

1 **Title: Genomic factors shape carbon and nitrogen metabolic niche breadth across**
2 ***Saccharomycotina* yeasts**

4 **Authors:** Dana A. Opulente ^{1,2,3,^}, Abigail Leavitt LaBella ^{4,5,6,^}, Marie-Claire Harrison ^{4,5,#}, John
5 F. Wolters ^{1,2,#}, Chao Liu ⁷, Yonglin Li ⁸, Jacek Kominek ^{1,2,9}, Jacob L. Steenwyk ^{4,5,10}, Hayley R.
6 Stoneman ^{1,2,11}, Jenna VanDenAvond ^{1,2}, Caroline R. Miller ^{1,2}, Quinn K. Langdon ¹, Margarida
7 Silva ^{12,13}, Carla Gonçalves ^{1,4,5,12,13}, Emily J. Ubbelohde ^{1,2}, Yuanning Li ^{4,14,15}, Kelly V. Buh ¹,
8 Martin Jarzyna ^{1,16}, Max A. B. Haase ^{1,2,17,18}, Carlos A. Rosa ¹⁹, Neža Čadež ²⁰, Diego Libkind ²¹,
9 Jeremy H. DeVirgilio ²², Amanda Beth Hulfachor ^{1,2}, Cletus P. Kurtzman ^{22,%}, José Paulo
10 Sampaio ^{12,13}, Paula Gonçalves ^{12,13}, Xiaofan Zhou ^{4,8}, Xing-Xing Shen ^{4,7}, Marizeth Groenewald
11 ²³, Antonis Rokas ^{4,5,*}, Chris Todd Hittinger ^{1,2,*}

12 **Affiliations:**

13 [^]Co-first authors

14 [#]Co-second authors

15 [%]Deceased

16 *Corresponding authors: antonis.rokas@vanderbilt.edu and cthittinger@wisc.edu

17 ¹ Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, J.
18 F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI
19 53726, USA

22 ² DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI
23 53726, USA

25 ³ Biology Department Villanova University, Villanova, PA 19085, USA

27 ⁴ Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA

29 ⁵ Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA

31 ⁶ North Carolina Research Center (NCRC), Department of Bioinformatics and Genomics, The
32 University of North Carolina at Charlotte, 150 Research Campus Drive, Kannapolis, NC 28081,
33 USA

35 ⁷ College of Agriculture and Biotechnology and Centre for Evolutionary & Organismal Biology,
36 Zhejiang University, Hangzhou 310058, China

38 ⁸ Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative
39 Microbiology Research Center, South China Agricultural University, Guangzhou 510642, China

41 ⁹ LifeMine Therapeutics, Inc., Cambridge, MA 02140, USA

43 ¹⁰ Howards Hughes Medical Institute and the Department of Molecular and Cell Biology,
44 University of California, Berkeley, Berkeley, CA 94720, USA

46 ¹¹ University of Colorado - Anschutz Medical Campus, Aurora, CO 80045, USA

48 ¹²UCIBIO, Department of Life Sciences, NOVA School of Science and Technology,
49 Universidade NOVA de Lisboa, Caparica, Portugal
50

51 ¹³Associate Laboratory i4HB, NOVA School of Science and Technology, Universidade NOVA
52 de Lisboa, Caparica, Portugal
53

54 ¹⁴Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
55

56 ¹⁵Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology
Center, Qingdao 266237, China
57

58 ¹⁶Graduate Program in Neuroscience and Department of Biology, Washington University School
59 of Medicine, St. Louis, MO 63130, USA
60

61 ¹⁷Vilcek Institute of Graduate Biomedical Sciences and Institute for Systems Genetics, NYU
62 Langone Health, New York, NY 10016, USA
63

64 ¹⁸Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology,
65 44227 Dortmund, Germany
66

67 ¹⁹Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo
68 Horizonte, MG, 31270-901, Brazil
69

70 ²⁰Food Science and Technology Department, Biotechnical Faculty, University of Ljubljana,
71 Ljubljana, Slovenia
72

73 ²¹Centro de Referencia en Levaduras y Tecnología Cervecería (CRELTERC), Instituto Andino
74 Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), Universidad Nacional del
75 Comahue, CONICET, CRUB, Quintral 1250, San Carlos de Bariloche, 8400, Río Negro,
76 Argentina
77

78 ²²Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for
79 Agricultural Utilization Research, Agricultural Research Service, U.S. Department of
80 Agriculture, Peoria, IL 61604, USA
81

82 ²³Westerdijk Fungal Biodiversity Institute, 3584 CT Utrecht, The Netherlands
83

84 **Abstract:** Organisms exhibit extensive variation in ecological niche breadth, from very narrow
85 (specialists) to very broad (generalists). Two general paradigms have been proposed to explain
86 this variation: trade-offs between performance efficiency and breadth; and the joint influence of
87 extrinsic (environmental) and intrinsic (genomic) factors. We assembled genomic, metabolic,
88 and ecological data from nearly all known species of the ancient fungal subphylum
89 Saccharomycotina (1,154 yeast strains from 1,051 species), grown in 24 different environmental
90 conditions, to examine niche breadth evolution. We found that large differences in the breadth of
91 carbon utilization traits between yeasts stem from intrinsic differences in genes encoding specific
92 metabolic pathways, but limited evidence for trade-offs. These comprehensive data argue that
intrinsic factors shape niche breadth variation in microbes.

93 **One-Sentence Summary:** A nearly complete genomic and phenotypic catalog of the yeast
94 subphylum illuminates the evolution of metabolic breadth.

95
96 **Main Text:**
97 **Introduction**

98 The ecological niche is a fundamental concept in ecology and evolutionary biology that
99 explains the diversity and resource use of organisms through space and time. Species with broad
100 niche breadths are defined as generalists, while those with narrow ones are specialists. There are
101 many biotic and abiotic dimensions of the niche that can and do vary among organisms (1–3),
102 begging the question: What factors contribute to niche breadth variation?

103 Two broad paradigms have been offered as answers across a variety of taxa. The first
104 paradigm postulates that both niche generalism and specialism are governed by trade-offs
105 between performance efficiency and niche breadth (4–9). In the context of metabolic niche
106 breadth, selection for increased efficiency in utilizing a specific food source will be coupled to
107 selection against utilizing other food sources and vice versa. Over the long-term, such selection
108 produces generalists that utilize more substrates less efficiently and specialists that utilize fewer
109 substrates more efficiently. Consistent with these expectations, selection for specialization in
110 using a single food source in replicate populations of the bacterium *Escherichia coli* was coupled
111 to a reduction in their ability to catabolize other food sources (10).

112 The second paradigm postulates that generalist and specialist phenotypes are the outcome
113 of the joint influence of diverse extrinsic (environmental) and intrinsic (genomic) factors (11–16).
114 Here, generalists and specialists are shaped by the environments in which they occur and the
115 evolvability of their metabolic pathways, rather than by trade-offs. These specific conditions will
116 result in a unifying set of extrinsic and intrinsic features that govern the evolution of generalist
117 and specialist phenotypes.

118 Extrinsic factors are the environments in which species live. They can vary with respect
119 to numerous abiotic and biotic factors, such as spatial and temporal heterogeneity, temperature,
120 and carbon and nitrogen availability. For example, carbon sources have been shown to be limited
121 within endothermic hosts (17, 18); temperatures and soil moisture can vary between woodland and
122 meadow habitats due to canopy cover (19); and the availability of nitrogen sources (20, 21), carbon
123 sources (22–24), and growth-inhibiting specialized metabolites can differ due to the activities of
124 other organisms in the environment (25, 26). Variation in one or more of these extrinsic factors
125 could exert selective pressure on traits, resulting in generalism and specialism (27).

126 Intrinsic factors that may influence niche breadth include the evolution of promiscuous
127 enzymes responsible for the utilization of multiple resources (17, 28–31), as well as overlapping
128 biochemical, developmental, and genetic pathways (15, 16). For example, yeast *MAL* and *IMA*
129 genes are promiscuous enzymes associated with the utilization of multiple carbon sources in
130 yeasts; that is, they can increase niche breadth by enabling broader consumption (17, 28).
131 Conversely, gene loss due to drift or relaxed selection, which is likely in environments with
132 lower nutrient diversity, could lead to narrower niche breadths (32). The diversity of traits and the
133 genes that control them leads to the hypothesis that niche breadth variation may reflect the
134 interplay between evolutionary and ecological forces acting on intrinsic factors.

135 The subphylum Saccharomycotina (phylum Ascomycota, kingdom Fungi), which
136 includes the baker's yeast *Saccharomyces cerevisiae*, the opportunistic pathogen *Candida*
137 *albicans*, and the oleochemical cell factory *Yarrowia lipolytica*, exhibits extensive ecological,

138 genomic, and metabolic diversity. Thus, it is a superb system for testing paradigms for the
139 evolution of metabolic niche breadth (Fig. 1). The genomes of Saccharomycotina species,
140 commonly referred to as yeasts, are highly diverse; levels of gene sequence divergence across
141 yeasts are comparable to levels observed across plants and animals, and the subphylum also
142 harbors considerable variation in gene content, including metabolic genes (28). In addition,
143 extensive experimental work in model yeasts, such as *S. cerevisiae* (33) and *C. albicans* (34),
144 provides validated functional genetic information.

145 Yeast growth profiles have been characterized across many carbon and nitrogen sources
146 and environmental conditions (e.g., temperature), and they are highly variable across species (17,
147 28, 35). This phenotypic diversity is coupled to their ecological diversity. Yeasts are found in
148 almost every biome on a wide array of substrates, and the isolation environments (defined as the
149 specific environmental location a strain was originally isolated) of these yeasts are associated
150 with specific phenotypic traits. For example, both glucose and sucrose fermentation are
151 positively associated with living on fruits, fermented substrates, and juices (17), particularly
152 among multiple yeast genera that have been linked to wine production and food spoilage (17, 36,
153 37). Opportunistic fungal pathogens have also evolved metabolic strategies that allow them to
154 colonize the complex ecosystem of the human body, where carbon availability varies spatially
155 and temporally (17, 38, 39). This treasure trove of genomic, metabolic, and environmental
156 diversity across a subphylum makes Saccharomycotina an attractive and highly tractable system
157 for studying niche breadth evolution.

158 To gain insight into the factors that contribute to metabolic niche breadth variation, we
159 quantified variation in genome content, isolation environment, and carbon and nitrogen
160 metabolism for 1,154 yeast strains, which represent nearly all known species in the subphylum
161 Saccharomycotina. This dataset enabled us to evaluate the evidence for the two niche breadth
162 evolution paradigms (trade-offs versus underlying intrinsic and extrinsic factors) across species
163 with broad (generalists) and narrow (specialists) carbon niche breadths. Our evolutionary,
164 machine learning, and network analyses uncovered a unifying set of intrinsic factors among
165 generalists that were largely absent in specialists, and pinpointed specific genetic differences
166 between generalists and specialists, including novel associations between carbon generalism and
167 specific metabolic pathways. In contrast, we found limited evidence for trade-offs between
168 carbon generalism and growth rate. Through ancestral trait reconstruction and coevolution
169 analyses, we further demonstrated that generalists were more likely to have retained or gained
170 traits, whereas specialists repeatedly arose through pervasive gene and trait loss. The genomic,
171 metabolic, evolutionary, and ecological data for nearly all known species of the 400-million-
172 year-old yeast subphylum Saccharomycotina provided here, coupled with the availability of
173 multiple genetic models in the subphylum, present an inimitable resource and framework for
174 linking genomic variation to phenotypic and ecological variation.

175
176 *A genomic, evolutionary, and metabolic portrait of Saccharomycotina*

177 We sequenced and assembled 953 new genomes in this study and combined them with
178 140 genomes previously sequenced by the Y1000+ Project (40) and 61 publicly available
179 genomes (data S1A). Our dataset contained 1,154 genomes from 1,051 species, including 1,037
180 taxonomic type (i.e., ex-type) strains. Multiple strains were sequenced from 41 species, including
181 a total of 19 recognized varieties distributed across nine species (i.e., two to three varieties per

182 species). Sixty-one of the strains whose genomes were sequenced could not be assigned to any of
183 the known species; thus, they are candidates for new species. The genomic dataset spans 96 yeast
184 genera, which is about 90% of currently described genera (41). Excluded genera were typically
185 those for which no living culture was available or those described after our last round of genome
186 sequencing in February 2021. Our genome sequencing added between 1 and 336 species to each
187 order, most notably expanding the order Serinales (previously major clade CUG-Ser1), which
188 contains the human pathogens *C. albicans* and *Candida auris*, from 94 genomes to 430. All
189 genome assemblies totaled ~15 billion base pairs. The assemblies had a mean N50 of 387.5 Kb,
190 which was comparable to our previous smaller-scale dataset of 332 genomes (417.2 kb) (fig.
191 S1A & data S1A) (28). All genomes were annotated to identify putative coding sequences. On
192 average, 5,908 +/- 1069 (s.d.) protein-coding sequences were identified per genome with a range
193 from 3,775 (*Starmerella lactis-condensi*) to 20,704 (*Magnusiomyces magnusii*) (fig. S1B) (42).
194 Functional annotations were conducted using Kyoto Encyclopedia of Genes and Genomes
195 (KEGG) and InterPro. GC content (subphylum mean = 41.1% +/- 6.61%) ranged from 23.9%
196 (*Candida bohioensis*) to 66.8% (*Candida pseudocylindracea*), and genome size (subphylum
197 mean = 13.2Mb +/- 3.5Mb) ranged from 7.2Mb (*Starmerella lactis-condensi*) to 41.3Mb
198 (*Magnusiomyces magnusii*) (fig. S1C-D & data S1A). Of the 1,154 yeast genomes, 1,000 (~87%)
199 had \geq 90% of the 2,137 predefined single-copy orthologs defined by OrthoDB v10 (data S1A &
200 data S1B) (43, 44).

201 At least three independent nuclear codon reassessments are known to have occurred
202 during the evolution of the subphylum (45). Given the large number of newly added genomes, we
203 inferred codon tables and tRNA genes to confirm the known reassessments and test for potential
204 new reassessments (data S2). These results were consistent with the previously observed codon
205 reassessments. Notably, genomes of the order Ascoideales had a diversity of tRNAs with CAG
206 anticodons predicted to decode CUG codons, which is consistent with previous findings that
207 these yeasts may stochastically decode CUG as both leucine and serine (46).

208 To infer the genome-scale phylogeny of the Saccharomycotina, we used 1,403
209 orthologous groups (OGs) from 1,154 Saccharomycotina genomes and 21 outgroups. Nearly all
210 internodes in both concatenation-based (1,136/1,153; 99%) and coalescent-based (1,123/1,153;
211 97%) phylogenies received strong (\geq 95%) support (Fig. 2 and fig. S2 and fig. S3). The two
212 phylogenies were highly congruent, with only 60/1,153 (5%) conflicting internodes (fig. S3).
213 Moreover, relationships among the 12 recently circumscribed taxonomic orders (41) (previously
214 major clades) were congruent with previous studies (28, 47, 48), including the placement of the
215 Ascoideales (previously CUG-Ser2) and Alaninales (previously CUG-Ala).

216 To examine the evolution of metabolic niche breadth across Saccharomycotina, we
217 quantified the growth rates of 853 yeast strains on 18 carbon sources, 6 nitrogen sources, and a
218 no-carbon control (data S3). We found that yeasts displayed variation in growth rates across
219 carbon (fig. S4A) and nitrogen sources (fig. S4B); on average, each yeast strain could metabolize
220 eight carbon (Fig. 3A) and two nitrogen sources (fig. S5). Comparison of growth rates on
221 different carbon sources revealed that 65.22% of yeasts (n = 557) grew fastest on glucose, while
222 the remaining 34.78% (n = 297) grew faster on another carbon source (fig. S6). Mannose, an
223 epimer of glucose not typically tested in yeast growth experiments, was the carbon source on
224 which yeasts grew fastest, on average, after glucose (n = 112). We also found that 77 yeasts grew
225 faster on fructose than glucose, including cases where their maximum growth rate was on a third
226 carbon source. Several of these yeasts (n = 7) were in Dipodascales, which contains many known

227 fructophilic yeasts (49). The ability to grow faster on fructose was independently verified in a
228 second lab on a subset of yeasts (data S4).

229
230 *A lack of evidence for trade-offs between carbon niche breadth and growth rates*

231 We statistically classified yeasts into three categories for both carbon and nitrogen
232 utilization niche breadths: specialist, standard, and generalist (data S3). We found that, for both
233 carbon and nitrogen metabolism, most yeasts were classified as standard yeasts (i.e., yeasts that
234 did not fall into the extremes for carbon niche breadth) (76.0%: 648/853 and 78.4%: 669/853,
235 respectively) (data S3 & Fig. 3A). Of the remaining 24.0% (n = 205/853), 53.7% (n = 110/205)
236 were specialists, and 46.3% (n = 95/205) were generalists for carbon sources (Fig. 3A). The
237 median numbers of carbon sources used by specialist, standard, and generalist yeasts were four,
238 eight, and twelve, respectively. Carbon generalists and specialists were widely distributed across
239 the subphylum (Fig. 2), and all orders with more than 15 phenotyped strains (n = 8) featured both
240 generalists and specialists. However, the relative proportion of generalists and specialists within
241 orders varied greatly. For example, the order Saccharomycetales (n=82) had 3 generalists and 33
242 specialists, while the order Serinales (n= 347) had 53 generalists and 9 specialists. This result
243 suggests that yeast orders exhibit distinct eco-evolutionary trajectories.

244 First, we tested for a trade-off between growth rate and carbon niche breadth by asking if
245 specialists had a growth rate advantage over other yeasts in some conditions. We compared all
246 growth rates within each carbon source by classifying growth into three categories: slow (growth
247 rate in the lower quartile), intermediate, and fast (growth rate in the upper quartile.) We found a
248 statistically significant interaction between carbon classification and growth rate (p-value < 2.2e-
249 16); specialists were more often slow growers (38%: 146/381 growth rates) than fast growers
250 (15%: 54/381), whereas generalists were more often fast growers (33%: 403/1,222 growth rates)
251 than slow growers (20%: 238/1,222 growth rates) (Fig. 3B). Moreover, there were fewer
252 specialists than generalists in the fast category across all tested carbon sources (data S5). We also
253 examined linear phylogenetically corrected correlations between growth rates and carbon niche
254 breadth. We found that growth rates on five carbon sources were positively correlated with
255 carbon niche breadth when accounting for phylogeny and multiple-testing correction (glucose p
256 = 0.0028, mannose p = 0.0056, myo-inositol p = 0.0083, galactose p=0.0024, and fructose p =
257 0.0111: all slopes between 0.001 and 0.002) (table S1 and fig. S7A). No significant negative
258 correlations were identified, which would have indicated that specialists were faster growers.

