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Abstract. In a k-party communication problem, the k players with inputs
X1, X2, ..., X, want to evaluate a function f(x1, x2, . .., Xx) using as little communica-
tion as possible. We consider the message-passing model, in which the inputs are
partitioned in an arbitrary, possibly worst-case manner, among a smaller number  of
players (t < k). The t-player communication cost of computing f can only be smaller
than the k-player communication cost, since the t players can trivially simulate the
k-player protocol. But how much smaller can it be? We study deterministic and
randomized protocols in the one-way model, and provide separations for product
input distributions, which are optimal for low error probability protocols. We also
provide much stronger separations when the input distribution is non-product.
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A key application of our results is in proving lower bounds for data stream
algorithms. In particular, we give an optimal Q(&~2log(N) log log(m M)) bits of space
lower bound for the fundamental problem of (1 + ¢)-approximating the number
||x|lo of non-zero entries of an n-dimensional vector x after m integer updates each
of magnitude at most M, and with success probability > 2/3, in a strict turnstile
stream. We additionally prove the matching Q(¢2log(N)loglog(T)) space lower
bound for the problem when we have access to a heavy hitters oracle with threshold
T. Our results match the best known upper bounds when ¢ > 1/polylog(mM) and
when T = 2POV(1/€) regpectively. It also improves on the prior Q(e~2log(mM)) lower
bound and separates the complexity of approximating Lo from approximating the
p-norm L, for p bounded away from 0, since the latter has an O(e™2log(mM)) bit
upper bound.

1 Introduction

Consider a k-party communication problem, in which the players have inputs x1, x2, ..., xk
and want to compute a function f(x1, x2, ..., xx) of their inputs using as little communication
as possible. We consider the message-passing model, in which the inputs are partitioned
in an arbitrary, possibly worst-case manner among a smaller number t of players. That is,
we partition {1,2,...,k} into t subsets S1,S;,...,S; such that Ule Si ={1,2,...,k} and
SiNnS; =0 forevery1l <i < j <t and let the i-th player P; hold the sequence of inputs
Yi = Xy, Xigy oo+ Xig ) When we work in this model in the reduction from streaming, we will
getip +[Si| —1=1i+S;| -2 =--- = ig,. We are still interested in computing the original
function f. The total communication required must be smaller than in the original k-player
setting, since the t players can simulate the protocol involving the original k players. A natural
question is: how much smaller can the communication be?

There are many communication models that are possible, but our main motivation for
looking at this question comes from applications to data streams, see below, and so we are
primarily interested in the one-way number-in-hand model. In this model, each of the ¢ players
can only see its own input. The first player composes a message 11 based on its input y; and
sends m to the second player. The second player takes m1 and its input y, to compute a message
my for the third player, and so on. The ¢-th (also the last) player, upon receiving the message
m;_1 from the (tf — 1)-st player, computes the output of the protocol based on m;_; and its own
input ;. We sometimes abuse notation and refer to the output as m;. The total communication
cost is the maximum of Zle |m;|, where |m;| denotes the length of the i-th message and the
maximum is taken over all possible inputs y1, ..., y; (which is a partition of {x1, ..., x¢}) and
all random coin tosses of the players. For streaming applications we are especially interested in
maxie(1,... ¢} [mil.

To explain the connection to data streams, almost all known lower bound arguments on the
memory required of a data stream algorithm are proven via communication complexity, or at
least can be reformulated using communication complexity. The basic idea is to partition the
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elements of an input stream contiguously, consisting of say k elements, into a possibly smaller
number ¢ of players. Then one argues that if there is a data stream algorithm solving the problem,
then the communication problem can be solved by passing the memory contents as messages
from player to player. Note that this naturally gives rise to the one-way number-in-hand model.
Since the total communication cost is t - S, where S is the size of the memory of the streaming
algorithm, if the randomized t-player communication complexity of the function f is CC;, we
must have S > CC;/t. Many lower bounds in data streams are proven already with two players.
However, it is known that for some functions more players are needed to obtain stronger lower
bounds, such as for estimating the frequency moments in insertion only streams (see, e. g., [3, 25]
and references therein).

One cannot help but ask how powerful is communication complexity for proving data stream lower
bounds? Another natural question is: for a given function f, which number t of players should one
partition the stream into? Yet another question is regarding the input distribution — should it be a
product distribution for which the inputs to the players are chosen independently, or should the
inputs be drawn from a non-product distribution to obtain the best space lower bounds? Since
we are interested in the limits of using t players for establishing lower bounds for data stream
algorithms, we allow the original k inputs (which correspond to the k elements in a stream) to
be partitioned in the worst possible way for a t-player communication protocol, as this will give
the strongest possible lower bound.

1.1 Ouwur results

In this paper we study these communication questions and their connections to data streams.

We first make the simple observation that for non-product input distributions, the commu-
nication complexity can be arbitrarily smaller if we partition the k inputs into t < k players.
Indeed, consider the k-player set disjointness problem in which the i-th player, 1 < i < k, has
a set S; C [n], where for notational simplicity we define [n] := {1,2,...,n} for n € N. The
input distribution satisfies the promise that either (1) S; N S; = 0 forevery 1 <i <j <k, or (2)
there is a unique item a € [n] such thata € S; for all i € [k], and for any other a’ # a, there is
at most one i € [k] for which a’ € S;. It is well-known that the randomized communication
complexity of this problem is Q (n/k) [3, 9, 12], and that the bound holds even for multiple
rounds of communication and when players share a common blackboard. However, if we look
att < k players and an arbitrary, even if the worst-case mapping of the input sets Sy, ..., Sk to
the t players, then by the pigeonhole principle there exists a player who gets two input sets
Si,Sj with i # j. Now this player can locally determine the output of the function by checking if
SiNS; = 0. Thus with t < k players the problem is solvable using O (1) bits per player. This
simple argument shows that for non-product distributions, there can be an arbitrarily large
gap between the k-player and the t-player worst-case-partitioned randomized communication
complexities. Note that this example applies to a symmetric problem, meaning that the k-player
set disjointness problem is invariant under any one-to-one assignment of x1, ..., xx to the k
players.

Perhaps surprisingly, and this is one of the main messages of our work: for symmetric
functions and product input distributions, we show that for any t < k, for deterministic
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one-way communication complexity or randomized one-way communication complexity with
error probability 1/poly(k), that is, the gap between the k-player and ¢-player communication
complexities is at most a multiplicative O (1) factor in maximum message length, or the maximum
communication from a single player, and O(k) in total communication. Further, this gap is tight,
as there are problems for which the input distribution is a product distribution, and the t-player
communication with 1/poly(k) error probability is O (log k) for constant t = O (1), while the
k-player communication with 1/poly(k) error probability is Q (k log k).

Thus, the answer for product input distributions is significantly different than what we saw
for non-product distributions, even for symmetric functions.

We also show that for protocols with constant error and under product input distributions,
the gap is at most a multiplicative O(log k) factor in message length and O(klog k) in total
communication. Further, we show that there exists a symmetric function and input distribution
which is product on any k — 1 out of k inputs, for which this gap is best possible. We leave open
the question of the existence of a symmetric function and product input distribution (on all k
inputs rather than k — 1 out of k) which realizes this gap for constant error protocols.

One takeaway message from our results is that when showing space lower bounds for data
stream algorithms computing symmetric functions on product distributions, by looking at
2-player communication complexity (which is by far the most common communication setup),
there is only an O(1) factor loss for error probability 1/poly(k) protocols, and an O (log k) factor
loss for constant error protocols.

However, for non-product distributions, which are often needed to show hardness of
approximation in data streams (such as for the frequency moments [3]), one may need to use as
many as k players in order to obtain a non-trivial lower bound from communication complexity.

1.1.1 Data stream lower bounds:

As a key application of our lower bound techniques, we provide a space lower bound for
(1 + €)-approximating the Hamming norm in the strict turnstile model. This problem, which is
also known as the Lo norm estimation and denoted by T, requires estimating ||x||, := |[{i | x; # 0}
of a vector x = (x1, ..., xn) and outputting an estimate F for which (1 - allxlly < F<(1+ a)llxllo
with constant probability. The vector x is initialized to all zeros and undergoes a sequence
of m updates each of the form (i, v) € [N] x [+M], where [+M] := {0, £1,...,+M} and each
update (i,v) causes x; « x; + v. In the strict turnstile model x; > 0 holds for all i and at
all points in the stream. We obtain an Q (¢7?log(N) log log(mM)) bits of space lower bound
for (1 £ ¢)-approximating the Hamming norm. This lower bound matches the best known
upper bound O (¢7%1log(N) (log(1/¢) + loglog(mM))) [16] for any ¢ > 1/polylog(mM). Note
that ¢ > 1/polylog(m M) is required in order to obtain polylogarithmic space, and so is the most
common setting of parameters.

Perhaps surprisingly, there is an upper bound of O (&2 log(mM)) bits of space for (1 + ¢)-

approximating L, for p > 0 [15] (improving an earlier O (log2 N ) bound of [11]; see also a

time-efficient version in [14]), and thus we provide a strict separation in the complexities for
p=0andp > 0.
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The Hamming norm has many applications, as it corresponds to estimating the number of
distinct values, and can be used to estimate set union and intersection sizes (see [8] where it was
introduced).

Lower Bounds in the Learning Augmented Setting Recently, there has been a growing interest
in using machine learning to infer information about the stream that would be useful for solving
certain problems in the streaming setting. In this learning augmented setting, we have access
to an oracle (which in practice would have some degree of error and could be implemented
with machine learning). Learned oracles have been used to develop improved algorithms for
various problems, including frequency estimation [10], caching [19], scheduling [20], frequency
moments [13], and more. A fairly comprehensive survey of learning augmented algorithms can
be found in [21].

In our setting, the oracle provides an additional operation: we can give the oracle a coordinate,
and the oracle will tell us whether the frequency of this coordinate at the end of the stream is at
least T for a threshold T. We refer to this oracle as the heavy hitters oracle. Approximate heavy
hitter oracles have been used for frequency estimation [10].

We derive a new method to prove space lower bounds even with a perfect heavy hitters
oracle (that is, an oracle that can be accessed with no space cost which always answers correctly
whether the frequency of the coordinate is at least T). We use this method to prove a lower
bound of Q (¢721og(N)loglog(T)) for approximating the Ly norm, which is optimal when
T = 2Po¥(1/€) a5 it matches the upper bound in [13]. To prove this, we prove and use a slightly
modified version of the direct sum theorem for Viola’s problem, which will be stated in the
following section.

1.2 Notable changes from the conference version

In this version of our paper, we have substantially updated Section 7. First, the result was
generalized to the setting with a heavy hitters oracle as described in the paragraph above. Second,
the proof of the bound in the previous version used an incorrect reduction to gap-hamming. In
this version, this issue was resolved by instead reducing to gap-orthogonality.

1.3 Technical overview

We first illustrate the idea behind showing there is no gap between k-player and 2-player
deterministic one-way communication complexity. The first player P; of the k-player protocol
pretends to be Alice, the first player of the 2-player protocol, to create the message m; as Alice
would do and sends it to the second player P, of the k-player protocol. Having received this
message 11, P, enumerates over all possible inputs of P until finding one which would cause P;
to send m. Since the protocol is deterministic and it evaluates a function defined on a product
domain,! meaning that it is a total function on a domain of the form S; X Sy X --- X S, the

Note that while we will be working with non-product input distributions, the function is still defined on all
inputs, including ones that occur with probability 0 in the distribution we are working with.
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function value must be the same as long as P1’s input results in the same message 1 to be sent.
So P, can arbitrarily pick one of those inputs as its guess for P;. Now P; has a guess x for P;’s
input together with its own input y, and P, can simulate Alice in the 2-player protocol. This
is feasible because the 2-player protocol works under any partitioning of the inputs. Then P,
sends to the third player P3 the message that Alice would send to Bob in the 2-player protocol,
given that Alice had input (x, y). In case when every player P; cannot figure out how many
input items have been processed from its own input and the received message m;_1, which
is important for its simulation of the 2-player protocol, an additional logarithmic-many-bits
index carrying this piece of information should be passed together with the simulated messages.
In this way, the entire k-player protocol can be simulated and the per player communication
equals to the communication of the 2-player protocol between Alice and Bob, sometimes plus
the additional logarithmic many bits for the index. Moreover, both protocols are deterministic.

