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Abstract. In a :-party communication problem, the : players with inputs

G1 , G2 , . . . , G: want to evaluate a function 5 (G1 , G2 , . . . , G:) using as little communica-

tion as possible. We consider the message-passing model, in which the inputs are

partitioned in an arbitrary, possibly worst-case manner, among a smaller number C of

players (C < :). The C-player communication cost of computing 5 can only be smaller

than the :-player communication cost, since the C players can trivially simulate the

:-player protocol. But how much smaller can it be? We study deterministic and

randomized protocols in the one-way model, and provide separations for product

input distributions, which are optimal for low error probability protocols. We also
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A key application of our results is in proving lower bounds for data stream

algorithms. In particular, we give an optimalΩ(�−2
log(#) log log(<")) bits of space

lower bound for the fundamental problem of (1 ± �)-approximating the number

‖G‖0 of non-zero entries of an =-dimensional vector G after < integer updates each

of magnitude at most ", and with success probability ≥ 2/3, in a strict turnstile

stream. We additionally prove the matching Ω(�−2
log(#) log log())) space lower

bound for the problem when we have access to a heavy hitters oracle with threshold

). Our results match the best known upper bounds when � ≥ 1/polylog(<") and
when ) = 2

poly(1/&)
, respectively. It also improves on the priorΩ(�−2

log(<")) lower

bound and separates the complexity of approximating !0 from approximating the

?-norm !? for ? bounded away from 0, since the latter has an $(�−2
log(<")) bit

upper bound.

1 Introduction

Consider a :-party communication problem, in which the players have inputs G1 , G2 , . . . , G:
and want to compute a function 5 (G1 , G2 , . . . , G:) of their inputs using as little communication

as possible. We consider the message-passing model, in which the inputs are partitioned

in an arbitrary, possibly worst-case manner among a smaller number C of players. That is,

we partition {1, 2, . . . , :} into C subsets (1 , (2 , . . . , (C such that

⋃C
8=1
(8 = {1, 2, . . . , :} and

(8 ∩ ( 9 = ∅ for every 1 ≤ 8 < 9 ≤ C, and let the 8-th player %8 hold the sequence of inputs

H8 :=

(
G81 , G82 , . . . , G8 |(8 |

)
. When we work in this model in the reduction from streaming, we will

get 81 + |(8 | − 1 = 82 + |(8 | − 2 = · · · = 8 |(8 |. We are still interested in computing the original

function 5 . The total communication required must be smaller than in the original :-player

setting, since the C players can simulate the protocol involving the original : players. A natural

question is: how much smaller can the communication be?

There are many communication models that are possible, but our main motivation for

looking at this question comes from applications to data streams, see below, and so we are

primarily interested in the one-way number-in-handmodel. In this model, each of the C players

can only see its own input. The first player composes a message <1 based on its input H1 and

sends <1 to the second player. The second player takes <1 and its input H2 to compute a message

<2 for the third player, and so on. The C-th (also the last) player, upon receiving the message

<C−1 from the (C − 1)-st player, computes the output of the protocol based on <C−1 and its own

input HC . We sometimes abuse notation and refer to the output as <C . The total communication

cost is the maximum of

∑C
8=1
|<8 |, where |<8 | denotes the length of the 8-th message and the

maximum is taken over all possible inputs H1 , . . . , HC (which is a partition of {G1 , . . . , G:}) and
all random coin tosses of the players. For streaming applications we are especially interested in

max8∈{1,...,C} |<8 |.
To explain the connection to data streams, almost all known lower bound arguments on the

memory required of a data stream algorithm are proven via communication complexity, or at

least can be reformulated using communication complexity. The basic idea is to partition the
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elements of an input stream contiguously, consisting of say : elements, into a possibly smaller

number C of players. Then one argues that if there is a data stream algorithm solving the problem,

then the communication problem can be solved by passing the memory contents as messages

from player to player. Note that this naturally gives rise to the one-way number-in-hand model.

Since the total communication cost is C · (, where ( is the size of the memory of the streaming

algorithm, if the randomized C-player communication complexity of the function 5 is ��C , we

must have ( ≥ ��C/C. Many lower bounds in data streams are proven already with two players.

However, it is known that for some functions more players are needed to obtain stronger lower

bounds, such as for estimating the frequency moments in insertion only streams (see, e. g., [3, 25]

and references therein).

One cannot help but ask how powerful is communication complexity for proving data stream lower

bounds? Another natural question is: for a given function 5 , which number C of players should one

partition the stream into? Yet another question is regarding the input distribution – should it be a

product distribution for which the inputs to the players are chosen independently, or should the

inputs be drawn from a non-product distribution to obtain the best space lower bounds? Since

we are interested in the limits of using C players for establishing lower bounds for data stream

algorithms, we allow the original : inputs (which correspond to the : elements in a stream) to

be partitioned in the worst possible way for a C-player communication protocol, as this will give

the strongest possible lower bound.

1.1 Our results

In this paper we study these communication questions and their connections to data streams.

We first make the simple observation that for non-product input distributions, the commu-

nication complexity can be arbitrarily smaller if we partition the : inputs into C < : players.

Indeed, consider the :-player set disjointness problem in which the 8-th player, 1 ≤ 8 ≤ :, has
a set (8 ⊆ [=], where for notational simplicity we define [=] := {1, 2, . . . , =} for = ∈ ℕ. The

input distribution satisfies the promise that either (1) (8 ∩ ( 9 = ∅ for every 1 ≤ 8 < 9 ≤ :, or (2)
there is a unique item 0 ∈ [=] such that 0 ∈ (8 for all 8 ∈ [:], and for any other 0′ ≠ 0, there is
at most one 8 ∈ [:] for which 0′ ∈ (8 . It is well-known that the randomized communication

complexity of this problem is Ω (=/:) [3, 9, 12], and that the bound holds even for multiple

rounds of communication and when players share a common blackboard. However, if we look

at C < : players and an arbitrary, even if the worst-case mapping of the input sets (1 , . . . , (: to

the C players, then by the pigeonhole principle there exists a player who gets two input sets

(8 , (9 with 8 ≠ 9. Now this player can locally determine the output of the function by checking if

(8 ∩ ( 9 = ∅. Thus with C < : players the problem is solvable using $ (1) bits per player. This
simple argument shows that for non-product distributions, there can be an arbitrarily large

gap between the :-player and the C-player worst-case-partitioned randomized communication

complexities. Note that this example applies to a symmetric problem, meaning that the :-player

set disjointness problem is invariant under any one-to-one assignment of G1 , . . . , G: to the :

players.

Perhaps surprisingly, and this is one of the main messages of our work: for symmetric

functions and product input distributions, we show that for any C < :, for deterministic
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one-way communication complexity or randomized one-way communication complexity with

error probability 1/poly(:), that is, the gap between the :-player and C-player communication

complexities is atmost amultiplicative$ (1) factor inmaximummessage length, or themaximum

communication from a single player, and $(:) in total communication. Further, this gap is tight,

as there are problems for which the input distribution is a product distribution, and the C-player

communication with 1/poly(:) error probability is $
(
log :

)
for constant C = $ (1), while the

:-player communication with 1/poly(:) error probability is Ω
(
: log :

)
.

Thus, the answer for product input distributions is significantly different than what we saw

for non-product distributions, even for symmetric functions.

We also show that for protocols with constant error and under product input distributions,

the gap is at most a multiplicative $(log :) factor in message length and $(: log :) in total

communication. Further, we show that there exists a symmetric function and input distribution

which is product on any : − 1 out of : inputs, for which this gap is best possible. We leave open

the question of the existence of a symmetric function and product input distribution (on all :

inputs rather than : − 1 out of :) which realizes this gap for constant error protocols.

One takeaway message from our results is that when showing space lower bounds for data

stream algorithms computing symmetric functions on product distributions, by looking at

2-player communication complexity (which is by far the most common communication setup),

there is only an $(1) factor loss for error probability 1/poly(:) protocols, and an $
(
log :

)
factor

loss for constant error protocols.

However, for non-product distributions, which are often needed to show hardness of

approximation in data streams (such as for the frequency moments [3]), one may need to use as

many as : players in order to obtain a non-trivial lower bound from communication complexity.

1.1.1 Data stream lower bounds:

As a key application of our lower bound techniques, we provide a space lower bound for

(1 ± �)-approximating the Hamming norm in the strict turnstile model. This problem, which is

also known as the !0 norm estimation and denoted by T�, requires estimating ‖x‖
0

:= |{8 | G8 ≠ 0}|
of a vector x = (G1 , . . . , G# ) and outputting an estimate �̃ for which (1− �)‖x‖

0
≤ �̃ ≤ (1+ �)‖x‖

0

with constant probability. The vector x is initialized to all zeros and undergoes a sequence

of < updates each of the form (8 , E) ∈ [#] × [±"], where [±"] := {0,±1, . . . ,±"} and each

update (8 , E) causes G8 ← G8 + E. In the strict turnstile model G8 ≥ 0 holds for all 8 and at

all points in the stream. We obtain an Ω
(
�−2

log(#) log log(<")
)
bits of space lower bound

for (1 ± �)-approximating the Hamming norm. This lower bound matches the best known

upper bound $
(
�−2

log(#)
(
log(1/�) + log log(<")

) )
[16] for any � ≥ 1/polylog(<"). Note

that � ≥ 1/polylog(<") is required in order to obtain polylogarithmic space, and so is the most

common setting of parameters.

Perhaps surprisingly, there is an upper bound of $
(
�−2

log(<")
)
bits of space for (1 ± �)-

approximating !? for ? > 0 [15] (improving an earlier $
(
log

2 #
)
bound of [11]; see also a

time-efficient version in [14]), and thus we provide a strict separation in the complexities for

? = 0 and ? > 0.
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The Hamming norm has many applications, as it corresponds to estimating the number of

distinct values, and can be used to estimate set union and intersection sizes (see [8] where it was

introduced).

Lower Bounds in the LearningAugmented Setting Recently, there has been a growing interest

in using machine learning to infer information about the stream that would be useful for solving

certain problems in the streaming setting. In this learning augmented setting, we have access

to an oracle (which in practice would have some degree of error and could be implemented

with machine learning). Learned oracles have been used to develop improved algorithms for

various problems, including frequency estimation [10], caching [19], scheduling [20], frequency

moments [13], and more. A fairly comprehensive survey of learning augmented algorithms can

be found in [21].

In our setting, the oracle provides an additional operation: we can give the oracle a coordinate,

and the oracle will tell us whether the frequency of this coordinate at the end of the stream is at

least ) for a threshold ). We refer to this oracle as the heavy hitters oracle. Approximate heavy

hitter oracles have been used for frequency estimation [10].

We derive a new method to prove space lower bounds even with a perfect heavy hitters

oracle (that is, an oracle that can be accessed with no space cost which always answers correctly

whether the frequency of the coordinate is at least )). We use this method to prove a lower

bound of Ω
(
�−2

log(#) log log())
)
for approximating the !0 norm, which is optimal when

) = 2
poly(1/&)

as it matches the upper bound in [13]. To prove this, we prove and use a slightly

modified version of the direct sum theorem for Viola’s problem, which will be stated in the

following section.

1.2 Notable changes from the conference version

In this version of our paper, we have substantially updated Section 7. First, the result was

generalized to the settingwith a heavy hitters oracle as described in the paragraph above. Second,

the proof of the bound in the previous version used an incorrect reduction to gap-hamming. In

this version, this issue was resolved by instead reducing to gap-orthogonality.

1.3 Technical overview

We first illustrate the idea behind showing there is no gap between :-player and 2-player

deterministic one-way communication complexity. The first player %1 of the :-player protocol

pretends to be Alice, the first player of the 2-player protocol, to create the message <1 as Alice

would do and sends it to the second player %2 of the :-player protocol. Having received this

message <1, %2 enumerates over all possible inputs of %1 until finding one which would cause %1

to send <1. Since the protocol is deterministic and it evaluates a function defined on a product

domain,1 meaning that it is a total function on a domain of the form (1 × (2 × · · · × (: , the

1Note that while we will be working with non-product input distributions, the function is still defined on all

inputs, including ones that occur with probability 0 in the distribution we are working with.
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function value must be the same as long as %1’s input results in the same message <1 to be sent.

So %2 can arbitrarily pick one of those inputs as its guess for %1. Now %2 has a guess G for %1’s

input together with its own input H, and %2 can simulate Alice in the 2-player protocol. This

is feasible because the 2-player protocol works under any partitioning of the inputs. Then %2

sends to the third player %3 the message that Alice would send to Bob in the 2-player protocol,

given that Alice had input (G, H). In case when every player %8 cannot figure out how many

input items have been processed from its own input and the received message <8−1, which

is important for its simulation of the 2-player protocol, an additional logarithmic-many-bits

index carrying this piece of information should be passed together with the simulated messages.

In this way, the entire :-player protocol can be simulated and the per player communication

equals to the communication of the 2-player protocol between Alice and Bob, sometimes plus

the additional logarithmic many bits for the index. Moreover, both protocols are deterministic.

For the randomized case with a product input distribution, we first consider 2-player

protocols with error probability 1/poly(:).
We would like to run the same simulation as for deterministic protocols, except now it is

unclear how the second player %2 can reconstruct a valid input G for the first player %1 from the

first message <. A natural thing would be for %2 to choose the input G = G< to %1 for which

the probability of sending <, given that %1’s input is G< , is greatest. This is not correct though,

since the overall probability of %1 holding G< and sending < may be less than the 1/poly(:)
error bound and the protocol could afford to be always wrong on such a combination of G< and

<. Thus we need some balancing between two probabilities: (i) the first player %1 sends < on

input G; and (ii) the protocol output is correct given that %1 has input G and sends <.

The above naturally suggests that we should impose an input product distribution �. Then
it must be that for a good fraction of G, weighted according to �, the :-player protocol is correct
when the first player has input G and sends message <. Thus we can sample G from the

conditional distribution on � given that message < is sent. Here, for correctness, it is crucial that

� is a product distribution; this ensures for most settings of remaining player’s inputs (weighted

according to �), for most choices of G (weighted according to �) giving rise to <, the function

evaluated on the inputs is the same, and G can be sampled independently of remaining inputs.