259 Second, we repeated these analyses using only the fastest growth rate for each yeast
260 because specialists might outperform other yeasts only in the environment in which they are
261 specialized. We found that the proportion of fast-growing specialists was 9% (10/107), a
262 decrease from the 15% of fast-growing specialists found when we compared all growth rates
263 across all substrates, while the proportion of fast-growing generalists was 43% (38/89), an
264 increase from 33% (Fig. 3B). Thus, the strong interaction between carbon classification and
265 growth rates persisted when only the fastest rates were considered (p-value = 7.8 x10⁻¹¹). In this
266 case, carbon niche breadth was significantly and positively correlated with growth rates on
267 glucose (p-value = 0.0002, slope = 0.002), sucrose (p-value =0.0032, slope = 0.001), and
268 fructose (p-value=0.0062, slope = 0.001) after accounting for multiple testing and phylogeny
269 (table S1 and fig. S7B).

270 A third analysis using the fastest growth rate for each specialist compared to all other
271 growth rates yielded similar results (table S1 and fig. S7C). In this analysis, the growth rate for a
272 carbon source included only specialists whose growth rate was highest on that carbon source and
273 any growth rates for standard and generalist yeasts. Moreover, specialists were not the fastest-
274 growing yeast in any of the carbon sources tested, including glucose. Our findings suggest that
275 generalists grow faster on more substrates than specialists, including under conditions preferred
276 by specialists.

277 We next tested whether there was a trade-off between carbon and nitrogen breadth. We
278 found significantly fewer carbon generalists that were also nitrogen specialists ($n = 1$) and carbon
279 specialists that were also nitrogen generalists ($n = 2$) than expected by chance (p -value =
280 3.26×10^{-14}) (Fig. 3C). Moreover, trait-trait co-evolutionary analysis found that carbon generalists
281 tended to also be nitrogen generalists (Bayes factor >2). Furthermore, our analyses of co-
282 evolution between carbon and nitrogen generalism showed that nitrogen generalism arises almost
283 exclusively in a genetic background of carbon generalism (i.e. in carbon generalism lineages;
284 table S2). In other words, carbon generalism mainly arises before and may facilitate nitrogen
285 generalism. Additionally, phylogenetic regression analysis showed a strong positive correlation
286 between carbon and nitrogen niche breadth (reported p -value of 0.000, slope of correlation =
287 0.92; table S2). These results suggest that there is an evolutionarily conserved functional
288 connection between carbon and nitrogen metabolism in yeasts. Consistent with our finding, it is
289 well known that certain amino acids can serve as both a carbon and nitrogen source and, as such,
290 are dually regulated by both carbon and nitrogen signaling systems (50, 51). Additionally, many
291 metabolic pathways are known to be controlled by signals from other compounds or nutrients. In
292 bacteria, nitrogen, sulfur, phosphorus, and iron metabolism can even be controlled by carbon
293 metabolism (50, 52).

294 Our previous analysis of 332 yeasts identified a pervasive pattern of trait loss (28), which
295 suggests that generalists have either retained carbon-acquisition traits over long evolutionary
296 timescales or gained traits, unlike their non-generalist relatives. To test these hypotheses, we
297 compared the relative rates of carbon trait gain or loss, either across all yeasts or specifically
298 within generalist lineages, while taking phylogeny into account (Fig. 3D, table S3). For the eight
299 carbon traits found in less than 75% of generalists, we identified a strong trend of trait loss across
300 the entire phylogeny but some evidence of trait gain in the generalist background. Therefore,
301 carbon generalists appear to have both gained and retained carbon traits that were otherwise lost
302 broadly across the rest of the subphylum.

303 *Intrinsic factors shape carbon niche breadth variation in yeasts*

305 Given the extreme carbon niche breadths of generalists and specialists, we next tested
306 whether these two groups have independent factors favoring generalist and specialist phenotypes.
307 Extrinsic factors, such as carbon availability in an isolation environment, could shape variation
308 in metabolic niche breadth. Similar environments, which are likely to share extrinsic factors, may
309 favor the evolution of generalists or specialists. To explore the possibility that some
310 environments contain extrinsic factors that shape carbon niche breadth, we identified the precise
311 isolation environment for each possible yeast strain (1,088 total). We then grouped strains by
312 similar environments using a formal hierarchical ontology of isolation environments. This
313 ontology contained 1,597 classes (specific environments) (fig. S8, data S6). Environment
314 classifications at the highest level of our ontology generally contained similar numbers of

315 generalists and specialists: Arthropoda (24 generalists and 16 specialists), Chordata (7 and 8),
316 plants (25 and 31), and food or drink (5 and 16). Furthermore, generalists and specialists shared
317 environments. For example, *Hyphopichia homilentoma* (generalist) and *Wickerhamomyces*
318 *sydowiorum* (specialist) were both isolated from tunnels of the wood-boring beetle *Sinoxylon*
319 *ruficorne* in the red bushwillow *Combretum apiculatum*. Given the limited number of generalists
320 and specialists within an environment and the fact that we only had a single environment per
321 strain, we were unable to rigorously test for extrinsic factors that favor generalists or specialists.
322 We anticipate that incorporation of improved characterizations of yeast habitats and the addition
323 of isolation environment data into our formal ontology will enable future investigations of the
324 environmental factors shaping carbon niche breadth evolution.

325 We next hypothesized that the genomes of generalists may contain a larger number of
326 metabolic genes, which are intrinsic factors, than those of specialists. We found that both the
327 total number of genes and the number of KEGG ortholog groups (KOs) were both positively and
328 significantly associated with carbon niche breadth (Fig. 4A & fig. S10A-B). Strikingly, we found
329 that, for every additional carbon source a yeast could metabolize, its genome contained, on
330 average, an additional 36 genes and 2 KOs.

331 Metabolic networks, including the carbon metabolism network, are more complex than
332 just the total number of genes because they are highly interconnected due to shared enzymes and
333 pathways. To examine whether metabolic network structure varied between generalists and
334 specialists, we used KOs to build metabolic networks for all yeasts and tested for a correlation
335 between carbon niche breadth and six common network properties that reflect biological
336 complexity (Fig. 4B and fig. S10C-F, data S7) (53, 54). Relative to carbon specialists, carbon
337 generalists had a higher edge-count, or more connections between nodes of the network (Fig. 4B)
338 (55). Both carbon generalists and specialists had disassortative networks, or networks with high
339 levels of connection between nodes with dissimilar properties, a property of all biological
340 networks (56). However, relative to specialists, the generalist networks were less disassortative,
341 or had more highly interconnected nodes (Fig. 4B). There were no significant correlations
342 between carbon niche breadth and the other network properties (fig. S10C-F). Despite the
343 extreme difference in carbon metabolism capabilities, carbon generalists and specialists had only
344 slight differences in the size and shape of their global KEGG metabolic networks. These results
345 suggest that generalist and specialist networks are overall similar in size and shape but differ in
346 how they are wired.

347 We next investigated differences in the composition of generalist and specialist networks.
348 Generalists and specialists largely showed similar compositions across KOs, but a small set of
349 KOs was depleted (presence < 20%) in specialists and enriched (presence >85%) in generalists
350 (table S4). Generalist-enriched KOs were related to nitrogen, fructose, mannose, and galactose
351 metabolism. Enrichment of these terms suggests that differences in gene content contribute to
352 the overall carbon metabolism trait differences observed between generalists and specialists.

354 *Unifying genetic features of carbon niche breadth generalists*

355 To gain further insight into the genes and pathways contributing to the observed carbon
356 niche breadth variation across the yeast subphylum, we employed machine learning. Specifically,
357 we trained a supervised random forest classifier to use KO presence and absence as predictive
358 features for carbon niche breadth classification. Niche breadth classification of generalists and

specialists was used instead of the actual number of carbon sources because there were insufficient numbers of yeasts for some values to adequately train our model (e.g., there was only one yeast that grew on 17/18 carbon sources, but there were 64 yeasts that grew on five carbon sources). The resulting classifier was both highly sensitive and specific, correctly classifying 88% of specialists and 89% of generalists (AUC=0.93; Fig. 4C). The high accuracy suggests that generalist and specialist KEGG networks differ in ways that were not detected in the KO enrichment analysis.

Examination of the features on which the classifier relied using dropout analysis identified 2,050 KOs that significantly contributed to classification accuracy. Approximately 5,000 unique yeast KOs were used to train the algorithm, suggesting that many KOs contributed some information to niche breadth classification. We further examined the top four features because the fifth feature had only half the relative importance score of each of the fourth. Two of the top four features had direct links to the catabolism of specific carbon substrates, demonstrating the power and precision of our algorithm. The KO for *manB* (K01192), which encodes a β -mannosidase, had the second highest relative importance (relative importance 0.048). This KO was identified in 7% of specialists (8/111) and 80% of generalists (76/95). β -mannosidases are known to have a role in microbial utilization of *N*-glycans as a carbon source (57). Almost all the carbon generalists (93/95) can utilize mannose, which leads to the hypothesis that generalists likely use the mannose moieties present in *N*-glycans as a carbon and energy source.

The KO with the third highest importance was K17738 (relative importance 0.043), which is the *ARD* gene encoding D-arabinitol 2-dehydrogenase, an important component of the pentose and glucuronate interconversions pathway (Fig. 4D, step 5). This KO was more frequently present in the genomes of generalists (96%, 91/95) than in the genomes of specialists (71%, 79/111). Indeed, in a portion of this pathway, 5 of the 8 reactions were among the 2,050 KOs (with two falling in the top 100 KOs) that contributed to the classification of carbon generalists and specialists (black boxes in Fig. 4D). Importantly, growth on xylose was included in our carbon classification, and the xylose metabolism genes *XYL1* (Step 2 in Fig. 4D), *XYL2* (Step 3), and *XYL3* (Step 8) were all identified as important features (with *XYL1* falling within the top 100), suggesting that xylose metabolism genes may be promiscuous and have multiple metabolic capabilities (58). This result also supports the hypothesis that intrinsic genetic factors contribute to niche breadth by connecting pathways.

The feature with the highest relative importance was K03940 (relative importance 0.062), which encodes an NADH ubiquinone oxidoreductase core subunit (NDUFS7 in humans) of Complex I of the mitochondrial electron transport chain. This KO was identified in 29% of specialists (32/111) and 95% of generalists (90/95). Interestingly, Complex I is known to vary widely, in presence and makeup, including the presence of an alternative pathway in some yeasts (59). For example, in *S. cerevisiae*, the NADH oxidoreductase function of Complex I is conducted by three single-subunit enzymes (Ndi1p, Nde1p, or Nde2p) (60). Conversely, in *Y. lipolytica*, Complex I is composed of 42 subunits, including the NADH ubiquinone oxidoreductase NUKM (K03940) (61). Thirty additional Complex I enzymes were within the top 2,050 KOs, and two fell within the top 10%: K03941 and K03966, which are both NADH ubiquinone oxidoreductases in the β subcomplex (KEGG map00190). The Saccharomycetales and Saccharomycodales have both completely lost the canonical Complex I and contain many specialist yeasts (59). The relatively high importance of K03940, however, is not solely due to these orders, as the effect is widespread. For example, within the Pichiales, 100% (5/5) of generalist genomes encode K03940, in contrast to only 18% (6/33) of specialists. Complex I has

406 been implicated in *C. albicans* growth and virulence (62), as a global regulator of fungal
407 secondary metabolism in *Aspergillus* (63), and results in a higher proton motive force compared
408 to the alternative pathway in *S. cerevisiae*. The presence of Complex I in generalists, therefore,
409 may support increased carbon niche breadth and elevated growth rates.

410 The last KO we investigated was K00474 (relative importance 0.043), which encodes a
411 trimethyllysine dioxygenase involved in lysine degradation. Every step in the pathway that
412 degrades lysine to carnitine, except the last step, was identified as important in the machine
413 learning classification. The last step (Fig. 4E, Step 7) was not annotated by KEGG in any of our
414 yeasts. Therefore, we annotated the *BBH2* gene, which encodes the trimethyllysine dioxygenase,
415 directly from our predicted coding sequences using previously published reference sequences
416 (64). After manual annotation of *BBH2*, we found that most carbon generalists were predicted to
417 be able to complete the carnitine biosynthesis pathway (91%: 86/95), while relatively few carbon
418 specialists were predicted to do so (20%: 22/111). Carnitine plays an important role in the
419 transport of acetyl coenzyme A (acetyl-CoA), which in turn is a major metabolite that
420 contributes to many metabolic pathways, including the production of ATP in the mitochondrial
421 tricarboxylic acid (TCA) cycle. Acetyl-CoA can be produced within the mitochondria when
422 glucose is available or, when glucose is unavailable, it can be transported into the mitochondria
423 using the carnitine shuttle (65). Some yeasts, including *C. albicans*, rely solely on the carnitine-
424 independent method for acetyl-CoA transport (66). Similarly, some yeasts, such as *C. albicans*,
425 can synthesize carnitine; others, such as *S. cerevisiae*, cannot and rely on exogenous sources. A
426 complete carnitine synthesis pathway may ensure acetyl-CoA transport when glucose is
427 unavailable, especially in species that rely solely on the carnitine shuttle.

428 Additionally, carnitine and carnitine acetyltransferases can be essential for growth on
429 some nonfermentable carbon sources. These include ethanol, as well as glycerol in certain *S.*
430 *cerevisiae* mutants with disrupted citrate metabolism (67). We found that 90.5% (86/95) of
431 generalists can grow on glycerol compared to only 24.5% (27/110) of specialists (table S2).
432 Moreover, specialists that could grow on glycerol were more likely to have the complete
433 carnitine synthesis pathway than those that did not (z-test, $\chi^2 = 10.425$, p-value = 0.0186). These
434 results suggest that carnitine production affords metabolic flexibility and carbon niche breadth.

436 *Human yeast pathogens include both carbon generalists and specialists*

437 This comprehensive dataset and analytical framework provide the opportunity to study
438 how the observed genomic, metabolic, and environmental variation across the subphylum is
439 associated with any complex trait of interest (68–70). To illustrate this potential, we examined the
440 metabolic niche breadths of yeast pathogens of humans compared to those of their non-
441 pathogenic close relatives (using a specific phylogenetic distance cutoff to standardize the
442 clades) (Fig. 5). The World Health Organization (WHO) recently released its first-ever fungal
443 priority pathogens list, which included six Saccharomycotina species (71). We defined 11 yeasts
444 as opportunistic human pathogens because they are known to cause human infections and
445 generally require biosafety level 2 (BSL-2) precautions in research laboratories.

446 Carbon sources and availability vary *in vivo* in humans, suggesting that carbon niche
447 breadth may play an important role in promoting or preventing fungal pathogenesis (72). Yeasts
448 are subject to diverse micro-environments characterized by varying nutrients within a host (39, 72,
449 73). Their capacity to survive under fluctuating carbon conditions has been closely associated
450 with virulence. For example, lactate assimilation across the *C. albicans* clade and, in
451 *Nakaseomyces glabratus* (syn. *Candida glabrata*), is associated with increased antifungal and

452 osmotic stress resistance and has been shown to reduce phagocytosis within the host (73).
453 Interestingly, these pathogens exhibit reduced resistance to the antifungal drug amphotericin B
454 when grown in culture media containing lactate relative to culture media containing glucose (73).
455 We found that pathogens spanned the range of carbon niche breadth classifications and included
456 specialist, standard, and generalist yeasts. Carbon niche breadths within pathogenic yeasts ranged
457 from 15 in *Meyerozyma guilliermondii* to only 2 in *N. glabratus* (74). Furthermore, the proportion
458 of pathogenic yeasts classified as standard, generalist, and specialist was similar to that of their
459 non-pathogenic relatives (Fig. 5A-B). Collectively, these results suggest that yeast pathogenicity
460 is not associated with carbon niche breadth.

461 Previous work in *C. albicans* linked its pathogenicity to its high growth rate (75). To
462 examine whether this link holds across yeast pathogens, we visualized all pathogenic yeasts and
463 their relatives on a phylogenetically corrected principal component analysis using all our growth
464 rate data (Fig. 5C). We observed no clustering of pathogenic yeasts using carbon growth rates.
465 Moreover, yeast pathogens within the same clade varied in their growth rate on glucose by
466 almost 3-fold: *Candida parapsilosis* had a growth rate of 0.042, while *Candida tropicalis* had a
467 growth rate of 0.124. Our growth rate data, however, were collected at a specific temperature in
468 defined media and may not reflect growth rates in human infections.

469 We also examined the role of temperature, gene content, and environment in yeast
470 pathogenicity. One feature known to be necessary, but insufficient, for pathogenicity is growth at
471 human body temperature or 37°C (Fig. 5D) (39). We observed that relatives of human pathogens
472 had an elevated rate of growth at 37°C (~64%) compared to all yeasts for which growth at this
473 temperature was measured (~41%). This result likely reflects the necessity of growth at 37°C to
474 evolve prior to pathogenicity. Heat shock proteins (HSPs) are also known to impact temperature
475 tolerance (76). Examination of copy number variation in the genes encoding HSPs in the
476 pathogenic species and their relatives identified a slight increase in *HSP70* gene copy number
477 among pathogenic yeasts (Fig. 5D). Finally, we found that pathogenic yeasts and their relatives
478 had been isolated from all examined environments (Fig 5E). The analyses shown here suggest
479 that pathogenicity can emerge in species across the spectrum of carbon metabolic breadth.
480 Moreover, the lack of notable differences between yeast pathogens and their non-pathogenic
481 relatives supports the hypothesis that the traits and genetic elements contributing to pathogenicity
482 are not broadly shared across pathogens but unique to each (77). The data and analyses presented
483 here provide a model for the investigation of other complex traits across Saccharomycotina using
484 our ensemble of genomic, metabolic, and environmental data.

485 486 **Conclusions**

487 Here we focused on two predominant paradigms proposed to underlie the evolution of
488 yeast carbon niche breadth. The first paradigm, where trade-offs dominate, was not supported
489 when we analyzed over 10,000 growth rates measured across 853 yeasts. We found that
490 generalists typically grew faster on carbon sources than specialists, even on those carbon sources
491 for which specialists had their maximum growth rates. Thus, the ability to metabolize additional
492 carbon sources does not come at the cost of reduced growth rates on other carbon sources.
493 Carbon metabolism traits found within generalists were either maintained across evolutionary
494 time or gained, even though there was a strong overall trend for trait loss across the subphylum.
495

496 Of course, trade-offs between carbon metabolism traits likely exist in natural habitats. Future
497 experiments along gradients of different environmental conditions, such as temperature,
498 competition, or oxygen availability may shed additional light on condition-specific trade-offs in
499 carbon niche breadth evolution.

500 In contrast, we found strong support for the second paradigm in the form of intrinsic
501 factors that underlie the generalist phenotype. Machine learning allowed us to identify specific
502 genes, complexes, and pathways shared by generalists but largely absent from specialists. These
503 genes were directly involved in carbon and energy metabolism, often by enhancing metabolic
504 flexibility and robustness. This finding supports the second paradigm because we identify a
505 shared set of intrinsic genomic features across the generalist phenotype, even though generalists
506 vary in the specific carbon sources they can metabolize. This finding does not support the
507 hypothesis of trade-offs for two reasons. First, the pathways enriched in generalists are
508 hypothesized to increase metabolic efficiency, which is contrary to the proposed trade-off
509 between carbon niche breadth and efficiency. Second, under the trade-off paradigm, specialists
510 and generalists would both have unique traits that provide them with a selective advantage.
511 However, we found that generalists, as compared to specialists, have more genes in their
512 genomes, including those not directly associated with carbon metabolism.