For the randomized case with a product input distribution, we first consider 2-player
protocols with error probability 1/poly(k).

We would like to run the same simulation as for deterministic protocols, except now it is
unclear how the second player P, can reconstruct a valid input x for the first player P; from the
tirst message m. A natural thing would be for P; to choose the input x = x,, to P; for which
the probability of sending m, given that P;’s input is x,,, is greatest. This is not correct though,
since the overall probability of P; holding x, and sending m may be less than the 1/poly(k)
error bound and the protocol could afford to be always wrong on such a combination of x,, and
m. Thus we need some balancing between two probabilities: (i) the first player P; sends m on
input x; and (ii) the protocol output is correct given that P; has input x and sends m.

The above naturally suggests that we should impose an input product distribution y. Then
it must be that for a good fraction of x, weighted according to p, the k-player protocol is correct
when the first player has input x and sends message m. Thus we can sample x from the
conditional distribution on i given that message m is sent. Here, for correctness, it is crucial that
u is a product distribution; this ensures for most settings of remaining player’s inputs (weighted
according to ), for most choices of x (weighted according to u) giving rise to m, the function
evaluated on the inputs is the same, and x can be sampled independently of remaining inputs.
Once we have sampled x, and given that the second player has private input y in the k-player
protocol, we can then have the second player pretend to be Alice of a randomized 2-player
protocol with input (x, y), similar to the deterministic case. Ultimately, we will show that under
distribution p we obtain a protocol with total communication at most O (k) times that of the
2-player protocol with error probability 1/poly(k). The maximum message length, which is an
important resource measure in our setting, blows up by at most an O (1) multiplicative factor
times that of the 2-player protocol, where the factor k comes from the number of invocations of
the 2-player protocol.

We illustrate the optimality of the randomized reduction above by looking at the Sum-EqQuaL
problem studied by Viola [23]: in this problem each of k players holds an input x; mod p,

where p = © (kl/ 4) is a prime, and they wish to determine whether };; x; = 0 or 1 mod p.

Viola shows this problem has randomized communication complexity © (klogk), for both
randomized protocols with constant error probability as well as deterministic protocols (and
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thus also randomized protocols with 1/poly(k) error probability). Moreover, for randomized
protocols with 1/poly(k) error probability, Viola’s Q(k log k) lower bound holds even for a
product distribution on the inputs (where if }; x; mod p ¢ {0, 1} the output can be arbitrary).
We observe that under any partition of the inputs into 2-players Alice and Bob, the problem can
be solved with O (log k) bits with probability 1 — 1/poly(k) just by running an equality test on
the sum modulo p of Alice and the negated sum modulo p of Bob. Thus, this illustrates that
the factor O(k) gap in total communication for protocols for product input distributions with
1/poly(k) error probability is optimal.

On the other hand, for constant error protocols and a product input distribution, there is a
2-player O (1) bit upper bound in the public coin model which comes from running an equality
test with constant error probability (since we measure error with respect to an input distribution,
equality has an O(1) upper bound with constant error).

We note that the k-player protocol has communication Q) (k log k) for constant error protocols,
which gives the Q (klog k) factor gap we claimed. The only downside is that the Q (klog k)
lower bound holds for an input distribution which is product on k — 1 out of k players, rather
than all k players. We leave it as an open question to give an optimal separation for product
input distributions for constant error probability.

Given the importance of Viola’s problem in showing separations, we next show a direct
sum theorem for his problem, showing its communication complexity increases to Q (km log k)
for solving a constant fraction of m independent copies. This additionally confirms that the
Q(k log k) factor gap noted above is multiplicative and not additive. For technical reasons we
require m < k° for a constant c, as discussed in Remark 6.6, but we suspect this may be an
artifact of the proof.

To show the direct sum theorem for Viola’s problem, one issue is that, unlike for two players
where the technique of information complexity often provides direct sum theorems, for k-players
the analogues are much weaker. A natural route would be to take Viola’s corruption bound,
argue it implies a high information bound, and then apply standard direct sum theorems for
information. This approach does not give an information cost lower bound on private coin
protocols, though one can fix it for two players using [5], which improves upon a bound in [6].
However, for k players similarly strong bounds are unknown. Another natural approach is to
use the fact that if a problem has a corruption bound, then one immediately has a direct sum for
it [4]. Again though, this is only for two players or the number on forehead model, and not for our
setting.

Instead, our proof is inspired by Viola’s rectangle argument for a single copy of the Sum-EqQuaL
problem, where each rectangle, restricted to the first k — 1 players, is a product distribution
on which the protocol generates a message to the k-th player. We use a rectangle argument
on multiple copies where the output is now a binary vector instead of a single bit. The main
obstacle is that we must consider the Hamming distance between the protocol output and
the correct answer in a vector space, which is much more involved than studying the error
probability for a single instance. The intuition of our proof is that for every large rectangle,
there must be linearly many copies that appear (almost) uniformly random in the last player’s
view. The above argument is fairly intricate, and involves several levels of conversion:
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(i) alarge rectangle implies large conditional entropy in many players” inputs;
(ii) the large entropy of all copies implies we have min-entropy at least 1 on many copies;

(iii) a random variable of min-entropy at least 1 can always be decomposed into a convex
combination of uniform distributions over two elements;

(iv) the summation of w(p?) independent random variables that are each drawn from a
uniform-over-two-element distribution turns out to be nearly uniform over Z, due to a
simple argument based on the primitive roots of unity, and hence many Sum-EQuaL copies
look uniform to the last player.

Thus, the last player can hardly outperform a random guess. Note that it is insufficient to
prove uniformity for many copies individually (which is not too hard using the same idea as in
Viola’s proof), since such a situation could be simulated with a much smaller rectangle with
very small error. We instead perform our rectangle argument inductively to show most copies
appear almost uniform, even if conditioned on previous copies.

This direct sum technique has further applications. One application of the direct sum
technique, with slight modifications, is to prove a lower bound for approximating the Hamming
norm in a strict turnstile stream. Using a result of [2], to show lower bounds for streaming
algorithms in the strict turnstile model, it suffices to show lower bounds in the simultaneous
communication model, where each player simultaneously sends a linear sketch to a referee
who outputs the answer. To get the desired direct sum property, we have a chain of reductions
leading to the Sum-EqQuaL problem of which we compute the information complexity.

Specifically, we consider a composition of the Gap-Orthogonality problem on top of the
Sum-EqualL instances as well as an augmented index version of the composed problem. When
we compose these problems, each coordinate of the Gap-Orthogonality problem becomes a
Sum-Equat instance, and we show that in order to solve Gap Orthogonality, we must solve most
of the Sum-EquaL instances. Thus. we can use a direct sum to bound the information cost of
the composed problem in a similar manner as in [25]. We then prove that approximating the
Hamming norm reduces to the augmented index version of this, which allows us to bound its
communication complexity and accordingly its streaming complexity.

In the augmented problem we additionally give a referee an index i and the answers to all
copies j, with j > i. Similar augmentation has been studied for L,-norms [15]. This allows us to
reduce our communication problem to Hamming norm approximation, and ultimately prove
our data stream lower bound.

2 Preliminaries

A function f : Yk > Tis called a k-party symmetric function if for every (x1, x2,...,xk) € Yk and
for every permutation o over {1,2,...,k}, we have f(x1,...,xx) = f (xg(l), ... ,xg(k)) .

A k-dimensional vector space S is called a product space if it can be represented as S =
S1X Sy X -+- X Sg. A distribution u is called a product distribution if it is obtained by taking the
product of k independent distributions, i.e., it = p1 X o X - -+ X .
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http://dx.doi.org/10.4086/toc

SEPARATING k-PLAYER FROM t-PLAYER ONE-WAY COMMUNICATION

In the t-player communication complexity model, there are t computationally unbounded
players, e.g., P1,...,DP;, required to compute a function f : X; X --- X Xy — Y, where f
is usually a t-party symmetric function. Each player P; is given a private input x; € X;
and follows a fixed protocol to exchange messages. For every input (xi,...,x¢), the mes-
sage transcript is denoted by I1(x1,..., x;) when all players follow the protocol IT; (when
IT; is randomized, IT;(x1, ..., x;) is a random variable taking probabilities over players’ ran-
dom coins). A deterministic protocol IT; computes f if there is a function Il,,; such that

I,y (Hgt)(aq, coa,Xt), xt) = f, where Hgt)(xl, ..., xt) denotes P;’s view under the execution of

IT; on input (xq, ..., x;) and for simplicity we let ITy,; (x1, ..., x¢) := Tlyu (Hgt)(xl, ce,Xt), xt).

A b-error randomized protocol I'l; for f requires the existence of Il,,; such that for all inputs
(x1, ..., x¢), Pro, [Toue (x1, ..., x¢) = f(x1,...,x¢)] = 1= 6. The communication cost of Il is the
maximum size of IT;(x1, ..., x;) overall x4, ..., x; and all random coins. The ¢-player deterministic
communication complexity, denoted by DCC;(f), is the cost of the best t-player deterministic pro-
tocol I'l; for f. Analogously, the t-player 0-error randomized communication complexity, denoted by
RCC; 5(f), is the cost of the best t-player 0-error randomized protocol I'l; for f with probability
1-20.

Given a k-party function f : X1 X ---x X — Y and t < k, we define DCC;(f) and RCC; 5(f)
under a worst-case partition of inputs. Thatis, let f;(z1,...,2z¢) = f(x1,..., xx) be defined for every
partitionip =0<i; <---<i; =kand z; := (xijfﬁl, . ,xi].), and the t-player communication
complexity of f is defined with respect to the worst choice of f;,i.e., DCC;(f) := maxy, DCC;(f;)
and RCC; s5(f) := maxy, RCC; 5(f1).

Given a t-party function f and its input distribution u, we let DCCfl s(f) denote the
communication cost of the best t-player deterministic protocol Il; computing f such that
Pry—y [Tout(x) # f(x)] < 0. Similarly we define RCCf, s(f) for randomized protocols.

In the one-way communication model [22, 1, 17], 2 the i-th player sends exactly one message
to the (i + 1)-st player for i € [t — 1] following I1;, and then P; announces the output of I'l; as
specified by Il,,;. Note that in this setting there are only k — 1 messages sent by Py, ..., Px_1,
and we do not count the final output announced by P; in the communication in order to best
correspond to streaming algorithms. This is also known as a sententious protocol in previous
work, e.g., [23]. We denote the deterministic and randomized t-player one-way communication
complexities of f by D_CC)t (f) and Iﬁ)tlé( f), respectively.

In the common reference string model (a.k.a. CRS model), there is a sequence of public random
coins, which is by default a uniformly random binary string, accessible to all players. The
obvious advantage of communication in the CRS model is that players have access to the same
random string and thus save the cost of synchronizing their private coins.

A streaming algorithm is an algorithm that scans the input (x1, ..., x,,) € ™ as m stream
input items in sequence, updates its internal memory of size s = o (m log|Z|) (i.e., a streaming
automaton with 2° states, where the space cost of updating the internal memory is not accounted

2We are aware that there are errors in [17]. This does not affect our results in any way as we do not use any
theorems from this work.

