of Di1’s distribution for the first chunk

of all the videos, we calculate the expected rebuffering delay

of chunk ci1, as the function of download finish time:

Erebuf
ci1

(t f ) = ∑PDi j
[n] ·T rebuf

ci1
(t f ,(n+1)T ) (7)

Remaining chunks in a video. There exists only one view-

ing sequence from the first to later chunks of the same video:

Fig. 13 shows that c23 will be played when and only when

the user watches the i = 2nd video continuously without swip-

ing. For non-first chunk ci j, the number of chunks that user

watched before it, Di j, is the summation of Di1 and j − 1

since the user has to watch the first j−1 chunks in video i

before starting to watch it. Then the distribution of Di j is that

of Di1, delayed by j−1 chunks. In addition, the user might

swipe to the next video before watching ci j:

PDi j
[n0] = PDi1

[n0 − ( j−1)]× (1−
j−1

∑
m=1

pim). (8)

With the distribution of Di j, we follow the same procedure

to calculate expected rebuffering time for remaining chunks

in a video, according to Eq. 7.

Arbitrary user swipes. In reality, swipes do not only happen

after a chunk finishes. If the continuously-valued viewing

time for video i is κi, the PDF of κi is fκi
(t0). The play start

time of ci j, ∆i j, is a random variable, with PDF f∆i j
(t). For

the first chunk of video i, its playing start time t
ci1
f is also the

summation of the playing start time of the previous video

t
c(i−1)1

f and the time the user spends watching the previous

video κi−1. Following a similar principle, we compute f∆i1
(t)

for the first chunk of a video i as

f∆i1
(t) = f∆(i−1)1

(t)∗ fκi−1
(t). (9)

𝑐𝑐11 𝑐𝑐21 𝑐𝑐23𝑐𝑐23
Swipe

𝑫𝑫𝟐𝟐𝟐𝟐+1
Swipe

𝒑𝒑𝟐𝟐𝟐𝟐 𝒑𝒑𝟐𝟐𝟐𝟐
𝑫𝑫𝟐𝟐𝟐𝟐 = 𝟐𝟐𝑫𝑫𝟐𝟐𝟐𝟐 = 𝟐𝟐𝑫𝑫𝟐𝟐𝟐𝟐 = 𝟑𝟑 𝑫𝑫𝟐𝟐𝟐𝟐+2

Figure 13: Starting from chunk c21, the user must watch the second

video continuously with swiping to reach chunk c23.

For subsequent chunks ci j, we also calculate the playing start

distribution based on the first chunk

f∆i j
(t) = f∆(i−1)i

(t − ( j−1) ·L) ·

(

1−
∫ ( j−1)·L

0
fκi
(x)

)

dx

(10)

Then the expected rebuffering function can be calculated

similarly to Eq. 7:

Ereb f
ci j

(x) =
∫ x

t=0
f∆i j

(t)×T reb f
ci j

(x, t)dt (11)

In the implementation, we approximate the continuous value

swipe distribution with a discrete distribution with the time

granularity of 0.1 seconds. The integral then can be approxi-

mated by the summation in the discrete distribution.

4.2 Determining Buffering Sequences

Given the preceding computation of expected rebuffering

delay for each chunk, Dashlet’s next task is to determine

an order of chunks to download (i.e., a buffering sequence)

that minimizes expected rebuffering delay over a lookahead

horizon. Prior schemes (e.g., MPC [40]) can then be used to

determine the bitrates for those chunks to optimize overall

QoE for the horizon. However, unlike prior schemes, the

horizon that we use is based on time (not chunks), since dif-

ferent user swipe patterns can translate into different numbers

of viewed chunks. Using a horizon sized to a fixed number of

chunks could result in optimization over very short viewing

times (negating the effects of longer-term planning). Our cur-

rent implementation uses a lookahead window of 25 seconds

based on empirical observations, which is equivalent to the

five chunks MPC uses. Chunk ordering relies primarily on

whether the user swipes near the beginning of the video or

not: e.g. if the user is highly likely to not swipe in c11, the

algorithm then needs to prioritize c12 over c21.