513 Given the advantages of wide carbon niche breadth and the absence of detectable
514 efficiency costs, the question remains: what forces are shaping specialist yeasts? In some cases,
515 carbon specialism could be associated with rapid gene loss. For example, in the genus
516 *Hanseniaspora* (10/14 or 71.4% specialists), there were widespread gene losses, including of
517 genes involved in DNA repair and carbon metabolism (78). Another hypothesis is that each
518 specialist is subject to unique evolutionary pressures that would obviate unifying features.
519 Finally, it is also possible that there are growth-associated trade-offs that we are unable to
520 measure. Features, such as enhanced carbon sequestration, killer yeast toxins, pathogenicity, and
521 microbial community composition, could provide specialists with advantages in highly specific
522 environments. For example, *Hanseniaspora* species have a growth advantage over other species,
523 including *S. cerevisiae*, on grapes at harvest and in the early stages of alcoholic fermentation (79).
524 Further investigations into the evolution of yeast generalism and specialism will likely be
525 fruitful, but a plethora of additional questions could be addressed with these data including:
526 quantifying correlations among genes, traits, and/or ecologies; investigations of gene family
527 evolution; research into the origins of pathogenesis; and genome-informed bioprospecting of
528 yeasts and their genes for the sustainable production of cellulosic biofuels and bioproducts. More
529 broadly, by coupling a comprehensive dataset with a robust analytical framework for studying
530 macroevolutionary processes, the Y1000+ Project provides a roadmap that connects DNA to
531 diversity.

532 **Summary of Methods**

533 Detailed materials and methods can be found in the supplementary materials (80). All data
534 generated as a part of the project have been deposited in a FigShare repository (42).

535 **Genome sequencing, annotation, and phylogenomics**

539 Strains were obtained primarily from the NRRL (USA) and CBS (Netherlands) culture
540 collections (USA). We sequenced pair-end libraries using the Illumina HiSeq 2500 platform and
541 assembled genomes using the meta-assembler pipeline iWGS (81). We assessed assembly quality
542 using Benchmarking Universal Single-Copy Orthologs (BUSCO) (44) and filtered the assemblies
543 to remove mitochondrial and bacterial DNA contaminants. Genomes were functionally annotated
544 using KEGG (55) and InterPro (82, 83) databases. We constructed a phylogenomic data matrix
545 from 1,403 orthologous groups (taxon occupancy for each group $\geq 50\%$; 719,591 amino acid
546 sites); we inferred the phylogeny of the subphylum using both concatenation and coalescence
547 under maximum likelihood using IQ-Tree (84) and ASTRAL-III (85) respectively, and estimated
548 the yeast time tree using the RelTime method (86).

550 **Phenotyping, niche breadth classification, and testing for trade-offs and trait co-evolution**

551 We generated quantitative growth data on 18 carbon and 6 nitrogen sources for 853
552 yeasts, measuring optical density every two hours for a week on the BMG Omega SpectroStar
553 Plate Reader. We conducted all experiments in triplicate, and a new yeast colony was picked for
554 each yeast across replicates. We calculated growth rates using a logistic model using the R
555 package *gofit* (87). We classified yeasts as specialist, standard, or generalist for both carbon and
556 nitrogen metabolism by calculating the binomial confidence intervals of carbon and nitrogen
557 breadth relative to randomized growth data. We measured the correlation between carbon and
558 nitrogen breadth and tested for trade-offs between carbon niche breadth and efficiency (by
559 measuring the correlation between growth rates and carbon niche breadth classifications) using
560 phylogenetic generalized least squares analyses with PGLScaper (88). Finally, we inferred the co-
561 evolution of carbon traits and carbon generalism/specialism using BayesTraits
562 (<http://www.evolution.reading.ac.uk>).

563 **Underlying factors driving generalist and specialist phenotypes**

564 We identified strain-specific isolation environments for 1,088 yeasts and standardized
565 them by creating an ontology of environments and their hierarchical network using Web Protégé
566 (<https://github.com/protegeproject/webprotege>). To identify underlying genomic features
567 contributing to generalists and specialist phenotypes, we used genome annotations to build
568 metabolic networks and quantify network variation among generalists and specialists while
569 accounting for phylogeny. We also identified KEGG ontologies enriched in generalists and
570 specialists using a KEGG enrichment analysis (89). Finally, we constructed a machine learning
571 algorithm using the XGBoost random forest classifier (90), which we trained using 90% of the
572 genomic data and using the remaining 10% for cross validation, to identify genes whose
573 presence/absence was most strongly associated with carbon generalism and specialism.

574 **References**

1. E. L. Bruns, J. Antonovics, M. E. Hood, From generalist to specialists: Variation in the host range and performance of anther-smut pathogens on *Dianthus*. *Evolution (N Y)* **75**, 2494–2508 (2021).
2. D. B. Preston, S. G. Johnson, Generalist grasshoppers from thermally variable sites do not have higher thermal tolerance than grasshoppers from thermally stable sites-A study of five populations. *J Therm Biol* **88**, 102527 (2020).
3. J. W. Wenger, J. Piotrowski, S. Nagarajan, K. Chiotti, G. Sherlock, F. Rosenzweig, Hunger Artists: Yeast Adapted to Carbon Limitation Show Trade-Offs under Carbon Sufficiency. *PLoS Genet* **7**, e1002202 (2011).

584 4. R. H. MacArthur, *Geographical Ecology: Patterns in the Distribution of Species* (Princeton University Press, 585 1984; <https://books.google.com/books?id=3NAYEKc--WAC>)

586 5. D. S. Wilson, J. Yoshimura, On the coexistence of specialists and generalists. *Am Nat* **144**, 692–707 (1994).

587 6. A. R. Burmeister, A. Fortier, C. Roush, A. J. Lessing, R. G. Bender, R. Barahman, R. Grant, B. K. Chan, P. E. 588 Turner, Pleiotropy complicates a trade-off between phage resistance and antibiotic resistance. *Proceedings of the National Academy of Sciences* **117**, 11207–11216 (2020).

589 7. Z. Luo, J. Liu, P. Zhao, T. Jia, C. Li, B. Chai, Biogeographic patterns and assembly mechanisms of bacterial 590 communities differ between habitat generalists and specialists across elevational gradients. *Front Microbiol* **10**, 591 169 (2019).

592 8. F. Seebacher, V. Ducret, A. G. Little, B. Adriaenssens, Generalist–specialist trade-off during thermal 593 acclimation. *R Soc Open Sci* **2**, 140251 (2015).

594 9. J. D. Napier, P. P. Grabowski, J. T. Lovell, J. Bonnette, S. Mamidi, M. J. Gomez-Hughes, A. VanWallendael, 595 X. Weng, L. H. Handley, M. K. Kim, A generalist–specialist trade-off between switchgrass cytotypes impacts 596 climate adaptation and geographic range. *Proceedings of the National Academy of Sciences* **119**, e2118879119 597 (2022).

598 10. E. A. Ostrowski, R. J. Woods, R. E. Lenski, The genetic basis of parallel and divergent phenotypic responses in 599 evolving populations of *Escherichia coli*. *Proceedings of the Royal Society B: Biological Sciences* **275**, 277–284 600 (2008).

601 11. Q. Xu, G. Luo, J. Guo, Y. Xiao, F. Zhang, S. Guo, N. Ling, Q. Shen, Microbial generalist or specialist: 602 Intraspecific variation and dormancy potential matter. *Mol Ecol* **31** (2022).

603 12. R. Kassen, The experimental evolution of specialists, generalists, and the maintenance of diversity. *J Evol Biol* 604 **15**, 173–190 (2002).

605 13. E. Hesse, A. Best, M. Boots, A. R. Hall, A. Buckling, Spatial heterogeneity lowers rather than increases host– 606 parasite specialization. *J Evol Biol* **28**, 1682–1690 (2015).

607 14. L. Büchi, S. Vuilleumier, Coexistence of specialist and generalist species is shaped by dispersal and 608 environmental factors. *Am Nat* **183**, 612–624 (2014).

609 15. C. Bleuven, C. R. Landry, Molecular and cellular bases of adaptation to a changing environment in 610 microorganisms. *Proceedings of the Royal Society B: Biological Sciences* **283** (2016).

611 16. L. Caspeta, J. Nielsen, Thermotolerant yeast strains adapted by laboratory evolution show trade-off at ancestral 612 temperatures and preadaptation to other stresses. *mBio* **6**, e00431-15 (2015).

613 17. D. A. Opulente, E. J. Rollinson, C. Bernick-Roehr, A. B. Hulfachor, A. Rokas, C. P. Kurtzman, C. T. Hittinger, 614 Factors driving metabolic diversity in the budding yeast subphylum. *BMC Biol* **16**, 26 (2018).

615 18. A. J. P. Brown, G. D. Brown, M. G. Netea, N. A. R. Gow, Metabolism impacts upon *Candida* immunogenicity 616 and pathogenicity at multiple levels. *Trends Microbiol* **22**, 614–622 (2014).

617 19. T. Vanneste, S. Govaert, F. Spicher, J. Brunet, S. A. O. Cousins, G. Decocq, M. Diekmann, B. J. Graae, P.-O. 618 Hedwall, R. E. Kapás, Contrasting microclimates among hedgerows and woodlands across temperate Europe. 619 *Agric For Meteorol* **281**, 107818 (2020).

620 20. A. Grzyb, A. Wolna-Maruwka, A. Niewiadomska, The significance of microbial transformation of nitrogen 621 compounds in the light of integrated crop management. *Agronomy* **11**, 1415 (2021).

622 21. E.-U. Manuel, R. Juan-Luis, Expression of a *Pseudomonas putida* Aminotransferase Involved in Lysine 623 Catabolism Is Induced in the Rhizosphere. *Appl Environ Microbiol* **67**, 5219–5224 (2001).

624 22. C. Schädel, A. Blöchl, A. Richter, G. Hoch, Quantification and monosaccharide composition of hemicelluloses 625 from different plant functional types. *Plant physiology and Biochemistry* **48**, 1–8 (2010).

626 23. A. Ebringerová, Z. Hromádková, T. Heinze, Hemicellulose. *Polysaccharides I: Structure, characterization and* 627 *use*, 1–67 (2005).

628 24. C. H. Jaeger Iii, S. E. Lindow, W. Miller, E. Clark, M. Firestone, Mapping of sugar and amino acid availability 629 in soil around roots with bacterial sensors of sucrose and tryptophan. *Appl Environ Microbiol* **65**, 2685–2690 630 (1999).

631 25. A. M. Abdel-Mawgoud, M. M. Aboulwafa, N. A.-H. Hassouna, Characterization of surfactin produced by 632 *Bacillus subtilis* isolate BS5. *Appl Biochem Biotechnol* **150**, 289–303 (2008).

633 26. A. L. Demain, From natural products discovery to commercialization: a success story. *J Ind Microbiol* 634 *Biotechnol* **33**, 486–495 (2006).

635 27. E. G. Tate, A. L. Pitt, M. D. Little, J. J. Tavano, M. A. Nickerson, Factors contributing to the range expansion 636 and population increase of a native generalist species. *Amphibia-Reptilia* **43**, 299–311 (2022).

637 28. X.-X. Shen, D. A. Opulente, J. Kominek, X. Zhou, J. L. Steenwyk, K. V. Buh, M. A. B. B. Haase, J. H. 638 Wisecaver, M. Wang, D. T. Doering, J. T. Boudouris, R. M. Schneider, Q. K. Langdon, M. Ohkuma, R. Endoh, 639 M. Takashima, R. Manabe, N. Čadež, D. Libkind, C. A. Rosa, J. DeVirgilio, A. B. Hulfachor, M. Groenewald, 640

641 C. P. Kurtzman, C. T. Hittinger, A. Rokas, Tempo and Mode of Genome Evolution in the Budding Yeast
642 Subphylum. *Cell* **175** (2018).

643 29. D. I. Andersson, J. Jerlström-Hultqvist, J. Näsvall, Evolution of New functions De novo and from preexisting
644 genes. *Cold Spring Harb Perspect Biol* **7**, a017996 (2015).

645 30. K. Voordeckers, C. A. Brown, K. Vanneste, E. van der Zande, A. Voet, S. Maere, K. J. Verstrepen,
646 Reconstruction of ancestral metabolic enzymes reveals molecular mechanisms underlying evolutionary
647 innovation through gene duplication. *PLoS Biol* **10**, e1001446 (2012).

648 31. W. M. Patrick, E. M. Quandt, D. B. Swartzlander, I. Matsumura, Multicopy suppression underpins metabolic
649 evolvability. *Mol Biol Evol* **24**, 2716–2722 (2007).

650 32. C. S. McBride, J. R. Arguello, B. C. O'Meara, Five *Drosophila* genomes reveal nonneutral evolution and the
651 signature of host specialization in the chemoreceptor superfamily. *Genetics* **177**, 1395–416 (2007).

652 33. K. R. Christie, S. Weng, R. Balakrishnan, M. C. Costanzo, K. Dolinski, S. S. Dwight, S. R. Engel, B. Feierbach,
653 D. G. Fisk, J. E. Hirschman, *Saccharomyces* Genome Database (SGD) provides tools to identify and analyze
654 sequences from *Saccharomyces cerevisiae* and related sequences from other organisms. *Nucleic Acids Res* **32**,
655 D311–D314 (2004).

656 34. M. B. Arnaud, M. C. Costanzo, M. S. Skrzypek, G. Binkley, C. Lane, S. R. Miyasato, G. Sherlock, The *Candida*
657 Genome Database (CGD), a community resource for *Candida albicans* gene and protein information. *Nucleic
658 Acids Res* **33**, D358–D363 (2005).

659 35. C. Kurtzman, J. W. Fell, T. Boekhout, *The Yeasts: A Taxonomic Study* (Elsevier, 2011).

660 36. E. Rozpędowska, L. Hellborg, O. P. Ishchuk, F. Orhan, S. Galafassi, A. Merico, M. Woolfit, C. Compagno, J.
661 Piškur, Parallel evolution of the make–accumulate–consume strategy in *Saccharomyces* and *Dekkera* yeasts.
662 *Nat Commun* **2**, 302 (2011).

663 37. G. I. Naumov, E. S. Naumova, P. D. Sniegowski, *Saccharomyces paradoxus* and *Saccharomyces cerevisiae* are
664 associated with exudates of North American oaks. *Can J Microbiol* **44**, 1045–1050 (1998).

665 38. S. K. Hewitt, D. S. Foster, P. S. Dyer, S. V. Avery, Phenotypic heterogeneity in fungi: Importance and
666 methodology. *Fungal Biol Rev* **30**, 176–184 (2016).

667 39. I. V Ene, S. Brunke, A. J. P. Brown, B. Hube, Metabolism in fungal pathogenesis. *Cold Spring Harb Perspect
668 Med* **4**, a019695 (2014).

669 40. C. T. Hittinger, A. Rokas, F.-Y. Bai, T. Boekhout, P. Gonçalves, T. W. Jeffries, J. Kominek, M.-A. Lachance,
670 D. Libkind, C. A. Rosa, J. P. Sampaio, C. P. Kurtzman, Genomics and the making of yeast biodiversity. *Curr
671 Opin Genet Dev* **35**, 100–109 (2015).

672 41. M. Groenewald, C. T. Hittinger, K. Bensch, D. A. Opulente, X.-X. Shen, Y. Li, C. Liu, A. L. LaBella, X. Zhou,
673 S. Limtong, A genome-informed higher rank classification of the biotechnologically important fungal
674 subphylum *Saccharomycotina*. *Stud Mycol* (2023).

675 42. Data is available at: <https://doi.org/10.25452/figshare.plus.c.6714042>.

676 43. E. V Kriventseva, D. Kuznetsov, F. Tegenfeldt, M. Manni, R. Dias, F. A. Simão, E. M. Zdobnov, OrthoDB v10:
677 sampling the diversity of animal, plant, fungal, protist, bacterial and viral genomes for evolutionary and
678 functional annotations of orthologs. *Nucleic Acids Res* **47**, D807–D811 (2019).

679 44. R. M. Waterhouse, M. Seppey, F. A. Simão, M. Manni, P. Ioannidis, G. Klioutchnikov, E. V Kriventseva, E. M.
680 Zdobnov, BUSCO applications from quality assessments to gene prediction and phylogenomics. *Mol Biol Evol*
681 **35**, 543–548 (2018).

682 45. T. Krassowski, J. Kominek, X. X. Shen, D. A. Opulente, X. Zhou, A. Rokas, C. T. Hittinger, K. H. Wolfe,
683 Multiple Reinventions of Mating-type Switching during Budding Yeast Evolution. *Current Biology* **29**, 2555–
684 2562.e8 (2019).

685 46. S. Mühlhausen, H. D. Schmitt, K.-T. Pan, U. Plessmann, H. Urlaub, L. D. Hurst, M. Kollmar, Endogenous
686 stochastic decoding of the CUG codon by competing Ser-and Leu-tRNAs in *Ascoidea asiatica*. *Current Biology*
687 **28**, 2046–2057 (2018).

688 47. Y. Li, J. L. Steenwyk, Y. Chang, Y. Wang, T. Y. James, J. E. Stajich, J. W. Spatafora, M. Groenewald, C. W.
689 Dunn, C. T. Hittinger, A genome-scale phylogeny of the kingdom Fungi. *Current Biology* **31**, 1653–1665
690 (2021).

691 48. X.-X. Shen, J. L. Steenwyk, A. L. LaBella, D. A. Opulente, X. Zhou, J. Kominek, Y. Li, M. Groenewald, C. T.
692 Hittinger, A. Rokas, Genome-scale phylogeny and contrasting modes of genome evolution in the fungal phylum
693 *Ascomycota*. *Sci Adv* **6**, eabd0079 (2020).

694 49. C. Gonçalves, J. H. Wisecaver, J. Kominek, M. S. Oom, M. J. Leandro, X.-X. Shen, D. A. Opulente, X. Zhou,
695 D. Peris, C. P. Kurtzman, Evidence for loss and reacquisition of alcoholic fermentation in a fructophilic yeast
696 lineage. *Elife* **7**, e33034 (2018).

697 50. F. M. Commichau, K. Forchhammer, J. Stölke, Regulatory links between carbon and nitrogen metabolism. **9**,
698 167–172 (2006).

699 51. J. L. Parada, B. Magasanik, Expression of the hut operons of *Salmonella typhimurium* in *Klebsiella aerogenes*
700 and in *Escherichia coli*. *J Bacteriol* **124**, 1263–1268 (1975).

701 52. L. Noda-Garcia, M. L. Romero Romero, L. M. Longo, I. Kolodkin-Gal, D. S. Tawfik, Bacilli glutamate
702 dehydrogenases diverged via coevolution of transcription and enzyme regulation. *EMBO Rep* **18**, 1139–1149
703 (2017).

704 53. A. Wagner, Metabolic networks and their evolution. *Adv Exp Med Biol* **751** (2012).