THEORY OF COMPUTING, Volume 19 (10), 2023, pp. 1-44 9


http://dx.doi.org/10.4086/toc

ELBERT DU, MICHAEL MITZENMACHER, DAVID WOODRUFF, AND GUANG YANG

for), and finally outputs a function f(x1, ..., x;) evaluated on all input items. If the best?
deterministic streaming algorithm computes f with s bits of memory and t passes over the data
stream, then we say the deterministic streaming complexity of f is st, denoted by DSC(f) = st.
The o-error streaming complexity of f is defined analogously (with reference to the best 6-error
randomized streaming algorithm) and is denoted by RSCs(f) = st. In a popular and standard
setting, a streaming algorithm scans the input stream in a single pass and only processes every
input item once. The necessary amount of memory required by such single-pass algorithms
is called the single-pass deterministic/6-error streaming complexity and denoted by ES‘_C>( f)and
ﬁé (f), respectively.

Note that every streaming algorithm can be naturally interpreted as a communication
protocol where each party holds some (possibly an empty set of) input items on the stream and

the messages capture the memory updates. The connection between streaming complexity and
communication complexity trivially follows in the following lemma.

Lemma 2.1. For every function f and error tolerance 0, for every k € N, it holds that:

DSC(f) > — - DCCk(f), RSCs(f) > % -RCCy 5(f)

= =

Furthermore, similar relations hold for single-pass streaming complexities
versus k-player one-way communication complexities:

DSC(f) > ﬁ -DCC(f), RSCs(f) > ﬁ -RCCy 5(f)

Next, we introduce the linear sketch model of communication. In this setting, we have n
players, the last of whom is the referee, and the only protocols allowed are of the following form:
There is some matrix A such that if player i receives input x;, they compute Ax; and send
the result to the referee. The referee then computes Z?:l Ax; and uses the result to compute the

answer. We denote the randomized communication complexity of a function f in this model by
RCCIN(f).4

Additionally, we let Dy s, (f) denote the communication complexity of f with k players and
0 error under input distribution u and IC s5(f) denote the information complexity of f with k
players and 6 error. Both of these complexities are considered in the linear sketch model. We
extend the notion of information complexity from [7] to this setting by summing the information
costs over all of the players and allowing some probability of returning an incorrect answer. That

is, let I denote mutual information, and let H{ s denote the set of k-player randomized protocols

in the linear sketch model solving f with prc;bability 1 - 6. Additionally, let IT(x1, x2, ..., xk)i
denote the message sent by the i’ h player when we run the protocol IT on input (x1, x, ..., xk).

3The “best” such algorithm is the one with the minimal value of st on the input that maximizes st.
4Simultaneous communication models often define the referee as an additional player with no input. In this case,
this is equivalent to our model except the k — 1s in our proofs and bounds would become ks.
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Then
k
ICk,(s(f) = min Z I (xz-, H(xl,xz, ey xk)i) .
nert/ , 5

The following lemma relates ICy 5(f) to RCC%\] (f)

Lemma 2.2. For any function f,
ICy5(f) < RCC/Y(f)

Proof. Consider any protocol IT solving f in the linear sketch model, and let A be the matrix
used in the protocol I'T. Then, IT(x1, x2, ..., xk)i = Ax;. If we let b; be the number of bits used to
represent Ax; for each i € [k], we have I(x;, Ax;) < b; for every i € [k]. In particular, if we let

k
IT:= arglrninl_[el_[?{r(S Z I(xi, II(xq, x2, ..., Xk)i),
=1

then

k k
ICks(f) = > 1(xi, T(x1, %, xi)i) < . by < RCCEN(f) o
i=1 i=1

Additionally, IC(f) is well-behaved in the sense that it satisfies the direct sum property. That
is, letting f™ denote the problem where we solve m independent instances of f:

Theorem 2.3. For any function f and any positive integer m,

ICy,5(f™") 2 m - 1Cy5(f)
where a 6 probability of failure for f™ is defined to mean a 6 probability of failure on each instance.

This follows from the direct sum theorem on two players and no error by grouping all
but player i into the referee for each i and summing over the information complexities of the
protocols for each i. Then, to deal with the 6 probability of error, we simply force the protocols
to be deterministic and consider the function only on the values for which it is correct.

We denote the randomized communication complexity of a function f in the linear sketch
model given that the maximum frequency of any coordinate at the end of the stream is at

most T by RCCLIN’T( f). Similarly, in the other models, when we bound the frequency of the

k6
coordinates, we will write Dilg\f, IC£ 57

complexity, and randomized streaming complexity, respectively.

and RSC£ s for distributional complexity, information
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3 Communication complexity for functions on non-product spaces

Theorem 3.1. For every t > 2, there is a t-party symmetric function f : D — {0,1} defined
t SN
on D C {0,1}" = ({0,1}”“) such that for every error tolerance 6 < 1/4, DCC;_1(f) < t -1

but RCC;5(f) = Q(n/t). In particular, as long as t = O (1), we have DCC;_1(f) = O (1) and
RSC;(f) = § - RCCi5(f) = Q(n).

Proof. Consider the t-party set disjointness problem Disj,, /s ; defined as follows: there are ¢
players P, ..., P; such that every player P; holds a private indicator vector x; € {0, 1}"/t which

represents a subset of [11/t],i.e., Disy, j; ¢ (x1,...,X;) = V?z/i
coordinate of x;. We consider the domain D such that the vectors x1, ..., x; € {0,1}"/! are either
(1) pairwise disjoint, or (2) there exists a unique j € [n/t] such that x; ; = 1 for all i € [¢]. Let f

be the function that computes Disj,, ; ; on domain D.

On the one hand, it is easy to verify that ]fC)t_l( f) <t —1. Indeed, at least one of the
t — 1 players obtains two distinct indicator vectors and hence can itself decide the output of f.
The communication is 1 bit per player to pass the result, and hence the total communication is
bounded by t — 1 since there are t — 1 players.

On the other hand, the Q(n/t) lower bound for RCC; 5(f) follows from the known lower
bound for multi-player set disjointness (see [3], which was improved to optimal in [9, 12]). The
lower bound for RSC;(f) immediately follows by Lemma 2.1. O

(Af_,xi ), where x; ; denotes the j-th

4 Deterministic communication and streaming complexity

We first show that 2-player one-way communication complexity is equivalent to the streaming
complexity of single-pass streaming algorithms in the deterministic setting. In the following
theorem, we assume for convenience that m is known to both players.

Theorem 4.1. For every symmetric function f : ™ — T, DCCa(f) < DSC(f) < DCCa(f) + log m.

— —
Proof. Obviously, DSC(f) > DCC,(f) since a 2-player communication protocol can simulate a

streaming algorithm. It remains to prove DSC(f) < DCCxy(f) + log m.

Suppose the input stream is (x1, ..., x,;) € £, and for every partition into (x1, ..., x;) and
(Xis1, ..., Xm) there is a deterministic 2-player one-way protocol IT, computing f. We design
the deterministic single-pass streaming algorithm A for f by simulating 2-player one-way
communication protocols under different partitions. The memory usage of A is therefore
bounded by the maximum communication cost of the simulated 2-player protocols plus an
index in [m] recording the number of processed items.

Notice that when processing the item x;.1, A has already processed x1, . .., x; and has (m;, i)
in memory. A can thus reconstruct a compatible guess of x7, ..., x!" that would induce exactly
the message m; as in Hé, and then sets the memory to be (m;,1,i + 1) where m;,1 is the message
sent in H;” when Py has (x7, ..., x7, xi+1) and P; has (xi+2, ..., Xn). Since l_[; is deterministic,
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it will always output the same answer when P, has input (x;42, . .., X;;) and receives message
m;. Thus, if x{, ..., x;’ would induce the same message m;, then I'T), would produce the same
answer regardless of whether P; had input (x1, ..., x;) or (x7, ..., x;’). In particular, since IT,
computes f, this means f(x1,...,xu) = f(x{,...,x7,Xi+1,...,Xu). Thus, when we compute
m;.1, we still get some message that Hé“ can use to correctly compute f alongside P,’s input
(Xi42, -+ ) Xm).

A repeats this process for every i = 1,...,m — 1 and at the end it outputs f(x1,...,x).

Therefore, we complete the proof with DCCy(f) < DSC(f) < DCCx(f) + log m. O

Note that the additional index i in the above simulation, which results in the additive
log m term in the upper bound, indicates which 2-player protocol should be simulated in the
reconstruction, and it is implicitly shared in the 2-player communication case when m is common
knowledge.

When m is not known, the memory used for the index follows any previously agreed upon
encoding, which uses O(log m) space. For functions that are well-defined for an arbitrary number
of input items, e. g., the parity function, this index can be saved, and hence D—SC>( f)= D_CC)Z( f).

For communication complexity among more players, we establish the following corollary.

Corollary 4.2. For every k-party symmetric function f,

(k1) - DCCy(f) < DCCk(f) < (k1) - (Dcc*z(f) +log k)
Proof. Combining Lemma 2.1 and Theorem 4.1, it follows that

DCCy(f) < (k- 1)-DSC(f) < (k1) - (ﬁz(f)nogk)

The other direction DCC(f) > (k — 1) - DCCx(f) holds by giving z; = 0 to every player
j €1{2,...,k =1} in the k-player case, when the problem degenerates to 2-player communication
but the same message has to be passed k — 1 times. O

Such a linear separation naturally extends to the communication complexity of t-player
versus k-player protocols, as long as 2 < t < k. Thus, the deterministic communication
complexity grows linearly in the number of parties.

We remark that if every player must get a non-trivial input, i. e., at least one input element
to the function, the linear growth remains for some but not all problems. For example, the
communication complexity of the parity of k bits is linear in the number of players. However, to
decide whether k elements in [k] are distinct, the 2-player protocol requires communication
log (kljz) ~ k — log Vk, whereas the k-player worst-case communication grows sublinearly, i.e.,

for k players the communication is no more than Y*~! log ('f) < (k—1)-log ( kl;z)-
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5 Communication complexity for functions on a product space

5.1 Separations for randomized communication complexity

In this section, we consider the communication cost of randomized multi-player protocols
defined on product input distributions and present a k log k versus t log t separation between
k-player and t-player communication complexity.

First we introduce the Sum-EqQuaL problem (as used in Viola’s work [23]).

Definition 5.1. The k-player Sum-EQuAL over integers, denoted by Sum-EqQuaLy, requires deciding
whether Zi-‘zl x; = 0, where each player P; is given an integer x; as its private input together
with the integer k as public input shared by all players. In the CRS model, an additional
public random string is also known to all players. The k-player Sum-EQuAL over Z,,, denoted by
Sum-EqQuaLy ,,,, is defined similarly as Sum-EqQuaLy, except that the input items are drawn from
Z,, and the summation is over Z,,, for a publicly known m.

Lemma 5.2 ([23], Theorem 15 and Theorem 29). For every k € N, 0 < 6 < 1/3, and in the CRS
model, the k-player 6-error communication complexity of Sum-EQUAL satisfies:

o
(a) For every m € N, RCCy 5(Sum-EQuALy ) = O (klog(k/5)).
(b) For every prime p € (k1/*,2k/%), RCCy s(Sum-EquaLy ) = Q (klog k).

In particular, RCCy 5(Sum-EQuaLy ,) = © (klog k) in the CRS model if & = Q(1/poly(k)).

Remark 5.3. Viola’s lower bound for Sum-EqQualLy , is proved for a non-product distribution '
whose support covers exactly a 2/p fraction of the whole (product) input space. Specifically, p’
is defined as follows:

Definition 5.4. We define two distributions G and B:

G= (Gi,...,Ge1, -2 G
B:= (Bi,...,Bi1, 1—25:113]‘)

where for each i € [k — 1], G; and B; are chosen iid uniformly from Z,. Then, u’ := G/2+ B/2is
drawn from each distribution with probability 1.

Thus if a k-player protocol solves Sum-EQuaLy , with error 6 < 1/k on a uniform distribution

u over the whole input space, then its error with respect to u’ is bounded by % < k734,

Notice that the two player version of Sum-EquaLy , degenerates to testing equality over Z,
whose upper bound is O (log(1/6) + loglog k), see more details in Appendix A. By Lemma 5.2,
the Q (k) separation in Corollary 5.5 naturally follows.

