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Abstract: Organisms exhibit extensive variation in ecological niche breadth, from very narrow
(specialists) to very broad (generalists). Two general paradigms have been proposed to explain
this variation: trade-offs between performance efficiency and breadth; and the joint influence of
extrinsic (environmental) and intrinsic (genomic) factors. We assembled genomic, metabolic,
and ecological data from nearly all known species of the ancient fungal subphylum
Saccharomycotina (1,154 yeast strains from 1,051 species), grown in 24 different environmental
conditions, to examine niche breadth evolution. We found that large differences in the breadth of
carbon utilization traits between yeasts stem from intrinsic differences in genes encoding specific
metabolic pathways, but limited evidence for trade-offs. These comprehensive data argue that
intrinsic factors shape niche breadth variation in microbes.
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One-Sentence Summary: A nearly complete genomic and phenotypic catalog of the yeast
subphylum illuminates the evolution of metabolic breadth.

Main Text:
Introduction

The ecological niche is a fundamental concept in ecology and evolutionary biology that
explains the diversity and resource use of organisms through space and time. Species with broad
niche breadths are defined as generalists, while those with narrow ones are specialists. There are
many biotic and abiotic dimensions of the niche that can and do vary among organisms (7-3),
begging the question: What factors contribute to niche breadth variation?

Two broad paradigms have been offered as answers across a variety of taxa. The first
paradigm postulates that both niche generalism and specialism are governed by trade-offs
between performance efficiency and niche breadth (4-9). In the context of metabolic niche
breadth, selection for increased efficiency in utilizing a specific food source will be coupled to
selection against utilizing other food sources and vice versa. Over the long-term, such selection
produces generalists that utilize more substrates less efficiently and specialists that utilize fewer
substrates more efficiently. Consistent with these expectations, selection for specialization in
using a single food source in replicate populations of the bacterium Escherichia coli was coupled
to a reduction in their ability to catabolize other food sources (70).

The second paradigm postulates that generalist and specialist phenotypes are the outcome
of the joint influence of diverse extrinsic (environmental) and intrinsic (genomic) factors (/1-16).
Here, generalists and specialists are shaped by the environments in which they occur and the
evolvability of their metabolic pathways, rather than by trade-offs. These specific conditions will
result in a unifying set of extrinsic and intrinsic features that govern the evolution of generalist
and specialist phenotypes.

Extrinsic factors are the environments in which species live. They can vary with respect
to numerous abiotic and biotic factors, such as spatial and temporal heterogeneity, temperature,
and carbon and nitrogen availability. For example, carbon sources have been shown to be limited
within endothermic hosts (17, 18); temperatures and soil moisture can vary between woodland and
meadow habitats due to canopy cover (19); and the availability of nitrogen sources (20, 21), carbon
sources (22-24), and growth-inhibiting specialized metabolites can differ due to the activities of
other organisms in the environment (25, 26). Variation in one or more of these extrinsic factors
could exert selective pressure on traits, resulting in generalism and specialism (27).

Intrinsic factors that may influence niche breadth include the evolution of promiscuous
enzymes responsible for the utilization of multiple resources (17, 28-31), as well as overlapping
biochemical, developmental, and genetic pathways (75, 16). For example, yeast MAL and IMA
genes are promiscuous enzymes associated with the utilization of multiple carbon sources in
yeasts; that is, they can increase niche breadth by enabling broader consumption (17, 28).
Conversely, gene loss due to drift or relaxed selection, which is likely in environments with
lower nutrient diversity, could lead to narrower niche breadths (32). The diversity of traits and the
genes that control them leads to the hypothesis that niche breadth variation may reflect the
interplay between evolutionary and ecological forces acting on intrinsic factors.

The subphylum Saccharomycotina (phylum Ascomycota, kingdom Fungi), which
includes the baker’s yeast Saccharomyces cerevisiae, the opportunistic pathogen Candida
albicans, and the oleochemical cell factory Yarrowia lipolytica, exhibits extensive ecological,
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genomic, and metabolic diversity. Thus, it is a superb system for testing paradigms for the
evolution of metabolic niche breadth (Fig. 1). The genomes of Saccharomycotina species,
commonly referred to as yeasts, are highly diverse; levels of gene sequence divergence across
yeasts are comparable to levels observed across plants and animals, and the subphylum also
harbors considerable variation in gene content, including metabolic genes (28). In addition,
extensive experimental work in model yeasts, such as S. cerevisiae (33) and C. albicans (34),
provides validated functional genetic information.