705 54. S. R. Proulx, D. E. L. Promislow, P. C. Phillips, Network thinking in ecology and evolution. *Trends Ecol Evol*
706 **20**, 345–353 (2005).

707 55. M. Kanehisa, S. Goto, KEGG: Kyoto Encyclopedia of Genes and Genomes. [Preprint] (2000).
708 <https://doi.org/10.1093/nar/28.1.27>.

709 56. A.-L. Barabási, Z. N. Oltvai, Network biology: understanding the cell’s functional organization. *Nat Rev Genet*
710 **5**, 101–113 (2004).

711 57. R. L. Cordeiro, C. R. Santos, M. N. Domingues, T. B. Lima, R. A. S. Pirolla, M. A. B. Morais, F. M.
712 Colombari, R. Y. Miyamoto, G. F. Persinoti, A. C. Borges, Mechanism of high-mannose N-glycan breakdown
713 and metabolism by *Bifidobacterium longum*. *Nat Chem Biol* **19**, 218–229 (2023).

714 58. R. L. Nalabothu, K. J. Fisher, A. L. LaBella, T. A. Meyer, D. A. Opulente, J. F. Wolters, A. Rokas, C. T.
715 Hittinger, Codon optimization improves the prediction of xylose metabolism from gene content in budding
716 yeasts. *Mol Biol Evol*, msad111 (2023).

717 59. J. F. Wolters, A. L. LaBella, D. A. Opulente, A. Rokas, C. T. Hittinger, Mitochondrial Genome Diversity across
718 the Subphylum Saccharomycotina. *bioRxiv* (2023).

719 60. M. A. H. Luttik, K. M. Overkamp, P. Kötter, S. De Vries, J. P. Van Dijken, J. T. Pronk, The *Saccharomyces*
720 cerevisiae NDE1 and NDE2 genes encode separate mitochondrial NADH dehydrogenases catalyzing the
721 oxidation of cytosolic NADH. *Journal of Biological Chemistry* **273**, 24529–24534 (1998).

722 61. C. Wirth, U. Brandt, C. Hunte, V. Zickermann, Structure and function of mitochondrial complex I. *Biochimica
723 et Biophysica Acta (BBA)-Bioenergetics* **1857**, 902–914 (2016).

724 62. R. She, D. F. Jarosz, Mapping causal variants with single-nucleotide resolution reveals biochemical drivers of
725 phenotypic change. *Cell* **172**, 478–490 (2018).

726 63. M. Bromley, A. Johns, E. Davies, M. Fraczek, J. Mabey Gilsenan, N. Kurbatova, M. Keays, M. Kapushesky,
727 M. Gut, I. Gut, Mitochondrial complex I is a global regulator of secondary metabolism, virulence and azole
728 sensitivity in fungi. *PLoS One* **11**, e0158724 (2016).

729 64. K. Strijbis, C. W. T. van Roermund, W. F. Visser, E. C. Mol, J. van den Burg, D. M. MacCallum, F. C. Odds,
730 E. Paramonova, B. P. Krom, B. Distel, Carnitine-dependent transport of acetyl coenzyme A in *Candida albicans*
731 is essential for growth on nonfermentable carbon sources and contributes to biofilm formation. *Eukaryot Cell* **7**,
732 610–618 (2008).

733 65. K. Strijbis, B. Distel, Intracellular acetyl unit transport in fungal carbon metabolism. [Preprint] (2010).
734 <https://doi.org/10.1128/EC.00172-10>.

735 66. C. W. T. van Roermund, E. H. Hettema, M. van den Berg, H. F. Tabak, R. J. A. Wanders, Molecular
736 characterization of carnitine-dependent transport of acetyl-CoA from peroxisomes to mitochondria in
737 *Saccharomyces cerevisiae* and identification of a plasma membrane carnitine transporter, Agp2p. *EMBO J* **18**,
738 5843–5852 (1999).

739 67. J. H. Swiegers, N. Dippenaar, I. S. Pretorius, F. F. Bauer, Carnitine-dependent metabolic activities in
740 *Saccharomyces cerevisiae*: three carnitine acetyltransferases are essential in a carnitine-dependent strain. *Yeast*
741 **18**, 585–595 (2001).

742 68. M.-C. Harrison, E. J. Ubbelohde, A. L. LaBella, D. A. Opulente, J. F. Wolters, X. Zhou, X.-X. Shen, M.
743 Groenewald, C. T. Hittinger, A. Rokas, Machine learning illuminates how diet influences the evolution of yeast
744 galactose metabolism. *bioRxiv*, 2023.07.20.549758 (2023).

745 69. C. Gonçalves, M.-C. Harrison, J. L. Steenwyk, D. A. Opulente, A. L. LaBella, J. F. Wolters, X. Zhou, X.-X.
746 Shen, M. Groenewald, C. T. Hittinger, A. Rokas, Diverse signatures of convergent evolution in cacti-associated
747 yeasts. *bioRxiv*, 2023.09.14.557833 (2023).

748 70. K. T. David, M.-C. Harrison, D. A. Opulente, A. L. LaBella, J. F. Wolters, X. Zhou, X.-X. Shen, M.
749 Groenewald, M. Pennell, C. T. Hittinger, A. Rokas, Saccharomycotina yeasts defy longstanding
750 macroecological patterns. *bioRxiv*, 2023.08.29.555417 (2023).

751 71. World Health Organization, “WHO fungal priority pathogen list to guide research, development and public
752 health action” (2022); <https://www.who.int/publications/i/item/9789240060241>.

753 72. L. N. A. Ries, S. Beattie, R. A. Cramer, G. H. Goldman, Overview of carbon and nitrogen catabolite
754 metabolism in the virulence of human pathogenic fungi. *Mol Microbiol* **107**, 277–297 (2018).

755 73. I. V. Ene, A. K. Adya, S. Wehmeier, A. C. Brand, D. M. Maccallum, N. A. R. Gow, A. J. P. Brown, Host
756 carbon sources modulate cell wall architecture, drug resistance and virulence in a fungal pathogen. *Cell*
757 *Microbiol* **14** (2012).

758 74. T. Masako, S. Takashi, Taxonomy of Pathogenic Yeasts Candida, Cryptococcus, Malassezia, and Trichosporon.
759 *Med Mycol J* **63**, 119–132 (2022).

760 75. P. T. Magee, Fungal pathogenicity and morphological switches. *Nat Genet* **42**, 560–561 (2010).

761 76. F. L. Mayer, D. Wilson, B. Hube, *Candida albicans* pathogenicity mechanisms. *Virulence* **4**, 119–128 (2013).

762 77. A. Rokas, M. E. Mead, J. L. Steenwyk, N. H. Oberlies, G. H. Goldman, Evolving moldy murderers: *Aspergillus*
763 section *Fumigati* as a model for studying the repeated evolution of fungal pathogenicity. *PLoS Pathog* **16**,
764 e1008315 (2020).

765 78. J. L. Steenwyk, D. A. Opulente, J. Kominek, X. X. Shen, X. Zhou, A. L. Labella, N. P. Bradley, B. F. Eichman,
766 N. Čadež, D. Libkind, J. De Virgilio, A. B. Hulfachor, C. P. Kurtzman, C. T. Hittinger, A. Rokas, Extensive
767 loss of cell-cycle and DNA repair genes in an ancient lineage of bipolar budding yeasts. *PLoS Biol* **17** (2019).

768 79. K. C. Fugelsang, C. G. Edwards, *Wine Microbiology: Practical Applications and Procedures* (2007).

769 80. Supplementary Materials: Genomic factors shape carbon and nitrogen metabolic niche breadth across
770 Saccharomycotina yeasts. *Science* (1979).

771 81. X. Zhou, D. Peris, J. Kominek, C. P. Kurtzman, C. T. Hittinger, A. Rokas, In silico Whole Genome Sequencer
772 and Analyzer (iWGS): a computational pipeline to guide the design and analysis of de novo genome sequencing
773 studies. *G3: Genes, Genomes, Genetics* **6**, 3655–3662 (2016).

774 82. P. Jones, D. Binns, H. Y. Chang, M. Fraser, W. Li, C. McAnulla, H. McWilliam, J. Maslen, A. Mitchell, G.
775 Nuka, S. Pesseat, A. F. Quinn, A. Sangrador-Vegas, M. Scheremetjew, S. Y. Yong, R. Lopez, S. Hunter,
776 InterProScan 5: genome-scale protein function classification. *Bioinformatics* **30**, 1236–1240 (2014).

777 83. M. Blum, H. Y. Chang, S. Chuguransky, T. Grego, S. Kandasamy, A. Mitchell, G. Nuka, T. Paysan-Lafosse,
778 M. Qureshi, S. Raj, L. Richardson, G. A. Salazar, L. Williams, P. Bork, A. Bridge, J. Gough, D. H. Haft, I.
779 Letunic, A. Marchler-Bauer, H. Mi, D. A. Natale, M. Necci, C. A. Orengo, A. P. Pandurangan, C. Rivoire, C. J.
780 A. Sigrist, I. Sillitoe, N. Thanki, P. D. Thomas, S. C. E. Tosatto, C. H. Wu, A. Bateman, R. D. Finn, The
781 InterPro protein families and domains database: 20 years on. *Nucleic Acids Res* **49**, D344–D354 (2021).

782 84. B. Q. Minh, H. A. Schmidt, O. Chernomor, D. Schrempf, M. D. Woodhams, A. Von Haeseler, R. Lanfear, E.
783 Teeling, IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. *Mol*
784 *Biol Evol* **37**, 1530–1534 (2020).

785 85. C. Zhang, M. Rabiee, E. Sayyari, S. Mirarab, ASTRAL-III: Polynomial time species tree reconstruction from
786 partially resolved gene trees. *BMC Bioinformatics* **19** (2018).

787 86. S. Kumar, G. Stecher, K. Tamura, MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger
788 datasets. *Mol Biol Evol* **33**, 1870–1874 (2016).

789 87. M. Kahm, G. Hasenbrink, H. Lichtenberg-Fraté, J. Ludwig, M. Kschischo, grofit: fitting biological growth
790 curves with R. *J Stat Softw* **33**, 1–21 (2010).

791 88. D. Orme, The caper package: Comparative analysis of phylogenetics and evolution in R. *R package version* **5**,
792 1–36 (2013).

793 89. T. Wu, E. Hu, S. Xu, M. Chen, P. Guo, Z. Dai, T. Feng, L. Zhou, W. Tang, L. Zhan, X. Fu, S. Liu, X. Bo, G.
794 Yu, clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. *Innovation* **2** (2021).

795 90. T. Chen, C. Guestrin, “XGBoost: A scalable tree boosting system” in *Proceedings of the ACM SIGKDD*
796 *International Conference on Knowledge Discovery and Data Mining* (2016) vols. 13-17-August-2016.

797 91. Code available for growth and enrichment analyses at <https://zenodo.org/records/10709452>.

798 92. Code available for machine learning analysis at <https://zenodo.org/doi/10.5281/zenodo.10711058>.

799 93. G. Zhang, Y. Lin, P. He, L. Li, Q. Wang, Y. Ma, Characterization of the sugar alcohol-producing yeast *Pichia*
800 *anomala*. *J Ind Microbiol Biotechnol* **41** (2014).

801 94. K. Sylvester, Q.-M. Wang, B. James, R. Mendez, A. B. Hulfachor, C. T. Hittinger, Temperature and host
802 preferences drive the diversification of *Saccharomyces* and other yeasts: A survey and the discovery of eight
803 new yeast species. *FEMS Yeast Res* **15**, foy002 (2015).

804 95. W. J. Spurley, K. J. Fisher, Q. K. Langdon, K. V Buh, M. Jarzyna, M. A. B. Haase, K. Sylvester, R. V Moriarty,
805 D. Rodriguez, A. Sheddan, S. Wright, L. Sorlie, A. B. Hulfachor, D. A. Opulente, C. T. Hittinger, Substrate,
806 temperature, and geographical patterns among nearly 2000 natural yeast isolates. *Yeast* **n/a**, 55–68 (2022).

807 96. J. Kominek, D. T. Doering, D. A. Opulente, X.-X. Shen, X. Zhou, J. DeVirgilio, A. B. Hulfachor, M.
808 Groenewald, M. A. Mcgee, S. D. Karlen, Eukaryotic acquisition of a bacterial operon. *Cell* **176**, 1356–1366
809 (2019).

810 97. A. M. Bolger, M. Lohse, B. Usadel, Trimmomatic: a flexible trimmer for Illumina sequence data.
811 *Bioinformatics* **30**, 2114–2120 (2014).

812 98. L. Song, L. Florea, B. Langmead, Lighter: fast and memory-efficient sequencing error correction without
813 counting. *Genome Biol* **15**, 1–13 (2014).

814 99. R. Chikhi, P. Medvedev, Informed and automated k-mer size selection for genome assembly. *Bioinformatics* **30**,
815 31–37 (2014).

816 100. J. T. Simpson, K. Wong, S. D. Jackman, J. E. Schein, S. J. M. Jones, I. Birol, ABySS: A parallel assembler
817 for short read sequence data. *Genome Res* **19** (2009).

818 101. A. V. Zimin, G. Marçais, D. Puiu, M. Roberts, S. L. Salzberg, J. A. Yorke, The MaSuRCA genome
819 assembler. *Bioinformatics* **29** (2013).

820 102. A. Bankevich, S. Nurk, D. Antipov, A. A. Gurevich, M. Dvorkin, A. S. Kulikov, V. M. Lesin, S. I. Nikolenko,
821 S. Pham, A. D. Pribelski, SPAdes: a new genome assembly algorithm and its applications to single-cell
822 sequencing. *Journal of computational biology* **19**, 455–477 (2012).

823 103. D. R. Zerbino, E. Birney, Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. *Genome*
824 *Res* **18** (2008).

825 104. C. L. Weib, M. Pais, L. M. Cano, S. Kamoun, H. A. Burbano, nQuire: A statistical framework for ploidy
826 estimation using next generation sequencing. *BMC Bioinformatics* **19** (2018).

827 105. S. Huang, M. Kang, A. Xu, HaploMerger2: Rebuilding both haploid sub-assemblies from high-heterozygosity
828 diploid genome assembly. *Bioinformatics* **33** (2017).

829 106. A. Gurevich, V. Saveliev, N. Vyahhi, G. Tesler, QUAST: quality assessment tool for genome assemblies.
830 *Bioinformatics* **29**, 1072–1075 (2013).

831 107. M. Manni, M. R. Berkeley, M. Seppey, F. A. Simão, E. M. Zdobnov, BUSCO Update: Novel and Streamlined
832 Workflows along with Broader and Deeper Phylogenetic Coverage for Scoring of Eukaryotic, Prokaryotic, and
833 Viral Genomes. *Mol Biol Evol* **38** (2021).

834 108. E. V. Kriventseva, D. Kuznetsov, F. Tegenfeldt, M. Manni, R. Dias, F. A. Simão, E. M. Zdobnov, OrthoDB
835 v10: Sampling the diversity of animal, plant, fungal, protist, bacterial and viral genomes for evolutionary and
836 functional annotations of orthologs. *Nucleic Acids Res* **47** (2019).

837 109. R. M. Waterhouse, M. Seppey, F. A. Simão, M. Manni, P. Ioannidis, G. Klioutchnikov, E. V Kriventseva, E. M.
838 Zdobnov, BUSCO applications from quality assessments to gene prediction and phylogenomics. *Mol Biol Evol*
839 **35**, 543–548 (2018).

840 110. T. Brůna, K. J. Hoff, A. Lomsadze, M. Stanke, M. Borodovsky, BRAKER2: Automatic eukaryotic genome
841 annotation with GeneMark-EP+ and AUGUSTUS supported by a protein database. *NAR Genom Bioinform* **3**
842 (2021).

843 111. M. Stanke, M. Diekhans, R. Baertsch, D. Haussler, Using native and syntenically mapped cDNA alignments to
844 improve de novo gene finding. *Bioinformatics* **24** (2008).

845 112. T. Brůna, A. Lomsadze, M. Borodovsky, GeneMark-EP+: Eukaryotic gene prediction with self-training in the
846 space of genes and proteins. *NAR Genom Bioinform* **2** (2020).

847 113. T. Aramaki, R. Blanc-Mathieu, H. Endo, K. Ohkubo, M. Kanehisa, S. Goto, H. Ogata, KofamKOALA: KEGG
848 Ortholog assignment based on profile HMM and adaptive score threshold. *Bioinformatics* **36**, 2251–2252
849 (2020).

850 114. Y. Shulgina, S. R. Eddy, A computational screen for alternative genetic codes in over 250,000 genomes. *Elife*
851 **10** (2021).

852 115. J. L. Steenwyk, A. Rokas, orthofisher: A broadly applicable tool for automated gene identification and retrieval.
853 *G3: Genes, Genomes, Genetics* **11** (2021).

854 116. M. N. Price, P. S. Dehal, A. P. Arkin, FastTree 2 - Approximately maximum-likelihood trees for large
855 alignments. *PLoS One* **5** (2010).

856 117. S. Q. Le, O. Gascuel, An improved general amino acid replacement matrix. *Mol Biol Evol* **25** (2008).

857 118. K. Katoh, D. M. Standley, MAFFT multiple sequence alignment software version 7: Improvements in
858 performance and usability. *Mol Biol Evol* **30** (2013).

859 119. S. Capella-Gutiérrez, J. M. Silla-Martínez, T. Gabaldón, trimAl: A tool for automated alignment trimming in
860 large-scale phylogenetic analyses. *Bioinformatics* **25** (2009).

861 120. I. Letunic, P. Bork, Interactive tree of life (iTOL) v5: An online tool for phylogenetic tree display and
862 annotation. *Nucleic Acids Res* **49** (2021).

863 121. T. Krassowski, A. Y. Coughlan, X. X. Shen, X. Zhou, J. Kominek, D. A. Opulente, R. Riley, I. V. Grigoriev, N.
864 Maheshwari, D. C. Shields, C. P. Kurtzman, C. T. Hittinger, A. Rokas, K. H. Wolfe, Evolutionary instability of
865 CUG-Leu in the genetic code of budding yeasts. *Nat Commun* **9** (2018).

866 122. A. L. LaBella, D. A. Opulente, J. L. Steenwyk, C. T. Hittinger, A. Rokas, Signatures of optimal codon usage in
867 metabolic genes inform budding yeast ecology. *PLoS Biol* **19**, e3001185 (2021).

868 123. S. W. Kembel, P. D. Cowan, M. R. Helmus, W. K. Cornwell, H. Morlon, D. D. Ackerly, S. P. Blomberg, C. O.
869 Webb, Picante: R tools for integrating phylogenies and ecology. *Bioinformatics* **26**, 1463–1464 (2010).

870 124. F. E. Harrell Jr, M. C. Dupont, The Hmisc package. *R package version 3*, 0–12 (2006).

871 125. P. Shannon, A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang, D. Ramage, N. Amin, B. Schwikowski, T. Ideker,
872 Cytoscape: A software Environment for integrated models of biomolecular interaction networks. *Genome Res*
873 **13** (2003).