5Viola’s states the lower bound for constant 6, but it naturally holds for smaller 6 (sometimes not tight).
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Corollary 5.5. For every prime p € (k'/*,2kY*) and 6 < 1/poly(k), there is a product distribution U
such that RCCZ s(Sum-Equary p) = Q (klogk), RCC; s(Sum-EQuary p) = O (log k).

For a larger error tolerance, say 0 is a constant, we have a stronger separation between
k-party communication and ¢-party communication. However, the hard distribution is slightly
non-product, that is, it is a product distribution on any k — 1 out of the k players.

Corollary 5.6. For every k € N, there is a k-party symmetric function f such that
—_—
(a) Forany product distribution i, for every2 < t < kand0 < & < 1/3, RCC} ,(f) = O (tlog(t/5)).
In particular, RCC} ;(f) = O (log(1/0)).
(b) There exists a distribution ', which is product on any k — 1 out of k players, for which

RCC%lé(f) = Q (klogk) as long as 6 < 1/3.

For 6 > 1/poly(t), the gap between RCCZ 5(f)and RCCf 5(f) is bounded as below:

RCC;:,(S(]() _0 (klogk)
—_ -

Proof. (a) If we plug in k = t to part (a) of Lemma 5.2, we get RCCy 5(Sum-EQuat; ;) =
O (tlog(t/6)) for every m,t € Nand 0 < 6 < 1/3. Thus, Sum-EQuaL, ,, satisfies (a).

(b) Part (b) of Lemma 5.2 tells us that for any 0 < 6 < 1/3, we can take some prime
p € (k'/%,2k'/*), and we have RCCy,5(Sum-Equary p) = Q(klogk). Furthermore, as is
noted in Remark 5.3, we actually have that this holds for a distribution u” which is a
product on the first k — 1 players. As the Sum-EqQuaL problem is symmetric with respect to
all k players, the desired property follows immediately.

O

The outline of the proof of Corollary 5.6 was given in Section 1. That is, the upper bound in
part (a) follows from applying k = j in the first part of Lemma 5.2, while the lower bound in
part (b) follows from the second part of Lemma 5.2.

5.2 Tightness of the communication complexity separation

The following theorem and corollary show tightness of our separations.

Theorem 5.7. For every k-party function f : ¥¥ — T, product distribution u over ¥, and error
tolerance 6 < 1/3,
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the following holds:
RCC! ,(f) = (klog k) - RCCa,(f) z:fé =Q(1)
O (k) - RCCoys(f) + O (klogk) if6 < 1/kO0

When 6 > 0, we have that RCCy,5(f) = Q(log k) and thus the following holds:

RCCY(f) O(k~(1+ log k ))_ O (klogk) if6=Q(1)
RCC, 5(f) log(1/6))) ~ | O (k) if 6 = 1/k20)

Proof. First we let Iy be the optimal 6-error 2-player one-way protocol I'ly that computes f with
communication C = RCC2 s5(f), and construct a new protocol I'l, by taking the majority of M

independent parallel copies of Iy such that Il has error ¢ = 12k2 and communication CM.

Recall that Iy has 6 < 1/3, it suffices to let t and M be defined as in Lemma 5.8 below:

t= {log Tk /log (46(1 — 6))} (5.1)
log(1/6) +2logk + 4 3 log k
log(1/6) +log(1/(1 - 6)) — J - ( log(1/ 6))

Lemma 5.8. Let t € Nand Xy, Xy, ..., Xot41 be i.i.d. binary random variable such that Pr[X; = 1] =
0 < 1/2 for every i € [t], and let Y = Majority{Xy, ..., Xor+1} be the majority of all X;’s. Then
Pr[Y =1] < e aslong as t > log(e/0)/log(46(1 - 0)).

M=1+2t=1+2

(5.2)

Proof. For0 < 6 <1/2and t > log(e/6)/log(46(1 — 0)), we have

Pr(Y=1]=Pr[|{i | X; =1} >t +1]
2t+1

— Z (Zt )6](1 6)2t+1_j

j=t+1 ]

2t+1

j=t+1 ]

22t+1
== M1 = 6) = (45(1 - 06)) - 6
< % O0=c¢

The first inequality holds because 6 < 1/2 and hence &/(1 — §)**1=7 < §*1(1 - o)
for j > t + 1. The second inequality holds because 46(1 — 0) < 1 for 6 < 1/2, and
(45(1 - 0))" < (46(1 — 5))o8(e/0)/10g(80(1-0) _ /5 Thus, we have proved that Pr[Y = 1] < ¢ for
t > log(e/6)/log(46(1 — ). o
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Note that I'l; is still a 2-player one-way protocol but has communication CM. Furthermore,
we remark that CM = Q (log k) for 6 > 0, since the error probability must be 6 > 1/2€ if it is

not zero, and hence M = ©® (1 + k)l;(%) =0 (1 + logk)_

Second we prove that for every product input distribution y over I¥, the k-party function
f can be evaluated by a randomized k-player one-way protocol Iy with communication
O (k- (CM +logk)) and error 6/2 with respect to . The idea is that given the product input
distribution y, each player P; acts as follows:

1. P; first assumes that the received message m;_1 from P;_; will lead to a correct answer
with probability > 1 - % with respect to u. When we make this assumption, we essentially
have P; consider the problem using the input P;_; generated in their step 2 rather than the
real input.

2. P; samples a possible input x7, ..., x;_l of previous players Py, ..., P;_1, such that if Alice
gets input (x] ..., x;_l) and sends m;_1, then with probability > 1 - % the protocol I,
leads to the correct answer. The probability is taken over internal randomness and Bob’s
input following the marginal distribution of u on the remaining players (here we use the
condition that u is a product distribution).

3. Finally, P; sends a message (m;, i) of length CM +log k = O (CM), where m; is the message
that Alice would send in Il when her input is (x7, ..., Xl X;i).

Now, we can bound the error probability recursively: Suppose player P; receives the message
m;_1 from P;_1, generated from (x1, x2, ..., x;-1). Then, suppose P; generates (xi, Xoyeeny x;_l)
in step 2. Then I, is correct on the input X’ = (x7,x7, ..., X\ 1 Xi, Xiwl, -, Xk ) with probability
>1- ‘% by our choice of M. Furthermore, since I, generates m; from both (x1, x2, ..., xi-1)
and (x7,x7,...,x;_;) and is deterministic, it produces the same answer on both X" and X =
(x1,x2,...,xk). Thus, the answer we get from Il on input X’ is also correct on input X with
probability at least 1 — %

Thus, we can union bound over all the players to get that the error probability of ITj is
bounded by k - (&) = 6/2 with respect to yi. The fact that u is a product distribution is used
in the second step where the sampling process relies on that previous players” inputs are
independently distributed from that of future players.

Thus we finish the proof and conclude that RCC’; 5(f) < O (kCM). O

Notice that in the proof of Theorem 5.7, every message in Il; has the length bounded by
O (CM), which gives an upper bound for the single-pass streaming complexity.

Corollary 5.9. For every k-party function f and product input distribution p, and for every 6 < 1/3,

g4 log k —_—
RSC!(f) < RSC!(f) < O (1 4 lg(%) -RCCas(f).
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6 A direct sum for Viola’s problem

We next turn to our direct sum theorem for Viola’s problem. This extends the results of the
previous section by demonstrating that the gap is indeed multiplicative, where the results of the
previous section do not rule out the possibility of an additive Q(k log k) gap between 2-player
and k-player communication complexity. A slightly modified version of this result is used in
our streaming result. Note that the theorem is proved for 6 < 1/9, but lower bounds for large
error tolerance such as 0 = 1/3 can be obtained using a standard error amplification argument.

k
Theorem 6.1. Let F : (me) — {0, 1}™ be the k-party function computing m independent copies of

Sum-EQuaLy ,, where p is a prime between k'/* and 2kV/* and m = o(k'/*). For every error tolerance
6 € (0,1/9), we say a protocol I1 is correct with probability 1 — 6 if there is a reconstruction function

k
G such that for every fixed i € [m] and input x € (Zg) , G(i, Tout(x)) equals the output of the i-th

instance of Sum-EQuaLy, , with probability at least 1 — 6, over the internal randomness of I1. Then the
communication cost of any I1 which is correct with probability 1 — 6, is Q (mk log k).

Proof. For simplicity of notation in the proof, we flip the output of F, so that it outputs 0 if the
input to the corresponding Sum-EQuaty , instance sums to 0 in Z,, and F outputs 1 on instances
with summation other than 0.

Let ITbe an o6-error randomized protocol for F, and let Iy, (x) denote the output of IT on
input x. Here by “the 6-error protocol” we mean that the expected error rate of IT is bounded
by 6, since both IT,¢(x) and F(x) are binary vectors in {0, 1}"". Therefore,

Pr ][Hout (x); #Fi(x)] <0

iER[m

where the input to F is partitioned as x = (x(l), x@, ..., x(m)) € Z;’fx" such that Fi(x) :=

Sum-Equary (x®) computes the i-th instance of Sum-EqQuaLy , for each i € [m].

We abuse notation a little in this proof and let | - | denote the Hamming weight of a not
necessarily binary vector, which measures the number of non-zero coordinates of the vector.
Then,

E[|[TTout (x) = F(x)|] < Om

To prove that RCCy 5(F) = maxy |TI(x)| = Q (mklog k) for the optimal 6-error protocol IT,
we will deduce a contradiction if I'T uses ¢ < ymk log k bits of communication, for a constant
y =(1-96)/135 > 0 and sufficiently large k. Thus, we can conclude a communication lower
bound of ¢ > ymklogk = Q (mklogk).

For the purposes of a contradiction, we first convert the randomized protocol IT into a
deterministic protocol IT" that has small error with respect to a specific distribution H. The
deterministic protocol IT is obtained by fixing all internal random coins of IT so that IT" has
error rate at most 6 for inputs drawn from H.

Ex-g [[T1),,(X) — F(X)|| < om
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Since IT" can never generate a transcript larger than the communication that IT uses in the
worst case, i.e., [IT'(X)| < max, |[I1(x)| = ¢, it suffices to prove a communication lower bound
for IT" on inputs drawn from H.

By Markov’s inequality, we have that for every positive constant ¢ > 0,

Exg( [|IT,, (X) - FX)|] &
em e

XIZ{ [|I1,,(X) = F(X)| > em] < 6.1)

™

Now we specify the distribution H. Let G, B be defined as in Definition 5.4. Note that:
(a) Sum-EquaLg ,(G) = 1, Sum-EQuaLy ,(B) = 0 and hence F;(G) = 0, Fi(B) = 1.

(b) the first k — 1 elements of G and B, denoted by G_; and B_, follow the same distribution,
i. e., the uniform distribution over Z';‘l.

For convenience we can write B = (G_k, 1 + Gy).
Let H := G/2 + B/2 be a mixture of G and B and let H be m independent copies of H as
below:
H :=H™ =(G/2+B/2)"

Since B = (G_k,1 + Gx) and H = G/2 + B/2, we note that

1
H = Z 5 (Gl 0 + G = (G14, V + G,
ve{0,1}m

where G”, is uniformly distributed over Z;" X(k_l), G} isavectorin Z} such that G = - 2 ;‘:—11 G;”,
and V is a random variable that is uniform over {0, 1}", that we will think of as an element in
Z?. With the above notation of H, V, we have

F(H) = F(G",,V +G") =V

To prove the communication lower bound of a deterministic protocol IT" that has error
probability < 6 w.r.t. H, we recall the following protocol decomposition by monochromatic
rectangles, c.f. Claim 24 in [23] or Lemma 1.16 in [18].

Claim 6.2 ([23], Claim 24). A k-player (number-in-hand) deterministic protocol using communication
< c partitions the inputs into C < 2° sets of inputs R', R?, ..., R" such that

o the protocol outputs the same value on inputs in the same set, and

e the sets are rectangles: each R' can be written as R = RY x Rb X ... x R;'( where R; is a subset of

the inputs of Player j.
Foreveryi € [C]and rectgngle R!, we use the notation Ri]. i= REXRLX: - -><R;._1 ><R;.Jrl X -><R§<
to denote the projection of R’ on to the k — 1 coordinates except the j-th one, for every j € [k]. In
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particular, Ri_k = Ri X Ré XX R;{_l denotes the first k — 1 coordinates. Sometimes the index i
of rectangle R' is clear from context, for which we simply write R instead of R'.