Once we have sampled G, and given that the second player has private input H in the :-player

protocol, we can then have the second player pretend to be Alice of a randomized 2-player

protocol with input (G, H), similar to the deterministic case. Ultimately, we will show that under

distribution � we obtain a protocol with total communication at most $ (:) times that of the

2-player protocol with error probability 1/poly(:). The maximum message length, which is an

important resource measure in our setting, blows up by at most an $ (1)multiplicative factor

times that of the 2-player protocol, where the factor : comes from the number of invocations of

the 2-player protocol.

We illustrate the optimality of the randomized reduction above by looking at the Sum-Equal

problem studied by Viola [23]: in this problem each of : players holds an input G8 mod ?,

where ? = Θ

(
:1/4

)
is a prime, and they wish to determine whether

∑
8 G8 = 0 or 1 mod ?.

Viola shows this problem has randomized communication complexity Θ
(
: log :

)
, for both

randomized protocols with constant error probability as well as deterministic protocols (and
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thus also randomized protocols with 1/poly(:) error probability). Moreover, for randomized

protocols with 1/poly(:) error probability, Viola’s Ω(: log :) lower bound holds even for a

product distribution on the inputs (where if

∑
8 G8 mod ? ∉ {0, 1} the output can be arbitrary).

We observe that under any partition of the inputs into 2-players Alice and Bob, the problem can

be solved with $
(
log :

)
bits with probability 1 − 1/poly(:) just by running an equality test on

the sum modulo ? of Alice and the negated sum modulo ? of Bob. Thus, this illustrates that

the factor $(:) gap in total communication for protocols for product input distributions with

1/poly(:) error probability is optimal.

On the other hand, for constant error protocols and a product input distribution, there is a

2-player $ (1) bit upper bound in the public coin model which comes from running an equality

test with constant error probability (since we measure error with respect to an input distribution,

equality has an $(1) upper bound with constant error).

We note that the :-player protocol has communicationΩ
(
: log :

)
for constant error protocols,

which gives the Ω
(
: log :

)
factor gap we claimed. The only downside is that the Ω

(
: log :

)
lower bound holds for an input distribution which is product on : − 1 out of : players, rather

than all : players. We leave it as an open question to give an optimal separation for product

input distributions for constant error probability.

Given the importance of Viola’s problem in showing separations, we next show a direct

sum theorem for his problem, showing its communication complexity increases to Ω
(
:< log :

)
for solving a constant fraction of < independent copies. This additionally confirms that the

Ω(: log :) factor gap noted above is multiplicative and not additive. For technical reasons we

require < < :2 for a constant 2, as discussed in Remark 6.6, but we suspect this may be an

artifact of the proof.

To show the direct sum theorem for Viola’s problem, one issue is that, unlike for two players

where the technique of information complexity often provides direct sum theorems, for :-players

the analogues are much weaker. A natural route would be to take Viola’s corruption bound,

argue it implies a high information bound, and then apply standard direct sum theorems for

information. This approach does not give an information cost lower bound on private coin

protocols, though one can fix it for two players using [5], which improves upon a bound in [6].

However, for : players similarly strong bounds are unknown. Another natural approach is to

use the fact that if a problem has a corruption bound, then one immediately has a direct sum for

it [4]. Again though, this is only for two players or the number on forehead model, and not for our

setting.

Instead, our proof is inspired byViola’s rectangle argument for a single copy of the Sum-Equal

problem, where each rectangle, restricted to the first : − 1 players, is a product distribution

on which the protocol generates a message to the :-th player. We use a rectangle argument

on multiple copies where the output is now a binary vector instead of a single bit. The main

obstacle is that we must consider the Hamming distance between the protocol output and

the correct answer in a vector space, which is much more involved than studying the error

probability for a single instance. The intuition of our proof is that for every large rectangle,

there must be linearly many copies that appear (almost) uniformly random in the last player’s

view. The above argument is fairly intricate, and involves several levels of conversion:
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(i) a large rectangle implies large conditional entropy in many players’ inputs;

(ii) the large entropy of all copies implies we have min-entropy at least 1 on many copies;

(iii) a random variable of min-entropy at least 1 can always be decomposed into a convex

combination of uniform distributions over two elements;

(iv) the summation of $(?2) independent random variables that are each drawn from a

uniform-over-two-element distribution turns out to be nearly uniform over ℤ? due to a

simple argument based on the primitive roots of unity, and hence many Sum-Equal copies

look uniform to the last player.

Thus, the last player can hardly outperform a random guess. Note that it is insufficient to

prove uniformity for many copies individually (which is not too hard using the same idea as in

Viola’s proof), since such a situation could be simulated with a much smaller rectangle with

very small error. We instead perform our rectangle argument inductively to show most copies

appear almost uniform, even if conditioned on previous copies.

This direct sum technique has further applications. One application of the direct sum

technique, with slight modifications, is to prove a lower bound for approximating the Hamming

norm in a strict turnstile stream. Using a result of [2], to show lower bounds for streaming

algorithms in the strict turnstile model, it suffices to show lower bounds in the simultaneous

communication model, where each player simultaneously sends a linear sketch to a referee

who outputs the answer. To get the desired direct sum property, we have a chain of reductions

leading to the Sum-Equal problem of which we compute the information complexity.

Specifically, we consider a composition of the Gap-Orthogonality problem on top of the

Sum-Equal instances as well as an augmented index version of the composed problem. When

we compose these problems, each coordinate of the Gap-Orthogonality problem becomes a

Sum-Equal instance, and we show that in order to solve Gap Orthogonality, we must solve most

of the Sum-Equal instances. Thus. we can use a direct sum to bound the information cost of

the composed problem in a similar manner as in [25]. We then prove that approximating the

Hamming norm reduces to the augmented index version of this, which allows us to bound its

communication complexity and accordingly its streaming complexity.

In the augmented problem we additionally give a referee an index 8 and the answers to all

copies 9, with 9 > 8. Similar augmentation has been studied for !?-norms [15]. This allows us to

reduce our communication problem to Hamming norm approximation, and ultimately prove

our data stream lower bound.

2 Preliminaries

A function 5 : Σ: → Γ is called a :-party symmetric function if for every (G1 , G2 , . . . , G:) ∈ Σ: and
for every permutation � over {1, 2, . . . , :}, we have 5 (G1 , . . . , G:) = 5

(
G�(1) , . . . , G�(:)

)
.

A :-dimensional vector space ( is called a product space if it can be represented as ( =

(1 × (2 × · · · × (: . A distribution � is called a product distribution if it is obtained by taking the

product of : independent distributions, i. e., � = �1 × �2 × · · · × �: .
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In the C-player communication complexity model, there are C computationally unbounded

players, e. g., %1 , . . . , %C , required to compute a function 5 : -1 × · · · × -C → ., where 5

is usually a C-party symmetric function. Each player %8 is given a private input G8 ∈ -8
and follows a fixed protocol to exchange messages. For every input (G1 , . . . , GC), the mes-

sage transcript is denoted by ΠC(G1 , . . . , GC) when all players follow the protocol ΠC (when

ΠC is randomized, ΠC(G1 , . . . , GC) is a random variable taking probabilities over players’ ran-

dom coins). A deterministic protocol ΠC computes 5 if there is a function Π>DC such that

Π>DC

(
Π
(C)
C (G1 , . . . , GC), GC

)
≡ 5 , where Π

(C)
C (G1 , . . . , GC) denotes %C ’s view under the execution of

ΠC on input (G1 , . . . , GC) and for simplicity we let Π>DC (G1 , . . . , GC) := Π>DC

(
Π
(C)
C (G1 , . . . , GC), GC

)
.

A �-error randomized protocol ΠC for 5 requires the existence of Π>DC such that for all inputs

(G1 , . . . , GC), PrΠC [Π>DC (G1 , . . . , GC) = 5 (G1 , . . . , GC)] ≥ 1 − �. The communication cost of ΠC is the

maximum size ofΠC(G1 , . . . , GC) over all G1 , . . . , GC and all random coins. The C-player deterministic

communication complexity, denoted by DCCC( 5 ), is the cost of the best C-player deterministic pro-

tocol ΠC for 5 . Analogously, the C-player �-error randomized communication complexity, denoted by

RCCC ,�( 5 ), is the cost of the best C-player �-error randomized protocol ΠC for 5 with probability

1 − �.
Given a :-party function 5 : -1 × · · · ×-: → . and C < :, we define DCCC( 5 ) and RCCC ,�( 5 )

under aworst-case partition of inputs. That is, let 5C(I1 , . . . , IC) = 5 (G1 , . . . , G:) be defined for every

partition 80 = 0 ≤ 81 ≤ · · · ≤ 8C = : and I 9 := (G8 9−1+1 , . . . , G8 9 ), and the C-player communication

complexity of 5 is defined with respect to the worst choice of 5C , i. e., DCCC( 5 ) := max 5C DCCC( 5C)
and RCCC ,�( 5 ) := max 5C RCCC ,�( 5C).

Given a C-party function 5 and its input distribution �, we let DCC

�
C ,�( 5 ) denote the

communication cost of the best C-player deterministic protocol ΠC computing 5 such that

PrG∼� [Π>DC(G) ≠ 5 (G)] ≤ �. Similarly we define RCC

�
C ,�( 5 ) for randomized protocols.

In the one-way communication model [22, 1, 17], 2 the 8-th player sends exactly one message

to the (8 + 1)-st player for 8 ∈ [C − 1] following ΠC , and then %C announces the output of ΠC as

specified by Π>DC . Note that in this setting there are only : − 1 messages sent by %1 , . . . , %:−1,

and we do not count the final output announced by %C in the communication in order to best

correspond to streaming algorithms. This is also known as a sententious protocol in previous

work, e. g., [23]. We denote the deterministic and randomized C-player one-way communication

complexities of 5 by
−−−→
DCCC( 5 ) and

−−−→
RCCC ,�( 5 ), respectively.

In the common reference string model (a. k. a. CRS model), there is a sequence of public random

coins, which is by default a uniformly random binary string, accessible to all players. The

obvious advantage of communication in the CRS model is that players have access to the same

random string and thus save the cost of synchronizing their private coins.

A streaming algorithm is an algorithm that scans the input (G1 , . . . , G<) ∈ Σ< as < stream

input items in sequence, updates its internal memory of size B = >
(
< log |Σ|

)
(i. e., a streaming

automaton with 2
B
states, where the space cost of updating the internal memory is not accounted

2We are aware that there are errors in [17]. This does not affect our results in any way as we do not use any

theorems from this work.
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for), and finally outputs a function 5 (G1 , . . . , G<) evaluated on all input items. If the best3

deterministic streaming algorithm computes 5 with B bits of memory and C passes over the data

stream, then we say the deterministic streaming complexity of 5 is BC, denoted by DSC( 5 ) = BC.

The �-error streaming complexity of 5 is defined analogously (with reference to the best �-error
randomized streaming algorithm) and is denoted by RSC�( 5 ) = BC. In a popular and standard

setting, a streaming algorithm scans the input stream in a single pass and only processes every

input item once. The necessary amount of memory required by such single-pass algorithms

is called the single-pass deterministic/�-error streaming complexity and denoted by

−−−→
DSC( 5 ) and

−−−→
RSC�( 5 ), respectively.

Note that every streaming algorithm can be naturally interpreted as a communication

protocol where each party holds some (possibly an empty set of) input items on the stream and

the messages capture the memory updates. The connection between streaming complexity and

communication complexity trivially follows in the following lemma.

Lemma 2.1. For every function 5 and error tolerance �, for every : ∈ ℕ, it holds that:

DSC( 5 ) ≥ 1

:
·DCC:( 5 ), RSC�( 5 ) ≥

1

:
· RCC:,�( 5 )

Furthermore, similar relations hold for single-pass streaming complexities

versus :-player one-way communication complexities:

−−−→
DSC( 5 ) ≥ 1

: − 1

· −−−→DCC:( 5 ),
−−−→
RSC�( 5 ) ≥

1

: − 1

· −−−→RCC:,�( 5 )

Next, we introduce the linear sketch model of communication. In this setting, we have =

players, the last of whom is the referee, and the only protocols allowed are of the following form:

There is some matrix � such that if player 8 receives input G8 , they compute �G8 and send

the result to the referee. The referee then computes

∑=
8=1
�G8 and uses the result to compute the

answer. We denote the randomized communication complexity of a function 5 in this model by

RCC
!�#
:,� ( 5 ).4

Additionally, we let D:,�,�( 5 ) denote the communication complexity of 5 with : players and

� error under input distribution � and IC:,�( 5 ) denote the information complexity of 5 with :

players and � error. Both of these complexities are considered in the linear sketch model. We

extend the notion of information complexity from [7] to this setting by summing the information

costs over all of the players and allowing some probability of returning an incorrect answer. That

is, let � denote mutual information, and letΠ
5

:,� denote the set of :-player randomized protocols

in the linear sketch model solving 5 with probability 1 − �. Additionally, let Π(G1 , G2 , . . . , G:)8
denote the message sent by the 8Cℎ player when we run the protocol Π on input (G1 , G2 , . . . , G:).

3The “best” such algorithm is the one with the minimal value of BC on the input that maximizes BC.

4Simultaneous communication models often define the referee as an additional player with no input. In this case,

this is equivalent to our model except the : − 1s in our proofs and bounds would become :s.
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Then

IC:,�( 5 ) := min

Π∈Π 5

:,�

:∑
8=1

� (G8 ,Π(G1 , G2 , . . . , G:)8) .

The following lemma relates IC:,�( 5 ) to RCC
!�#
:,� ( 5 )

Lemma 2.2. For any function 5 ,

IC:,�( 5 ) ≤ RCC
!�#
:,� ( 5 )

Proof. Consider any protocol Π solving 5 in the linear sketch model, and let � be the matrix

used in the protocol Π. Then, Π(G1 , G2 , . . . , G:)8 = �G8 . If we let 18 be the number of bits used to

represent �G8 for each 8 ∈ [:], we have �(G8 , �G8) ≤ 18 for every 8 ∈ [:]. In particular, if we let

Π := argmin
Π∈Π 5

:,�

:∑
8=1

� (G8 ,Π(G1 , G2 , . . . , G:)8) ,

then

IC:,�( 5 ) =
:∑
8=1

� (G8 ,Π(G1 , G2 , . . . , G:)8) ≤
:∑
8=1

18 ≤ RCC
!�#
:,� ( 5 ) �

Additionally, IC( 5 ) is well-behaved in the sense that it satisfies the direct sum property. That

is, letting 5 < denote the problem where we solve < independent instances of 5 :

Theorem 2.3. For any function 5 and any positive integer <,

IC:,�( 5 <) ≥ < · IC:,�( 5 )

where a � probability of failure for 5 < is defined to mean a � probability of failure on each instance.