874 126. G. Csardi, T. Nepusz, G. Csárdi, T. Nepusz, G. Csardi, T. Nepusz, The igraph software package for complex
875 network research. *InterJournal Complex Systems* **1695**, 1–9 (2006).

876 127. A. Ofir, K. Hofmann, E. Weindling, T. Gildor, K. S. Barker, P. D. Rogers, D. Kornitzer, Role of a *Candida*
877 *albicans* *Nrm1/Whi5* homologue in cell cycle gene expression and DNA replication stress response. *Mol*
878 *Microbiol* **84**, 778–794 (2012).

879 128. R. M. Al-Reedy, R. Malireddy, C. B. Dillman, J. C. Kennell, Comparative analysis of *Fusarium* mitochondrial
880 genomes reveals a highly variable region that encodes an exceptionally large open reading frame. *Fungal*
881 *Genetics and Biology* **49** (2012).

882 129. C. R. Baker, B. B. Tuch, A. D. Johnson, Extensive DNA-binding specificity divergence of a conserved
883 transcription regulator. *Proc Natl Acad Sci U S A* **108** (2011).

884 130. E. C. Baker, B. Wang, N. Bellora, D. Peris, A. B. Hulfachor, J. A. Koshalek, M. Adams, D. Libkind, C. T.
885 Hittinger, The genome sequence of *Saccharomyces eubayanus* and the domestication of lager-brewing yeasts.
886 *Mol Biol Evol* **32** (2015).

887 131. T. M. Batista, R. G. Moreira, H. O. Hilário, C. G. Morais, G. R. Franco, L. H. Rosa, C. A. Rosa, Draft genome
888 sequence of *Sugiyamaella xylanicola* UFMG-CM-Y1884T, a xylan-degrading yeast species isolated from
889 rotting wood samples in Brazil. *Genom Data* **11** (2017).

890 132. G. Borelli, J. José, P. J. P. L. Teixeir, L. V. dos Santos, G. A. G. Pereira, De novo assembly of *Candida sojae*
891 and *Candida boidinii* genomes, unexplored xylose-consuming yeasts with potential for renewable biochemical
892 production. *Genome Announc* **4** (2016).

893 133. B. Brejová, H. Lichancová, F. Brázdovíč, A. Cillingová, M. Neboháčová, L. Tomáška, T. Vinař, J. Nosek, Draft
894 genome sequence of an obligate psychrophilic yeast, *Candida psychrophila* NRRL Y-17665T. *Genome*
895 *Announc* **5** (2017).

896 134. B. Brejová, H. Lichancová, V. Hodorová, M. Neboháčová, L. Tomáška, T. Vinař, J. Nosek, Genome Sequence
897 of an Arthroconidial Yeast, *Saprochaete fungicola* CBS 625.85. *Microbiol Resour Announc* **8** (2019).

898 135. B. Brejová, H. Lichancová, F. Brázdovíč, E. Hegedűsová, M. Forgáčová Jakúbková, V. Hodorová, V.
899 Džugasová, A. Baláž, L. Zeiselová, A. Cillingová, M. Neboháčová, V. Raclavský, L. Tomáška, B. F. Lang, T.
900 Vinař, J. Nosek, Genome sequence of the opportunistic human pathogen *Magnusiomyces capitatus*. *Curr Genet*
901 **65** (2019).

902 136. G. Butler, M. D. Rasmussen, M. F. Lin, M. A. S. Santos, S. Sakthikumar, C. A. Munro, E. Rheinbay, M.
903 Grabherr, A. Forche, J. L. Reedy, I. Agrafioti, M. B. Arnaud, S. Bates, A. J. P. Brown, S. Brunke, M. C.
904 Costanzo, D. A. Fitzpatrick, P. W. J. De Groot, D. Harris, L. L. Hoyer, B. Hube, F. M. Klis, C. Kodira, N.
905 Lennard, M. E. Logue, R. Martin, A. M. Neiman, E. Nikolaou, M. A. Quail, J. Quinn, M. C. Santos, F. F.
906 Schmitzberger, G. Sherlock, P. Shah, K. A. T. Silverstein, M. S. Skrzypek, D. Soll, R. Staggs, I. Stansfield, M.
907 P. H. Stumpf, P. E. Sudbery, T. Srikantha, Q. Zeng, J. Berman, M. Berriman, J. Heitman, N. A. R. Gow, M. C.
908 Lorenz, B. W. Birren, M. Kellis, C. A. Cuomo, Evolution of pathogenicity and sexual reproduction in eight
909 *Candida* genomes. *Nature* **459** (2009).

910 137. N. Čadež, N. Bellora, R. Ulloa, C. T. Hittinger, D. Libkind, Genomic content of a novel yeast species
911 *Hanseniaspora gamundiae* sp. nov. from fungal stromata (*Cyttaria*) associated with a unique fermented beverage
912 in Andean Patagonia, Argentina. *PLoS One* **14** (2019).

913 138. N. Čadež, N. Bellora, R. Ulloa, M. Tome, H. Petković, M. Groenewald, C. T. Hittinger, D. Libkind,
914 *Hanseniaspora smithiae* sp. nov., a Novel Apiculate Yeast Species From Patagonian Forests That Lacks the
915 Typical Genomic Domestication Signatures for Fermentative Environments. *Front Microbiol* **12**, 679894
916 (2021).

917 139. S. Chatterjee, S. V. Alampalli, R. K. Nageshan, S. T. Chettiar, S. Joshi, U. S. Tatu, Draft genome of a
918 commonly misdiagnosed multidrug resistant pathogen *Candida auris*. *BMC Genomics* **16** (2015).

919 140. F. S. Dietrich, S. Voegeli, S. Kuo, P. Philippi, Genomes of *Ashbya* fungi isolated from insects reveal four
920 mating-type loci, numerous translocations, lack of transposons, and distinct gene duplications. *G3 (Bethesda)* **3**,
921 1225–1239 (2013).

922 141. F. S. Dietrich, S. Voegeli, S. Brachat, A. Lerch, K. Gates, S. Steiner, C. Mohr, R. Pöhlmann, P. Luedi, S. Choi,
923 R. A. Wing, A. Flavier, T. D. Gaffney, P. Philippson, The *Ashbya gossypii* Genome as a Tool for Mapping the
924 Ancient *Saccharomyces cerevisiae* Genome. *Science* (1979) 304 (2004).

925 142. B. Dujon, D. Sherman, G. Fischer, P. Durrens, S. Casaregola, I. Lafontaine, J. De Montigny, C. Marck, C.
926 Neuvéglise, E. Talla, Genome evolution in yeasts. *Nature* 430, 35–44 (2004).

927 143. S. Duplessis, C. A. Cuomo, Y. C. Lin, A. Aerts, E. Tisserant, C. Veneault-Fourrey, D. L. Joly, S. Hacquard, J.
928 Amselem, B. L. Cantarel, R. Chiu, P. M. Coutinho, N. Feau, M. Field, P. Frey, E. Gelhaye, J. Goldberg, M. G.
929 Grabherr, C. D. Kodira, A. Kohler, U. Kües, E. A. Lindquist, S. M. Lucas, R. Mago, E. Mauceli, E. Morin, C.
930 Murat, J. L. Pangilinan, R. Park, M. Pearson, H. Quesneville, N. Rouhier, S. Sakthikumar, A. A. Salamov, J.
931 Schmutz, B. Selles, H. Shapiro, P. Tanguay, G. A. Tuskan, B. Henrissat, Y. Van De Peer, P. Rouzé, J. G. Ellis,
932 P. N. Dodds, J. E. Schein, S. Zhong, R. C. Hamelin, I. V. Grigoriev, L. J. Szabo, F. Martin, Obligate biotrophy
933 features unraveled by the genomic analysis of rust fungi. *Proc Natl Acad Sci U S A* 108 (2011).

934 144. K. C. Freel, A. Friedrich, V. Sarilar, H. Devillers, C. Neuvéglise, J. Schacherer, Whole-genome sequencing and
935 intraspecific analysis of the yeast species *Lachancea quebecensis*. *Genome Biol Evol* 8 (2016).

936 145. T. Gabaldón, T. Martin, M. Marcet-Houben, P. Durrens, M. Bolotin-Fukuhara, O. Lespinet, S. Arnaise, S.
937 Boisnard, G. Aguileta, R. Atanasova, C. Bouchier, A. Couloux, S. Creno, J. Almeida Cruz, H. Devillers, A.
938 Enache-Angoulvant, J. Guitard, L. Jaouen, L. Ma, C. Marck, C. Neuvéglise, E. Pelletier, A. Pinard, J. Poulain,
939 J. Recoquillay, E. Westhof, P. Wincker, B. Dujon, C. Hennequin, C. Fairhead, Comparative genomics of
940 emerging pathogens in the *Candida glabrata* clade. *BMC Genomics* 14 (2013).

941 146. V. Galeote, F. Bigey, H. Devillers, C. Neuvéglise, S. Dequin, Genome sequence of the food spoilage yeast
942 *Zygosaccharomyces bailii* CLIB 213T. *Genome Announc* 1 (2013).

943 147. R. Gazis, A. Kuo, R. Riley, K. LaButti, A. Lipzen, J. Lin, M. Amirebrahimi, C. N. Hesse, J. W. Spatafora, B.
944 Henrissat, M. Hainaut, I. V. Grigoriev, D. S. Hibbett, The genome of *Xylona heveae* provides a window into
945 fungal endophytism. *Fungal Biol* 120 (2016).

946 148. J. L. Souciet, B. Dujon, C. Gaillardin, M. Johnston, P. V. Baret, P. Cliften, D. J. Sherman, J. Weissenbach, E.
947 Westhof, P. Wincker, C. Jubin, J. Poulain, V. Barbe, B. Ségurens, F. Artiguenave, V. Anthouard, B. Vacherie,
948 M. E. Val, R. S. Fulton, P. Minx, R. Wilson, P. Durrens, G. Jean, C. Marck, T. Martin, M. Nikolski, T. Rolland,
949 M. L. Seret, S. Casarégola, L. Desponts, C. Fairhead, G. Fischer, I. Lafontaine, V. Leh, M. Lemaire, J. De
950 Montigny, C. Neuvéglise, A. Thierry, I. Blanc-Lenfle, C. Bleykasten, J. Diffels, E. Fritsch, L. Frangeul, A.
951 Goëffon, N. Jauniaux, R. Kachouri-Lafond, C. Payen, S. Potier, L. Pribylova, C. Ozanne, G. F. Richard, C.
952 Sacerdot, M. L. Straub, E. Talla, Comparative genomics of protoploid *Saccharomycetaceae*. *Genome Res* 19
953 (2009).

954 149. A. Goffeau, G. Barrell, H. Bussey, R. W. Davis, B. Dujon, H. Feldmann, F. Galibert, J. D. Hoheisel, C. Jacq,
955 M. Johnston, E. J. Louis, H. W. Mewes, Y. Murakami, P. Philippson, H. Tettelin, S. G. Oliver, Life with 6000
956 genes. *Science* (1979) 274 (1996).

957 150. J. L. Gordon, D. Armisen, E. Proux-Wefa, S. S. Ó hÉigearaigh, K. P. Byrne, K. H. Wolfe, Evolutionary erosion
958 of yeast sex chromosomes by mating-type switching accidents. *Proc Natl Acad Sci U S A* 108 (2011).

959 151. M. A. B. Haase, J. Kominek, D. A. Opulente, X. X. Shen, A. L. LaBella, X. Zhou, J. DeVirgilio, A. B.
960 Hulfachor, C. P. Kurtzman, A. Rokas, C. T. Hittinger, Repeated horizontal gene transfer of GALactose
961 metabolism genes violates Dollo's law of irreversible loss. *Genetics* 217 (2021).

962 152. J. K. Hane, R. G. T. Lowe, P. S. Solomon, K. C. Tan, C. L. Schoch, J. W. Spatafora, P. W. Crous, C. Kodira, B.
963 W. Birren, J. E. Galagan, S. F. F. Torriani, B. A. McDonald, R. P. Oliver, Dothideomycete-plant interactions
964 illuminated by genome sequencing and EST analysis of the wheat pathogen *Stagonospora nodorum*. *Plant Cell*
965 19 (2007).

966 153. F. E. Hartmann, R. C. Rodríguez De La Vega, P. Gladieux, W. J. Ma, M. E. Hood, T. Giraud, D. Falush, Higher
967 Gene Flow in Sex-Related Chromosomes than in Autosomes during Fungal Divergence. *Mol Biol Evol* 37
968 (2020).

969 154. V. Hodorová, H. Lichancová, S. Zubenko, K. Sienkiewicz, S. M. U. Penir, P. Afanasyev, D. Boceck, S. Bonnin,
970 S. Hakobyan, U. Smyczynska, E. Zhivkoplias, M. Zlatošurska, E. Tralle, A. Frolova, L. P. Prysycz, B. Brejová,
971 T. Vinař, J. Nosek, Genome Sequence of the Yeast *Saprochaete ingens* CBS 517.90. *Microbiol Resour*
972 Announc 8 (2019).

973 155. A. P. Jackson, J. A. Gamble, T. Yeomans, G. P. Moran, D. Saunders, D. Harris, M. Aslett, J. F. Barrell, G.
974 Butler, F. Citiulo, D. C. Coleman, P. W. J. De Groot, T. J. Goodwin, M. A. Quail, J. McQuillan, C. A. Munro,
975 A. Pain, R. T. Poulter, M. A. Rajandream, H. Renauld, M. J. Spiering, A. Tivey, N. A. R. Gow, B. Barrell, D. J.
976 Sullivan, M. Berriman, Comparative genomics of the fungal pathogens *Candida dubliniensis* and *Candida*
977 *albicans*. *Genome Res* 19 (2009).

978 156. T. W. Jeffries, I. V. Grigoriev, J. Grimwood, J. M. Laplaza, A. Aerts, A. Salamov, J. Schmutz, E. Lindquist, P.
979 Dehal, H. Shapiro, Y. S. Jin, V. Passoth, P. M. Richardson, Genome sequence of the lignocellulose-
980 bioconverting and xylose-fermenting yeast *Pichia stipitis*. *Nat Biotechnol* 25 (2007).

981 157. T. Jones, N. A. Federspiel, H. Chibana, J. Dungan, S. Kalman, B. B. Magee, G. Newport, Y. R. Thorstenson, N.
982 Agabian, P. T. Magee, R. W. Davis, S. Scherer, The diploid genome sequence of *Candida albicans*. *Proc Natl
983 Acad Sci U S A* 101 (2004).

984 158. J. Kämper, R. Kahmann, M. Bölker, L. J. Ma, T. Brefort, B. J. Saville, F. Banuett, J. W. Kronstad, S. E. Gold,
985 O. Müller, M. H. Perlin, H. A. B. Wösten, R. De Vries, J. Ruiz-Herrera, C. G. Reynaga-Peña, K. Snetselaar, M.
986 McCann, J. Pérez-Martín, M. Feldbrügge, C. W. Basse, G. Steinberg, J. I. Ibeas, W. Holloman, P. Guzman, M.
987 Farman, J. E. Stajich, R. Sentandreu, J. M. González-Prieto, J. C. Kennell, L. Molina, J. Schirawski, A.
988 Mendoza-Mendoza, D. Greilinger, K. Münch, N. Rössel, M. Scherer, M. Vraněš, O. Ladendorf, V. Vincon, U.
989 Fuchs, B. Sandrock, S. Meng, E. C. H. Ho, M. J. Cahill, K. J. Boyce, J. Klose, S. J. Klosterman, H. J. Deelstra,
990 L. Ortiz-Castellanos, W. Li, P. Sanchez-Alonso, P. H. Schreier, I. Häuser-Hahn, M. Vaupel, E. Koopmann, G.
991 Friedrich, H. Voss, T. Schlüter, J. Margolis, D. Platt, C. Swimmer, A. Gnrke, F. Chen, V. Vysotskaia, G.
992 Mannhaupt, U. Güldener, M. Münsterkötter, D. Haase, M. Oesterheld, H. W. Mewes, E. W. Mauceli, D.
993 DeCaprio, C. M. Wade, J. Butler, S. Young, D. B. Jaffe, S. Calvo, C. Nusbaum, J. Galagan, B. W. Birren,
994 Insights from the genome of the biotrophic fungal plant pathogen *Ustilago maydis*. *Nature* 444 (2006).

995 159. M. Kellis, B. W. Birren, E. S. Lander, Proof and evolutionary analysis of ancient genome duplication in the
996 yeast *Saccharomyces cerevisiae*. *Nature* 428 (2004).

997 160. A. Kohler, A. Kuo, L. G. Nagy, E. Morin, K. W. Barry, F. Buscot, B. Canbäck, C. Choi, N. Cichocki, A. Clum,
998 J. Colpaert, A. Copeland, M. D. Costa, J. Doré, D. Floudas, G. Gay, M. Girlanda, B. Henrissat, S. Herrmann, J.
999 Hess, N. Höglberg, T. Johansson, H. R. Khouja, K. Labutti, U. Lahrmann, A. Levasseur, E. A. Lindquist, A.
1000 Lipzen, R. Marmeisse, E. Martino, C. Murat, C. Y. Ngan, U. Nehls, J. M. Plett, A. Pringle, R. A. Ohm, S.
1001 Perotto, M. Peter, R. Riley, F. Rineau, J. Ruytinx, A. Salamov, F. Shah, H. Sun, M. Tarkka, A. Tritt, C.
1002 Veneault-Fourrey, A. Zuccaro, A. Tunlid, I. V. Grigoriev, D. S. Hibbett, F. Martin, Convergent losses of decay
1003 mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. *Nat Genet* 47 (2015).

1004 161. D. J. Krause, J. Kominek, D. A. Opulente, X. X. Shen, X. Zhou, Q. K. Langdon, J. DeVirgilio, A. B. Hulfachor,
1005 C. P. Kurtzman, A. Rokas, C. T. Hittinger, Functional and evolutionary characterization of a secondary
1006 metabolite gene cluster in budding yeasts. *Proc Natl Acad Sci U S A* 115 (2018).

1007 162. M. A. Lachance, E. Hurtado, T. Hsiang, A stable phylogeny of the large-spored *Metschnikowia* clade. *Yeast* 33
1008 (2016).

1009 163. H. Lichancová, V. Hodorová, K. Sienkiewicz, S. M. U. Penir, P. Afanasyev, D. Boceck, S. Bonnin, S.
1010 Hakobyan, P. S. Krawczyk, U. Smyczynska, E. Zhivkopoulos, M. Zlatošurska, A. Odrzywolski, E. Tralle, A.
1011 Frolova, L. P. Pryszcz, B. Brejová, T. Vinař, J. Nosek, Genome Sequence of Flavor-Producing Yeast
1012 *Saprochaete suaveolens* NRRL Y-17571. *Microbiol Resour Announc* 8 (2019).

1013 164. G. Liti, A. N. Nguyen Ba, M. Blythe, C. A. Müller, A. Bergström, F. A. Cubillos, F. Dafhnis-Calas, S.
1014 Khoshraftar, S. Malla, N. Mehta, C. C. Siow, J. Warringer, A. M. Moses, E. J. Louis, C. A. Nieduszynski, High
1015 quality de novo sequencing and assembly of the *Saccharomyces arboricolus* genome. *BMC Genomics* 14
1016 (2013).