4.2.1 Selecting the candidate chunk set

To determine the set of chunks to consider, we enforce a

threshold on the minimum rebuffering penalty that each

chunk is expected to incur at the end of the horizon if it is not

included in the buffer sequence (Fig. 14(a)). Chunks whose

rebuffering penalty falls below the threshold are deemed as

unlikely to be viewed during the horizon (c32 in Fig. 14(a)),

and thus low priority for inclusion in the buffer sequence.
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Figure 14: An example to illustrate Dashlet’s algorithm.

Note that buffer sequences are constructed each time a chunk

download completes, so an excluded chunk for one hori-

zon may still be downloaded shortly (via inclusion in the

next horizon’s buffer sequence). We use an empirically-

configured value of 1/µ for threshold, which is the inverse

of the rebuffering penalty weight in our target QoE function.

Using the set of chunks to consider, our final task is to

order them in a manner that minimizes expected rebuffer-

ing penalties. We assign a bitrate to each chunk, and then

use estimated network bandwidth to determine when it will

complete donwloading (assuming some start time). This

allows us to compute expected rebuffering time per chunk

(§4.1). However, to bound computational complexity (since

download decisions must be fast) we temporarily assume an

equal bitrate per chunk that is set to the maximum bitrate,

which ensures that all chunks in the list will complete down-

loading before the horizon completes. Although exclusion

of per-chunk bitrate decisions here can result in suboptimal

orderings, these effects are marginal (evidenced by Dashlet’s

closeness to the Optimal scheme in §5.2), as priorities be-

tween chunks (and potential per-chunk viewing times) are

largely dictated by viewing constraints imposed by the appli-

cation (§4.1). Thus, minor discrepancies in bitrates across

chunks are unlikely to flip the priority order among them.

4.2.2 Priority-ordering the buffer sequence

To sort our list of chunks into a buffer sequence, we follow

a greedy algorithm, whereby we partition the horizon into

chunk-sized slots. For a given slot i, we select the chunk that

will incur the largest additional rebuffering penalty if it were

to be scheduled in slot i+1 rather than i. Fig. 14(b) shows

this process for a scenario in which chunk c11 just completed

downloading: c21 is assigned to slot 1 as its rebuffering

penalty jumps the most between slots 1 and 2; c12 is next as

it has the highest penalty for not going in slot 2, and so on.

Finally, using the generated buffer sequence, Dashlet applies

MPC’s algorithm to determine the bitrate for each chunk in

the buffer sequence in a way that optimizes the entire QoE

(not just minimizing rebuffering) for the horizon according to

the forecasted network throughput, i.e., the harmonic mean

over the observed throughputs in the last 5 chunk downloads.

We describe the above algorithm with a pseudo code in §A.

4.3 Implementation

Dashlet’s implementation includes one control module and

multiple buffer modules. The control module schedules

the chunk downloading and the buffer modules reuses the

DASH.js playback management implementation to download

video chunks. §B provides more implementation details.

5 Evaluation

We evaluate Dashlet across a variety of mobile network con-

ditions, real user swipe traces, and videos. Our key findings:

• Dashlet outperforms TikTok by 28-101% in terms of

average QoE, including 8-39% improvement on video

bitrate, 1.6-8.9× reduction on rebuffering penalty, and

30% reduction on data wastage.

• Dashlet’s QoE improvement varies with the network

throughput, i.e., 543.7%, 221.4%, and 36.6% over Tik-

Tok when the throughput is 2-4, 4-6, and 10-12 Mbps,

respectively. The improvement diminishes with through-

put approaching to 20 Mbps because both Dashlet and

TikTok are getting closer to optimum.

• Dashlet tolerates errors in swipe distributions: with errors

of 50%, Dashlet makes the correct buffering decisions

96.5% of the time, yielding an QoE reductions of only

10%. compared to cases with no distribution errors.

5.1 Methodology

Baselines. We compare Dashlet with the following systems:

• TikTok. We compare with TikTok App (version v.20.9.1).