This follows from the direct sum theorem on two players and no error by grouping all

but player 8 into the referee for each 8 and summing over the information complexities of the

protocols for each 8. Then, to deal with the � probability of error, we simply force the protocols

to be deterministic and consider the function only on the values for which it is correct.

We denote the randomized communication complexity of a function 5 in the linear sketch

model given that the maximum frequency of any coordinate at the end of the stream is at

most ) by RCC
!�#,)
:,� ( 5 ). Similarly, in the other models, when we bound the frequency of the

coordinates, we will write D
!�#,)
:,�,� , IC

)
:,�, and RSC

)
:,� for distributional complexity, information

complexity, and randomized streaming complexity, respectively.
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3 Communication complexity for functions on non-product spaces

Theorem 3.1. For every C ≥ 2, there is a C-party symmetric function 5 : � → {0, 1} defined
on � ⊆ {0, 1}= =

(
{0, 1}=/C

) C
such that for every error tolerance � < 1/4, −−−→DCCC−1( 5 ) ≤ C − 1

but RCCC ,�( 5 ) = Ω (=/C). In particular, as long as C = $ (1), we have

−−−→
DCCC−1( 5 ) = $ (1) and

RSC�( 5 ) ≥ 1

C · RCCC ,�( 5 ) = Ω (=).

Proof. Consider the C-party set disjointness problem Disj=/C ,C defined as follows: there are C

players %1 , . . . , %C such that every player %8 holds a private indicator vector x8 ∈ {0, 1}=/C which

represents a subset of [=/C], i. e., Disj=/C ,C(x1 , . . . , xC) = ∨=/C9=1

(
∧C
8=1
G8 , 9

)
, where G8 , 9 denotes the 9-th

coordinate of x8 . We consider the domain � such that the vectors x1 , . . . , xC ∈ {0, 1}=/C are either
(1) pairwise disjoint, or (2) there exists a unique 9 ∈ [=/C] such that G8 , 9 = 1 for all 8 ∈ [C]. Let 5
be the function that computes Disj=/C ,C on domain �.

On the one hand, it is easy to verify that

−−−→
DCCC−1( 5 ) ≤ C − 1. Indeed, at least one of the

C − 1 players obtains two distinct indicator vectors and hence can itself decide the output of 5 .

The communication is 1 bit per player to pass the result, and hence the total communication is

bounded by C − 1 since there are C − 1 players.

On the other hand, the Ω(=/C) lower bound for RCCC ,�( 5 ) follows from the known lower

bound for multi-player set disjointness (see [3], which was improved to optimal in [9, 12]). The

lower bound for RSC�( 5 ) immediately follows by Lemma 2.1. �

4 Deterministic communication and streaming complexity

We first show that 2-player one-way communication complexity is equivalent to the streaming

complexity of single-pass streaming algorithms in the deterministic setting. In the following

theorem, we assume for convenience that < is known to both players.

Theorem 4.1. For every symmetric function 5 : Σ< → Γ,
−−−→
DCC2( 5 ) ≤

−−−→
DSC( 5 ) ≤ −−−→DCC2( 5 ) + log<.

Proof. Obviously,

−−−→
DSC( 5 ) ≥ −−−→DCC2( 5 ) since a 2-player communication protocol can simulate a

streaming algorithm. It remains to prove

−−−→
DSC( 5 ) ≤ −−−→DCC2( 5 ) + log<.

Suppose the input stream is (G1 , . . . , G<) ∈ Σ< , and for every partition into (G1 , . . . , G8) and
(G8+1 , . . . , G<) there is a deterministic 2-player one-way protocol Π8

2
computing 5 . We design

the deterministic single-pass streaming algorithm � for 5 by simulating 2-player one-way

communication protocols under different partitions. The memory usage of � is therefore

bounded by the maximum communication cost of the simulated 2-player protocols plus an

index in [<] recording the number of processed items.

Notice that when processing the item G8+1, � has already processed G1 , . . . , G8 and has (<8 , 8)
in memory. � can thus reconstruct a compatible guess of G′′

1
, . . . , G′′

8
that would induce exactly

the message <8 as in Π
8
2
, and then sets the memory to be (<8+1 , 8 + 1)where <8+1 is the message

sent in Π8+1

2
when %1 has (G′′

1
, . . . , G′′

8
, G8+1) and %2 has (G8+2 , . . . , G<). Since Π8

2
is deterministic,
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it will always output the same answer when %2 has input (G8+2 , . . . , G<) and receives message

<8 . Thus, if G
′′
1
, . . . , G′′

8
would induce the same message <8 , then Π

8
2
would produce the same

answer regardless of whether %1 had input (G1 , . . . , G8) or (G′′
1
, . . . , G′′

8
). In particular, since Π8

2

computes 5 , this means 5 (G1 , . . . , G<) = 5 (G′′
1
, . . . , G′′

8
, G8+1 , . . . , G<). Thus, when we compute

<8+1, we still get some message that Π8+1

2
can use to correctly compute 5 alongside %2’s input

(G8+2 , . . . , G<).
� repeats this process for every 8 = 1, . . . , < − 1 and at the end it outputs 5 (G1 , . . . , G<).
Therefore, we complete the proof with

−−−→
DCC2( 5 ) ≤

−−−→
DSC( 5 ) ≤ −−−→DCC2( 5 ) + log<. �

Note that the additional index 8 in the above simulation, which results in the additive

log< term in the upper bound, indicates which 2-player protocol should be simulated in the

reconstruction, and it is implicitly shared in the 2-player communication case when< is common

knowledge.

When < is not known, the memory used for the index follows any previously agreed upon

encoding, which uses$(log<) space. For functions that arewell-defined for an arbitrary number

of input items, e. g., the parity function, this index can be saved, and hence

−−−→
DSC( 5 ) = −−−→DCC2( 5 ).

For communication complexity among more players, we establish the following corollary.

Corollary 4.2. For every :-party symmetric function 5 ,

(: − 1) · −−−→DCC2( 5 ) ≤
−−−→
DCC:( 5 ) ≤ (: − 1) ·

(−−−→
DCC2( 5 ) + log :

)
Proof. Combining Lemma 2.1 and Theorem 4.1, it follows that

−−−→
DCC:( 5 ) ≤ (: − 1) · −−−→DSC( 5 ) ≤ (: − 1) ·

(−−−→
DCC2( 5 ) + log :

)
The other direction

−−−→
DCC:( 5 ) ≥ (: − 1) · −−−→DCC2( 5 ) holds by giving I 9 = ∅ to every player

9 ∈ {2, . . . , : − 1} in the :-player case, when the problem degenerates to 2-player communication

but the same message has to be passed : − 1 times. �

Such a linear separation naturally extends to the communication complexity of C-player

versus :-player protocols, as long as 2 ≤ C < :. Thus, the deterministic communication

complexity grows linearly in the number of parties.

We remark that if every player must get a non-trivial input, i. e., at least one input element

to the function, the linear growth remains for some but not all problems. For example, the

communication complexity of the parity of : bits is linear in the number of players. However, to

decide whether : elements in [:] are distinct, the 2-player protocol requires communication

log

( :
:/2

)
≈ : − log

√
:, whereas the :-player worst-case communication grows sublinearly, i. e.,

for : players the communication is no more than

∑:−1

8=1
log

(:
8

)
� (: − 1) · log

( :
:/2

)
.
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5 Communication complexity for functions on a product space

5.1 Separations for randomized communication complexity

In this section, we consider the communication cost of randomized multi-player protocols

defined on product input distributions and present a : log : versus C log C separation between

:-player and C-player communication complexity.

First we introduce the Sum-Equal problem (as used in Viola’s work [23]).

Definition 5.1. The :-player Sum-Equal over integers, denoted by Sum-Equal: , requires deciding

whether

∑:
8=1

G8 = 0, where each player %8 is given an integer G8 as its private input together

with the integer : as public input shared by all players. In the CRS model, an additional

public random string is also known to all players. The :-player Sum-Equal over ℤ< , denoted by

Sum-Equal:,< , is defined similarly as Sum-Equal: , except that the input items are drawn from

ℤ< and the summation is over ℤ< , for a publicly known <.

Lemma 5.2 ([23], Theorem 15 and Theorem 29). For every : ∈ ℕ, 0 ≤ � ≤ 1/3, and in the CRS

model, the :-player �-error communication complexity of Sum-Equal satisfies:

(a) For every < ∈ ℕ,

−−−→
RCC:,�(Sum-Equal:,<) = $

(
: log(:/�)

)
.

(b) For every prime ? ∈ (:1/4 , 2:1/4), RCC:,�(Sum-Equal:,?) = Ω
(
: log :

)
.5

In particular, RCC:,�(Sum-Equal:,?) = Θ
(
: log :

)
in the CRS model if � = Ω (1/poly(:)).

Remark 5.3. Viola’s lower bound for Sum-Equal:,? is proved for a non-product distribution �′

whose support covers exactly a 2/? fraction of the whole (product) input space. Specifically, �′

is defined as follows:

Definition 5.4. We define two distributions � and �:{
� :=

(
�1 , . . . , �:−1 , −∑:−1

9=1
� 9

)
� :=

(
�1 , . . . , �:−1 , 1 −∑:−1

9=1
� 9

)
where for each 8 ∈ [: − 1], �8 and �8 are chosen iid uniformly from ℤ? . Then, �′ := �/2 + �/2 is

drawn from each distribution with probability
1

2
.

Thus if a :-player protocol solves Sum-Equal:,? with error � ≤ 1/: on a uniform distribution

� over the whole input space, then its error with respect to �′ is bounded by
1/:
2/? < :−3/4

.

Notice that the two player version of Sum-Equal:,? degenerates to testing equality over ℤ?

whose upper bound is $
(
log(1/�) + log log :

)
, see more details in Appendix A. By Lemma 5.2,

the Ω (:) separation in Corollary 5.5 naturally follows.

5Viola’s states the lower bound for constant �, but it naturally holds for smaller � (sometimes not tight).
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Corollary 5.5. For every prime ? ∈ (:1/4 , 2:1/4) and � ≤ 1/poly(:), there is a product distribution �

such that RCC

�
:,�(Sum-Equal:,?) = Ω

(
: log :

)
,

−−−→
RCC2,�(Sum-Equal:,?) = $

(
log :

)
.

For a larger error tolerance, say � is a constant, we have a stronger separation between

:-party communication and C-party communication. However, the hard distribution is slightly

non-product, that is, it is a product distribution on any : − 1 out of the : players.

Corollary 5.6. For every : ∈ ℕ, there is a :-party symmetric function 5 such that

(a) For any product distribution�, for every 2 ≤ C ≤ : and 0 ≤ � ≤ 1/3,−−−→RCC

�
C ,�( 5 ) = $

(
C log(C/�)

)
.

In particular,

−−−→
RCC

�
2,�( 5 ) = $

(
log(1/�)

)
.

(b) There exists a distribution �′, which is product on any : − 1 out of : players, for which

RCC

�′

:,�( 5 ) = Ω
(
: log :

)
as long as � ≤ 1/3.

For � ≥ 1/poly(C), the gap between RCC

�
:,�( 5 ) and

−−−→
RCC

�
C ,�( 5 ) is bounded as below:

RCC

�
:,�( 5 )

−−−→
RCC

�
C ,�( 5 )

= Ω

(
: log :

C log C

)

Proof. (a) If we plug in : = C to part (a) of Lemma 5.2, we get

−−−→
RCC:,�(Sum-EqualC ,<) =

$
(
C log(C/�)

)
for every <, C ∈ ℕ and 0 ≤ � ≤ 1/3. Thus, Sum-EqualC ,< satisfies (a).

(b) Part (b) of Lemma 5.2 tells us that for any 0 ≤ � ≤ 1/3, we can take some prime

? ∈ (:1/4 , 2:1/4), and we have RCC:,�(Sum-Equal:,?) = Ω(: log :). Furthermore, as is

noted in Remark 5.3, we actually have that this holds for a distribution �′ which is a

product on the first : − 1 players. As the Sum-Equal problem is symmetric with respect to

all k players, the desired property follows immediately.

�

The outline of the proof of Corollary 5.6 was given in Section 1. That is, the upper bound in

part (a) follows from applying : = 9 in the first part of Lemma 5.2, while the lower bound in

part (b) follows from the second part of Lemma 5.2.

5.2 Tightness of the communication complexity separation

The following theorem and corollary show tightness of our separations.

Theorem 5.7. For every :-party function 5 : Σ: → Γ, product distribution � over Σ: , and error

tolerance � < 1/3,
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the following holds:

−−−→
RCC

�
:,�( 5 ) =

{
$

(
: log :

)
· −−−→RCC2,�( 5 ) if � = Ω (1)

$ (:) · −−−→RCC2,�( 5 ) + $
(
: log :

)
if � ≤ 1/:Ω(1)

When � > 0, we have that

−−−→
RCC2,�( 5 ) = Ω(log :) and thus the following holds:

−−−→
RCC

�
:,�( 5 )

−−−→
RCC2,�( 5 )

≤$
(
: ·

(
1 +

log :

log(1/�)

))
=

{
$

(
: log :

)
if � = Ω (1)

$ (:) if � = 1/:Ω(1)

Proof. First we let Π0 be the optimal �-error 2-player one-way protocol Π0 that computes 5 with

communication � =
−−−→
RCC2,�( 5 ), and construct a new protocol Π2 by taking the majority of "

independent parallel copies of Π0 such that Π2 has error � = �2

16:2
and communication �".

Recall that Π0 has � < 1/3, it suffices to let C and " be defined as in Lemma 5.8 below:

C =

⌈
log

�

16:2

/log (4�(1 − �))
⌉

(5.1)

" = 1 + 2C = 1 + 2

⌈
log(1/�) + 2 log : + 4

log(1/�) + log(1/(1 − �)) − 2

⌉
= Θ

(
1 +

log :

log(1/�)

)
(5.2)

Lemma 5.8. Let C ∈ ℕ and -1 , -2 , . . . , -2C+1 be i.i.d. binary random variable such that Pr[-8 = 1] =
� < 1/2 for every 8 ∈ [C], and let . = Majority{-1 , . . . , -2C+1} be the majority of all -8’s. Then

Pr[. = 1] ≤ � as long as C ≥ log(�/�)/log(4�(1 − �)).