1017 165. G. Liti, D. M. Carter, A. M. Moses, J. Warringer, L. Parts, S. A. James, R. P. Davey, I. N. Roberts, A. Burt, V.
1018 Koufopanou, I. J. Tsai, C. M. Bergman, D. Bensasson, M. J. T. O'Kelly, A. Van Oudenaarden, D. B. H. Barton,
1019 E. Bailes, A. N. Nguyen, M. Jones, M. A. Quail, I. Goodhead, S. Sims, F. Smith, A. Blomberg, R. Durbin, E. J.
1020 Louis, Population genomics of domestic and wild yeasts. *Nature* 458 (2009).

1021 166. F. P. Lobo, D. Gonçalves, S. L. Alves, A. L. Gerber, de V. ATR, L. C. Basso, G. R. Franco, M. A. Soares, R.
1022 M. Cadete, C. A. Rosa, B. U. Stambuk, D. L. Gonçalves, S. L. Alves, A. L. Gerber, de V. ATR, L. C. Basso, G.
1023 R. Franco, M. A. Soares, R. M. Cadete, C. A. Rosa, B. U. Stambuk, Draft genome sequence of the D-xylose-
1024 fermenting yeast *Spathaspora arboriae* UFMG-HM19.1AT. *Genome Announcements* 2 (2014).

1025 167. B. J. Loftus, E. Fung, P. Roncaglia, D. Rowley, P. Amedeo, D. Bruno, J. Vamathevan, M. Miranda, I. J.
1026 Anderson, J. A. Fraser, J. E. Allen, I. E. Bosdet, M. R. Brent, R. Chiu, T. L. Doering, M. J. Donlin, C. A.
1027 D'Souza, D. S. Fox, V. Grinberg, J. Fu, M. Fukushima, B. J. Haas, J. C. Huang, G. Janbon, S. J. M. Jones, H. L.
1028 Koo, M. I. Krzywinski, J. K. Kwon-Chung, K. B. Lengeler, R. Maiti, M. A. Marra, R. E. Marra, C. A.
1029 Mathewson, T. G. Mitchell, M. Pertea, F. R. Riggs, S. L. Salzberg, J. E. Schein, A. Shvartsbeyn, H. Shin, M.
1030 Shumway, C. A. Specht, B. B. Suh, A. Tenney, T. R. Utterback, B. L. Wickes, J. R. Wortman, N. H. Wye, J. W.
1031 Kronstad, J. K. Lodge, J. Heitman, R. W. Davis, C. M. Fraser, R. W. Hyman, The genome of the
1032 basidiomycetous yeast and human pathogen *Cryptococcus neoformans*. *Science* (1979) 307 (2005).

1033 168. D. D. Lopes, S. P. Cibulski, F. Q. Mayer, F. M. Siqueira, C. A. Rosa, R. E. Hector, M. A. Z. Ayub, Draft
1034 genome sequence of the D-xylose-fermenting yeast *Spathaspora xylofermentans* UFMG-HMD23.3. *Genome*
1035 *Announc* 5 (2017).

1036 169. M. R. Lopes, C. G. Morais, J. Kominek, R. M. Cadete, M. A. Soares, A. P. T. Uetanabaro, C. Fonseca, M.-A.
1037 Lachance, C. T. Hittinger, C. A. Rosa, Genomic analysis and D-xylose fermentation of three novel *Spathaspora*
1038 species: *Spathaspora girioi* sp. nov., *Spathaspora hagerdaliae* f. a., sp. nov. and *Spathaspora gorwiae* f. a., sp.
1039 nov. *FEMS Yeast Res* 16 (2016).

1040 170. M. R. Lopes, T. M. Batista, G. R. Franco, L. R. Ribeiro, A. R. O. Santos, C. Furtado, R. G. Moreira, A. Goes-
1041 Neto, M. J. S. Vital, L. H. Rosa, M. A. Lachance, C. A. Rosa, *Scheffersomyces stambukii* f.A., sp. Nov., a D-
1042 xylose-fermenting species isolated from rotting wood. *Int J Syst Evol Microbiol* 68 (2018).

1043 171. K. R. Love, K. A. Shah, C. A. Whittaker, J. Wu, M. C. Bartlett, D. Ma, R. L. Leeson, M. Priest, J. Borowsky, S.
1044 K. Young, J. C. Love, Comparative genomics and transcriptomics of *Pichia pastoris*. *BMC Genomics* 17
1045 (2016).

1046 172. I. MacCallum, D. Przybylski, S. Gnerre, J. Burton, I. Shlyakhter, A. Gnirke, J. Malek, K. McKernan, S. Ranade,
1047 T. P. Shea, L. Williams, S. Young, C. Nusbaum, D. B. Jaffe, ALLPATHS 2: Small genomes assembled
1048 accurately and with high continuity from short paired reads. *Genome Biol* 10 (2009).

1049 173. D. Martinez, J. Challacombe, I. Morgenstern, D. Hibbett, M. Schmoll, C. P. Kubicek, P. Ferreira, F. J. Ruiz-
1050 Duenas, A. T. Martinez, P. Kersten, K. E. Hammel, A. Vanden Wymelenberg, J. Gaskell, E. Lindquist, G.
1051 Sabat, S. S. BonDurant, L. F. Larrondo, P. Canessa, R. Vicuna, J. Yadav, H. Doddapaneni, V. Subramanian, A.
1052 G. Pisabarro, J. L. Lavín, J. A. Oguiza, E. Master, B. Henrissat, P. M. Coutinho, P. Harris, J. K. Magnuson, S.
1053 E. Baker, K. Bruno, W. Kenealy, P. J. Hoegger, U. Kües, P. Ramaiya, S. Lucas, A. Salamov, H. Shapiro, H. Tu,
1054 C. L. Chee, M. Misra, G. Xie, S. Teter, D. Yaver, T. James, M. Mokrejs, M. Pospisek, I. V. Grigoriev, T.
1055 Brettin, D. Rokhsar, R. Berka, D. Cullen, Genome, transcriptome, and secretome analysis of wood decay fungus
1056 *Postia placenta* supports unique mechanisms of lignocellulose conversion. *Proc Natl Acad Sci U S A* 106
1057 (2009).

1058 174. D. Martinez, L. F. Larrondo, N. Putnam, M. D. Sollewyn Gelpke, K. Huang, J. Chapman, K. G. Helfenbein, P.
1059 Ramaiya, J. C. Detter, F. Larimer, P. M. Coutinho, B. Henrissat, R. Berka, D. Cullen, D. Rokhsar, Genome
1060 sequence of the lignocellulose degrading fungus *Phanerochaete chrysosporium* strain RP78. *Nat Biotechnol* 22
1061 (2004).

1062 175. C. G. Morais, T. M. Batista, J. Kominek, B. M. Borelli, C. Furtado, R. G. Moreira, G. R. Franco, L. H. Rosa, C.
1063 Fonseca, C. T. Hittinger, M. A. Lachance, C. A. Rosa, *Spathaspora boniae* sp. nov., a D-xylose-fermenting
1064 species in the *Candida albicans*/lodderomyces clade. *Int J Syst Evol Microbiol* 67 (2017).

1065 176. L. Morales, B. Noel, B. Porcel, M. Marcet-Houben, M. F. Hullo, C. Sacerdot, F. Tekaia, V. Leh-Louis, L.
1066 Desponts, V. Khanna, J. M. Aury, V. Barbe, A. Couloux, K. Labadie, E. Pelletier, J. L. Souciet, T. Boekhout, T.
1067 Gabaldon, P. Wincker, B. Dujon, Complete DNA sequence of *Kuraishia capsulata* illustrates novel genomic
1068 features among budding yeasts (saccharomycotina). *Genome Biol Evol* 5 (2013).

1069 177. G. Morel, L. Sterck, D. Swennen, M. Marcet-Houben, D. Onesime, A. Levasseur, N. Jacques, S. Mallet, A.
1070 Couloux, K. Labadie, J. Amselem, J. M. Beckerich, B. Henrissat, Y. Van De Peer, P. Wincker, J. L. Souciet, T.
1071 Gabaldón, C. R. Tinsley, S. Casaregola, Differential gene retention as an evolutionary mechanism to generate
1072 biodiversity and adaptation in yeasts. *Sci Rep* 5 (2015).

1073 178. S. Naseeb, S. A. James, H. Alsamar, C. J. Michaels, B. Gini, C. Nueno-Palop, C. J. Bond, H. McGhie, I. N.
1074 Roberts, D. Delneri, *Saccharomyces jurei* sp. Nov., isolation and genetic identification of a novel yeast species
1075 from *Quercus robur*. *Int J Syst Evol Microbiol* 67 (2017).

1076 179. D. E. Neafsey, B. M. Barker, T. J. Sharpton, J. E. Stajich, D. J. Park, E. Whiston, C. Y. Hung, C. McMahan, J.
1077 White, S. Sykes, D. Heiman, S. Young, Q. Zeng, A. Abouelleil, L. Aftuck, D. Bessette, A. Brown, M.
1078 FitzGerald, A. Lui, J. P. Macdonald, M. Priest, M. J. Orbach, J. N. Galgiani, T. N. Kirkland, G. T. Cole, B. W.
1079 Birren, M. R. Henn, J. W. Taylor, S. D. Rounseley, Population genomic sequencing of *Coccidioides* fungi
1080 reveals recent hybridization and transposon control. *Genome Res* 20 (2010).

1081 180. A. Riccombeni, G. Vidanes, E. Proux-Wéra, K. H. Wolfe, G. Butler, Sequence and analysis of the genome of
1082 the pathogenic yeast *Candida orthopsilosis*. *PLoS One* 7 (2012).

1083 181. R. Riley, S. Haridas, K. H. Wolfe, M. R. Lopes, C. T. Hittinger, M. Göker, A. A. Salamov, J. H. Wisecaver, T.
1084 M. Long, C. H. Calvey, A. L. Aerts, K. W. Barry, C. Choi, A. Clum, A. Y. Coughlan, S. Deshpande, A. P.
1085 Douglass, S. J. Hanson, H.-P. Klenk, K. M. LaButti, A. Lapidus, E. A. Lindquist, A. M. Lipzen, J. P. Meier-
1086 Kolthoff, R. A. Ohm, R. P. Otiilar, J. L. Pangilinan, Y. Peng, A. Rokas, C. A. Rosa, C. Scheuner, A. A. Sibirny,
1087 J. C. Slot, J. B. Stielow, H. Sun, C. P. Kurtzman, M. Blackwell, I. V Grigoriev, T. W. Jeffries, Comparative
1088 genomics of biotechnologically important yeasts. *Proceedings of the National Academy of Sciences* 113, 9882–
1089 9887 (2016).

1090 182. V. Sarilar, H. Devillers, K. C. Freel, J. Schacherer, C. Neuvéglise, Draft genome sequence of *Lachancea*
1091 *lanzarotensis* CBS 12615T, an ascomycetous yeast isolated from grapes. *Genome Announc* 3 (2016).

1092 183. D. R. Scannell, A. C. Frank, G. C. Conant, K. P. Byrne, M. Woolfit, K. H. Wolfe, Independent sorting-out of
1093 thousands of duplicated gene pairs in two yeast species descended from a whole-genome duplication. *Proc Natl
1094 Acad Sci U S A* 104 (2007).

1095 184. D. R. Scannell, O. A. Zill, A. Rokas, C. Payen, M. J. Dunham, M. B. Eisen, J. Rine, M. Johnston, C. T.
1096 Hittinger, The awesome power of yeast evolutionary genetics: New genome sequences and strain resources for
1097 the *Saccharomyces* sensu stricto genus. *G3: Genes, Genomes, Genetics* 1 (2011).

1098 185. B. Schäfer, M. Hansen, B. F. Lang, Transcription and RNA-processing in fission yeast mitochondria. *RNA* 11
1099 (2005).

1100 186. A. S. M. Sonnenberg, W. Gao, B. Lavrijssen, P. Hendrickx, N. Sedaghat-Tellgerd, M. Foulongne-Oriol, W. S.
1101 Kong, E. G. W. M. Schijlen, J. J. P. Baars, R. G. F. Visser, A detailed analysis of the recombination landscape
1102 of the button mushroom *Agaricus bisporus* var. *bisporus*. *Fungal Genetics and Biology* 93 (2016).

1103 187. T. Suzuki, T. Hoshino, A. Matsushika, Draft genome sequence of *Kluyveromyces marxianus* strain DMB1,
1104 isolated from sugarcane bagasse hydrolysate. *Genome Announc* 2 (2014).

1105 188. M. Toome, R. A. Ohm, R. W. Riley, T. Y. James, K. L. Lazarus, B. Henrissat, S. Albu, A. Boyd, J. Chow, A.
1106 Clum, G. Heller, A. Lipzen, M. Nolan, L. Sandor, N. Zvenigorodsky, I. V. Grigoriev, J. W. Spatafora, M. C.
1107 Aime, Genome sequencing provides insight into the reproductive biology, nutritional mode and ploidy of the
1108 fern pathogen *Mixia osmundae*. *New Phytologist* 202 (2014).

1109 189. N. Vakirlis, V. Sarilar, G. Drillon, A. Fleiss, N. Agier, J. P. Meyniel, L. Blanpain, A. Carbone, H. Devillers, K.
1110 Dubois, A. Gillet-Markowska, S. Graziani, N. Huu-Vang, M. Poirel, C. Reisser, J. Schott, J. Schacherer, I.
1111 Lafontaine, B. Llorente, C. Neuvéglise, G. Fischer, Reconstruction of ancestral chromosome architecture and
1112 gene repertoire reveals principles of genome evolution in a model yeast genus. *Genome Res* 26 (2016).

1113 190. J. A. L. Van Kan, J. H. M. Stassen, A. Mosbach, T. A. J. Van Der Lee, L. Faino, A. D. Farmer, D. G.
1114 Papasotiriou, S. Zhou, M. F. Seidl, E. Cottam, D. Edel, M. Hahn, D. C. Schwartz, R. A. Dietrich, S. Widdison,
1115 G. Scalliet, A gapless genome sequence of the fungus *Botrytis cinerea*. *Mol Plant Pathol* 18 (2017).

1116 191. S. Vaux, A. Criscuolo, M. Desnos-Ollivier, L. Diancourt, C. Tarnaud, M. Vandenbogaert, S. Brisse, B.
1117 Coignard, F. Dromer, Multicenter outbreak of infections by *Saprochaete clavata*, an unrecognized opportunistic
1118 fungal pathogen. *mBio* 5 (2014).

1119 192. L. Vega-Alvarado, J. Gómez-Angulo, Z. Escalante-García, R. Grande, A. Gschaedler-Mathis, L. Amaya-
1120 Delgado, A. Sanchez-Flores, J. Arrizon, High-quality draft genome sequence of *Candida apicola* NRRL Y-
1121 50540. *Genome Announc* 3 (2015).

1122 193. Y. Vervoort, B. Herrera-Malaver, S. Mertens, V. Guadalupe Medina, J. Duitama, L. Michiels, G. Derdelinckx,
1123 K. Voordeckers, K. J. Verstrepen, Characterization of the recombinant *Brettanomyces anomalus* β -glucosidase
1124 and its potential for bioflavouring. *J Appl Microbiol* 121 (2016).

1125 194. J. Wendland, A. Walther, Chromosome number reduction in *eremothecium coryli* by two telomere-to-telomere
1126 fusions. *Genome Biol Evol* 6 (2014).

1127 195. D. J. Wohlbach, A. Kuo, T. K. Sato, K. M. Potts, A. A. Salamov, K. M. LaButti, H. Sun, A. Clum, J. L.
1128 Pangilinan, E. A. Lindquist, S. Lucas, A. Lapidus, M. Jin, C. Gunawan, V. Balan, B. E. Dale, T. W. Jeffries, R.
1129 Zinkel, K. W. Barry, I. V. Grigoriev, A. P. Gasch, Comparative genomics of xylose-fermenting fungi for
1130 enhanced biofuel production. *Proc Natl Acad Sci U S A* 108 (2011).

1131 196. J. R. Wortman, J. M. Gilsenan, V. Joardar, J. Deegan, J. Clutterbuck, M. R. Andersen, D. Archer, M. Bencina,
1132 G. Braus, P. Coutinho, H. von Döhren, J. Doonan, A. J. M. Driessens, P. Durek, E. Espeso, E. Fekete, M.
1133 Flippini, C. G. Estrada, S. Geysens, G. Goldman, P. W. J. de Groot, K. Hansen, S. D. Harris, T. Heinekamp, K.
1134 Helmstaedt, B. Henrissat, G. Hofmann, T. Homan, T. Horio, H. Horiuchi, S. James, M. Jones, L. Karaffa, Z.
1135 Karányi, M. Kato, N. Keller, D. E. Kelly, J. A. K. W. Kiel, J. M. Kim, I. J. van der Klei, F. M. Klis, A.
1136 Kovalchuk, N. Krasevec, C. P. Kubicek, B. Liu, A. Maccabe, V. Meyer, P. Mirabito, M. Miskei, M. Mos, J.
1137 Mullins, D. R. Nelson, J. Nielsen, B. R. Oakley, S. A. Osmani, T. Pakula, A. Paszewski, I. Paulsen, S. Pilsyk, I.
1138 Pócsi, P. J. Punt, A. F. J. Ram, Q. Ren, X. Robellet, G. Robson, B. Seibold, P. van Solingen, T. Specht, J. Sun,
1139 N. Taheri-Talesh, N. Takeshita, D. Ussery, P. A. vanKuyk, H. Visser, P. J. I. van de Vondervoort, R. P. de
1140 Vries, J. Walton, X. Xiang, Y. Xiong, A. P. Zeng, B. W. Brandt, M. J. Cornell, C. A. M. J. J. van den Hondel, J.
1141 Visser, S. G. Oliver, G. Turner, The 2008 update of the *Aspergillus nidulans* genome annotation: a community
1142 effort. *Fungal Genet Biol* 46 Suppl 1 (2009).

1143 197. H. Xiao, Z. Shao, Y. Jiang, S. Dole, H. Zhao, Exploiting *Issatchenkovia orientalis* SD108 for succinic acid
1144 production. [Preprint] (2014). <https://doi.org/10.1186/s12934-014-0121-4>.

1145 198. J. Xu, C. W. Saunders, P. Hu, R. A. Grant, T. Boekhout, E. E. Kuramae, J. W. Kronstad, Y. M. DeAngelis, N.
1146 L. Reeder, K. R. Johnstone, M. Leland, A. M. Fieno, W. M. Begley, Y. Sun, M. P. Lacey, T. Chaudhary, T.

1147 Keough, L. Chu, R. Sears, B. Yuan, T. L. Dawson, Dandruff-associated *Malassezia* genomes reveal convergent
1148 and divergent virulence traits shared with plant and human fungal pathogens. *Proc Natl Acad Sci U S A* 104
1149 (2007).