• Oracle. We also run an ‘oracle’ baseline that serves as

an upper bound for QoE. The oracle is the RobustMPC

algorithm [40] running with perfect (a priori) knowledge

of both the user swipe traces and network throughput in

each experiment. With that information, the algorithm

knows the upcoming video viewing sequence at all times,

and can thus pick the buffer sequences (and bitrates) that

directly optimize QoE for the current network conditions.

Overall setup. All video clients run on a rooted Pixel 2

phone (Android 10). The Oracle algorithm and Dashlet run

in the Google Chrome browser (v. 97.0.4692.87), and contact

a local desktop which houses the videos accessed in each

experiment (described below). In contrast, TikTok runs as an

unmodified, native Android app and contacts Akamai CDNs

to fetch video content as it normally does. We checked the

location of the CDN content server node and verified it was

local to our area. All traffic to and from the phone passes over

emulated mobile networks (which run atop WiFi connections

with average speeds of ≈300 Mbps); to compensate for the

discrepancy in video servers, we added 6 ms of round trip

1590    20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



delay to traffic for Dashlet and the Oracle algorithm, which

reflects the maximum ping time we observed to the CDN

used by TikTok.

Evaluation metrics. Short videos share similar goals of tra-

ditional video streaming [22, 40]: maximizing video bitrate,

minimizing rebuffering delays, and avoiding frequent bitrate

fluctuations, so we adopt a widely used QoE metric:

QoE = Rbitrate −µ ·Prebu f f er −η ·Psmooth (12)

where Rbitrate is the average video bitrate, Prebu f f er is the

cumulative penalty for rebuffering (i.e., stalled playback),

and Psmooth is the penalty for frequent bitrate switching across

adjacent chunks. We use the same values for µ and η as prior

work [40], i.e., µ = 3000 and η = 1.

Human subjects study for QoE. We conduct a small-scale

human study, where we recruit ten participants2. We ask

them to log in their own accounts to use TikTok under em-

ulated mobile networks (the videos are recommended by

TikTok)3. We randomly choose three network traces with

average throughput of 4± 0.1, 6± 0.1, 12± 0.1 Mbps re-

spectively. We record the content, quality, order of videos

TikTok streams to each user, and swipe timestamps. For the

evaluation of Dashlet, we first download every video that

users have watched in TikTok experiments and collect per-

video user swipe distributions with Amazon Mturk. We then

stream the same videos in the same order as TikTok using

Dashlet, under the same emulated network, during which we

replay the user swipes recorded in the TikTok experiment.

Take the analogy to machine learning: the “training set” we

use for Dashlet is collected by MTurk, and the testing set is

real users’ swipe. To quantify performance, we record the

quality of every video chunk and the rebuffering event to

calculate the QoE for both TikTok and Dashlet.

Human subjects study for users’ satisfaction. We let the

same group of participants use TikTok and Dashlet for in

total 30 minutes and ask them to rate the video quality and

smoothness after they finish. Each participant used both Tik-

Tok and Dashlet for three five-minute sessions under three

different network traces. Notice that the videos played in

TikTok and Dashlet are different in the study since the users

would behave differently if shown the same video once more,

e.g., users tend to swipe fast when they are already familiar

with the content in a video. For Dashlet, the swipe distribu-

tion is pre-collected with MTurk before the study.

Trace-driven study. We run a trace-driven study to scale up

the evaluation under different user swipe speed and network

traces. We use a script to automatically swipe in TikTok

2Among the ten participants, three of them are new users, three of them

are occasional users, and four of them are daily users.
3The only action that users perform in the study is to swipe to the next

video based on their watching experiences
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Figure 15: Throughput distribution for our network dataset.
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Figure 16: End-to-end result for human subjects study. (a) QoE (b)

Rebuffer percentage. (c) Bitrate reward (d) Smoothness penalty

based on the distribution shown in Fig. 7. In order to enforce

the same playing sequence (i.e., ordered list) of videos across

the considered systems, we exploit the fact that the order in

which videos are streamed with TikTok for a given keyword

search remains unchanged on the order of many days. We use

that same order across all systems and across experiments

with different network and swipe traces. Each experiment

considers 10 minutes of viewing time to match the average

session time for TikTok users [34]. Similar to our human

subjects study, we replay the same traces recorded from

TikTok experiments to evaluate Dashlet and Oracle. The

swipe distribution used for Dashlet in replay is collected

from another batch of user study via Amazon Mturk.