Proof. For 0 < � < 1/2 and C ≥ log(�/�)/log(4�(1 − �)), we have

Pr [. = 1] = Pr [|{8 | -8 = 1}| ≥ C + 1]

=

2C+1∑
9=C+1

(
2C + 1

9

)
� 9(1 − �)2C+1−9

≤
2C+1∑
9=C+1

(
2C + 1

9

)
�C+1(1 − �)C

=
2

2C+1

2

· �C+1(1 − �)C = (4�(1 − �))C · �

≤ �
�
· � = �

The first inequality holds because � < 1/2 and hence � 9(1 − �)2C+1−9 ≤ �C+1(1 − �)C
for 9 ≥ C + 1. The second inequality holds because 4�(1 − �) < 1 for � < 1/2, and

(4�(1 − �))C ≤ (4�(1 − �))log(�/�)/log(4�(1−�))
= �/�. Thus, we have proved that Pr[. = 1] ≤ � for

C ≥ log(�/�)/log(4�(1 − �)). �
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Note that Π2 is still a 2-player one-way protocol but has communication �". Furthermore,

we remark that �" = Ω
(
log :

)
for � > 0, since the error probability must be � ≥ 1/2� if it is

not zero, and hence " = Θ

(
1 + log :

log(1/�)

)
= Ω

(
1 + log :

�

)
.

Second we prove that for every product input distribution � over Σ: , the :-party function

5 can be evaluated by a randomized :-player one-way protocol Π: with communication

$
(
: · (�" + log :)

)
and error �/2 with respect to �. The idea is that given the product input

distribution �, each player %8 acts as follows:

1. %8 first assumes that the received message <8−1 from %8−1 will lead to a correct answer

with probability ≥ 1− �
4:

with respect to �. When we make this assumption, we essentially

have %8 consider the problem using the input %8−1 generated in their step 2 rather than the

real input.

2. %8 samples a possible input G′
1
, . . . , G′

8−1
of previous players %1 , . . . , %8−1, such that if Alice

gets input (G′
1
. . . , G′

8−1
) and sends <8−1, then with probability ≥ 1 − �

4:
the protocol Π2

leads to the correct answer. The probability is taken over internal randomness and Bob’s

input following the marginal distribution of � on the remaining players (here we use the

condition that � is a product distribution).

3. Finally, %8 sends amessage (<8 , 8) of length �"+ log : = $ (�"), where<8 is the message

that Alice would send in Π2 when her input is (G′
1
, . . . , G′

8−1
, G8).

Now, we can bound the error probability recursively: Suppose player %8 receives the message

<8−1 from %8−1, generated from (G1 , G2 , . . . , G8−1). Then, suppose %8 generates (G′
1
, G′

2
, . . . , G′

8−1
)

in step 2. Then Π2 is correct on the input -′ = (G′
1
, G′

2
, . . . , G′

8−1
, G8 , G8+1 , . . . , G:) with probability

≥ 1 − �
4:

by our choice of ". Furthermore, since Π2 generates <8 from both (G1 , G2 , . . . , G8−1)
and (G′

1
, G′

2
, . . . , G′

8−1
) and is deterministic, it produces the same answer on both -′ and - =

(G1 , G2 , . . . , G:). Thus, the answer we get from Π2 on input -′ is also correct on input - with

probability at least 1 − �
2:
.

Thus, we can union bound over all the players to get that the error probability of Π: is

bounded by : · ( �
2:
) = �/2 with respect to �. The fact that � is a product distribution is used

in the second step where the sampling process relies on that previous players’ inputs are

independently distributed from that of future players.

Thus we finish the proof and conclude that

−−−→
RCC

�
:,�( 5 ) ≤ $ (:�"). �

Notice that in the proof of Theorem 5.7, every message in Π: has the length bounded by

$ (�"), which gives an upper bound for the single-pass streaming complexity.

Corollary 5.9. For every :-party function 5 and product input distribution �, and for every � < 1/3,
RSC

�
� ( 5 ) ≤

−−−→
RSC

�
� ( 5 ) ≤ $

(
1 + log :

log(1/�)

)
· −−−→RCC2,�( 5 ).
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6 A direct sum for Viola’s problem

We next turn to our direct sum theorem for Viola’s problem. This extends the results of the

previous section by demonstrating that the gap is indeed multiplicative, where the results of the

previous section do not rule out the possibility of an additive Ω(: log :) gap between 2-player

and :-player communication complexity. A slightly modified version of this result is used in

our streaming result. Note that the theorem is proved for � < 1/9, but lower bounds for large

error tolerance such as � = 1/3 can be obtained using a standard error amplification argument.

Theorem 6.1. Let � :

(
ℤ<
?

) :
→ {0, 1}< be the :-party function computing < independent copies of

Sum-Equal:,? , where ? is a prime between :1/4
and 2:1/4

and < = >(:1/4). For every error tolerance
� ∈ (0, 1/9), we say a protocol Π is correct with probability 1 − � if there is a reconstruction function

� such that for every fixed 8 ∈ [<] and input G ∈
(
ℤ<
?

) :
, �

(
8 ,Π>DC(G)

)
equals the output of the 8-th

instance of Sum-Equal:,? with probability at least 1 − �, over the internal randomness of Π. Then the

communication cost of any Π which is correct with probability 1 − �, is Ω
(
<: log :

)
.

Proof. For simplicity of notation in the proof, we flip the output of �, so that it outputs 0 if the

input to the corresponding Sum-Equal:,? instance sums to 0 in ℤ? , and � outputs 1 on instances

with summation other than 0.

Let Π be an �-error randomized protocol for �, and let Π>DC (G) denote the output of Π on

input G. Here by “the �-error protocol” we mean that the expected error rate of Π is bounded

by �, since both Π>DC(G) and �(G) are binary vectors in {0, 1}< . Therefore,

Pr

8∈'[<]
[Π>DC (G)8 ≠ �8(G)] ≤ �

where the input to � is partitioned as G =
(
G(1) , G(2) , . . . , G(<)

)
∈ ℤ<×:

? such that �8(G) :=

Sum-Equal:,?(G(8)) computes the 8-th instance of Sum-Equal:,? for each 8 ∈ [<].
We abuse notation a little in this proof and let | · | denote the Hamming weight of a not

necessarily binary vector, which measures the number of non-zero coordinates of the vector.

Then,

E [|Π>DC (G) − �(G)|] ≤ �<

To prove that RCC:,�(�) = maxG |Π(G)| = Ω
(
<: log :

)
for the optimal �-error protocol Π,

we will deduce a contradiction if Π uses 2 < �<: log : bits of communication, for a constant

� = (1 − 9�)/135 > 0 and sufficiently large :. Thus, we can conclude a communication lower

bound of 2 ≥ �<: log : = Ω
(
<: log :

)
.

For the purposes of a contradiction, we first convert the randomized protocol Π into a

deterministic protocol Π′ that has small error with respect to a specific distribution ℋ . The

deterministic protocol Π′ is obtained by fixing all internal random coins of Π so that Π′ has
error rate at most � for inputs drawn fromℋ .

E-∼ℋ
[��Π′>DC(-) − �(-)��] ≤ �<
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Since Π′ can never generate a transcript larger than the communication that Π uses in the

worst case, i. e., |Π′(-)| ≤ maxG |Π(G)| = 2, it suffices to prove a communication lower bound

for Π′ on inputs drawn fromℋ .

By Markov’s inequality, we have that for every positive constant � > 0,

Pr

-∼ℋ

[��Π′>DC(-) − �(-)�� > �<
]
≤

E-∼ℋ
[��Π′>DC(-) − �(-)��]

�<
≤ �

�
(6.1)

Now we specify the distributionℋ . Let �, � be defined as in Definition 5.4. Note that:

(a) Sum-Equal:,?(�) = 1, Sum-Equal:,?(�) = 0 and hence �8(�) = 0, �8(�) = 1.

(b) the first : − 1 elements of � and �, denoted by �−: and �−: , follow the same distribution,

i. e., the uniform distribution over ℤ:−1

? .

For convenience we can write � = (�−: , 1 + �:).
Let � := �/2 + �/2 be a mixture of � and � and let ℋ be < independent copies of � as

below:

ℋ := �< = (�/2 + �/2)<

Since � = (�−: , 1 + �:) and � = �/2 + �/2, we note that

ℋ =
∑

E∈{0,1}<

1

2
<
(�<−: , E + �

<
:
) = (�<−: , + + �

<
:
),

where�<−: is uniformly distributed overℤ
<×(:−1)
? ,�<

:
is a vector inℤ<

? such that�<
:
= −∑:−1

9=1
�<
9
,

and + is a random variable that is uniform over {0, 1}< , that we will think of as an element in

ℤ<
? . With the above notation ofℋ , + , we have

�(ℋ) = �(�<−: , + + �
<
:
) = +

To prove the communication lower bound of a deterministic protocol Π′ that has error

probability ≤ � w.r.t. ℋ , we recall the following protocol decomposition by monochromatic

rectangles, c.f. Claim 24 in [23] or Lemma 1.16 in [18].

Claim 6.2 ([23], Claim 24). A :-player (number-in-hand) deterministic protocol using communication

≤ 2 partitions the inputs into � ≤ 2
2
sets of inputs '1 , '2 , . . . , '� such that

• the protocol outputs the same value on inputs in the same set, and

• the sets are rectangles: each '8 can be written as '8 = '8
1
× 'C

2
× . . . × '8

:
where '8

9
is a subset of

the inputs of Player 9.

For every 8 ∈ [�] and rectangle'8 , weuse the notation'8−9 := '8
1
×'8

2
×· · ·×'8

9−1
×'8

9+1
×· · ·×'8

:

to denote the projection of '8 on to the : − 1 coordinates except the 9-th one, for every 9 ∈ [:]. In
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particular, '8−: := '8
1
× '8

2
× · · · × '8

:−1
denotes the first : − 1 coordinates. Sometimes the index 8

of rectangle '8 is clear from context, for which we simply write ' instead of '8 .

In what follows we show a contradiction when Π′ has communication 2 < �<: log : and

hence there are � ≤ 2
2 < :�<: rectangles. The argument depends on the following lemma,

which essentially guarantees that for every large rectangle, Π′ is likely to make mistakes on

more than �< coordinates.

Lemma 6.3. For every rectangle ' satisfying Pr-−:∼ℋ−: [-−: ∈ '−:] ≥ 1


� > 1


:�<:
for which


 = ?$(1), there must be a set ! ⊆ [<] such that |!| = (1 − 135�)< and the conditional distribution

�
(!)
:
| (�<−: ∈ '−:) is

|!|
? -close to uniform over ℤ

|!|
? ; that is, the total variation distance between

�
(!)
:
| (�<−: ∈ '−:) and the uniform distribution is at most

|!|
? , where �

(!)
:

is the sequence of coordinates

�: corresponding to the instances of Sum-Equal in !.

Lemma 6.3 implies the following claim:

Claim 6.4. For every rectangle ' on which Π′ outputs F ∈ {0, 1}< , if Pr-−:∼ℋ−: [-−: ∈ '−:] ≥ 1


� ,

then for �, � satisfying 1 − 135� ≥ 3�,

Pr

-∼ℋ

[
- ∈ ', |�(-) − F | ≤ �<

]
<

1

2

Pr

-∼ℋ
[- ∈ '] (6.2)

For compactness of the proof of Theorem 6.1 we defer the proofs of Claim 6.4 and Lemma 6.3

to the end of this section.

Let ℛ̃ be the set of the � rectangles and ℛ ⊆ ℛ̃ be the set of all large rectangles satisfying

Pr-−:∼ℋ−: [-−: ∈ '−:] ≥ 1


� > 1


:�<:
. Then for every rectangle ' ∈ ℛ̃\ℛ,

Pr

-∼ℋ
[- ∈ '] ≤ Pr

-−:∼ℋ−:
[-−: ∈ '−:] <

1


�
≤ 1



��ℛ̃\ℛ��

Using Claim 6.4, we have

Pr

-∼ℋ

[��Π′>DC(-) − �(-)�� ≤ �<
]

=
∑
'∈ℛ̃

Pr

-∼ℋ

[
- ∈ ',

���(-) −Π′>DC(')�� ≤ �<
]

≤
∑
'∈ℛ

Pr

-∼ℋ

[
- ∈ ',

���(-) −Π′>DC(')�� ≤ �<
]
+

∑
'∈ℛ̃\ℛ

Pr

-∼ℋ
[- ∈ ']

≤
∑
'∈ℛ

1

2

Pr

-∼ℋ
[- ∈ '] +

∑
'∈ℛ̃\ℛ

Pr

-∼ℋ
[- ∈ ']

≤ 1

2

∑
'∈ℛ̃

Pr

-∼ℋ
[- ∈ '] + 1

2

·
���ℛ̃\ℛ��� · 1



��ℛ̃\ℛ�� ≤ 1

2

+ 1

2
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Combining it with (6.1), we have

1 − �
�
≤ Pr

-∼ℋ

[��Π′>DC(-) − �(-)�� ≤ �<
]
≤ 1

2

+ 1

2

=⇒ 1 − 2�

�
≤ 1




However, the above inequality cannot be true if we set � = 3� and pick a constant 
 > 3. Let

� := (1−9�)/135 be the constant for which wewant to show 2 ≥ �<: log : = Ω
(
<: log :

)
. Then

1− 135� = 9� ≥ 3� satisfies the condition in Claim 6.4 and 
 = $ (1) satisfies the requirement in

Lemma 6.3.

Thus we finish the contradiction argument and complete the proof of Theorem 6.1 with

RCC:,�(�) ≥ �<: log : = Ω
(
<: log :

)
. �

Proof of Claim 6.4. Recall that �′ := �
(!)
:
| (�<−: ∈ '−:), �

′
is |!|/? close to the uniform distribu-

tion by Lemma 6.3. Therefore for every fixed D ∈ ℤ|!|? , letting E denote the complement of E

(that is, we flip all of the bits in E),∑
E∈{0,1} |!| :|E |≤�<

Pr [�′ = D − E]

=
1

2

©­«
∑

E:|E |≤�<
Pr [�′ = D − E] +

∑
E:|E |≥|!|−�<

Pr [�′ = D − E]ª®¬
≤ 1

2

©­«
∑

E:|E |≤�<
Pr [�′ = D − E] +

∑
E:|E |≥|!|−�<

Pr [�′ = D − E] + 2|!|
?