1150 199. J. Yang, L. Wang, X. Ji, Y. Feng, X. Li, C. Zou, J. Xu, Y. Ren, Q. Mi, J. Wu, S. Liu, Y. Liu, X. Huang, H.
1151 Wang, X. Niu, J. Li, L. Liang, Y. Luo, K. Ji, W. Zhou, Z. Yu, G. Li, Y. Liu, L. Li, M. Qiao, L. Feng, K. Q.
1152 Zhang, Genomic and proteomic analyses of the fungus arthrobotrys oligospora provide insights into nematode-
1153 trap formation. *PLoS Pathog* 7 (2011).

1154 200. X. Zhang, X. Cheng, L. Liu, S. Liu, Genome Sequence Resource for the Plant Pathogen *Sclerotinia*
1155 *sclerotiorum* WH6 Isolated in China. *Plant Dis* 105 (2021).

1156 201. G. Kunze, C. Gaillardin, M. Czernicka, P. Durrens, T. Martin, E. Böer, T. Gabaldón, J. A. Cruz, E. Talla, C.
1157 Marck, A. Goffeau, V. Barbe, P. Baret, K. Baronian, S. Beier, C. Bleykasten, R. Bode, S. Casaregola, L.
1158 Desponts, C. Fairhead, M. Giersberg, P. P. Gierski, U. Hähnel, A. Hartmann, D. Jankowska, C. Jubin, P. Jung, I.
1159 Lafontaine, V. Leh-Louis, M. Lemaire, M. Marcet-Houben, M. Mascher, G. Morel, G. F. Richard, J. Riechen,
1160 C. Sacerdot, A. Sarkar, G. Savel, J. Schacherer, D. J. Sherman, N. Stein, M. L. Straub, A. Thierry, A.
1161 Trautwein-Schult, B. Vacherie, E. Westhof, S. Worch, B. Dujon, J. L. Souciet, P. Wincker, U. Scholz, C.
1162 Neuvéglise, The complete genome of *Blastobotrys* (*Arxula*) *adeninivorans* LS3 - A yeast of biotechnological
1163 interest. *Biotechnol Biofuels* 7 (2014).

1164 202. Opulente DA, Langdon QK, Jarzyna M, Buh KV, Haase MAB, Groenewald M, Hittinger CT. Taxogenomic
1165 analysis of a novel yeast species isolated from soil, *Pichia galeolata* sp. nov. *Yeast* 40 (2023).

1166 **Acknowledgments:**

1167 We thank Linda C. Horianopoulos, Kaitlin J. Fisher, Liang Sun, David J. Krause, Kyle T.
1168 David, Christina M. Chavez, David C. Rinker, Trey K. Sato, and Hittinger Lab and Rokas Lab
1169 members for helpful discussions; Barbara Robbertse and Conrad Schoch for coordinating
1170 GenBank taxonomy; the yeast community for publicly depositing taxonomic type strains; the
1171 University of Wisconsin Biotechnology Center DNA Sequencing Facility (Research Resource
1172 Identifier – RRID:SCR_017759) for providing DNA sequencing facilities and services;
1173 Wisconsin Energy Institute staff for computational support; and the Center for High-Throughput
1174 Computing at the University of Wisconsin-Madison (<https://doi.org/10.21231/GNT1-HW21>).
1175 This work was performed in part using resources contained within the Advanced Computing
1176 Center for research and Education at Vanderbilt University in Nashville, TN. Mention of trade
1177 names or commercial products in this publication is solely for the purpose of providing specific
1178 information and does not imply recommendation or endorsement by the US Department of
1179 Agriculture. USDA is an equal opportunity provider and employer.
1180

1181 **Funding:**

1182 National Science Foundation Grant DEB-1442148 (CTH)
1183 National Science Foundation Grant DEB-2110403 (CTH)
1184 National Science Foundation Grant DEB-1442113 (AR)
1185 National Science Foundation Grant DEB-2110404 (AR)
1186 DOE Great Lakes Bioenergy Research Center, funded by BER Office of Science Grant
1187 DE-SC0018409 (CTH)
1188 USDA National Institute of Food and Agriculture Hatch Project 1020204 (CTH)
1189 USDA National Institute of Food and Agriculture Hatch Project 7005101 (CTH)
1190 H. I. Romnes Faculty Fellow, supported by the Office of the Vice Chancellor for
1191 Research and Graduate Education with funding from the Wisconsin Alumni Research
1192 Foundation (CTH)

1193 National Institutes of Health/National Institute of Allergy and Infectious Diseases Grant
1194 R56 AI146096 (AR)

1195 National Institutes of Health/National Institute of Allergy and Infectious Diseases Grant
1196 R01 AI153356 (AR)

1197 Burroughs Wellcome Fund (AR)

1198 Research supported by the National Key R&D Program of China Grant
1199 2022YFD1401600 (XXS)

1200 National Science Foundation for Distinguished Young Scholars of Zhejiang Province
1201 Grant LR23C140001 (XXS)

1202 Fundamental Research Funds for the Central Universities Grant 226-2023-00021 (XXS)

1203 National Institutes of Health Grant T32 HG002760-16 (JFW)

1204 National Science Foundation Grant Postdoctoral Research Fellowship in Biology
1205 1907278 (JFW)

1206 Howard Hughes Medical Institute through the James H. Gilliam Fellowships for
1207 Advanced Study program (JLS, AR)

1208 National Science Foundation Graduate Research Fellowship Grant DGE-1256259 (QLK)

1209 Predoctoral Training Program in Genetics, funded by the National Institutes of Health
1210 Grant 5T32GM007133 (QLK)

1211 Slovenian Research Agency Grant P4-0116 (NC)

1212 Slovenian Research Agency Grant MRIC-UL ZIM, IP-0510 (NC)

1213 Fundação para a Ciência e a Tecnologia Grant UIDB/04378/2020 (CG, PG, JPS)

1214 Fundação para a Ciência e a Tecnologia Grant LA/P/0140/2020 (CG, PG, JPS)

1215 Fundação para a Ciência e a Tecnologia Grant PTDC/BIA-EVL/0604/2021 (CG)

1216 Fundação para a Ciência e a Tecnologia Grant PTDC/BIA-EVL/1100/2020 (PG)

1217 Conselho Nacional de Desenvolvimento Científico e Tecnológico - Brazil CNPq Grant
1218 408733/2021 (CAR)

1219 Conselho Nacional de Desenvolvimento Científico e Tecnológico - Brazil CNPq Grant
1220 406564/2022-1 - “INCT Yeasts: Biodiversity, preservation and biotechnological
1221 innovation” (CAR)

1222 MINCyT Grant PICT-2020-SERIE A-00226 (DL)

1223 CONICET Grant PIP 11220200102948CO (DL)

1224 UNComahue Grant 04/B247 (DL)

1225 JLS is a Howard Hughes Medical Institute Awardee of the Life Sciences Research
1226 Foundation

1227

1228

1229

1230 **Author contributions:**

1231 DAO designed and implemented research, led phenotypic data collection, led genome
1232 sequencing, performed computational analyses and statistical analyses, managed data,
1233 and prepared figures.

1234
1235 ALL designed and implemented computational analyses, managed data, and prepared
1236 figures.

1237
1238 MCH designed and implemented machine learning analyses.

1239
1240 JFW designed and implemented genome filtering and data curation pipelines.

1241
1242 JK and JLS conducted data curation and filtering.

1243
1244 XXS led the phylogenomic analyses with CL and Yuanning Li.

1245
1246 XZ led the annotation of genomes with Yonglin Li.

1247
1248 DAO, HRS, JV, CRM, QKL, EJU, and ABH phenotyped and sequenced strains.

1249
1250 MS and CG performed fructophilic phenotyping experiments.

1251
1252 DAO, KVB, MJ, MABH, QKL, CAR, NC, DL, CPK, MG, and CTH provided
1253 yeast strains.

1254
1255 JHD, ABH, CPK, and MG curated and organized strains and metadata.

1256
1257 JPS contributed resources to fructophilic phenotyping experiments.

1258
1259 PG supervised fructophilic phenotyping experiments.

1260
1261 CPK and MG led the taxonomy.

1262
1263 DAO and ALL co-wrote the manuscript with contributions from MCH, JFW, JK, JLS,
1264 CG, PG, XZ, XXS, MG, AR, and CTH.

1265
1266 AR and CTH edited the manuscript.

1267
1268 CPK, AR, and CTH designed the research, obtained funding, and supervised the project.

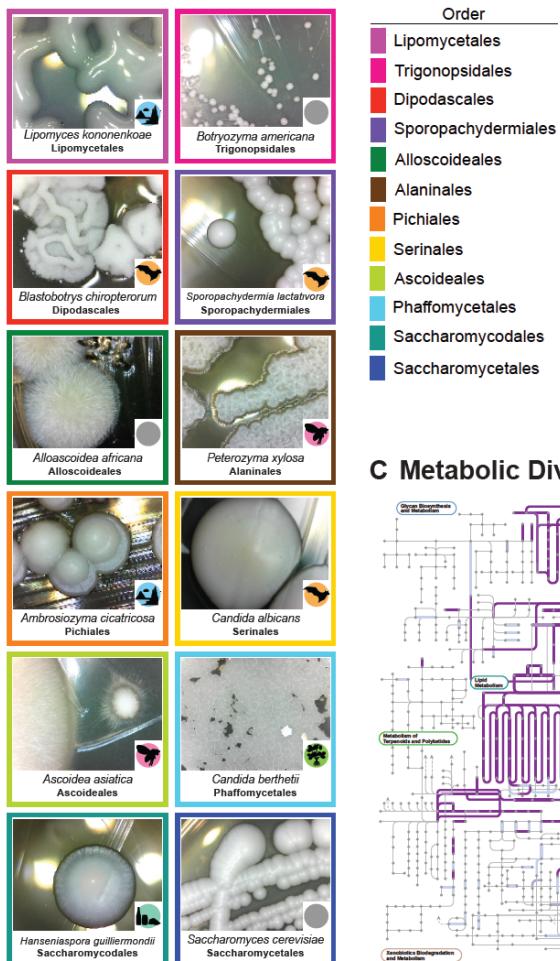
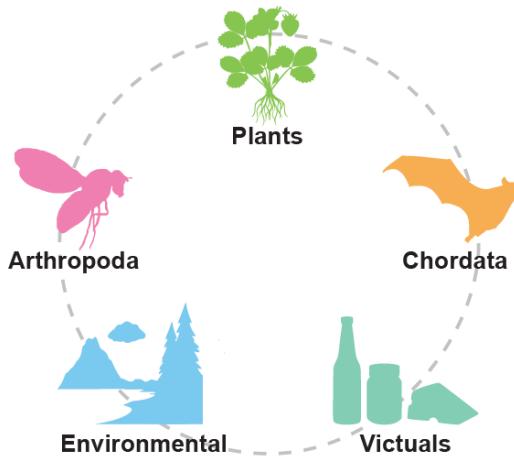
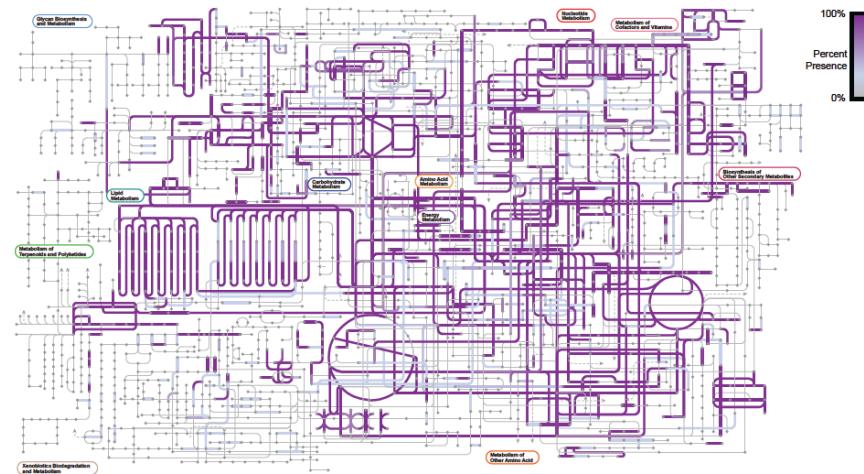
1269
1270 All authors provided comments, input, and approved the manuscript.

1271
1272 **Competing interests:** JLS was a scientific adviser for WittGen Biotechnologies and is an
1273 adviser for ForensisGroup, Inc. AR is a scientific consultant for LifeMine Therapeutics, Inc. The
1274 other authors declare no other competing interests.

1275
1276 **Data and materials availability:** All genome sequence assemblies and raw sequencing data
have been deposited in GenBank under the accessions noted in Data S1. All other data, including

1277 data on growth on different carbon and nitrogen sources and isolation environment data, have
1278 been deposited in Figshare at <https://doi.org/10.25452/figshare.plus.c.6714042> (42). All code has
1279 been deposited in GitHub at <https://zenodo.org/records/10709452> (91) and
1280 <https://zenodo.org/doi/10.5281/zenodo.10711058> (92) and is available in Figshare at
1281 <https://doi.org/10.25452/figshare.plus.c.6714042> (42). Nearly all strains came from globally
1282 recognized yeast culture collections and may be ordered from the United States Department of
1283 Agriculture (<https://nrrl.ncaur.usda.gov> for NRRL strains) or Westerdijk Fungal Biodiversity
1284 Institute (<https://wi.knaw.nl> for CBS strains) under their respective Material Transfer
1285 Agreements (MTAs) for publicly deposited strains; currently, NRRL only requires an MTA for
1286 strains requiring BSL-2 precautions. Strains from the Hittinger Lab that represent candidates for
1287 novel species that have not yet been formally described or deposited at CBS or NRRL may be
1288 obtained from cthittinger@wisc.edu under the Uniform Biological MTA or other mutually
1289 acceptable MTA.

1290 **Supplementary Materials**




1291 Materials and Methods

1292 Figures S1-S9

1293 Tables S1-S4

1294 Data files S1-S7

1295 References (94-202)

A Morphological Diversity**B Isolation Diversity****C Metabolic Diversity****Figure 1: Yeasts are morphologically, ecologically, and metabolically diverse.**

A. Images of yeasts from different orders. The color of the box surrounding the image indicates the species' order. The color of the circle in the bottom right-hand corner of the image represents the isolation environment for the strain of the species sequenced and phenotyped during this study. Yeast colonies are morphologically diverse; they can vary in shape, color, size, dullness, etc.

B. Yeasts have been isolated from every biome and continent. Strains studied were found on plants, animals, in soil, and many other environments. Strain-level isolation data were placed into an ecological ontology to allow for identification of yeasts that shared higher-level ontological classes.

C. Yeasts are metabolically diverse. The image represents the KOs present across Saccharomycotina metabolic networks. Any pathway that is highlighted in purple is present across a subset of yeasts; the saturation of the purple represents the proportion of yeasts with the pathway.