Network conditions. We consider the combination of two

sets of mobile network traces: (1) the FCC LTE dataset [9]

that is widely used in prior work [22, 40], and (2) a WiFi

trace dataset that we collected in January 2022 in a shopping

mall. Fig. 15 shows the average and standard deviation of

throughput traces in the combined dataset.

5.2 End-to-End performance

Human subjects study. Fig. 16 shows the end-to-end re-

sult for human subjects study, including QoE, rebuffering
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Figure 17: End-to-end result for trace-driven study. (a) QoE. * is the outlier data point with average QoE at -389 due to rebuffer (b) Rebuffer

percentage (of total time). Note log ordinate axis; * denotes zero rebuffering. (c) Bitrate reward. (d) Smoothness penalty

Network throughput (Mbps) 4 ± 0.1 6 ± 0.1 12± 0.1

TikTok quality 3.1 ± 0.83 3.2 ± 0.87 4.0±0.89

Dashlet quality 3.6±0.80 3.9±0.70 4.1±0.94

TikTok stall 2.8 ± 1.08 3.0±0.77 4.2±0.99

Dashlet stall 3.5±1.02 3.9±0.94 4.3±0.90

Table 1: User survey for TikTok and Dashlet. Each participant is

asked to score 1 (worst) to 5 (best) in terms of video quality (reso-

lution) and stall (rebuffer) under three different network throughput.

The sample questionnaire is shown in §D. Table summarizes the

average and standard deviation of the score.

Network throughput (Mbps) 4 ± 0.1 6 ± 0.1 12± 0.1

QoE -363.2 -287.9 -133.5

Rebuffer percentage 28.0% 24.8% 14.3%

Bitrate reward 77.2 96.6 97.8

Smoothness Penalty 0.38 0.12 0.02

Table 2: End-to-end result for MPC.

percentage, bitrate reward and smoothness penalty. There

are two key takeaways from these results. First, Dashlet

consistently outperforms TikTok across different network

throughput. Dashlet improve the average QoE over TikTok

by 101%, 64%, 28% on 4 Mbps, 6 Mbps, 12 Mbps respec-

tively. When break down the QoE into the components,

Dashlet reduces the rebuffering by 1.6-8.9x compared with

TikTok and improve the QoE by 8% - 39% with the cost of

marginal smoothness penalty. Second, Dashlet can reach the

close-to-optimal performance starting from 6 Mbps. While

TikTok does not achieve that even at 12 Mbps.

We also run experiments on MPC [40], a state of art tra-

ditional video streaming algorithm, on the same setup men-

tioned above. As a traditional video streaming algorithm,

MPC only prebuffers chunks for the current video. Table 2

summarizes the end-to-end result. Compared with Dash-

let, MPC incurs a much higher rebuffering as it experiences

rebuffer delay every time the user swipes to a new video.,

leading a significant lower QoE compared with Dashlet.

We also perform a experiment to understand the partic-

ipants’ satisfaction of the service provided by TikTok and

Dashlet. We let the participants watch videos using Tik-

Tok and Dashlet for five minutes, after which we conduct a

user survey by asking the participant to report their satisfac-

tion scores in terms of video quality (resolution) and stall

(rebuffer) conditions for both TikTok and Dashlet. Table 1

shows the users’ satisfaction towards the video resolution and

rebuffer for both TikTok and Dashlet on the human subjects

study. From the figure, we can see that Dashlet improves the

users satisfaction on both video resolution and rebuffering.

Trace-driven study. Fig. 17 shows the result for trace-driven

study. Key results are: (1) Dashlet’s QoE improvement

varies with the network throughput, i.e., 543.7%, 221.4%,

and 36.6% over TikTok when the throughput is 2-4, 4-6,

and 10-12 Mbps, respectively. The improvement diminishes

with throughput approaching to 20 Mbps. (2) Dashlet can

reach the optimal QoE at a much lower network throughput

than TikTok, i.e. Dashlet reaches the optimal at throughput

8-10 Mbps. While TikTok is close to the optimal at the

throughput 18-20 Mbps. (3) Dashlet consistently incurs a

lower rebuffering compared with TikTok.