ª®¬
<

1

2

∑
E∈{0,1} |!|

Pr [�′ = D − E]

where the first inequality follows Lemma 6.3, and the last inequality holds since as long as �′ is
close to the uniform distribution and |!| = (1 − 135�)< ≥ 3�<, there is

∑
E:�<<|E |<|!|−�<

Pr [�′ = D − E] = Ω (1) > |!|
?

Recall that D! and E! denote D and E restricted to coordinates in the set !, D−! and E−! denote
D and E restricted to coordinates not in !, and �

(−!)
:

denotes �: restricted to coordinates not in

!. We then apply the above inequality and get the following bound relating probabilities on a
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single coordinate conditional on the rest of the coordinates being contained in the rectangle ':∑
E∈{0,1}< :|E−F |≤�<

Pr

[
�<
:
= D − E

��� �<−: ∈ '−:]
≤

∑
E∈{0,1}< :|E!−F! |≤�<

Pr

[
�<
:
= D − E

��� �<−: ∈ '−:]
=

∑
E!∈{0,1} |!| :|E!−F! |≤�<

Pr

[
�
(!)
:
= D! − E!

��� �<−: ∈ '−:]
·

∑
E−!∈{0,1}<−|!|

Pr

[
�
(−!)
:

= D−! − E−!
��� �<−: ∈ '−: , �(!): = D! − E!

]
<

1

2

∑
E!∈{0,1} |!|

Pr

[
�
(!)
:
= D! − E!

��� �<−: ∈ '−:]
·

∑
E−!∈{0,1}<−|!|

Pr

[
�
(−!)
:

= D−! − E−!
��� �<−: ∈ '−: , �(!): = D! − E!

]
=

1

2

∑
E∈{0,1}<

Pr

[
�<
:
= D − E

��� �<−: ∈ '−:] (6.3)

The above inequality (6.3) implies (6.2) since:

Pr

-∼ℋ
[- ∈ ', |�(-) − F | ≤ �<]

= Pr

-−:∼ℋ−:
[-−: ∈ '−:] · Pr

-:∼ℋ:

[
-: ∈ ': , |�(-) − F | ≤ �<

��� -−: ∈ '−:]
= Pr

[
�<−: ∈ '−:

]
·

∑
E∈{0,1}<

1

2
<

Pr

-:∼ℋ:

[
-: ∈ ': , |�(-) − F | ≤ �<

��� �<−: ∈ '−: , �(ℋ) = E]
= Pr

[
�<−: ∈ '−:

]
·

∑
E∈{0,1}<

1

2
<

Pr

[
E + �<

:
∈ ': , |E − F | ≤ �<

��� �<−: ∈ '−:]
= Pr

[
�<−: ∈ '−:

]
·

∑
E∈{0,1}< :|E−F |≤�<

1

2
<

∑
D∈':

Pr

[
E + �<

:
= D

��� �<−: ∈ '−:]
=

1

2
<

Pr

[
�<−: ∈ '−:

]
·
∑
D∈':

∑
E∈{0,1}< :|E−F |≤�<

Pr

[
E + �<

:
= D

��� �<−: ∈ '−:]
<

1

2
<

Pr

[
�<−: ∈ '−:

]
·
∑
D∈':

1

2

∑
E∈{0,1}<

Pr

[
E + �<

:
= D

��� �<−: ∈ '−:]
=

1

2

Pr

-∼ℋ
[- ∈ ']

Thus we have completed the proof of Claim 6.4. �
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Proof of Lemma 6.3. We prove this lemma inductively for the indices in !, which we label as

1, 2, . . . , ℓ . In what follows, let �8 := 8
? for every 8 ∈ [ℓ ]. Given that

(
�
(1)
:
, . . . , �

(ℓ−1)
:

) ��� �<−: ∈ '−:
is �ℓ−1-close to the uniform distribution overℤℓ−1

? , wewill show that there exists another instance

which, w.l.o.g., we label as �
(ℓ )
:
, for which

(
�
(1)
:
, . . . , �

(ℓ−1)
:

, �
(ℓ )
:

) ��� �<−: ∈ '−: is �ℓ -close to

uniform distribution over ℤℓ
? .

The base case for ℓ = 0 is trivial. In what follows we suppose that the conditional distribution(
�
(1)
:
, . . . , �

(ℓ−1)
:

) ��� �<−: ∈ '−: is already �ℓ−1-uniform and we do our induction for �
(ℓ )
:
.

First we fix G ∈ ℤ
(ℓ−1)×(:−1)
? for which Pr

[(
�
(1)
−: , . . . , �

(ℓ−1)
−:

)
= G | �<−: ∈ '−:

]
≥ 1

�?(ℓ−1)(:−1) ,

where � is some value that will be specified later to get the desired property, and let ℰG denote
the event

(
�
(1)
−: , . . . , �

(ℓ−1)
−:

)
= G. Then we discuss the conditional distribution of the remaining

instances given ℰG .
Let

�G :=

{
9 ∈ [: − 1]

��� Pr

[
�<9 ∈ ' 9

�� ℰG] ≥ 1

�:2�<

}
,

Then

Pr

[
�<−: ∈ '−: | ℰG

]
=

∏
9∈[:−1]

Pr

[
�<9 ∈ ' 9 | ℰG

]
≤

∏
9∈([:−1]\�G)

1

�:2�<
=

(
1

�:2�<

) :−1−|�G |
(6.4)

On the other hand, recalling that

(
�
(1)
−: , . . . , �

(ℓ−1)
−:

)
is uniformly distributed and hence

Pr[ℰG] = 1

?(ℓ−1)(:−1) , we have

Pr

[
�<−: ∈ '−: | ℰG

]
= Pr

[
�<−: ∈ '−: , ℰG

]
/Pr[ℰG]

= Pr

[
ℰG

��� �<−: ∈ '−:] · Pr[�<−: ∈ '−:]/Pr[ℰG]

≥ 1

�?(ℓ−1)(:−1) ·
1


:�<:
·
(

1

?(ℓ−1)(:−1)

)−1

=
1

�
:�<:
(6.5)

Combining eqs. (6.4) and (6.5) and letting � ≥ (�
)2/:, we can conclude(
1

�:2�<

) :−1−|�G |
≥ 1

�
:�<:

=⇒ |�G | ≥ : − 1 −
�<: log : + log�


2�< log : + log �
≥

: log : + log�


2 log : + 2/: log�

≥

(
1 − �

2�

)
: − 1

Thus the size of �G is at least |�G | ≥
(
1 − �

2�

)
: − 1 = Ω (:).
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For every 9 ∈ �G , we have Pr

[
�<
9
∈ ' 9

�� ℰG] ≥ 1/�:2�<
by definition of �G and hence

H
[
�<9 | �

<
9 ∈ ' 9 , ℰG

]
≥ log

(
?<−ℓ

�:2�<

)
= (< − ℓ ) log ? − 2�< log : − log � (6.6)

The inequality in (6.6) follows by noting that �<
9
is initially uniform over ℤ<

? , which has ?<

distinct values. When we condition on ℰG , we fix ℓ − 1 of the coordinates, so there are ?<−ℓ+1

possible values of �<
9
conditional on ℰG . Then, the distribution is still uniform so we must have

at least ?<−ℓ+1/
(
�:2�<

)
values of �<

9
satisfying ℰG and �<9 ∈ ' 9 . Thus, the entropy is at least

H
[
�<9 | �

<
9 ∈ ' 9 , ℰG

]
≥ log

(
?<−ℓ+1

�:2�<

)
> log

(
?<−ℓ

�:2�<

)
Note that for every 8 ∈ [<], �(8)

9
is uniform over ℤ? as long as 9 ∈ [: − 1]. Thus conditioned

on ℰG and �<9 ∈ ' 9 , if there exists 0 ∈ ℤ? , Pr[�(8)
9
= 0 | �<

9
∈ ' 9 , ℰG] = ?0 > 1

2
then we have an

upper bound for the conditional entropy of �
(8)
9
:

H[�(8)
9
| �<9 ∈ ' 9 , ℰG] ≤ ?0 log

1

?0
+ (1 − ?0) log(? − 1) < (1 + log(? − 1))/2

Let � 9 ,G be defined as

� 9 ,G :=

{
8 ∈ [<] | H∞

[
�
(8)
9
| �<9 ∈ ' 9 , ℰG

]
≥ 1

}
=

{
8 | ∀0, Pr

[
�
(8)
9
= 0 | �<9 ∈ ' 9 , ℰG

]
≤ 1

2

}
where H∞ refers to the min-entropy.

Then for all 8 ∈ � 9 ,G :=
(
([<]\[ℓ − 1])\� 9 ,G

)
, H[�(8)

9
| �<

9
∈ ' 9 , ℰG] < (1 + log(? − 1))/2.

Additionally for 8 ∈ [ℓ − 1], H[�(8)
9
| �<

9
∈ ' 9 , ℰG] = 0 since �

(8)
9

is already fixed in ℰG . Finally, for
all 8 ∈ � 9 ,G ,H[�(8)9 | �

<
9
∈ ' 9 , ℰG] ≤ log ? since there are ? possible values of �

(8)
9
. As such, we

can bound the conditional entropy as follows:

H
[
�<9 | �

<
9 ∈ ' 9 , ℰG

]
≤

<∑
8=1

H[�(8)
9
| �<9 ∈ ' 9 , ℰG] (6.7)

=
∑
8∈�9 ,G

H[�(8)
9
| �<9 ∈ ' 9 , ℰG] +

∑
8∉�9 ,G∪�9 ,G

H[�(8)
9
| �<9 ∈ ' 9 , ℰG] +

∑
8∈�9 ,G

H[�(8)
9
| �<9 ∈ ' 9 , ℰG] (6.8)

=
∑
8∈�9 ,G

H[�(8)
9
| �<9 ∈ ' 9 , ℰG] + 0 +

∑
8∈�9 ,G

H[�(8)
9
| �<9 ∈ ' 9 , ℰG] (6.9)

≤ |� 9 ,G | · log ? + (< − ℓ + 1 − |� 9 ,G |)(1 + log(? − 1))/2 (6.10)
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Here, (6.7) follows from the subadditivity of entropy, (6.8) splits the indices into 3 sets, and

(6.9) and (6.10) use the statements we just showed above to upper bound the entropy of �
(8)
9

for

8 in each of the sets � 9 ,G , � 9 ,G , and 8 in neither set.

Combining the above with the lower bound for H
[
�<
9
| �<

9
∈ ' 9 , ℰG

]
in (6.6),

(< − ℓ ) log ? − 2�< log : − log � ≤ |� 9 ,G | · log ? + (< − ℓ + 1 − |� 9 ,G |)(1 + log(?))/2

=⇒
(
log ? − 1

2

)
|� 9 ,G | ≥ (< − ℓ )

(
log ? − 1

2

)
− 2�< log : −

1 + log ?

2

− log �

Therefore, recalling that ? > :1/4
and for log � = >(log ?) = >(log :), we have

|� 9 ,G | ≥ < − ℓ −
4�< log :

log ? − 1

− $
(
log �

log ?

)
> < − ℓ −

4�< log :
1

4
log : − 1

− > (1) > < − ℓ − 18�< + 1

Therefore, for every G ∈ ℤ(ℓ−1)×(:−1)
? for which

Pr

[(
�
(1)
−: , . . . , �

(ℓ−1)
−:

)
= G | �<−: ∈ '−:

]
≥ 1

�?(ℓ−1)(:−1) ,

the size of |�G | ≥
(
1 − �

2�

)
: − 1 = Ω (:); and for every 9 ∈ �G , |� 9 ,G | > < − ℓ − 18�< + 1 and���� 9 ,G ��� = < − ℓ + 1 − |� 9 ,G | < 18�<.

That is, these three bounds hold with probability at least 1− 1

� by taking a union bound over

all G ∈ ℤ(ℓ−1)×(:−1)
? where

Pr

[(
�
(1)
−: , . . . , �

(ℓ−1)
−:

)
= G | �<−: ∈ '−:

]
<

1

�?(ℓ−1)(:−1)

for G ∼
(
�
(1)
−: , . . . , �

(ℓ−1)
−:

) ��� �<−: ∈ '−: . In what follows we abuse notation a little by assuming

X :=

(
�
(1)
−: , . . . , �

(ℓ−1)
−:

) ��� �<−: ∈ '−: is a distribution over ℤ
(ℓ−1)(:−1)
? for which X satisfies all

the above statements of �G and � 9 ,G . This causes at most an additional loss of
1

� in the error

probability.