In what follows we show a contradiction when I'T" has communication ¢ < ymklog k and
hence there are C < 2¢ < k?™ rectangles. The argument depends on the following lemma,
which essentially guarantees that for every large rectangle, IT’ is likely to make mistakes on
more than em coordinates.

Lemma 6.3. For every rectangle R satisfying Prx ¢, [X_x € R_k] > % > W for which
a = pOW, there must be a set L C [m] such that |L| = (1 — 135y)m and the conditional distribution
G(L) | (G", € Rg) is ——close to uniform over ZI i ; that is, the total variation distance between

G;(L) | (G™, € R—x) and the uniform distribution is at most %l, where G;(L) is the sequence of coordinates
G corresponding to the instances of Sum-EQuAL in L.

Lemma 6.3 implies the following claim:
Claim 6.4. For every rectangle R on which IT" outputs w € {0,1}", if Prx_ ¢, [X—x € Ri] ac,
then for y, € satisfying 1 — 135y > 3¢,
1
Pr [X eR, [F(X)-w| < em| <5 Pr[XeR 6.2
Fr [FX)-w| <em| <7 Pr [ ] (62)

For compactness of the proof of Theorem 6.1 we defer the proofs of Claim 6.4 and Lemma 6.3
to the end of this section.

Let R be the set of the C rectangles and R C R be the set of all 1 large rectangles satisfying
Prx a0 [Xk € Rk] 2 -5 > Then for every rectangle R € R\R,

kymk'
1 1
Pr[XeR]< Pr [XkERk]<—<
X~H X_j~H_g 0(|R\R|
Using Claim 6.4, we have
L [IHout(X) ~ F(X)| < em]
- Z PI‘ ;ut(R)| < Em]
ReR
< Z Pr I, (R)| < em] + Z XIE{[X € R]
RER ReR\R
< = P
Z Pr [X€R]+ )] PrIXeR]
ReRrR Re‘R\R

1 1 1
<

aR\R| 2 2a

1
<5 Pr[XeR]+— (R\ ‘
RER
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Combining it with (6.1), we have

5 ) 1 1
1‘;SXIiTﬂ”Hout(X)—F(XﬂSem] Sotg- = 1-—x

26
2a €

Q|+

However, the above inequality cannot be true if we set ¢ = 36 and pick a constant & > 3. Let
y := (1-96)/135 be the constant for which we want to show ¢ > ymklogk = Q (mklogk). Then
1-135y = 96 > 3¢ satisfies the condition in Claim 6.4 and a = O (1) satisfies the requirement in
Lemma 6.3.

Thus we finish the contradiction argument and complete the proof of Theorem 6.1 with
RCCy 5(F) > ymklogk = Q (mklogk). O

Proof of Claim 6.4. Recall that G := Gg) | (G™, € R—x), G"is |L|/p close to the uniform distribu-

tion by Lemma 6.3. Therefore for every fixed u € Z,LL', letting © denote the complement of v
(that is, we flip all of the bits in v),

Z Pr[G’ =u -]

ve{0,1}1L:|v|<em

1 , , _
=5 Z Pr(G'=u-v]+ Z Pr[G' =u—-7]
v:|v|<em v:|v|=|L|—em
1 , . 2|L|
SE Z Pr(G' =u—-v]+ Z Pr[G—u—v]+7
v:lv|<em v:|v|>|L|-em
< % Pr[G' =u -v]

vef{0,1}ILI

where the first inequality follows Lemma 6.3, and the last inequality holds since as long as G is
close to the uniform distribution and |L| = (1 — 135y)m > 3em, there is

Pr[G’:u—v]:Q(1)>|%|

v:em<|v|<|L|—em

Recall that u; and vy, denote u and v restricted to coordinates in the set L, u_; and v_;, denote
u and v restricted to coordinates not in L, and Gg(_L) denotes Gy restricted to coordinates not in
L. We then apply the above inequality and get the following bound relating probabilities on a
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single coordinate conditional on the rest of the coordinates being contained in the rectangle R:

Pr[ka:u—U’GTkeR_k]

ve{0,1}":|v—w|<em

< Z Pr[G?zu—v‘GTkeR_k]
ve{0,1}":|vp—wp |<em
= Z Pr [G;{L) =Uur —9L ’ GTk € R—k]

vLe{0,1}Ll: v —wy |<em

Pr [GL_L) =U_ —0_] ‘ GTk S R_k, G;{L) = Uur — Z)L]

U_LE{O,l}mflL‘
1
E Pr [G;{L) = Uur — 0L ‘ GTk € R_k]
vr€{0,1}ILI
Pr[Gi =y -0 | G7 e R G =y o
v_1€{0,1}m-ILI
> Pr|Gy=u-v|Gr e Ry 6.3)
ve{0,1}m

The above inequality (6.3) implies (6.2) since:

Pr [X € R,|F(X) —w| < em]
X~H

= Pr [Xj,eR,]- Pr [Xk € Ry, [F(X) - w| < em ) X, € R_k]

X_jp~H_ X~Hy
1
=pr[Gh eRy]- Y 5o Pr [Xk € Ry, |F(X) - w| < em ‘ G" € R_g, F(H) = v]
ve{0,1}m e~ Hi
— m 1 m m
=Pr[G" e Ri|- Y. soPr|o+ Gy eRlo—wl < em |G € Ry
ve{0,1}m
1
=Pr[GheRu] Y o > Prlo+ Gl =u |Gl e Ry
ve{0,1}":|v—w|<em UER
1
=ePr[GreRy ] Y PrlowGr=u|Gr e Ry

u€Ry ve{0,1}":|v—w|<em

<—Pr[G eRy|- Y % > Prfo+Gp=u|cr e Ry
ueRy  ve{0,1}m

1
== Pr [XeR
2X~¥H[ ]

Thus we have completed the proof of Claim 6.4. o
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Proof of Lemma 6.3. We prove this lemma inductively for the indices in L, which we label as
1,2,...,{. In what follows, let 6; := ri;for every i € [¢]. Given that (G;{l), e, G;f_l)) ‘ G™ € Rk
is 6y_1-close to the uniform distribution over Zf,‘l, we will show that there exists another instance

which, w.l.o.g., we label as Ggf), for which (G;{l), .., Ggf_l), Ggf)) ‘ GTk € R_j is 6y-close to

uniform distribution over Zf,.
The base case for ¢ = (s trivial. In what follows we suppose that the conditional distribution

(G;{l), .., Ggf_l)) ‘ GTk € R_j is already 6y_1-uniform and we do our induction for G;f).

First we fix x € Zg_l)x(k_l) for which Pr [(G(_llz, ceey G(_‘}k_l)) =x|G" € R_k] > W,
np

where 7 is some value that will be specified later to get the desired property, and let &, denote

the event (G(_llz, ., G(_fk_ 1)) = x. Then we discuss the conditional distribution of the remaining

instances given &y.

Let
. . 1
]x:{]E[k—l]’PI‘[G] ER]|8x]Zw},
Then
" " 1 1 k_l_UXl
Pr [G—k € Ry | Sx] = l_[ Pr [G]. €R; | 8x] < | n G = (ﬁkz?””) (6.4)
jelk-1] je(le=1\x)

On the other hand, recalling that (G(_llz, ceny G(_ek_ 1)) is uniformly distributed and hence

Pr[&E,] = m, we have
Pr|G™ € R_i | &
=Pr [G", € R, & | /Pr[&x]
~ Pr [ax G" e R_k] -Pr[G" € R_;]/Pr[&]

-1
1 1 1 1
= np D=1 gfymk (p(f—l)(k—l)) T nakymk (6.5)

Combining egs. (6.4) and (6.5) and letting g > (na)z/’“, we can conclude

1 k_l_IIXI 1
fm) 2

ymklogk+logna> klogk +logna S PR P
2ymlogk +logp — 2logk+2/klogna — 2y

Thus the size of | is at least |];| > (1 - %) k—1=Q(k).
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For every j € J,, we have Pr [G;n € R;j | Sx] > 1/gk2rm by definition of |, and hence

m—{

H [G}ﬂ Keis eRj,Sx] > 108( ’

ﬁkZVm) = (m~)logp —2ymlogk~logp  (6:6)

The inequality in (6.6) follows by noting that G;” is initially uniform over Z}}, which has p™

distinct values. When we condition on &, we fix £ — 1 of the coordinates, so there are p’”‘e +1
possible values of G}” conditional on &,. Then, the distribution is still uniform so we must have

at least pm_“l / (ﬁkZV’”) values of G;." satisfying &, and G;” € R;. Thus, the entropy is at least

pm—€+1 pm—é
H|Gr Gl e Ry, & Zlog(ﬁkzym)>log(ﬁkzym)

Note that for every i € [m], G;i) is uniform over Z, as long as j € [k — 1]. Thus conditioned
on &, and G;.” € Rj, if there exists a € Z,, Pr[Gy) =a| G;.” €R;,E)=pa> % then we have an

upper bound for the conditional entropy of G;i):

D)\ m 1
HIG! | GI' € R}, &1 < ps log - + (1-pa)log(p —1) < (1 +log(p — 1))/2

Let I; x be defined as
' . , : 1
L= {z € [m] | Heo [G;’) |Gl e Rj,sx] > 1} - {1 | Va, Pr [c}@ =a|Gl'e Rj,ax] < 5}

where H,, refers to the min-entropy.
Then for all i € T, := (([m]\[e—u)\lj,x), H[GE') | GI' € Rj, & < (1 +log(p ~ 1)/2
Additionally fori € [¢ —1], H[G;l) | G;.” € Rj, Ex] = 0since G;l) is already fixed in &,. Finally, for

alli €I, H[G;i) | G;.” € Rj, &;] < logp since there are p possible values of G;.i). As such, we
can bound the conditional entropy as follows:

m
HlGr Gy er, & < Z‘ HIGY" | GI' € R}, &] 6.7)
1=
= Y HIGY |Gl eR, &I+ > HIG |Gl eR;, &1+ Y HIG |Gl eR;,E] (68)
i€l i¢1 UL i€l
= Z H[G}” |GI' e R, E]+0+ Z H[cj.f) | GI" € R;, &, (6.9)
i€lj x iEIjT
< L] -logp + (m — € +1— I .)(1 +log(p - 1))/2 (6.10)
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Here, (6.7) follows from the subadditivity of entropy, (6.8) splits the indices into 3 sets, and
(6.9) and (6.10) use the statements we just showed above to upper bound the entropy of G;l) for

i in each of the sets [ », 1]7, and i in neither set.
Combining the above with the lower bound for H [G;” | G;.” € Rj, 8x] in (6.6),

(m—{)logp —2ymlogk —logp < |Ij x| -logp +(m —€+1—|I; x[)(1 +log(p))/2

1 -1 1 -1 1+1
— (—Ogg ) |j x| =2 (m—1{) (—ng ) —2ymlogk — ZTosp 20gp —logp

Therefore, recalling that p > k'/* and for log = o(log p) = o(log k), we have

4 log k 1 4 log k
Vm_og_o(ﬁ)m_g_m_og

Ly|l2m—-10-
. logp —1 logp tlogk—1

—o0(l)>m—-0-18ym+1

Therefore, for every x € Zg_l)x(k_l) for which

1 -1
Pr[(c(_;,...,c(_k )) = x| 6" e R 2 s,

the size of |J,| > (1 - %) k-1 = Q(k); and for every j € Jy, |[j x| > m —{ —18ym + 1 and
i
That is, these three bounds hold with probability at least 1 — % by taking a union bound over

all x € ng_l)x(k_l)

=m—4{+1-|I[;y| <18ym.

where

&) (-1 _ 1
Pr[(G_k,...,G_k )—ler_nkER_k:l<m

for x ~ (G(_llz, e, G(_ek_ 1)) ‘ G’_”k € R_i. In what follows we abuse notation a little by assuming

-k’ k
the above statements of |, and I; ;. This causes at most an additional loss of % in the error
probability.