5.3 Ablation study

We further perform an ablation study to understand the con-

tribution of five design components (detailed in Table 3).

Idle: TikTok has a prebuffer idle state as described in §2.2.1

while Dashlet does not. Chunking: TikTok splits the video

into one or two chunks while Dashlet splits the video into
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Figure 18: The contribution to End-to-End QoE

for different design components. The y-axis in

log scale is the QoE difference between the cor-

responding ablation study systems and Dashlet. Figure 19: Ablation study for bitrate choice.
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Figure 20: Average QoE of Dashlet

and TikTok under different average

viewing percentage (based on swipe

patterns) and network throughput.

System Name Idle Chunking
Fix

bitrate

Buffer

order

Bitrate

selection

(1) Dashlet+Prebuffer idle (DID) T D D D D

(2) Dashlet+TikTok Chunking (DTCK) D T T D D

(3) Dashlet+TikTok buffer order (DTBO) D D D T D

(4) Dashlet+TikTok bitrate (DTBS) D D D D T

(5) TikTok+Dashlet bitrate (TDBS) T T T T D

Table 3: Setup for ablation study. We summarize the difference in

design components between Dashlet and TikTok and evaluate the

impact of corresponding design components. “T” and “D” denote

TikTok’s and Dashlet’s design components respectively.

various number of equal-length chunks. Notice that Tiktok’s

chunking also leads to a fix bitrate for chunks in the same

video. Buffer order: whether the system follows TikTok or

Dashlet’s buffer order. Bitrate selection. whether the system

follows TikTok or Dashlet’s bitrate selection. We implement

the TikTok’s logic for the corresponding design components

according to our TikTok analysis in §2.2. For the bitrate

selection, we use a lookup table to record the TikTok’s bi-

trate decision under different network throughput and buffer

level. Our implementation for TikTok’s bitrate choice will

then make the decision according to the look-up table.

We first investigate the performance drop when replacing

Dashlet’s design components with the corresponding Tik-

Tok’s design component. Fig. 18 shows the QoE difference

compared to Dashlet. Dashlet+Prebuffer idle (DID) curve

shows that having a prebuffer idle state will have a signifi-

cant negative impact at low throughput (e.g. 0-2 Mbps). But

when the impact diminishes as the network throughput is

above 4 Mbps. Similarly, TikTok’s chunking also has a

significant negative impact at the low network throughput.

The low network throughput forces TikTok to choose a low

video bitrate, but consequently increases the first chunk du-

ration, making TikTok more vulnerable to rebuffering when

swipe happens. TikTok’s buffering order (DTBO) selection

has significant negative impact on QoE until the throughput

reaches 14 Mbps. The bitrate selection (DTBS) have the

most significant impact on the QoE. Its impact to the QoE

dominants as the network throughput reaches 4-6 Mbps. By

digging deep in the reason, we find TikTok is very conser-

Figure 21: Data wastage and

network idle time. Boxes span

25-75th percentiles. Black lines

span min/max, and intersect at

the median for both properties.
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Figure 22: Dashlet’s chunk du-

ration’s impact on QoE (normal-

ized for 5-second chunk). Bars

list averages, with error bars for

one st. dev. in each direction.

vative in choosing high bitrate. We show the detail in §C.

One natural next question arises is that could we just simply

increase the request bitrate to improve the QoE. To answer

this question, we consider another ablation study case TDBS,

which includes TikTok’s design for all other components but

keeps the high bitrate choices as Dashlet. Fig. 19 shows

the comparison between TDBS and TikTok. with the higher

bitrate choices, TDBS performs worse than TikTok when the

network throughput is less than 12 Mbps. The key reason be-

hind is that TDBS has a higher rebuffer percentage compared

with TikTok. The takeaway is that TikTok’s low bitrate is a

result of adaptation to avoid rebuffering. Simply increase the

downloading bitrate could lead to a worse QoE.