Notice that the conditional distribution

(
�
(1)
−: , . . . , �

(ℓ−1)
−:

) ��� �<−: ∈ '−: is indeed a product

distribution since ' is a rectangle. That is, letting G = (G1 , . . . , G:−1) where G 9 ∈ ℤℓ−1

? for

9 ∈ [:−1], then ℰG can be decomposed into :−1 independent events ℰG 9 , where each ℰG 9 denotes
the event

(
�
(1)
9
, . . . , �

(ℓ−1)
9

)
= G 9 and ℰG = ∧:−1

9=1
ℰG 9 . Therefore the conditional distribution

�<
9

�� ℰG is identical to �<
9

��� ℰG 9 since the distribution of �<
9
is independent from inputs of

the remaining : − 2 players (among the first : − 1 players) in the product distribution. As

a result, we have Pr

[
�<
9
∈ ' 9

�� ℰG] = Pr

[
�<
9
∈ ' 9

��� ℰG 9 ] so that ℰG 9 and G 9 fully determines
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whether 9 ∈ �G following the definition of �G . Similarly we have �
(8)
9

��� {�<9 ∈ ' 9 , ℰG} identical to

�
(8)
9

��� {�<9 ∈ ' 9 , ℰG 9 }, so that � 9 ,G is also fully determined by G 9 and ℰG 9 .
Next we fix 9 ∈ [: − 1] and pick G 9 ∈ ℤℓ−1

? for which 9 ∈ �G for G extended from G 9 . Now we

have ℰG 9 and � 9 ,G 9 := � 9 ,G containing all but a fraction of < 18�<
<−ℓ+1

coordinates, since

���� 9 ,G 9 ��� < 18�<

out of the < − ℓ + 1 unfixed coordinates in total. Then for -9 ∼ Uℤℓ−1

?
and ℐ(·) denoting the

indicator function,

<∑
8=ℓ

ℐ
(
Pr

-9

[
8 ∈ � 9 ,-9

��� 9 ∈ �-9 ] ≥ 1

3

)
≤

<∑
8=ℓ

3 Pr

-9

[
8 ∈ � 9 ,-9

��� 9 ∈ �-9 ]
= 3

<∑
8=ℓ

∑
G 9∈ℤℓ−1

? :9∈�G9

Pr[-9 = G 9] · ℐ
(
8 ∈ � 9 ,G 9

)
= 3

∑
G 9∈ℤℓ−1

? :9∈�G9

Pr[-9 = G 9 | 9 ∈ �-9 ] ·
<∑
8=ℓ

ℐ
(
8 ∈ � 9 ,G 9

)
= 3

∑
G 9∈ℤℓ−1

? :9∈�G9

Pr[-9 = G 9 | 9 ∈ �-9 ] ·
���� 9 ,G 9 ��� < 54�<

That is, for everyfixed 9 ∈ [:−1], there are at least<−ℓ+1−54�< coordinates 8 ∈ [<] satisfying
Pr

[
8 ∈ � 9 ,-9

��� 9 ∈ �-9 ] > 2

3
, i. e., with probability

2

3
, �
(8)
9

satisfies H∞
[
�
(8)
9
| �<

9
∈ ' 9 , ℰG

]
≥ 1 for a

randomly selected G 9 conditioned on that 9 ∈ �G 9 specifies a big component in the rectangle. This

is exactly the probability that the 8-th coordinate �
(8)
9

of �<
9
can be decomposed into a convex

combination of a uniform distribution over 2 elements.

Now we have at least (< − ℓ + 1 − 54�<)(: − 1) pairs of (8 , 9) ∈ {ℓ , ℓ + 1, . . . , <} × [: − 1]
satisfying the above condition Pr

[
8 ∈ � 9 ,-9

��� 9 ∈ �-9 ] > 2

3
, which means at least one fixed 8 must

appear in
(<−ℓ+1−54�<)(:−1)

<−ℓ+1
=

(
1 − 54�<

<−ℓ+1

)
(:−1)many pairs for different 9 ∈ [:−1] by a standard

averaging argument. Without loss of generality wemay assume 8 = ℓ , and let �′′ := (�′′
1
, . . . , �′′

:
)

denote the conditional distribution of �(ℓ ), i. e., each �′′
9

:= �
(ℓ )
9

��� {
�<
9
∈ ' 9 , ℰG

}
denotes the

conditional distribution of �
(ℓ )
9
. Recalling that |�G | ≥

(
1 − �

2�

)
: − 1, the number of elements in

|�G | hit by those pairs containing ℓ is at least(
1 − �

2�

)
: − 1 +

(
1 − 54�<

< − ℓ + 1

)
(: − 1) − (: − 1) ≥

(
1 − �

2�
− 54�<

< − ℓ + 1

)
: − 1 = Ω (:)
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We say the pair (8 , 9) is good for G if 9 ∈ �G and 8 ∈ � 9 ,G . Then recalling that |�G | ≥
(
1 − �

2�

)
: − 1,

the expected number of good (ℓ , 9) over G ∼ X is lower bounded as follows.

EG

[
#

{
9 ∈ [: − 1] | (ℓ , 9) is good for G

}]
= EG


:−1∑
9=1

ℐ
(
(ℓ , 9) is good for G

)
≥ EG


:−1∑
9=1

EG

[
ℐ

(
(ℓ , 9) is good for G

) ] = EG


:−1∑
9=1

Pr

G
[ℓ ∈ � 9 ,G , 9 ∈ �G]


≥ EG


∑
9∈�G

Pr

G
[ℓ ∈ � 9 ,G | 9 ∈ �G]


≥ 2

3

·
((

1 − �

2�
− 54�<

< − ℓ + 1

)
: − 1

)
By a Chernoff bound it implies

Pr

G

[
#

{
9 ∈ [: − 1] | (ℓ , 9) is good for G

}
≤ 1

3

(
1 − �

2�
− 54�<

< − ℓ + 1

)
:

]
≤ exp

(
−Ω

((
1 − �

2�
− 54�<

< − ℓ + 1

)
:

))
Let �′ = exp

(
−Ω

((
1 − �

2� −
54�<
<−ℓ+1

)
:
))

be an upper bound of this error probability. Then with

probability at least 1 − �′, the conditional distribution �′′
9
can be decomposed into a convex

combination of uniform distributions over two distinct elements for at least
1

3

(
1 − �

2� −
54�<
<−ℓ+1

)
:

indices 9 ∈ [: − 1].
Next we show that conditioned on the above decomposition, which happens with probability

≥ 1 − �′, the conditional distribution �′′
:
is close to uniform by the following claim.

Claim 6.5 (Claim 31 in [23]). Let ? be a prime number. Let - be the sum of C independent random

variables each uniform over {08 , 18} ⊂ ℤ? for 08 ≠ 18 . Then - modulo ? is � ≤ 0.5
√
? exp

(
−Ω

(
C/?2

) )
close to uniform.

Remark 6.6. This claim is actually stated incorrectly in the source, where Viola claimed $(C/?2)
instead of −Ω(C/?2). However, their usage of the claim as well as their proof are consistent

with the statement here. The proof of this claim simply considers primitive roots of unity

and does some basic computation, but to see intuitively why this is the case, we can think of

- = C08 + .(18 − 08)where . is binomial random variable with C trials of probability 1/2. The
probability mass of . is concentrated within $(

√
C) of the mean, so as long as C is large enough

for this range to be significantly larger than ?, we will have a strong bound.
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Plugging our parameters into the above claim and following exactly the same argument as

in [23] (�′′
:
is �′′-close to uniform if every component in the above convex decomposition of

�′′
:
is �′′-close to uniform), the statistical distance between �′′

:
= −∑:−1

9=1
�′′
9
and the uniform

distribution over ℤ? is bounded by

�′′ ≤ 0.5
√
? exp

(
−Ω

(
1

3

(
1 − �

2�
− 54�<

< − ℓ + 1

)
:/?2

))
= exp

(
−Ω

((
1 − �

2�
− 54�<

< − ℓ + 1

) √
:

))
Putting it all together, we conclude that�

(ℓ )
:

��� {�<−: ∈ '−: , �(1) , . . . , �(ℓ−1)}
is close to uniform,

which implies

(
�
(1)
:
, . . . , �

(ℓ−1)
:

, �
(ℓ )
:

) ��� �<−: ∈ '−: is also close to uniform. Moreover, its statistical

distance to uniform is bounded by

�ℓ ≤ �ℓ−1 +
1

�
+ �′ + �′′

Let � = 2? and � = 2 ≥ (�
)2/: = 2

$
(

log :

:

)
for 
 = ?$(1). Then for sufficiently large :m the

above induction argument goes through for ℓ ≤ (1 − 135�)<, with error �′, �′′ bounded by

�′ = exp (−Ω (:)) , �′′ = exp

(
−Ω

(√
:
))
⇐= 1 − �

2�
− 54�<

< − ℓ + 1

≥ 0.1⇐⇒ ℓ ≤ (1 − 135�)< + 1

Therefore the conditional distribution

(
�
(1)
:
, . . . , �

(ℓ−1)
:

, �
(ℓ )
:

) ��� �<−: ∈ '−: is �ℓ -close to uniform

for �ℓ bounded by
ℓ
? as follows:

�ℓ ≤ �ℓ−1 +
1

�
+ �′ + �′′ ≤ ℓ − 1

?
+ 1

2?
+ exp

(
−Ω

(√
:
))
≤ ℓ

?

Thus we have proved the induction hypothesis for every ℓ ≤ (1 − 135�)<. Letting ! be the

first (1 − 135�)< indices as in the induction hypothesis, we complete the proof of Lemma 6.3 for

|!| = (1 − 135�)< and statistical distance
|!|
? . �

7 Lower bound for Hamming norm estimation

In this section we present a space lower bound for single-pass streaming algorithms for (1 ± �)-
approximating the Hamming norm !0 in the strict turnstile model, which is denoted by T� as in

Section 1.1.1.

Formally, in theHammingnormestimationproblem there is anunderlyingvector (G1 , . . . , G# )
which starts from the all zero vector and processes up to < updates each of the form (8 , E) ∈
[#] × [±"]. The update (8 , E)means one should add E to the 8-th coordinate G8 in the vector G.

THEORY OF COMPUTING, Volume 19 (10), 2023, pp. 1–44 28

http://dx.doi.org/10.4086/toc


SEPARATING :-PLAYER FROM C-PLAYER ONE-WAY COMMUNICATION

After processing all < updates, we have ‖G‖
0
= |{8 | G8 ≠ 0}| and we want to output a number

within (1 ± �)‖G‖0 with probability ≥ 2/3. We additionally assume all players have access to a

heavy hitters oracle, which tells them whether the frequency of a given coordinate is greater

than ). This is a generalization of the case without a heavy hitters oracle, where we simply let

) = <" and we know that all frequencies are guaranteed to be smaller. The strict turnstile

model guarantees that G8 ≥ 0 for all 8 ∈ [#] at all positions in the stream, in which case it

suffices to prove the space lower bound in the simultaneous communication model following

the reduction in Theorem 4.1 of [2]. Furthermore, it is also guaranteed that for every 8 ∈ [#],
G8 ≤ poly(=) at the end of the stream. In this setting, the algorithm of [16] approximates ‖G‖0 up
to a (1 ± �) factor with $

(
�−2

log(#)
(
log(1/�) + log log())

) )
bits of space6, as long as � > 0.

We first note that solving distinct elements with a heavy hitters oracle reduces to solving

distinct elements given a threshold on the frequency of the coordinates. As such, we will solve

the complexity question of space complexity given a threshold ) for the frequency.

Theorem 7.1. The space complexity of (1 ± &) approximating !0 with probability at least 2/3 in a strict

turnstile stream with access to a heavy hitters oracle with a threshold of ) > 1 is Ω(&−2
log# log log)).

We note that the assumption ) > 1 is necessary for this bound to be well defined. When

) = 1, the heavy hitters oracle tells us exactly whether or not the frequency of a coordinate is 0

at the end of the stream, so the complexity is Θ(log#). This lower bound follows as we need to

write down the answer and the upper bound follows as we can directly count the elements with

nonzero frequency.

To prove this theorem, we first prove the following lemma:

Lemma 7.2. The space complexity of (1 ± &) approximating !0 with probability at least 2/3 in a strict

turnstile stream with access to a heavy hitters oracle with a threshold of ) > 1 is at least '(�)
2/3()&).

Proof. Suppose we have an algorithm � which gives us a (1 ± &) approximation of !0 in a strict

turnstile stream with access to a heavy hitters oracle with a threshold of ).

Now, if we are given an input where the maximum frequency of any element is at most ),

then we can go through our input and do exactly what � would do for everything other than

calls to the heavy hitters oracle. If � would make a call to a heavy hitters oracle, we just treat the

answer as 0 without making this query and proceed as � would.

Since we assumed the input has a maximum frequency of ), the heavy hitters oracle would

return 0 for every element, so this would give us the same answer as �, and by correctness of �,

it is a (1 ± &) approximation. �

Now, we will state and prove our main theorem:

6Indeed, their algorithm stores $
(
�−2

log#
)
counters modulo primes that are each $

(
log(1/�) + log log())

)
bits in magnitude, and it does not matter how large the values of G8 are at intermediate positions in the stream.
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Theorem 7.3. For error tolerance � < 1/3 and � = max

{
Ω

(√
log :

:

)
, 1

#0.49

}
, any single-pass

streaming algorithm solving T� with probability ≥ 2/3 in the strict turnstile model must use

Ω
(
�−2

log(#) log log())
)
bits of space.

First we introduce some supplementary problems that will be used in reductions:

Definition 7.4. In the 2-Gap-Ort= problem, we have two players Alice and Bob. They each have

as input a vector in {0, 1}= and we wish to compute

2-Gap-Ort=(G, H) =
{

1,
��(∑8∈= XOR(G8 , H8)) − =

2

�� ≥ 22
√
=,

0,
��(∑8∈= XOR(G8 , H8)) − =

2

�� ≤ 2√=,
and otherwise, it can return anything.

Definition 7.5. In the 2-Gap-Ort-Sum-Equal=,: problem, we have : players. The 8Cℎ player has

input (G8 ,1 , G8 ,2 , . . . , G8 ,=) ∈ ℤ=
. Then we wish to compute

2-Gap-Ort-Sum-Equal=(G, H) =


1,
���(∑9∈[=] 1G1, 9+G2, 9+···+G:,9=0

)
− =

2

��� ≥ 22
√
=,

0,
���(∑9∈[=] 1G1, 9+G2, 9+···+G:,9=0

)
− =

2

��� ≤ 2√=,
and in other cases it can return either 0 or 1. We let 1G1, 9+G2, 9+···+G:,9=0 denote the indicator function

which is 1 if G1, 9 + G2, 9 + · · · + G:,9 = 0 and 0 otherwise.

We will often be working with the 2-player problem 2-Gap-Ort-Sum-Equal=,2, which we

simply denote by 2-Gap-Ort-Sum-Equal= .

Additionally, we will let Sum-Equal
<,0
:,� denote the problem where we have < independent

instances of Sum-Equal:,�, and to solve it, our protocol needs to be able to solve at least 0< of

these instances correctly with probability at least 1 − �.

Definition 7.6. The Aug-Index-GOSE
C
=,:

problem consists of C independent instances of 10&
√
=-

Gap-Ort-Sum-Equal= , denoted ,1 , ,2 , . . . ,C , with : players and = coordinates each.7 In this

problem, the referee is asked to estimate ,8 based on an index 8 ∈ [C] together with the auxiliary

information of 58+1 , . . . , 5C , where we let 58 ∈ [±=] is defined as follows:

Let 0 be the number of underlying Sum-Equal: instances in ,8 outputting 1, and let 1 be the

number of underlying Sum-Equal: instances in ,8 outputting 0. Then, 58 = 0 − 1.