Notice that the conditional distribution (G(_llz, el G(_ek_ 1))

X = (G(l) ey G(_‘}_l)) ’ G™, € Ry is a distribution over Zg_l)(k_l) for which X satisfies all

G" € Rk is indeed a product

distribution since R is a rectangle. That is, letting x = (x1,...,xx-1) where x; € Zg‘l for
j € [k—1], then & can be decomposed into k —1 independent events E,;, where each &,; denotes

the event (Gﬁl), e, G;e_l)) = X;j and &, = /\;‘;1183(].. Therefore the conditional distribution
G]’.’1 | &y is identical to G;.” ‘ &y; since the distribution of G;” is independent from inputs of

the remaining k — 2 players (among the first k — 1 players) in the product distribution. As
a result, we have Pr [G;” €R; | 8x] =Pr [G;" €R; ‘ SXj] so that Sx]. and x; fully determines
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whether j € ], following the definition of J,. Similarly we have G;i) ‘ {G;” € Rj, Sx} identical to
G;.i) ’ {G—;” €Rj, 8x]. }, so that I; y is also fully determined by x; and Sx],.

Next we fix j € [k — 1] and pick x; € Zf;‘l for which j € J, for x extended from x;. Now we

18ym
m—{+1

out of the m — ¢ + 1 unfixed coordinates in total. Then for X; ~ 7/{2{;—1 and 7 (-) denoting the

have &, ; and I jx; := Ij,x containing all but a fraction of < coordinates, since ‘I ]',x].‘ < 18ym

indicator function,

< 54ym

=3 Y EiX=xliels) iy

Thatis, forevery fixed j € [k—1], there are atleast m—f+1-54ym coordinates i € [m]satisfying
Pr [i € Ij,X]. ‘] € ]X].] > %, i.e., with probability %, Gﬁ.i) satisfies Heo [G;i) | G}” € R]-,Sx] > 1fora
randomly selected x; conditioned on that j € J; specifies a big component in the rectangle. This
is exactly the probability that the i-th coordinate G;.i) of G}” can be decomposed into a convex
combination of a uniform distribution over 2 elements.

Now we have at least (m — ¢ + 1 —54ym)(k — 1) pairs of (i,j) € {¢,¢+1,...,m} x [k —1]
satisfying the above condition Pr [i € ljx; je] X].] > %, which means at least one fixed i must

(m—0+1-54ym)(k-1) _ 1— 54ym
m—L+1 - m—{+1

averaging argument. Without loss of generality we may assume i = £, and let G” := (G7, ..., GY)

denote the conditional distribution of G, i.e., each G;.’ = G;‘]) ’ {G;” €R;, 8,(} denotes the

appear in

) (k —1) many pairs for different j € [k —1] by a standard

conditional distribution of G;e). Recalling that |J,| > (1 - %) k — 1, the number of elements in

x| hit by those pairs containing ¢ is at least

AT U dym N e Yy Shym N\
(1 2y)k 1+(1 m—€+1)(k 1) - (k 1)2(1 ot sy LR RLCIO)
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We say the pair (i, j) is good for x if j € |y and i € I; . Then recalling that |J,| > (1 - %) k-1,

the expected number of good (¢, j) over x ~ X is lower bounded as follows.

E, [#{] € [k—1]](¢,j)is good for x}]

B
—_

= E, T ((¢, ) is good for x)

1T
=
e

k-1

> Ey E. [Z ((¢,])is good for x) | | = E Z Prll €l j€]x]
X

i j=1

[y

> Ey Xr[f €lix|je]l

€

2 )4 S54ym
5 {(m )

By a Chernoff bound it implies

r
~.
?4

. N 1
l?cr[#{]e[k—l]|(€,])1sgoodforx} < 5(1————

_ _y _Sym
<ew (-l (1-3 - 7274

Let &’ = exp (—Q ((1 - 21;/ - %) k)) be an upper bound of this error probability. Then with

probability at least 1 — ¢’, the conditional distribution G;.’ can be decomposed into a convex

combination of uniform distributions over two distinct elements for at least % (1 - % - n‘:’%ﬁ) k

indices j € [k —1].
Next we show that conditioned on the above decomposition, which happens with probability
> 1 - ¢, the conditional distribution G/ is close to uniform by the following claim.

Claim 6.5 (Claim 31 in [23]). Let p be a prime number. Let X be the sum of t independent random
variables each uniform over {a;, bi} C Z,, for a; # b;. Then X modulo p is 6 < 0.5y/p exp (-Q (t/p?))
close to uniform.

Remark 6.6. This claim is actually stated incorrectly in the source, where Viola claimed O(t/p?)
instead of —Q(t/p?). However, their usage of the claim as well as their proof are consistent
with the statement here. The proof of this claim simply considers primitive roots of unity
and does some basic computation, but to see intuitively why this is the case, we can think of
X =ta; + Y(b; — a;) where Y is binomial random variable with t trials of probability 1/2. The
probability mass of Y is concentrated within O(Vt) of the mean, so as long as  is large enough
for this range to be significantly larger than p, we will have a strong bound.
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Plugging our parameters into the above claim and following exactly the same argument as
in [23] (G} is 6”-close to uniform if every component in the above convex decomposition of

G}/ is 6”-close to uniform), the statistical distance between G| = — Z;:ll G;.’ and the uniform
distribution over Z,, is bounded by

4
0" < 0.54/pexp (—Q (% (1 L M) k/pz))
Y
2

2y m-{+1
:exp(—Q((l—

54
) V)
y m—-{+1
Putting it all together, we conclude that Gg) ‘ {G’_”k eR_, GV, ..., GgU ‘1)} is close to uniform,

which implies (G(l), e, Ggf_l) , Gg)) ‘ G™. € R_risalso close to uniform. Moreover, its statistical

distance to uniform is bounded by
1 ’ ”
5(1S5[_1+ﬁ+5 +0

log k
Letn=2pand g =2 > (na)’ = 20( k ) for « = p°. Then for sufficiently large km the
above induction argument goes through for ¢ < (1 — 135y)m, with error &', 5” bounded by
Y S54ym

& = exp (-Q(k)), :exp(—Q(«/%)) =log oy 20 e (< (- 135m

Therefore the conditional distribution (G;{l), el Gg_l), Gg)) ‘ GTk € R_j is 6y-close to uniform

for 6, bounded by % as follows:

55S64—1+%+6’+5”S%+$+exp(_g(\@))S%

Thus we have proved the induction hypothesis for every ¢ < (1 —135y)m. Letting L be the
first (1 — 135y)m indices as in the induction hypothesis, we complete the proof of Lemma 6.3 for

|L| = (1 — 135y)m and statistical distance %l. O

7 Lower bound for Hamming norm estimation

In this section we present a space lower bound for single-pass streaming algorithms for (1 + ¢)-
approximating the Hamming norm Lo in the strict turnstile model, which is denoted by T, as in
Section 1.1.1.

Formally, in the Hamming norm estimation problem there is an underlying vector (x1, .. ., xx)
which starts from the all zero vector and processes up to m updates each of the form (i, v) €
[N] x [+M]. The update (i, v) means one should add v to the i-th coordinate x; in the vector x.
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After processing all m updates, we have ||x||, = |{i | x; # 0}| and we want to output a number
within (1 + ¢€)||x||o with probability > 2/3. We additionally assume all players have access to a
heavy hitters oracle, which tells them whether the frequency of a given coordinate is greater
than T. This is a generalization of the case without a heavy hitters oracle, where we simply let
T = mM and we know that all frequencies are guaranteed to be smaller. The strict turnstile
model guarantees that x; > 0 for all i € [N] at all positions in the stream, in which case it
suffices to prove the space lower bound in the simultaneous communication model following
the reduction in Theorem 4.1 of [2]. Furthermore, it is also guaranteed that for every i € [N],
x; < poly(n) at the end of the stream. In this setting, the algorithm of [16] approximates ||x||o up
to a (1 + ¢) factor with O (¢721log(N) (log(1/¢) + loglog(T))) bits of spaces, as long as ¢ > 0.

We first note that solving distinct elements with a heavy hitters oracle reduces to solving
distinct elements given a threshold on the frequency of the coordinates. As such, we will solve
the complexity question of space complexity given a threshold T for the frequency.

Theorem 7.1. The space complexity of (1 + €) approximating Lo with probability at least 2/3 in a strict
turnstile stream with access to a heavy hitters oracle with a threshold of T > 1 is Q(e % log N loglog T).

We note that the assumption T > 1 is necessary for this bound to be well defined. When
T =1, the heavy hitters oracle tells us exactly whether or not the frequency of a coordinate is 0
at the end of the stream, so the complexity is @(log N). This lower bound follows as we need to
write down the answer and the upper bound follows as we can directly count the elements with
nonzero frequency.

To prove this theorem, we first prove the following lemma:

Lemma 7.2. The space complexity of (1 + €) approximating Lo with probability at least 2/3 in a strict
turnstile stream with access to a heavy hitters oracle with a threshold of T > 1 is at least RS CZT /3(Te).

Proof. Suppose we have an algorithm A which gives us a (1 + €) approximation of Ly in a strict
turnstile stream with access to a heavy hitters oracle with a threshold of T.

Now, if we are given an input where the maximum frequency of any element is at most T,
then we can go through our input and do exactly what A would do for everything other than
calls to the heavy hitters oracle. If A would make a call to a heavy hitters oracle, we just treat the
answer as 0 without making this query and proceed as A would.

Since we assumed the input has a maximum frequency of T, the heavy hitters oracle would
return 0 for every element, so this would give us the same answer as A, and by correctness of A,

itis a (1 + €) approximation. O

Now, we will state and prove our main theorem:

¢Indeed, their algorithm stores O (e’z log N ) counters modulo primes that are each O (log(1/¢) + loglog(T))

bits in magnitude, and it does not matter how large the values of x; are at intermediate positions in the stream.
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Theorem 7.3. For error tolerance ¢ < 1/3 and ¢ = max {Q 10% , N(1,49}, any single-pass

streaming algorithm solving T. with probability > 2/3 in the strict turnstile model must use
Q (¢7%log(N)loglog(T)) bits of space.

First we introduce some supplementary problems that will be used in reductions:

Definition 7.4. In the c-Gap-Ort, problem, we have two players Alice and Bob. They each have
as input a vector in {0, 1}" and we wish to compute

|(Zzen XOR(x;,yi)) — 5| = 2cvn,

| 3|2
-Gar-O n\X, = ’ 2
c-GAP-Orty, (x, 1) { |(Zl€n XOR(xi, yi)) — %| cvn,

and otherwise, it can return anything.

Definition 7.5. In the c-Gar-Ort-Sum-EquatL, x problem, we have k players. The i*" player has
input (x;1,Xi2,...,Xin) € Z". Then we wish to compute

1/ (Z i 1 X i .=O) —
c-Gap-Ort-Sum-EqQuaL, (x, y) = jeln] Txa g jet i

NS NIR

> 2cv/n,
0/ (Z]E[i’l] 1x1,j+xz,j+---+xk,1:0) - < \/_/

and in other cases it can return either 0 or 1. We let 1, g et =0 denote the indicator function
which is 1 if X1,j+ X2+ +x;=0 and 0 otherwise.

We will often be working with the 2-player problem c-Gap-Ort-Sum-EqQuat, », which we
simply denote by c-Gar-Ort-Sum-EqQuaL,,.

Additionally, we will let Sum- EQUALk denote the problem where we have m independent
instances of Sum-EQuaLy s, and to solve it, our protocol needs to be able to solve at least am of
these instances correctly with probability at least 1 — 0.