5.4 Micro Benchmarks

Impact of Swipe and Network Speeds on QoE. Patterns

in network throughput and user swipes largely influence the

performance of short video streaming algorithms. To under-

stand the effect of each, we report Dashlet’s and TikTok’s

results for different network throughputs and swipe rates.

As shown in Fig. 20, the major factor that affects QoE with

Dashlet is the network throughput. Importantly, swipe speed

does not have a significant impact on Dashlet’s performance,

validating its robustness under different swipe patterns. In

contrast, both network throughput and swipe speed have a

large impact on TikTok’s QoE.
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Figure 25: Impact of network estimation er-

rors on Dashlet.

Network Idle and Data Waste. To dig deeper into Dashlet’s

performance gain over TikTok, we investigate network idling

and data wastage for both systems. Fig. 21 shows our re-

sults; note that the Oracle algorithm does not incur any data

wastage since it has perfect knowledge of user swipe times.

As shown, median data wastage and idle time for Dashlet are

29.4% and 45.5%, respectively, which are 30.0% and 35.9%

lower than those with TikTok. These improvements enable

Dashlet to stream video at higher bitrates than TikTok while

keeping rebuffering delays low.

The impact of chunk size on Dashlet’s QoE. Unlike TikTok

which breaks up videos by bytes, Dashlet (by default) breaks

up videos into 5-second chunks. We evaluated the impact that

chunk sizes have on Dashlet’s performance by considering

the following chunk sizes (based on prior work [42]): {2, 5,

7, 10} seconds. Note that we did not modify chunk sizes

for TikTok as we could not alter its video servers. As shown

in Fig. 22, Dashlet’s performance decreases as chunk sizes

grow, e.g., average QoE drops by 35.4% as chunk sizes grow

from 5 to 10 seconds. The reason is that data wastage grows

with larger chunk sizes: a user swipe at 1 second into a chunk

will result in more wasted bytes with a larger chunk size.

Decision Stability with Swipe Prediction Errors Dashlet

determines buffer sequences by leveraging (coarse informa-

tion from) users’ swipe distributions for each video. Thus,

a natural question is how robust are Dashlet’s decisions to

errors in those distributions, i.e., does it make the right deci-

sions even with different degrees of errors?

Recall that there are three inputs to Dashlet’s algorithm at

any time: the swipe distribution for each considered video,

the estimated network throughput, and the client-side player’s

current buffer state. The algorithm uses this information and

returns a buffer sequence of chunks to download, with the

first chunk in the ordered list indicating the action to perform

immediately, i.e., the chunk to download now. To answer

the above question, we profiled the above inputs throughout

our experiments, and then compared the actions selected by

Dashlet with those that it would select if the input swipe

distribution involved errors. In particular, we considered 10

versions of each video’s distribution by (roughly) modeling

its original distribution as an exponential one, and then alter-

ing the corresponding λ value to change the average swipe

time by 1±{0-50%} (in 10% increments).

Fig. 23 shows our results. As shown, 83.7% of Dashlet’s

decisions are unchanged across all of the considered distri-

bution errors. The values remain relatively stable as errors

grow – e.g., 96.5% of Dashlet’s decisions are unchanged with

errors of 50% – but begin to grow after 82%. These results

illustrate that Dashlet only relies on coarse information from

swipe distributions (e.g., about whether a user is likely to

swipe early or late in the video); it is for this reason that

decisions are varied only when errors are very high (and even

the coarse information that Dashlet uses has changed).

QoE sensitivity with Swipe and Network Errors Build-

ing on the previous results, we now analyze how errors in

swipe distribution affect the QoE that Dashlet delivers. We

ran Dashlet on all videos and the network traces using same

faulty distributions from above. Fig. 24 shows the results,

breaking them down in terms of scenarios with over esti-

mation of swipe times (longer average viewing time than

the correct distribution, i.e., later swipes) and under estima-

tion (shorter average viewing time). As shown, Dashlet is

quite tolerant to such errors, delivering 87% and 91% of

its full QoE (with no errors) when the traces are over- and

under-estimating swipe times by 50%.