To prove Theorem 7.3, we combine the following statements:

(1) )& reduces to Aug-Index-GOSE
C
=,:

7Note that Aug-Index-GOSE
C
=,:

implicitly depends on the value of � even though we do not take � as a parameter

since in this work, we will only be using it with 1 value of �.
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(2) Aug-Index-GOSE
C
=,:

reduces to 10&
√
=-Gap-Ort-Sum-Equal

C
=,: .

(3) 10&
√
=-Gap-Ort-Sum-Equal

C
=,: reduces to 1-Gap-Ort-Sum-Equal

C
=′,: for some =′whichwill

be defined later.

(4) :-player communication complexity in the linear model is bounded by : − 1 times the

2-player communication complexity in the linear model with a specific input distribution.

(5) For a particular hard input distribution �, 1-Gap-Ort-Sum-Equal
C
=′,2 reduces to

Sum-Equal
C=′,2
2

.

(6) We can directly bound the communication complexity of Sum-Equal
C=′,2
2

on said distribu-

tion.

Of these statements, (2) follows almost immediately from the definition of Aug-Index-GOSE and

(4) follows by definition of the linear sketch model of communication. This will be explained in

more detail when we combine all of the above parts to bound the complexity of RSC
)
:,0,4
()&).

The following lemma proves (3)

Lemma 7.7. for every : ∈ ℕ, 0 ≤ � ≤ 1/2, and = ≥ 22

100&2
= =′,

RCC
!�#,)
:,� (10&

√
=-Gap-Ort-Sum-Equal=,:) ≥ RCC

!�#,)
:,� (2-Gap-Ort-Sum-Equal=′,:)

Proof of Lemma 7.7. Given =′ = 22

100�2
and an input instance of 2-Gap-Ort-Sum-Equal=′ with

underlying Sum-Equal problems outputting x
′ ∈ {0, 1}=′, we create the new input to 10�

√
=-

Gap-Ort-Sum-Equal= by taking 100�2=/22
copies of each coordinate, with results of underlying

problems being x ∈ {−1, 1}= where we map each output of 0 to −1. As a result,

∑=
9=1

x9 =

100�2=
22
·∑=′

9=1
x
′
9
.

If |∑9 x
′
9
| ≤ 2

√
=′, then |∑9 x9 | ≤ 10�=, and on the other hand |∑9 x

′
9
| ≥ 22

√
=′ implies

|∑9 x9 | ≥ 20�=.

Thus, any :-player �-error simultaneous communication protocol for 10�
√
=-

Gap-Ort-Sum-Equal= immediately implies a :-player �-error simultaneous communication

protocol for 2-Gap-Ort-Sum-Equal=′.

Since all we are doing is copying coordinates, this does not change the threshold. �

Now, we prove (5)

Theorem 7.8. Given some simultaneous communication protocol Π with two players that solves 1-

Gap-Ort-Sum-Equal= when each Sum-Equal instance has input drawn from the distribution �, where
� := (�/2 + �/2)< consists of < independent copies of �/2 + �/2 (here and later, we use this notation
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to denote a random variable being drawn from � with probability
1

2
and � with probability

1

2
), for �, �

defined as follows: {
� :=

(
�1 , . . . , �:−1 , −∑:−1

9=1
� 9

)
� :=

(
�1 , . . . , �:−1 , " −∑:−1

9=1
� 9

)
there exists a protocolΠ′ such that RCC

!�#
2,� (Π′) ≤ $(RCC

!�#
2,� (Π)) which solvesΩ(=) of the individual

Sum-Equal instances with probability at least
1+


2
for some constant 
 > 0.

Proof. Suppose Π is a protocol that solves 1-Gap-Ort-Sum-Equal= . Now, if Alice has input

- = (G1 , G2 , . . . G=) and Bob has input . = (H1 , H2 , . . . H=) to 1-Gap-Ort-Sum-Equal= , we define a

corresponding instance of 1-Gap-Ort= where Alice gets input -′ = (G′
1
, G′

2
, . . . G′=) and Bob gets

input .′ = (H′
1
, H′

2
, . . . H′=). We define G′

8
= 1 − H′

8
iff G8 + H8 = 0 and H′

8
= 0 with probability 1 if

H8 < "/2, probability 1

2
if H8 = "/2, and probability 0 otherwise, where " = 0! for the value 0

that is the largest integer such that 0! < ).
When -,. ∼ �, each G8 + H8 = 0 with probability

1

2
and H8 is equally likely to be −G8 or

" − G8 so it is symmetric about "/2. Hence, (-′, .′) ∼ {0, 1}2= . Furthermore, the answer to

the 1-Gap-Ort-Sum-Equal= instance is the same as the answer to the 1-Gap-Ort= instance by

construction. Therefore, we can solve this instance of 1-Gap-Ort= by simply running Π.

Now, if we letℳ be the message sent by Alice to Bob in protocol Π, then

�(-′;ℳ , .) ≥ IC2,�(1-Gap-Ort=) = Ω(=)

since Bob can solve 1-Gap-Ort= where Alice has input -′ and Bob has input .′ when he has

access to (ℳ , .) by returning the answer to 1-Gap-Ort-Sum-Equal= using protocolΠwith input

. after being sent the messageℳ.

We now note that -′ is = iid uniformly random bits. As such,

�(-′;ℳ , .) =
=∑
8=1

�(G′8 ;ℳ , . | G′
1
, G′

2
, . . . G′8−1

) ≥
=∑
8=1

�(G′8 ;ℳ , .).

Each of these terms is upper bounded by 1, so in order for the sum to be Ω(=), there exists
some constant 2 > 0 such that there are at leasts 2= indices 9 such that �(G′

9
;ℳ , .) ≥ 
 for some

constant 
 > 0.

Now, let

� = { 9 | �(G′9 ;ℳ , .) ≥ 
}.

We claim that the transcript of Πmust contain the solution to the 9Cℎ Sum-Equal instance

with probability at least
1+


2
for each 9. To see this, we note that Bob has as input . for

1-Gap-Ort-Sum-Equal= so he can compute H′
9
. Then, we note that

�(G′9 | ℳ , .) = �(G′9) − �(G
′
9 ;ℳ , .) ≤ 1 − 
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Since G′
9
∈ {0, 1}, let Pr[G′

9
= 0 | ℳ , .] = ?. Then, if ? = 0, the entropy is 0 so this is satisfied

for any 0 < 
 ≤ 1. If ? > 0, we have

−(? log ? + (1 − ?) log(1 − ?)) ≤ 1 − 
.

Since this is symmetric about ? = 1

2
and cannot be satisfied by ? = 1

2
since 
 > 0, we assume

WLOG that ? < 1

2
, in which case the entropy monotonically decreases as ? decreases. Now, we

claim that we must have ? < 1

2
− 


2
. It suffices to show that

−
((

1 − 

2

)
log

(
1 − 


2

)
+

(
1 + 


2

)
log

(
1 + 


2

))
≥ 1 − 


Simplifying this expression yields the solution

0 < 
 < 1.

Thus, for 0 < 
 < 1, we must have ? < 1−

2
. If 
 = 1, then the entropy is 0 so we must have

? = 0. Thus, we get that ? ≤ 1−

2
.

By symmetry, we thus have that either

Pr[G′9 = 0 | ℳ , .] ≤ 1 − 

2

or

Pr[G′9 = 0 | ℳ , .] ≥ 1 + 

2

.

In the former case, Bob lets Ĝ′
9
= 1 and in the latter case, Bob lets Ĝ′

9
= 0. Bob then computes H′

9

from H 9 . Then, if Ĝ
′
9
= H′

9
, Bob concludes that G 9 + H 9 ≠ 0 and if Ĝ′

9
= 1 − H′

9
, Bob concludes that

G 9 + H 9 = 0. By construction, this succeeds with probability at least
1+


2
, and all we did was run

Π and compute the value from the transcript. �

Corollary 7.9. There exist constants 
, 2 > 0 such that

D
!�#,)
2,�,�′

(
1-Gap-Ort-Sum-Equal&−2/100

)
≥ D

!�#,)

2,(1+
)/2,�

(
Sum-Equal

&−2/100,2

2

)
Proof. This follows directly from Theorem 7.8. The protocol Π′ solves Ω(=) of the individual
sum-equal instances, so there is some constant 2 such that Π′ solves at least 2= of them with

probability at least
1+


2
. Each instance of Sum-Equal corresponds to a single coordinate from

1-Gap-Ort-Sum-Equal so their frequencies must all be bounded by ) as well. �

We can now prove (6)
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Theorem 7.10. When � < 1

2
and 0 is some constant fraction,

IC
)
:,�(Sum-Equal

=′,0
:
) ≥ Ω(=′: log log)) (7.1)

where Sum-Equal
=′,0
:

is the problem where we are given =′ independent instances of Sum-Equal and

we are asked to solve 0=′ of them with probability 1 − � each.

The proof of this theorem can be found in Appendix B.

Corollary 7.11. For the input distribution � defined in the proof of Theorem 7.10, � < 1

2
, and 0 < 0 < 1,

D
!�#,)
2,�,� (Sum-Equal

=′,0
2
) ≥ Ω(=′ log log))

Proof. If we plug : = 2 into (7.1), we get

D
!�#,)
2,�,� (Sum-Equal

=′,0
2
) ≥ IC

)
2,�(Sum-Equal

=′,0
2
) ≥ Ω(=′ log log))

since by definition � is the hard distribution from which we got the information complexity

bound. �

And finally, we prove (1)

Theorem 7.12. RCC
!�#,)

:,1/3 ()&) ≥ RCC
!�#,)
:,0.4
(Aug-Index-GOSE)

Proof. Suppose we have a protocol that solves )&. Then, from the input of Aug-Index-GOSE
C
=,: ,

we construct an input to )& as follows:

For the 8-th 10�
√
=-Gap-Ort-Sum-Equal= instance ,8 in the Aug-Index-GOSE

C
=,: problem, we

construct 100
8−1

distinct copies of every element in the input. We take the concatenation of all of

these inputs as our input to )&. Thus the universe contains # := = + 100 · = + · · · + 100
C−1 · = ≤

100
C=/99 distinct elements in total, which is # ≤ =1.01

for sufficiently small C (and hence

1/#0.49 > 1/
√
=). The final Hamming norm is a weighted sum �′ :=

∑C
8=1

100
8−1 5 ′

8
. The

advantage of �′ (that is, the difference between the number of 1s and 0s in this stream) is hence

� := 2�′ − # =
∑C
8=1

100
8−1 58 .

Then we invoke the simultaneous communication protocol for T� to estimate �′, which

returns a value �̃′ satisfying (1 − �)�′ ≤ �̃′ ≤ (1 + �)�′. Translating to the advantage we get����̃ − ���� ≤ 2��′ ≤ 2�# . From this approximated value �̃, together with the index 8 and auxiliary

information 58+1 , . . . , 5C , we need to determine the output value of ,8 . Since the influence of

59 with 9 > 8 can be precisely removed from � before getting the approximated norm �̃, in

what follows it suffices to consider the estimation of ,C when the index is indeed 8 = C. Recall

that � = 100
C−1 5C +

∑C−1

8=1
100

8−1 58 , and thus �̃ is also an approximation of 100
C−1 5C as long as the

additive error

∑C−1

8=1
100

8−1 58 is bounded.

Let the input distribution to every 58 be padded from the 1-Gap-Ort-Sum-Equal&−2 distribu-

tion �′ as in Theorem 7.8, where the coordinates are iid bits drawn uniformly from {0, 1}. Thus,
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each 58 has expectation 0 and variance 25&2=2
It immediately follows by Chebyshev’s inequality

that Pr [| 58 | ≥ 50�=] ≤ 1/100. Similarly, Pr

[
| 58 | ≥ 50

9�=
]
≤ 1/100

9
. Therefore,

Pr

[����� C−1∑
8=1

100
8−1 58

����� > 100
C−1�=

]
≤

C−1∑
8=1

Pr

[
| 5C−8 | > 50

8�=
]
≤

C−1∑
8=1

1

100
8
≤ 1

99

(7.2)

where the first inequality holds because if | 5C−8 | ≤ 50
8�= for every 8, then

��∑C−1

8=1
·100

8−1 58
�� ≤∑C−1

8=1
100

8−1 × 50
C−8�= ≤ 50

C

100
�=

∑C−1

8=1
2
8 < 100

C−1�=.

Notice that as long as �̃ is a (1 ± �)-approximation of �, we must have

����̃ − ���� ≤ 2�# .

Furthermore suppose that we return 0 if �̃ < 15 · 100
C−1&= and 1 if �̃ ≥ 15 · 100

C−1&=. Since we

know that # ≤ 100
C=/99, we have

2�# ≤ 2&100
C=/99 < 3 · 100

C−1&=.

So in particular, if T� succeeds, if ,C = 0, we have | 5C | ≤ 10 ·100
C−1&=, so |� | = |∑C

8=1
100

8−1 58 | ≤
11 · 100

C−1&= with probability at least
98

99
. Then, |�̃ | < 14 · 100

C−1&= and our algorithm succeeds.

Similarly, if ,C = 1, we have | 5C | ≥ 20 · 100
C−1&=. Thus, with probability at least

98

99
,

|� | = |∑C
8=1

100
8−1 58 | ≥ 19 · 100

C−1&=, so |�̃ | > 16 · 100
C−1&= and our algorithm succeeds.

Thus, if T� succeeds with probability
2

3
, the above algorithm succeeds with probability

2

3
· 98

99
> 0.6. Thus we can determine the value of ,C with probability ≥ 0.6. The thresholds stay

the same because all we did to change the input was copy coordinates, which does not change

the frequencies. Hence,

RCC
!�#,)

:,1/3 (T�) ≥ RCC
!�#,)
:,0.4

(
Aug-Index-GOSE

C
=,:

)
.