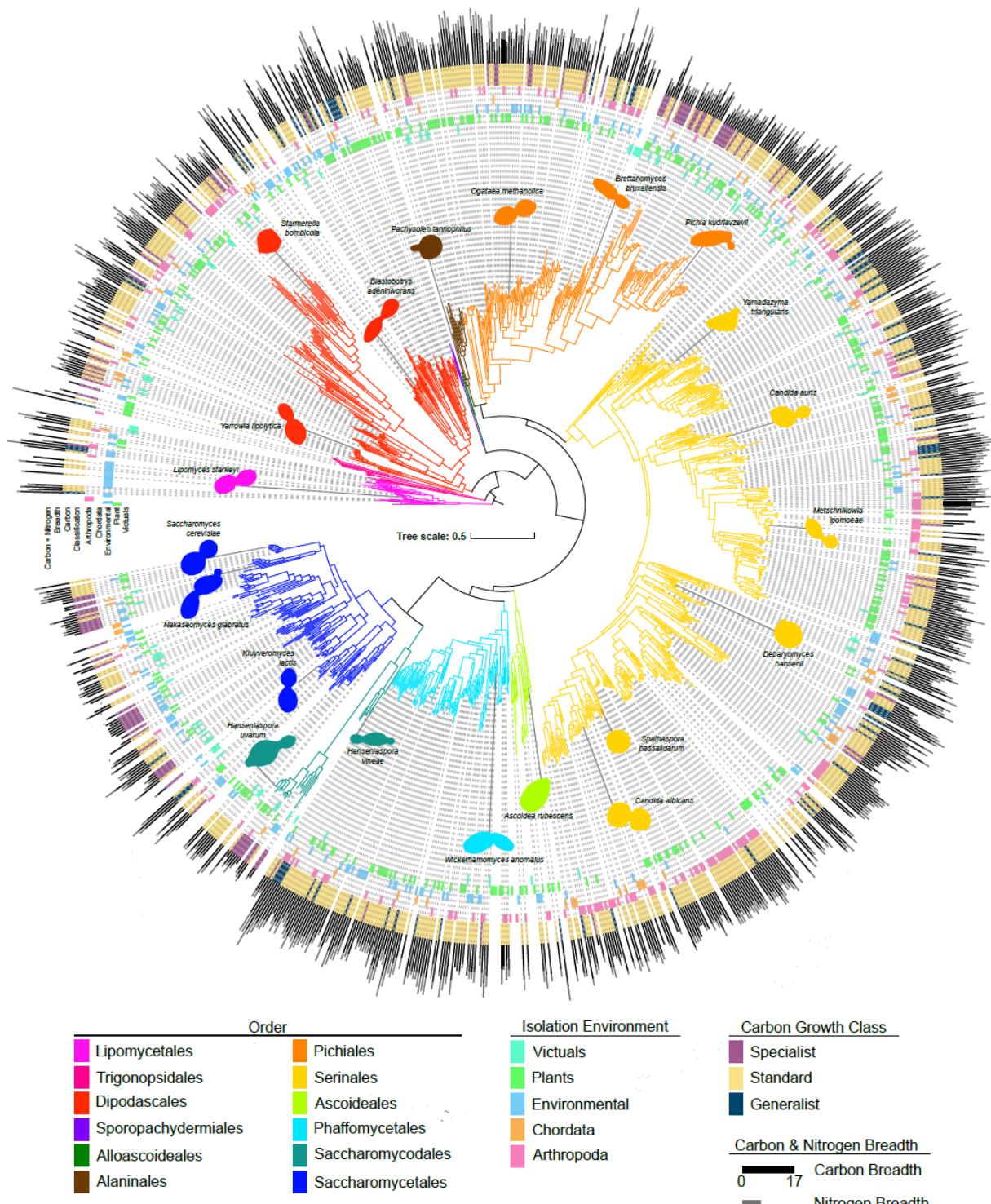
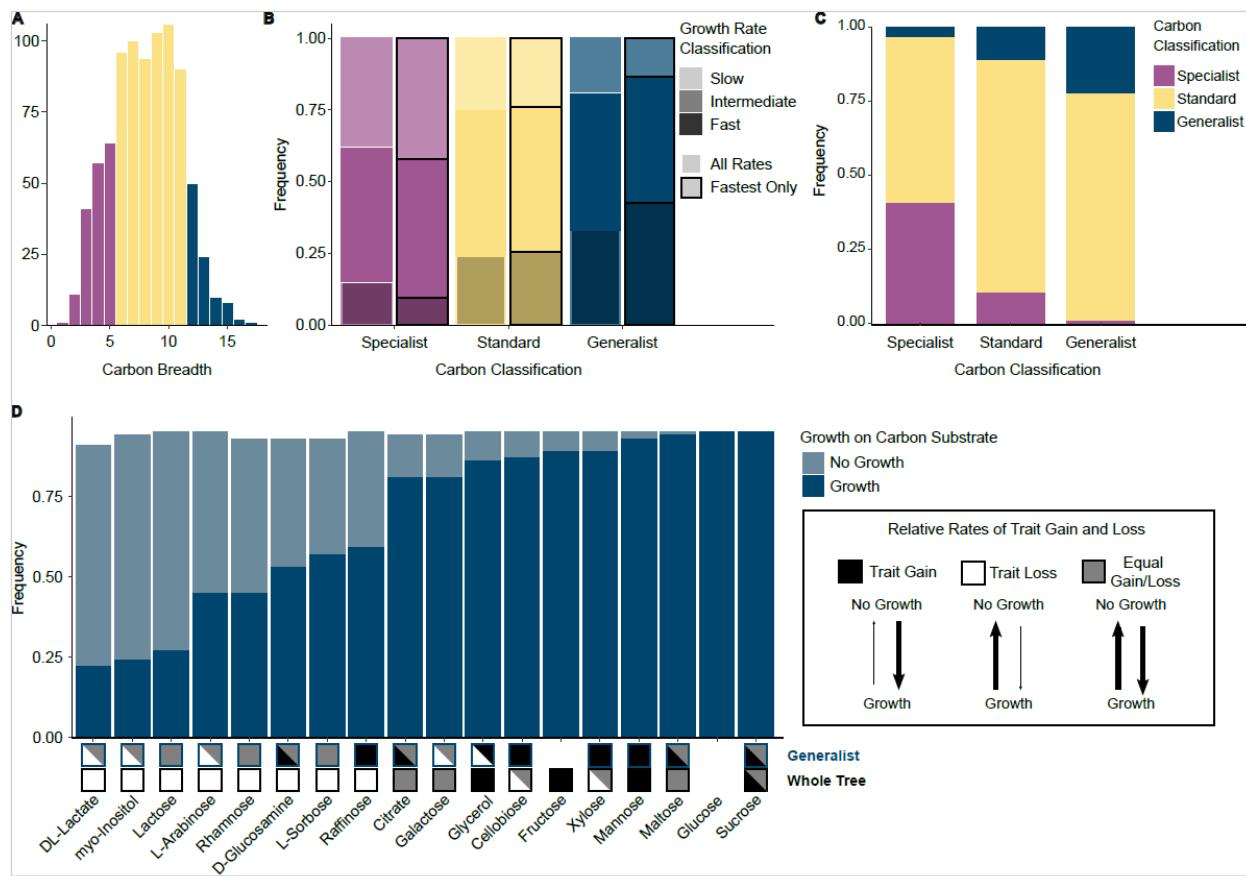
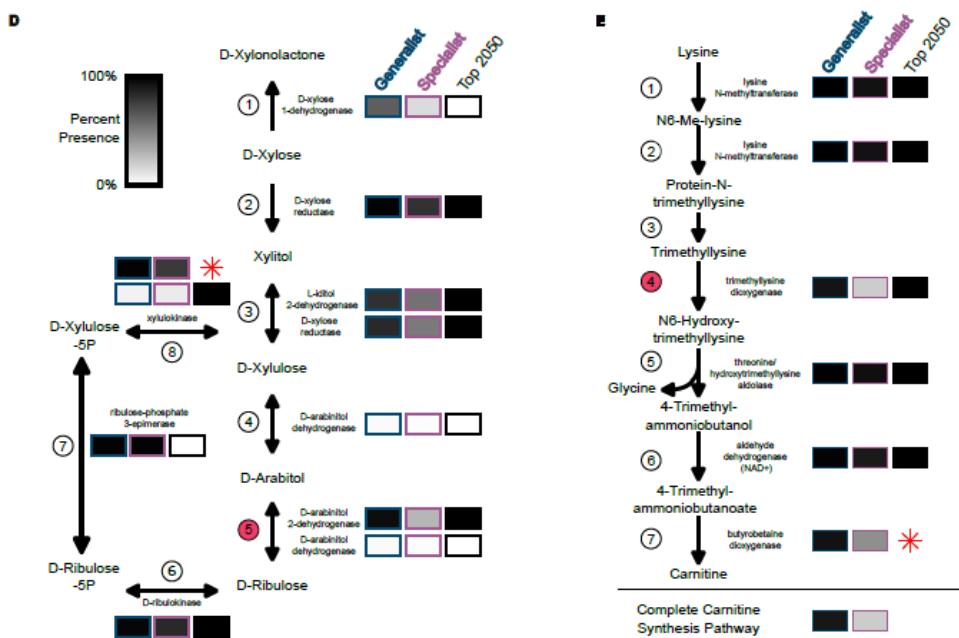
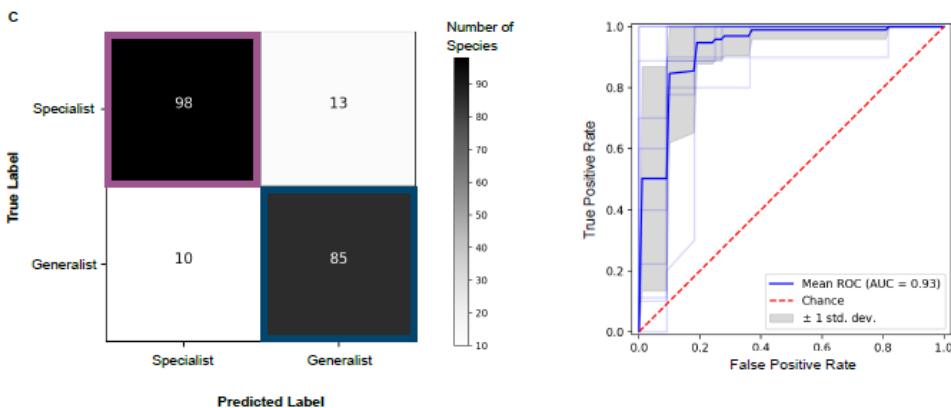
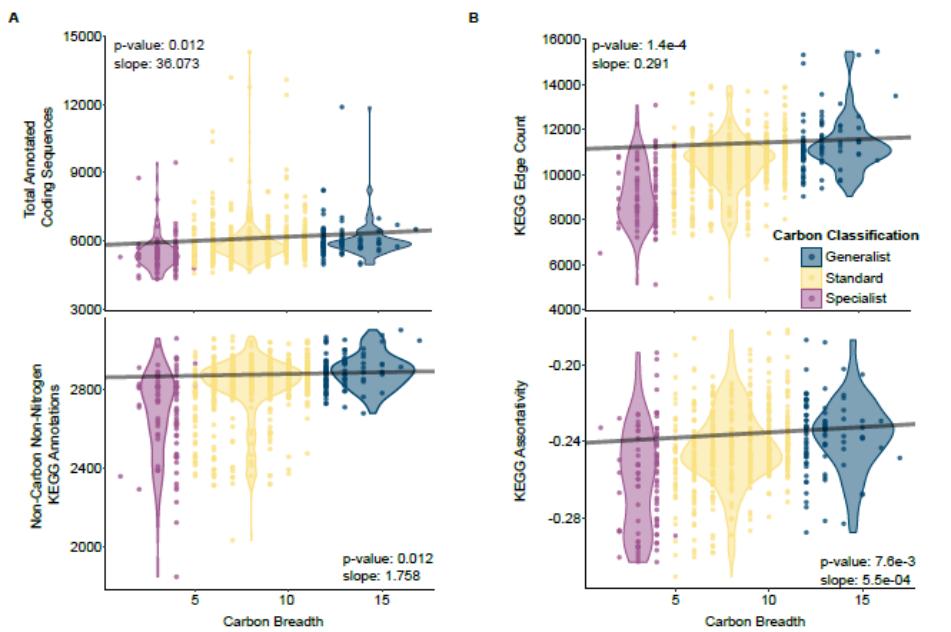



Figure 2: Yeast traits are widely distributed across the phylogeny.

The phylogeny of 1,154 yeasts and fungal outgroups built from 1,403 orthologous groups of genes. Branches are colored according to their taxonomic assignment to an order of Saccharomycotina (41). The innermost rings are colored by the top-level type of isolation environment in which each specific strain was isolated. The purple, yellow, and blue ring identifies the carbon growth classification for each strain. This classification is based on the carbon niche breadth, which is represented by the bar graph on the exterior of the tree, along

1321 with nitrogen breadth. All traits illustrated (isolation environment, carbon growth class, nitrogen
 1322 breadth, and carbon niche breadth) are widely distributed across the tree; no order has one trait
 1323 exclusively.




1325
 1326 **Figure 3: Carbon specialists and generalists differ in nitrogen breadth, growth rate, and**
 1327 **evolutionary history.**

1328 A. Histogram of carbon niche breadth across yeasts ($n = 853$). The colors of the bars represent
 1329 the ranges for the different carbon classifications. Metabolic classifications were determined by
 1330 permuting the binary carbon growth matrix ($n = 1000$ permutations). To determine the metabolic
 1331 strategy of a yeast, we calculated the observed and expected (permuted) breadth for each yeast
 1332 and calculated the binomial confidence intervals to determine significant differences in breadth.
 1333 Generalists had a significantly larger carbon niche breadth than expected by chance, and
 1334 specialists had a significantly smaller carbon niche breadth. If a yeast was not classified as either
 1335 a generalist or a specialist, it was classified as standard.

1336 B. The growth rates for each yeast on each of the 18 carbon sources were categorized as slow
 1337 (bottom 25%), intermediate (median 50%), or fast (top 25%) using either all the rates per yeast
 1338 (white outline) or only the highest rate per yeast (black outline). Carbon generalists had the
 1339 highest proportion of fast growth rates (33% all rates, 43% fastest rates), while specialists had
 1340 the smallest proportion (15% all rates, 9% fastest rates). The inverse was also true, with carbon
 1341 generalists having the smallest proportion of slow growth rates (19% all rates, 14% fastest rates)
 1342 and carbon specialists having the highest proportion of slow growth rates (38% all rates, 42%
 1343 fastest rates).

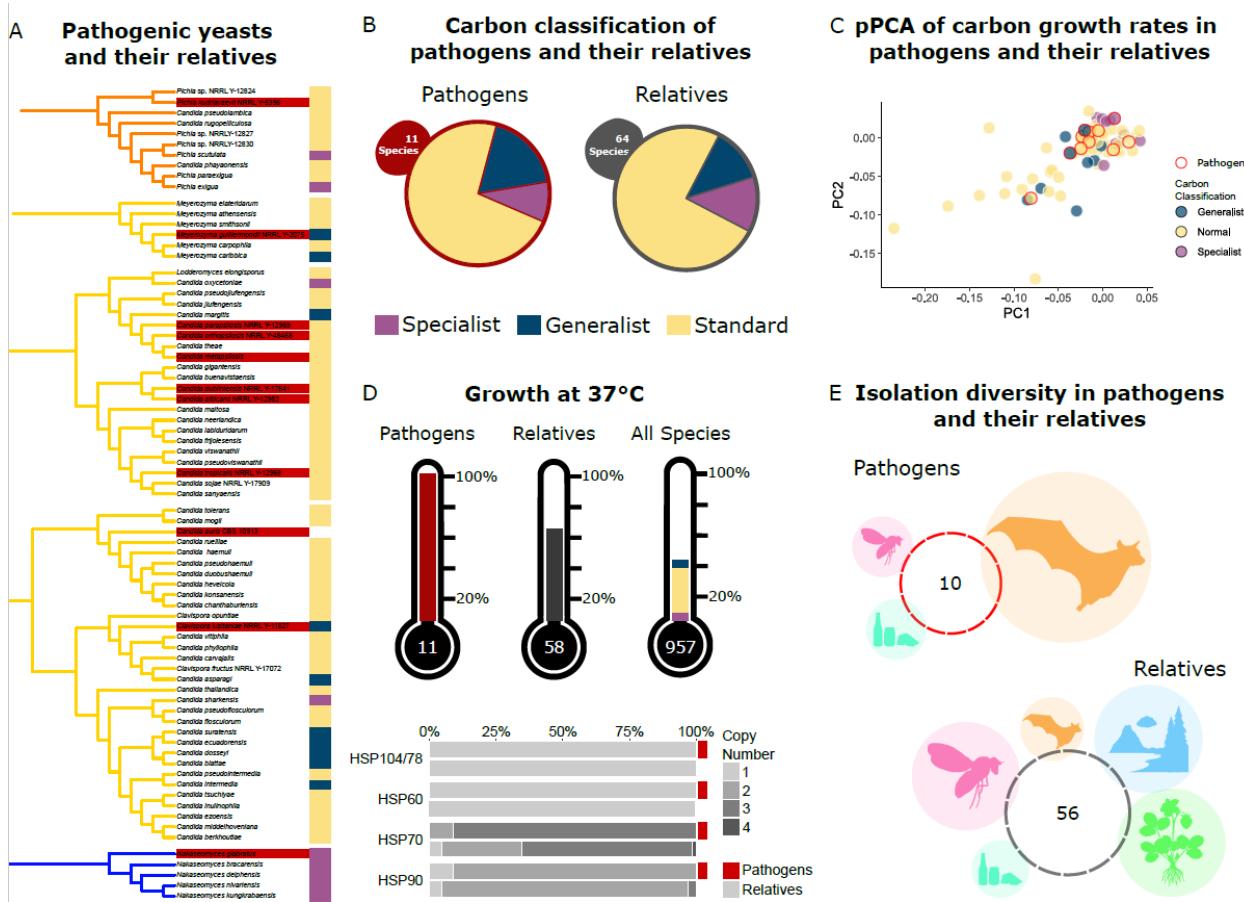
1344 C. Stacked bar graph of carbon metabolic strategies within each nitrogen metabolic strategy.

1345 **D.** Carbon generalists shared many of the same growth traits: 10 out of 18 growth traits were
1346 found in more than 75% of generalists. Many of the carbon sources had different evolutionary
1347 trends in a generalist background as compared to across the whole tree. Three different
1348 evolutionary models are shown: trait gain (black), trait loss (white), and equal rates of trait gain
1349 and loss (gray). No box indicates that the trait was not co-evolving with background or across the
1350 tree. More than one evolutionary model is shown in cases where the reverse jump model spent
1351 75% or less of the time on a single model. For example, the model testing correlated evolution
1352 between growth on D-glucosamine and generalist carbon classification reported a model string
1353 with a greater rate of gain in 55% of the run and a model string with equal rates of gain and loss
1354 in 29% of the run; therefore, we reported both the trait gain and equal gain/loss model in the
1355 generalist analysis.
1356

1358 **Figure 4: Generalist and specialist metabolism differs in expected and unexpected ways.**

1359 **A.** Total annotated coding sequences (top) and total number of annotated KEGG ortholog groups
1360 (KOs; bottom) are both positively and significantly correlated with carbon niche breadth using a
1361 Phylogenetic Generalized Least Squares (PGLS) analysis. One outlier with a predicted number
1362 of coding sequences is not visualized but was included in the analysis (*Magnusiomyces*
1363 *magnusii*, number of protein-coding genes = 20,704, carbon niche breadth = 9).

1364 **B.** Two KEGG network statistics were significantly and positively correlated with carbon niche
1365 breadth when taking into account phylogenetic relatedness (PGLS). KEGG Edge Count (top) and
1366 KEGG Assortativity (bottom) were both elevated in carbon generalists.


1367 **C.** Yeasts were classified into generalists and specialists using a machine learning algorithm
1368 trained on the KOs. The correct classification occurred in 88% of specialists and 89% of
1369 generalists. The ROC analysis suggests that both the sensitivity and specificity of our model is
1370 excellent (AUC=0.93).

1371 **D.** Multiple reactions in the pentose and glucuronate interconversions pathway were important in
1372 classifying yeasts into generalists and specialists as determined by the leave-out analysis, which
1373 identified 2,050 informative KOs (black boxes.) Boxes are shaded as the percent of each carbon
1374 classification with at least one enzyme in that step of the reaction. The reaction with the third
1375 highest relative importance in the machine learning analysis is shown in Step 5 and is facilitated
1376 by D-arabinitol 2-dehydrogenase. Interestingly, experimental studies suggest that yeast D-
1377 arabinitol 2-dehydrogenase is also capable of completing the reaction in Step 4 (93). Step 8 was
1378 among the top features used in the machine learning analysis, despite the fact that KEGG only
1379 partially annotated this gene. The xylulokinase encoded by yeast *XYL3* is well studied (58).

1380 Therefore, we re-annotated the *XYL3* gene and have shown its relative abundance (red star).

1381 **E.** The carnitine biosynthesis pathway includes multiple reactions that are important for
1382 classifying carbon generalists and specialists. The reaction in Step 4 had the fourth highest
1383 relative importance in the machine learning classification of carbon classification. Step 7 was not
1384 annotated by KEGG in any of our yeasts, but this step had been previously characterized in
1385 *Candida albicans* as being facilitated by the trimethyllysine dioxygenase enzyme encoded by
1386 *BBH2* (64). We re-annotated *BBH2* using this reference sequence and calculated the relative
1387 abundance in each carbon classification (red star). Finally, we determined the number of yeasts
1388 that could hypothetically complete the lysine to carnitine biosynthesis pathway.

1389

Figure 5: Carbon generalism and specialism are not associated with yeast pathogenicity.

A. The phylogenetic clades containing human fungal pathogens. Clades reflect all species within a specific phylogenetic distance from the identified pathogen. Pathogens are found in three different orders, and at least one pathogen is classified in the generalist, specialist, and standard categories.

B. Pathogens and their relatives had nearly identical proportions of generalist, specialist, and standard yeasts. This result suggests that carbon niche breadth is not a defining or predictive factor for the potential of a species to gain the ability to infect humans.

C. Pathogens and their relatives did not differ substantially in their growth rates on carbon substrates. The phylogenetically corrected principal component analysis (pPCA) was constructed using growth rates on carbon substrates and projected onto the first two components (totaling 80% of the total variance.) Pathogens did not cluster together, while generalists and specialists appeared further apart. This result suggests that pathogens do not have shared growth rate characteristics.

D. Proportion of yeasts that can grow at 37°C in pathogens, their relatives, and all sampled yeasts. All yeasts identified as pathogens can grow at 37°C. Pathogenic yeasts were significantly more likely to grow at 37°C than their non-pathogenic relatives (χ^2 , $p = 0.042$). Heat shock protein (HSP) gene copy number was determined using InterPro and KEGG orthologs. HSP gene copy number was not significantly associated with pathogenicity.

1411 E. Isolation environment for the specific strains of pathogens and their relatives. Circles are
1412 proportional to the percent of yeasts isolated from Chordata (orange), Arthropoda (pink),
1413 Victuals (teal), Environmental (blue), and Plants (green).
1414