We perform a similar analysis to evaluate Dashlet in the

presence of network prediction errors. Specifically, we re-

place the network predictor in RobustMPC [40] with one that

reads in the actual instantaneous throughput from the current

Mahimahi trace, and multiplies that value by between 1±{0-

50%}. Overall, as per Fig. 25, we find that Dashlet’s QoE

drops to 88% and 76% of its values without network errors

when the network estimate is over- or under-estimating by

50%. These results highlight that Dashlet is more robust to

errors in swipe distributions than network forecasts.

6 Related work

Traditional adaptive video streaming Traditional video

streaming services deliver video content from the CDN to

the user with adaptive bitrate system with the objective of
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maximizing the quality of experience for users [20]. Re-

search effort has been made to improve the quality of ex-

perience from different perspectives, including streaming

algorithm [18, 19, 22, 29, 40], video codec [7, 10], network

prediction [30, 36], protocol design [14, 45], and video super

resolution [38, 39]. But all these optimization is for the same

video streaming model: the video download sequence is the

same as the video playing sequence. Dashlet also uses QoE

as the optimization goal but tackles a different problem as

in the short video streaming the video download sequence is

the same as the video playing sequence due to users’ swipes.

Streaming new form of video There are also rising in-

terest on 360 degree video [12, 26] and volumetric video

streaming [25]. These systems need to handle the uncertainty

from the users’ head position or location. Dashlet’s design

also models the uncertainty from the user swipe patterns.

But Dashlet targets on a different problem compared with

360 degree or volumetric video streaming. Some existing

works [15, 27] also try to apply reinforcement learning algo-

rithms from traditional video streaming [22] to short video

streaming. However, these works do not factor in the impact

of user swipes on buffering decisions as Dashlet does.

7 Discussion

TikTok version. Our reverse engineering tool can only de-

ciphers the HTTPS messages transmitted by TikTok with

version up to v20.9.1. As a result, we cannot conduct our

case study (§2) using the up-to-date TikTok v26.3.3, which

adopts a different encryption method as V20.9.1. We leave

the task of deciphering the HTTPS messages and thus study-

ing the streaming algorithm of the newest version of TikTok

as our future work.

Backward swipes, fast-forwarding, and pause. Our current

model only allows forward swipes, i.e., swipes to watch next

videos. The newest version of TikTok also allows backward

swipes where the user swipes to watch the previous video

and fast-forwarding, where the user speeds up the playback

of the current video: we will study these in future work. In

addition, our model does not consider the video pause. The

pausing of videos will make it easier for the system since it

gives the player more time to download videos. For Dashlet’s

design, we focus on a harder problem, which assumes no

pause in the video.

Diminished gain at higher network speeds. We observe a

diminished improvement for Dashlet over TikTok at higher

network speeds. At higher network speeds, mistakes made

by TikTok are masked by higher network throughput. As

network speed increases, TikTok can pick up the highest

bitrate but still have enough time to react to users’ wipes.

In our evaluation, we use the bitrates that TikTok’s CDN

offers, which are capped at 720P video quality. We expect

the gap between Dashlet and TikTok will widen if higher

bitrate videos are used to evaluate both systems, which we

expect will happen in the future.

Generalization of Dashlet design. The Dashlet design does

not rely on the design of TikTok but only relies on a sequence

of videos that are played in chunks. Therefore, it should be

able to generalize to other platforms like YouTube Shorts

and Instagram Reels.

Energy implication to smartphones. Dashlet could poten-

tially reduce the energy consumption for short video appli-

cations. The energy cost includes both the cost to run the

algorithm and the cost to download the video content. Dash-

let uses a simple non-machine learning algorithm, which

causes minimal extra energy overhead. For the cost to down-

load the video content, Dashlet has less energy overhead

since its waster download is much less than TikTok.

Evaluation generalizability. We have conducted a small

scale human study to compare the performance of Dashlet

and TikTok, where ten participants log into their own ac-

count to watch TikTok video on a emulated mobile network,

repeating the experiments using Dashlet. The personality of

the recruited user may lead to biased results, for example, a

patient user may tend to not swipe or swipe at the end of the

video, leaving larger time window for TikTok to download

the second chunk. A larger scale human study that involves

more diverse users is needed to eliminate this potential bias.