�

Finally, we must fill in the missing statements 2) and 4) to bound the streaming complexity

RSC
)
:,0.4
()&). To do this, we conclude as follows:

When we solve Aug-Index-GOSE, we claim that in order to solve Aug-Index-GOSE with

probability at least 0.6 on every input, we must solve every instance of Gap-Ort-Sum-Equal with

probability at least 0.6. This is statement 2) in the overview, and can be proved as follows:

Suppose we have a protocol that solves Aug-Index-GOSE with probability at least 0.6. Now,

consider the 9Cℎ instance of Gap-Ort-Sum-Equal. Since the protocol succeeds with probability at

least 0.6 on any input, we can simply consider any input to Aug-Index-GOSE where the index is

9. By assumption, our protocol succeeds with probability at least 0.6, so it solves the 9Cℎ instance

of Gap-Ort-Sum-Equal with probability at least 0.6. This holds for every 9, so our protocol must

solve every instance of Gap-Ort-Sum-Equal with probability at least 0.6.
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To see why statement 4) in the overview is true, we wish to prove that

D
!�#,)
:,�,�

(
1-Gap-Ort-Sum-Equal

C
=′,:

)
≥ (: − 1)D!�#,)

2,�,�

(
1-Gap-Ort-Sum-Equal

C
=′,2

)
and this holds by definition of the linear sketch model of communication: recall that a

protocol consists of some matrix � where every player simply multiplies their input by � and

sends the resulting vector to the referee. For any matrix �, number of bits communicated by

each player will be the same regardless of the number of players, so we get this equivalence.

Thus, putting all of this together, we get the chain of inequalities:

RCC
!�#,)

:,2/3 ()&) ≥ RCC
!�#,)
:,0.4

(
Aug-Index-GOSE

C
=,:

)
≥ RCC

!�#,)
:,0.4

(
10&
√
=-Gap-Ort-Sum-Equal

C
=,:

)
≥ RCC

!�#,)
:,0.4

(
1-Gap-Ort-Sum-Equal

C
=′,:

)
≥ D

!�#,)
:,�,�

(
1-Gap-Ort-Sum-Equal

C
=′,:

)
≥ (: − 1)D!�#,)

2,�,�

(
1-Gap-Ort-Sum-Equal

C
=′,2

)
≥ (: − 1)D!�#,)

:,�,�

(
Sum-Equal

C=′,2
2

)
≥ Ω(:C=′ log log)) = Ω(&−2: log = log log))

so

RSC
)
:,0.4
()&) ≥

1

:
RCC

!�#,)
:,0.4
()&) ≥ Ω(&−2

log = log log)) = Ω(&−2: log# log log))
�

A Communication upper bound for Equality

The standard �-error protocol solving the Equality problem starts by sending and comparing

the digest under a random hash function ℎ : [?] → [@] where @ = $
(
�−1

log ?
)
. For example,

let @ be a random prime drawn from the interval [�−2
log

2 ?, 2�−2
log

2 ?] and let ℎ compute a

number modulo @. By the prime number theorem there are at least 2

√
# primes in the interval

[#, 2#], which implies the existence of 2�−1
log(?) distinct primes in that range. For any two

distinct numbers G, H ∈ ℤ? , since I = G − H has no more than log |I | ≤ log ? prime factors, the

error probability of the protocol is bounded by the collision probability of ℎ as follows:

Pr

@
[ℎ(G) = ℎ(H)] = Pr

@
[G ≡ H (mod @)] = Pr

@
[@ |(G − H)] ≤

log ?

2�−1
log ?

< �

The communication is a message of the form (ℎ, ℎ(G)) (indeed (@, G mod @) in the above

example), whose length is at most 2

⌈
log @

⌉
= $

(
log(1/�) + log log ?

)
= $

(
log(1/�) + log log :

)
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bits. In particular this is an upper bound for one-way communication protocols computing

Equality. Recalling that ? = Θ
(
:1/4

)
, we can conclude

RCC2,�( 5 ) ≤
−−−→
RCC2,�( 5 ) = $

(
log(1/�) + log log :

)
We note that the 1/� factor in @ is unavoidable, since otherwise more than an � fraction of

numbers would share the same message and hence the collision probability, as well as the error

probability, would exceed �.

B The lower bound for Sum-Equal
<,0
:

over integers

Theorem 7.10 (restated). Let Π be the �-error simultaneous :-player protocol for solving the

Sum-Equal
<,0′

:
problem, where < ≤ : log log)

20 log :
and the error tolerance � ∈ (0, 1/6). The simultaneous

communication complexity of Π is RCC
!�#,)
:,� (Π) = Ω

(
<: log log)

)
.

Proof. To prove the Ω
(
<: log log)

)
lower bound we will deduce a contradiction if Π uses

2 < �<: log log) bits of communication, for a sufficiently small constant �. By decreasing � we

may assume that : is arbitrarily large.

For the hard distribution we first introduce a magnitude bound 0 defined to be the largest

integer such that 0! ≤ min(:1/8 , )). We define " = 0!. Note that log 0 = Ω(log log)) as
" ≥ )

0+1
, so 0 log 0 = Ω(log") = Ω(log)). Taking the log of both sides, we have log(0 log 0) =

log 0 + log log 0 < 2 log 0, so log 0 = Ω(log log)).
Now we specify the distribution ℋ for the Sum-Equal: instances. ℋ := (�/2 + �/2)<

consists of < independent copies of �/2 + �/2, for �, � defined as follows:{
� :=

(
�1 , . . . , �:−1 , −∑:−1

9=1
� 9

)
� :=

(
�1 , . . . , �:−1 , " −∑:−1

9=1
� 9

)
where � 9 , �9 are uniformly and independently chosen from [0] for every 9 ∈ [: − 1]. Note that:

(a) Sum-Equal:(�) = 0, Sum-Equal:(�) = 1;

(b) the first : − 1 elements of � and �, denoted by �−: and �−: , are the same uniform

distribution over [0]:−1
. Thus we can write � = (�−: , " + �:)

(c) for 9 ∈ [: − 1], the 9-th player’s inputℋ9 is uniform over [0]< and independent from other

players’ input.

Besidesℋ: , the referee gets in addition an index = uniformly drawn from [<] together with

the answers .(9) = Sum-Equal:(-(9)) for 9 = = + 1, . . . , <. Letℋ ′= := (ℋ , .(=+1) , . . . , .(<)) and
the hard input distribution is defined asℋ ′ :=

∑<
==1

1

< · ℋ ′= .
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Now we derandomize the protocol Π by fixing the randomness and thus get an �-error
deterministic protocol Π′ with respect to the above input distribution. That is, Π′ outputs

Sum-Equal
(=)
:
= Sum-Equal:(-(=))with probability ≥ 1 − �.

By averaging, for at least </2 choices of the index = ∈ [<] and the restricted distribution

ℋ ′= , the error of Π′ is bounded by 2�.

Pr

(-,.)∼ℋ ′=

[
Π′>DC(Π′(-,.)) ≠ Sum-Equal:(-(=))

]
≤ 2� (B.1)

Then we introduce Lemma B.1 that lower bounds �
(
-
(=)
−: ;"1 , . . . , ":−1

)
≥ 0.1: log 0 for

protocols with small error. For compactness the proof of Lemma B.1 is deferred to the end of

this section.

Lemma B.1. For every = such that Π′ errs with probability ≤ 1/3 on input (-,.) ∼ ℋ ′= , on at

least 0′< of the Sum-Equal instances, the mutual information between -(=) and Π′(-,.) must be

�
(
-
(=)
−: ;"1 , . . . , ":−1

)
≥ 0.1: log 0.

Using Lemma B.1, it immediately follows that for � ≤ 1/6 the protocol Π′ must use

Ω
(
<: log 0

)
bits of communication. Since

RCC
B8<
:,� (Π

′) ≥ � (-−: ;"1 , . . . , ":−1)

=

<∑
8=1

�
(
-
(8)
−: ;"1 , . . . , ":−1 | -(1)−: , . . . , -

(8−1)
−:

)
=

<∑
8=1

�
(
-
(8)
−: ;"1 , . . . , ":−1 , -

(1)
−: , . . . , -

(8−1)
−:

)
≥

<∑
8=1

�
(
-
(8)
−: ;"1 , . . . , ":−1

)
≥ 0′<

2

· 0.1: log 0 = Ω
(
<: log 0

)
since 0′ is some constant between 0 and 1. �

Proof of Lemma B.1. Suppose by contradiction that �
(
-
(=)
−: ;"1 , . . . , ":−1

)
< 0.1: log 0 and recall

that < ≤ : log log)

20 log :
≤ 0.1: log 0

log(:0) for log 0 = Ω(log log)) and sufficiently large ),

�
(
-
(=)
−: ;"1 , . . . , ":−1 , -: , .

(=+1) , . . . , .(<)
)
< 0.1: log 0 + < log(:0) < 0.2: log 0

Therefore, recalling that �(�; �, �) = �(�; � | �) when � is independent from � and that
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-
(=)
9

is independent from -
(=)
1
, . . . , -

(=)
9−1

,

:−1∑
9=1

�
(
-
(=)
9

;"1 , . . . , ":−1 , -: , .
(=+1) , . . . , .(<)

)
≤
:−1∑
9=1

�
(
-
(=)
9

;"1 , . . . , ":−1 , -: , .
(=+1) , . . . , .(<) , -(=)

1
, . . . , -

(=)
9−1

)
=

:−1∑
9=1

�
(
-
(=)
9

;"1 , . . . , ":−1 , -: , .
(=+1) , . . . , .(<) | -(=)

1
, . . . , -

(=)
9−1

)
≤�(-(=)−: ;"1 , . . . , ":−1 , -: , .

(=+1) , . . . , .(<)) < 0.2: log 0

As a result, there is � ⊆ [: − 1] and |� | > :/2 such that for every 9 ∈ [: − 1], it holds that

�
(
-
(=)
9

;"1 , . . . , ":−1 , -: , .
(=+1) , . . . , .(<)

)
< −1 + 0.5 log 0,

and hence

H
[
-
(=)
9
| "1 , . . . , ":−1 , -: , .

(=+1) , . . . , .(<)
]

=H
[
-
(=)
9

]
− �

(
-
(=)
9

;"1 , . . . , ":−1 , -: , .
(=+1) , . . . , .(<)

)
> log 0 − (−1 + 0.5 log 0) = 1 + 0.5 log 0 (B.2)

Note that H∞
[
-
(=)
9
| "1 , . . . , ":−1 , -: , .

(=+1) , . . . , .(<)
]
< 1 implies the existence of G ∈ [0]

such that Pr

[
-
(=)
9
= G | "1 , . . . , ":−1 , -: , .

(=+1) , . . . , .(<)
]
= ?G > 1

2
, and hence it follows that

H
[
-
(=)
9
| "1 , . . . , ":−1 , -: , .

(=+1) , . . . , .(<)
]
=

∑
8∈[0]

?8 log

1

?8

≤?G log

1

?G
+ (1 − ?G) log

0 − 1

1 − ?G
<1 + 0.5 log(0 − 1) (B.3)

Thus, (B.2) ensures that H∞
[
-
(=)
9
| "1 , . . . , ":−1 , -: , .

(=+1) , . . . , .(<)
]
≥ 1 for every 9 ∈

�. In what follows, we prove that if H∞
[
-
(=)
9
| "1 , . . . , ":−1 , -: , .

(=+1) , . . . , .(<)
]
≥ 1 for

every 9 ∈ � and |� | > :/2, then the conditional distribution �′
:

:= �′
:
+ " and �′

:
:=

−∑:−1

9=1
-
(=)
9

��� {"1 , . . . , ":−1 , -: , .
(=+1) , . . . , .(<)

}
have statistical distance ≤ :−1/8

.

Notice that for 9 ∈ � and H∞
[
-
(=)
9
| "1 , . . . , ":−1 , -: , .

(=+1) , . . . , .(<)
]
≥ 1, the conditional

distribution �′
9
:= -

(=)
9

��� {"1 , . . . , ":−1 , -: , .
(=+1) , . . . , .(<)

}
is a convex combination of distri-

butions uniform over two values. More specifically, �′
9
=

∑
E 9

E 9 · �[E 9], where 
E 9 ∈ (0, 1) and
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each �[E 9] is a random variable uniform over two values. For 9 ∉ �, �′
9
=

∑
E 9

E 9 ·�[E 9] where �[E 9]

is fixed, i. e., a random variable that equals one value with probability 1. For E = (E1 , . . . , E:−1),
let 
E =

∏:−1

9=1

E 9 and �

[E] =
(
�[E1] , . . . , �[E:−1

] ,−∑:−1

9=1
�[E 9]

)
, then �′ can be decomposed as

�′ =
∑
E 
E · �[E].

Now for every 9 ∈ � and �[E 9] uniform over

{
0 9 , 1 9

}
⊂ [0], we can assume w.l.o.g., 0 9 < 1 9

and write �[E 9] = 0 9 + (1 9 − 0 9)/ 9 where / 9 is uniform over {0, 1}. Since 1 9 − 0 9 ∈ [0], among the

> :/2 indices 9 ∈ � for which �[E 9] takes two values, we must have C ≥ |� |/0 > :/$
(
log :

)
>
√
:

indices �′ such that for any 9 ∈ �′ the value 1 9 − 0 9 is the same value "′.

Thus �[E] can be further decomposed into a convex combination of �{D} where, among the

indices in �, only those in �′ are not fixed. Fix any D and denote �{D} by �′′. Let ( =
∑
9∈�′ / 9

denote the sum of C uniform i.i.d. 0/1 random variables. Then we can write

�′′: = 1 +"
′(

�′′: = 1 +"
′( +"

Since 1 ≤ "′ < 0, "′ divides " and hence " = "′@ for @ ∈ ℤ and @ ≤ " ≤ :1/8
. Now we

can apply @ times the shift-invariance of the binomial distribution, which is stated as follows:

Claim B.2 (Claim 39 in [23]). Let ( be the sum of C uniform, i.i.d. Boolean random variables. Then (

and ( + 1 have statistical distance ≤ $
(
1/
√
C
)
.

This yields that �′′
:
and �′′

:
have statistical distance

(�(�′′: , �
′′
: ) = (�("

′ · (, "′ · (@ + ()) ≤ @ · $
(
1/

√√
:

)
≤ :1/8/:1/4 = :−1/8

Recalling that �′ is just a convex combination of �′′, the statistical distance between �′
:
and

�′
:
= �′

:
+" is also bounded by :−1/8

. However, by definition of �′
:
and �′

:
we conclude that

the referee cannot distinguish the two cases of -(=) ∼ � and -(=) ∼ � with advantage greater

than :−1/8 < 1/6, which contradicts the condition that Π′ has error probability < 1/3.
Therefore, �

(
-
(=)
−: ;"1 , . . . , ":−1

)
≥ 0.1: log 0 = Ω

(
: log 0

)
. �
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