Definition 7.6. The Auc- INDEX—GOSEt . problem consists of ¢ independent instances of 10e/n-
Gapr-Orr-Sum-EqQuat,, denoted g1, gz, ...gt, with k players and n coordinates each.” In this
problem, the referee is asked to estimate g; based on an index i € [f] together with the auxiliary
information of fi;1, ..., fi, where we let f; € [+n] is defined as follows:

Let a be the number of underlying Sum-EqQuary instances in g; outputting 1, and let b be the
number of underlying Sum-EQuary instances in g; outputting 0. Then, f; =a —b.

To prove Theorem 7.3, we combine the following statements:

(1) T reduces to Auc-InpEx-GOSE!

"Note that Auc- INDEX—GOSEt « implicitly depends on the value of ¢ even though we do not take ¢ as a parameter
since in this work, we will only be using it with 1 value of e.
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2) AUG—INDEX—GOSE;,]{ reduces to 1OGW-GAP—ORT—SUM-EQUAL;,](.

3) 106\/E—GAP—ORT—SUM—EQUAL;/ , reduces to 1-GAP—ORT—SUM-EQUAL;,’ « for some n” which will
be defined later.

(4) k-player communication complexity in the linear model is bounded by k — 1 times the
2-player communication complexity in the linear model with a specific input distribution.

(5) For a particular hard input distribution p, 1-Gar-Orr-Sum-Equalr!,, reduces to
tn’,c

SUM—EQUAL2

(6) We can directly bound the communication complexity of SUM-EQUAL;W'C on said distribu-
tion.

Of these statements, (2) follows almost immediately from the definition of Auc-INDEx-GOSE and

(4) follows by definition of the linear sketch model of communication. This will be explained in

more detail when we combine all of the above parts to bound the complexity of RSC{/O’ J(Te).
The following lemma proves (3)

Lemma 7.7. forevery k e N,0< 0 <1/2,andn > & =n’,

RCCiIbN 'T(10€W-GAP-ORT-SUM-EQUALn,k) > RCCiIbN 'T(C-GAP-ORT—SUM-EQLIALH/,k)

Proof of Lemma 7.7. Given n’ = ﬁ and an input instance of c-Gapr-Orr-Sum-EquaL,, with
underlying Sum-EqQuat problems outputting X' € {0,1}", we create the new input to 10e+/n-
Gapr-Ort-Sum-Equat, by taking 100&2n/c? copies of each coordinate, with results of underlying
problems being x € {-1,1}" where we map each output of 0 to —1. As a result, Z;l:l Xj =
1002n g’ o

5 =1
If |3 x;.l < cVn’, then | 2;xj| < 10¢n, and on the other hand | }}; x;.l > 2cVn’ implies
| 22 xj| = 20en.

Thus, any k-player O-error simultaneous communication protocol for 10ev/n-
Gar-Ort-Sum-EquaL, immediately implies a k-player 6-error simultaneous communication
protocol for c-Gar-Ort-Sum-EQuarL,,.

Since all we are doing is copying coordinates, this does not change the threshold. O

Now, we prove (5)

Theorem 7.8. Given some simultaneous communication protocol IT with two players that solves 1-
GapP-ORT-Sum-EQuaL,, when each Sum-EQuAL instance has input drawn from the distribution u, where
= (G/2+ B/2)" consists of m independent copies of G/2 + B/2 (here and later, we use this notation
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to denote a random variable being drawn from G with probability % and B with probability % ), for G, B
defined as follows:

G:= (G1,...,Gk1, —Z;:ll Gj)
B:= (Bi,...,Br1, M- Z;':% Bj)

there exists a protocol 1" such that RCC%%V (IT) < O(RCCQ%V (IT)) which solves C)(n) of the individual
Sum-EQuaL instances with probability at least 5% for some constant a > 0.

Proof. Suppose Il is a protocol that solves 1-Gap-Ort-Sum-EqQuar,,. Now, if Alice has input
X =(x1,x2,...x,) and Bob has input Y = (y1, y2, . . . yn) to 1-Gar-Orr-Sum-EqQuaL,,, we define a
corresponding instance of 1-Gar-Ort, where Alice gets input X’ = (x7, x7, ... x;) and Bob gets
input Y’ = (y1,y5,-.yy)- We define x’ =1 -y iff x; + y; = 0 and y; = 0 with probability 1 if
yi < M/2, probability % if y; = M/2, and probability 0 otherwise, where M = a! for the value a
that is the largest integer such that a! < T.

When X,Y ~ y, each x; + y; = 0 with probability  and y; is equally likely to be —x; or
M - x; so it is symmetric about M /2. Hence, (X’,Y’) ~ {0, 1}2". Furthermore, the answer to
the 1-Gar-Ort-Sum-EquaL,, instance is the same as the answer to the 1-Gap-Orr,, instance by
construction. Therefore, we can solve this instance of 1-Gap-Ort,, by simply running IT.

Now, if we let M be the message sent by Alice to Bob in protocol I, then

I(X"; M,Y) 2 1Cy,5(1-Gap-Ort,,) = Q(n)

since Bob can solve 1-Gar-Ort, where Alice has input X" and Bob has input Y’ when he has
access to (M, Y) by returning the answer to 1-Gar-Orr-Sum-EqQuaL,, using protocol I'T with input
Y after being sent the message M.

We now note that X’ is n iid uniformly random bits. As such,

n n
I(X'; M,Y) = Z I MY | X, x5,...x0 ) = Z I(x;; M,Y).
i=1 i=1
Each of these terms is upper bounded by 1, so in order for the sum to be Q)(n), there exists
some constant ¢ > 0 such that there are at leasts cn indices j such that I (x; ;M,Y) > a for some
constant a > 0.

Now, let
J={jl I(x;;M,Y) > a}.

We claim that the transcript of IT must contain the solution to the j** Sum-Equal instance

with probability at least 152 for each j. To see this, we note that Bob has as input Y for
1-Gar-Ort-Sum-EQuaL,, so he can compute y]’.. Then, we note that

H(x;. | M,Y) = H(x;) —I(x;;M,Y) <l-a
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Since x} € {0, 1}, let Pr[x; =0| M, Y] = p. Then, if p = 0, the entropy is 0 so this is satisfied
forany 0 < a < 1. If p > 0, we have
—(plogp + (1 -p)log(1-p)) <1-a.

Since this is symmetric about p = 1 and cannot be satisfied by p = 1 since a > 0, we assume
WLOG that p < 3, in which case the entropy monotonically decreases as p decreases. Now, we
claim that we must have p < 3 — 4. It suffices to show that

R N

Simplifying this expression yields the solution

O<a<l.

Thus, for 0 < a < 1, we must have p < 152. If @ = 1, then the entropy is 0 so we must have
p = 0. Thus, we get that p < 152.

By symmetry, we thus have that either

1_
Pr[x, =0 | M,Y] < —2
J 2
or
1+
Pr[x/ =0 M,Y] 2 2“

In the former case, Bob lets 9?; = 1 and in the latter case, Bob lets 3?; = (. Bob then computes y;
from y;. Then, if Jg; = y]f, Bob concludes that x; + y; # 0 and if 92; =1- y]’., Bob concludes that

xj +y;j = 0. By construction, this succeeds with probability at least 3%, and all we did was run
IT and compute the value from the transcript. m|

Corollary 7.9. There exist constants a, ¢ > 0 such that

DLIN,T

LIN,T
2,6, 2D

(1-GaP-OrT-Sum-EQUAL -2 1p) o (a2

(S um-E QUAL(Q/ 100’6)

2

Proof. This follows directly from Theorem 7.8. The protocol I solves Q(n) of the individual
sum-equal instances, so there is some constant ¢ such that IT" solves at least cn of them with
probability at least 132. Each instance of Sum-Equal corresponds to a single coordinate from

1-Gar-OrT-Sum-EqQuaL so their frequencies must all be bounded by T as well. O

We can now prove (6)
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Theorem 7.10. When 6 < % and a is some constant fraction,
IC£’§(SUM—EQUALZ,'[1) > Q(n’kloglogT) (7.1)

where SUM-EQUALZ,'IZ is the problem where we are given n’ independent instances of Sum-EQuAL and
we are asked to solve an” of them with probability 1 — 0 each.

The proof of this theorem can be found in Appendix B.
Corollary 7.11. For the input distribution u defined in the proof of Theorem 7.10,6 < 3, and 0 < a <1,

DLIN,T

264 (SUM—EQUALZ/’“) > Q(n'loglogT)

Proof. If we plug k = 2 into (7.1), we get

DQI(QIIL’[T(SUM-EQUAL;,#) > IC] 6(SUM-EQUAL;,'a) > Q(n’loglogT)
since by definition u is the hard distribution from which we got the information complexity
bound. O

And finally, we prove (1)

Theorem 7.12. RCCilf/’éT(Te) > RCC, ;" (Auc-Inpex-GOSE)
Proof. Suppose we have a protocol that solves T.. Then, from the input of AUG-INDEX-GOSE;/ kr
we construct an input to T, as follows:

For the i-th 106 Vn-Gap-Orr-Sum-EQuat, instance g; in the AUG-INDEX-GOSE;,k problem, we
construct 100'~! distinct copies of every element in the input. We take the concatenation of all of
these inputs as our input to T.. Thus the universe contains N := 7 + 100 -7 + -+ + 100~} - 1 <
100¢11/99 distinct elements in total, which is N < n!0! for sufficiently small t (and hence
1/N%% > 1/4/n). The final Hamming norm is a weighted sum F’ := le 100i‘1J‘i’. The
advantage of F’ (that is, the difference between the number of 1s and 0Os in this stream) is hence
F:=2F - N =Y'_ 100" f.

Then we invoke the simultaneous communication protocol for T, to estimate F’, which
returns a value F’ satisfying (1 — ¢)F’ < F' < (1+¢)F. Translating to the advantage we get

‘f -F ‘ < 2¢F’ < 2eN. From this approximated value F, together with the index i and auxiliary

information fi,1, ..., fi, we need to determine the output value of g;. Since the influence of
fj with j > i can be precisely removed from F before getting the approximated norm F, in
what follows it suffices to consider the estimation of g; when the index is indeed i = t. Recall
that F = 100" f; + /-1 100" f;, and thus F is also an approximation of 100/~ f; as long as the
additive error Zﬁ;i 100~ f; is bounded.

Let the input distribution to every f; be padded from the 1-Gapr-Orr-Sum-EqQuaL,- distribu-
tion y” as in Theorem 7.8, where the coordinates are iid bits drawn uniformly from {0,1}. Thus,
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each f; has expectation 0 and variance 25¢2n2 It immediately follows by Chebyshev’s inequality
that Pr[|f;| > 50en] < 1/100. Similarly, Pr [|f;| > 50/¢n| < 1/100/. Therefore,

t—1

> 1007,

i=1

Pr > 100 en

t—1
. 1
S;Pr[|ﬁ_i|>50’en] SZWS® (7.2)

where the first inequality holds because if |f;_;| < 50ien for every i, then | ij 100 i_1fi| <
2211007 x50t en < en Y2121 < 1001 Len.
Notice that as long as F is a (1 £ ¢)-approximation of F, we must have ‘f ~F ‘ < 2¢N.

Furthermore suppose that we return 0 if F <15-100'en and 1if F > 15- 100 en. Since we
know that N < 10012/99, we have

2eN < 2€10011/99 < 3-100'ten.

So in particular, if T, succeeds, if g; = 0, we have | f;| < 10-100'~ten, so |F| = | Zle 10071 f;| <
11 -100'~'en with probability at least 5. Then, |F| < 14-100''en and our algorithm succeeds.

Similarly, if g; = 1, we have |f;| > 20 - 100'"'en. Thus, with probability at least 25,
|F| = | X, 1007 fi] > 19 - 100~ 'en, so |F| > 16 - 100'"'en and our algorithm succeeds.