We conduct our evaluation under emulated mobile net-

works, but prior work [36,37] has pointed out that the emula-

tion based evaluation of network applications and congestion

control schemes may not always be indicative of real-world

performance. For example, although we compensate the av-

erage round trip delay to the CDN server in the emulated

environment, the variation in the round trip delay might po-

tentially impact the results. While we note that Dashlet does

not input network measurements into an ML model, we ac-

knowledge that large-scale evaluation in the wild may be

required to verify the full generalizability of our results.

8 Conclusion

In this paper, we design and implement Dashlet with the in-

sight provided by measurement for a commercial short video

app and a user study on general user swipe pattern. Dashlet’s

algorithm strategically determines the buffer order with the

input from a coarse-grained swipe distribution. Evaluation

result shows Dashlet significantly improves video quality and

reduces rebuffering compared with the baseline system.
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A Dashlet Pseudocode

Algorithm 1: Dashlet’s ABR algorithm

Input : 1) Buffer status r1 . . .rn

2) Video bitrate B = {b11 −b1k . . .bn1 −bnk}
3)The probability distribution of play start time for

each chunk Ĝ = ĝ11(t) . . . ĝncn
(t)

4) network throughput estimation T

5) The look-ahead time length F

6) Chunk length L

Output :The location and bitrate to buffer next

1 foreach i, j ∈ {1 . . .n} do

2 if
∫ F

0 (F − t)ĝci j
(t)dt > 1/µ and j > ri then

3 candidateList.append(ci j);

//Add the chunk to the candidate list if

there is significant penalty for not

downloading it

4 targetBitrate = F ×T / len(candidateList) / L;

5 do

6 cmin = minRebufferCost(targetBitrate, bufferOrder,

candidateList);

7 bufferOrder.append(cmin);

8 candidateList.remove(cmin);

9 while len(candidateList)> 0;

//use greedy algorithm to put chunks from

candidateList into bufferOrder

10 bitrateList = getMaxBitrate(bufferOrder, B, T);

//Enumerate all the bitrate combination for

chunks in bufferOrder to maximize the QoE

11 Return bufferOrder[0], bitrateList[0]

B Dashlet Implementation Further Detail

Dashlet makes no change to the CDN/server side so our sys-

tem can be easily deployed client side. Dashlet includes one

control module and multiple buffer modules. Each buffer

module manages the video playback of one short video, in-

cluding downloading chunks, tracking playback progress,

and reporting buffer status. We reuse the DASH.js playback

management for the buffer modules. The control module

manages scheduling across short videos, collecting estimated

throughput and buffer length from each buffer module. With

the collected data, control module runs Dashlet’s algorithm

to schedule the video buffering. Based on the algorithm’s

output, it assigns the quota to the buffer module that is as-

signed to download the next video chunk. The quota includes

the target video bitrate and the target download finish time.

Once the buffer module receives the quota, it sends an HTTP

request with target bitrate to the CDN to download s the

corresponding video chunk. A call back function is set to

report the status to control module in case the download time

(a) Dashlet (b) TikTok

Figure 26: Bitrate choice made by Dashlet and TikTok. The x-axis

is the network throughput and the y-axis is the highest available

bitrate to choose. The color is the ratio between the chosen bitrate

and the highest available bitrate. The red color means the highest

available bitrate is chosen.

Figure 27: Questionnaire for user survey.

exceeds the target download finish time. The control module
schedules the video buffering when the call back function

for target download time is triggered, the chunk download

finishes, or the user swipes. Similar to Pensieve [22], we also

use an ABR server to run Dashlet’s algorithm on the same

machine as the client. The control module communicates

with the ABR server using XMLHttpRequests locally.

C TikTok is conservative in video bitrate se-

lection.

We show every bitrate that TikTok and Dashlet has selected

in the section with Fig. 26. We can conclude from the figure

that TikTok limits its bitrate even if the network throughput is

high enough. This then leads to a significant negative impact

on the QoE.

1598    20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



D Questionnaire sample.

We show the sample of the questionnaire we used in the user

survey in Figure 27.
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