Thus, if T, succeeds with probability %, the above algorithm succeeds with probability
% . % > 0.6. Thus we can determine the value of g; with probability > 0.6. The thresholds stay
the same because all we did to change the input was copy coordinates, which does not change
the frequencies. Hence,

RCCT (T) = RECT (Auc-Inoex-GOSE, ).

O

Finally, we must fill in the missing statements 2) and 4) to bound the streaming complexity
RSC?O. 4(T¢). To do this, we conclude as follows:

When we solve Auc-INDEx-GOSE, we claim that in order to solve Auc-INDEx-GOSE with
probability at least 0.6 on every input, we must solve every instance of Gap-OrT-Sum-EqQuaL with
probability at least 0.6. This is statement 2) in the overview, and can be proved as follows:

Suppose we have a protocol that solves Auc-INDEx-GOSE with probability at least 0.6. Now,
consider the j* instance of Gap-Or-Sum-EQuaL. Since the protocol succeeds with probability at
least 0.6 on any input, we can simply consider any input to Auc-INDEx-GOSE where the index is
j. By assumption, our protocol succeeds with probability at least 0.6, so it solves the j" instance
of Gar-Ort-Sum-EquaL with probability at least 0.6. This holds for every j, so our protocol must
solve every instance of Gap-Orr-Sum-EquaL with probability at least 0.6.
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To see why statement 4) in the overview is true, we wish to prove that

Di/lé\,ff (1-GAP—ORT—SUM—EQUAL;,J<) > (k- DD;?,];;T (1—GAP—ORT—SUM-EQUAL;,,2)
and this holds by definition of the linear sketch model of communication: recall that a

protocol consists of some matrix A where every player simply multiplies their input by A and

sends the resulting vector to the referee. For any matrix A, number of bits communicated by

each player will be the same regardless of the number of players, so we get this equivalence.
Thus, putting all of this together, we get the chain of inequalities:

RCCiZ\/]éT(TE) > RCCiIé\;’T (AUG-INDEX—GOSE;,]{)

> RCCilg 4’T (106\/?[-GAP—ORT—SUM-EQUAL; k)

> RCCQ%\_] 4’T (1-GAP-ORT—SUM-EQUAL;,/k)

LIN,T t
>D Ko, (1-GAP—ORT—SUM-EQUAL n’,k)

> (k- 1)D§I(§\] AT (1-GAP—ORT-SUM-EQUAL;,/2)

> (k - 1)Dillé\,lf (SUM-EQUAL;”I'C)

> Q(ktn'loglog T) = Q(e %k log nloglog T)

SO

RSC?OA(Te) > %RCC%&’T(TJ > Q(e?lognloglogT) = Q(e*k log N loglog T)

A Communication upper bound for EQuaLrty

The standard 6-error protocol solving the EQuaLity problem starts by sending and comparing
the digest under a random hash function & : [p] — [q] where g = O (67! log p). For example,
let g be a random prime drawn from the interval [6~2log® p, 20672 log® p] and let & compute a
number modulo g. By the prime number theorem there are at least 2VN primes in the interval
[N, 2N], which implies the existence of 267! log(p) distinct primes in that range. For any two
distinct numbers x, y € Z, since z = x — y has no more than log |z| < log p prime factors, the
error probability of the protocol is bounded by the collision probability of & as follows:

log p

qu[h(x) =h(y)] = Izr [x=y (modq)]= l?f [ql(x —y)] < 35Tlogp

The communication is a message of the form (1, h(x)) (indeed (g, x mod g) in the above
example), whose length is at most 2[log 7| = O (log(1/6) + loglog p) = O (log(1/6) + loglog k)
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bits. In particular this is an upper bound for one-way communication protocols computing

Equatiry. Recalling that p = © (kl/ 4), we can conclude

RCC,5(f) < Iﬁz,a(f) = O (log(1/6) + loglog k)

We note that the 1/6 factor in g is unavoidable, since otherwise more than an 6 fraction of
numbers would share the same message and hence the collision probability, as well as the error
probability, would exceed 6.

n,

a o
¢ over integers

B The lower bound for Sum-EQuAL

Theorem 7.10 (restated). Let IT be the O-error simultaneous k-player protocol for solving the

SUM—EQUALZMI, problem, where m < k;;glé;ng and the error tolerance 6 € (0,1/6). The simultaneous
.. . . LIN,T _
communication complexity of ITis RCC; & (IT) = (mkloglogT).

Proof. To prove the Q (mkloglogT) lower bound we will deduce a contradiction if IT uses
c < ymkloglogT bits of communication, for a sufficiently small constant y. By decreasing y we
may assume that k is arbitrarily large.

For the hard distribution we first introduce a magnitude bound a defined to be the largest
integer such that a! < min(k'/8,T). We define M = a!. Note that loga = Q(loglogT) as
M > -L- so aloga = Q(log M) = Q(log T). Taking the log of both sides, we have log(a loga) =
loga +logloga < 2loga, sologa = Q(loglogT).

Now we specify the distribution H for the Sum-EQuary instances. H := (G/2+ B/2)"
consists of m independent copies of G/2 + B/2, for G, B defined as follows:

G:= (Gi,...,Gka, _Z;'{:_ll Gj)
B:= (Bi,...,Bi1, M-Xi]B)
where G}, B; are uniformly and independently chosen from [a] for every j € [k — 1]. Note that:
(a) Sum-EqQuaLi(G) = 0, Sum-EqQuaLy(B) = 1;

(b) the first k — 1 elements of G and B, denoted by G_x and B_j, are the same uniform
distribution over [a]*~1. Thus we can write B = (G_x, M + Gy)

(c) for j € [k — 1], the j-th player’s input H; is uniform over [2]™ and independent from other
players” input.

Besides Hy, the referee gets in addition an index n uniformly drawn from [m] together with
the answers Y') = Sum-Equari (X)) forj=n+1,...,m. LetH) := (H, Yo+l o y(m) and
the hard input distribution is defined as H’ := 3"_ L . .

n=1m
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Now we derandomize the protocol IT by fixing the randomness and thus get an 6-error
deterministic protocol IT" with respect to the above input distribution. That is, IT" outputs

SUM-EQUALE:[) = Sum-Equari (X ™) with probability > 1 - 6.
By averaging, for at least /2 choices of the index n € [m] and the restricted distribution
‘H.,, the error of IT" is bounded by 26.

s [T X, 1)) # SUM-EQUALk(X(n))] <26 (B.1)

Then we introduce Lemma B.1 that lower bounds I (X(_';(); Mq,..., Mk—l) > 0.1k loga for

protocols with small error. For compactness the proof of Lemma B.1 is deferred to the end of
this section.

Lemma B.1. For every n such that IT" errs with probability < 1/3 on input (X,Y) ~ Hy, on at
least a’m of the Sum-EQUAL instances, the mutual information between X" and TV(X,Y) must be

(X5 M, o, i) 2 0.1k loga

Using Lemma B.1, it immediately follows that for 6 < 1/6 the protocol IT" must use
Q (mk log a) bits of communication. Since

Rccizl'gi(n') > (Xog; My, ..., Mi_)

m
= > (XM M 1 X, x G
=1

m

=M1 (XYi;Ml,...,Mk_l,X(_lk),...,XE’,:D)
i=1
m .

> 31 (x0My, . M)
i=1

> azm -0.1kloga = Q (mkloga)

since a’ is some constant between 0 and 1. m]

Proof of Lemma B.1. Suppose by contradiction that I (Xi’? My, ..., Mk_1) < 0.1k log a and recall

kloglogT 0.1kloga

that m < 555 ok = Tog(ka) for loga = Q(loglog T) and sufficiently large T,

I (X(_’}j,- Mi,..., M1, X, YO, Y(’”)) < 0.1klog a + mlog(ka) < 0.2k log a
Therefore, recalling that I(A; B, C) = I(A; B | C) when A is independent from C and that
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X](n) is independent from X (n), X (f)

k-1
I (X}”%Ml, o Mir, Xp, YD Y(’“))
=1
k-1
< SUL(XP M My, X YO,y 00, X, X )
=1
k-1

I (X;”);Ml, o M, Xp, YDy X(”),...,X]fﬂ)

—_

i=
<I(X"; My, ..., My, Xi, YD, L Y™) < 0.2k log a
As aresult, thereis | C [k — 1] and |J| > k/2 such that for every j € [k — 1], it holds that
F(X M, My, X YO, YO < <1 4+0.510ga,
and hence
H [X;") | My, ..., Meg, X, Y0+ ,Y(’”)]
_H [x}’“] _1 (X}”);Ml, My, X, YO ,Wﬂ))
>loga — (-1+0.5loga) =1+0.5loga (B.2)
Note that He, [X](.n) | My, ..., Mg_q, Xe, YOO Y(m)] < 1 implies the existence of x € [a]
such that Pr [X;”) =x|My,..., My_q, X;, YOHD, ,Y(’”)] = px > 3, and hence it follows that
1
H [x?'” | My, ..., My, X, YD ,Y(’”)] = pilog —
i€la]
a—-1
1-px
<1+0.5log(a —1) (B.3)

<P« logpl + (1 -py)log

Thus, (B.2) ensures that He, [X}W | My, ... M1, Xi, Y+ .,Y(m)] > 1 for every j €

J. In what follows, we prove that if He [X;n) | M1, ..., Mi_1, X, YOHU ,Y(m)] > 1 for
every j € | and [J]| > k/2, then the conditional distribution B} := G, + M and G} :=
- Z;:ll X;”) {M1, oo, My, X, YD Y(m)} have statistical distance < k~1/8.

Notice that for j € | and He [X;”) | My, ..., M1, Xk, y+t) o Y(m)] > 1, the conditional

distribution G;. = X;") {M1, o, Moy, X, YOD, Y(m)} is a convex combination of distri-

butions uniform over two values. More specifically, G;. = Zvj ;- Glvil where a, ;€ (0,1) and
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each G/ is a random variable uniform over two values. For j¢€], G;. = Zv]_ o, - Gl*il where Gl
is fixed, i. e., a random variable that equals one value with probability 1. For v = (vy, ..., vk-1),

let ap = ]_[;-:11 Ay, and GlYl = (G[Ul], ..., Glo=l — Z;-‘:_ll G[U/]), then G’ can be decomposed as
G =Y,a, Gl

Now for every j € | and Gli! uniform over {a]', bj} C [a], we can assume w.l.o.g., a; < b;
and write GlU1 = aj+(bj — aj)Z;j where Z; is uniform over {0, 1}. Since b; — a; € [a], among the
> k/2 indices j € | for which Gl7il takes two values, we must have t > |J|/a > k/O (log k) > vk
indices J” such that for any j € |’ the value b; — a; is the same value M".

Thus G!*! can be further decomposed into a convex combination of G1*} where, among the
indices in ], only those in ]’ are not fixed. Fix any u and denote G{*} by G”. Let S = jeyr Zj
denote the sum of ¢ uniform i.i.d. 0/1 random variables. Then we can write

G/ =b+M’S
B/=b+MS+M

Since 1 < M’ < a, M’ divides M and hence M = M’q for g € Z and g < M < k'/®. Now we
can apply g times the shift-invariance of the binomial distribution, which is stated as follows:
Claim B.2 (Claim 39 in [23]). Let S be the sum of t uniform, i.i.d. Boolean random variables. Then S
and S + 1 have statistical distance < O (1 / \/?)

This yields that G} and B}/ have statistical distance

SD(GY,B})=SD(M’-S,M"-(g+S))<q-O (1/\/«/%) < kY8 /K4 = 718

Recalling that G’ is just a convex combination of G”, the statistical distance between G;{ and
B;{ = G;{ + M is also bounded by k=18, However, by definition of G;{ and B;{ we conclude that

the referee cannot distinguish the two cases of X" ~ G and X ~ B with advantage greater
than k~1/8 < 1/6, which contradicts the condition that IT" has error probability < 1/3.

Therefore, I (Xi’;();Ml, . ,Mk_l) > 0.1kloga = Q (kloga). ]
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