Yeast growth profiles have been characterized across many carbon and nitrogen sources
and environmental conditions (e.g., temperature), and they are highly variable across species (17,
28, 35). This phenotypic diversity is coupled to their ecological diversity. Yeasts are found in
almost every biome on a wide array of substrates, and the isolation environments (defined as the
specific environmental location a strain was originally isolated) of these yeasts are associated
with specific phenotypic traits. For example, both glucose and sucrose fermentation are
positively associated with living on fruits, fermented substrates, and juices (17), particularly
among multiple yeast genera that have been linked to wine production and food spoilage (17, 36,
37). Opportunistic fungal pathogens have also evolved metabolic strategies that allow them to
colonize the complex ecosystem of the human body, where carbon availability varies spatially
and temporally (77, 38, 39). This treasure trove of genomic, metabolic, and environmental
diversity across a subphylum makes Saccharomycotina an attractive and highly tractable system
for studying niche breadth evolution.

To gain insight into the factors that contribute to metabolic niche breadth variation, we
quantified variation in genome content, isolation environment, and carbon and nitrogen
metabolism for 1,154 yeast strains, which represent nearly all known species in the subphylum
Saccharomycotina. This dataset enabled us to evaluate the evidence for the two niche breadth
evolution paradigms (trade-offs versus underlying intrinsic and extrinsic factors) across species
with broad (generalists) and narrow (specialists) carbon niche breadths. Our evolutionary,
machine learning, and network analyses uncovered a unifying set of intrinsic factors among
generalists that were largely absent in specialists, and pinpointed specific genetic differences
between generalists and specialists, including novel associations between carbon generalism and
specific metabolic pathways. In contrast, we found limited evidence for trade-offs between
carbon generalism and growth rate. Through ancestral trait reconstruction and coevolution
analyses, we further demonstrated that generalists were more likely to have retained or gained
traits, whereas specialists repeatedly arose through pervasive gene and trait loss. The genomic,
metabolic, evolutionary, and ecological data for nearly all known species of the 400-million-
year-old yeast subphylum Saccharomycotina provided here, coupled with the availability of
multiple genetic models in the subphylum, present an inimitable resource and framework for
linking genomic variation to phenotypic and ecological variation.

A genomic, evolutionary, and metabolic portrait of Saccharomycotina
We sequenced and assembled 953 new genomes in this study and combined them with

140 genomes previously sequenced by the Y1000+ Project (40) and 61 publicly available
genomes (data S1A). Our dataset contained 1,154 genomes from 1,051 species, including 1,037
taxonomic type (i.e., ex-type) strains. Multiple strains were sequenced from 41 species, including
a total of 19 recognized varieties distributed across nine species (i.e., two to three varieties per
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species). Sixty-one of the strains whose genomes were sequenced could not be assigned to any of
the known species; thus, they are candidates for new species. The genomic dataset spans 96 yeast
genera, which is about 90% of currently described genera (47). Excluded genera were typically
those for which no living culture was available or those described after our last round of genome
sequencing in February 2021. Our genome sequencing added between 1 and 336 species to each
order, most notably expanding the order Serinales (previously major clade CUG-Ser1), which
contains the human pathogens C. albicans and Candida auris, from 94 genomes to 430. All
genome assemblies totaled ~15 billion base pairs. The assemblies had a mean N50 of 387.5 Kb,
which was comparable to our previous smaller-scale dataset of 332 genomes (417.2 kb) (fig.
ST1A & data ST1A) (28). All genomes were annotated to identify putative coding sequences. On
average, 5,908 +/- 1069 (s.d.) protein-coding sequences were identified per genome with a range
from 3,775 (Starmerella lactis-condensi) to 20,704 (Magnusiomyces magnusii) (fig. S1B) (42).
Functional annotations were conducted using Kyoto Encyclopedia of Genes and Genomes
(KEGG) and InterPro. GC content (subphylum mean = 41.1% +/- 6.61%) ranged from 23.9%
(Candida bohioensis) to 66.8% (Candida pseudocylindracea), and genome size (subphylum
mean = 13.2Mb +/- 3.5Mb) ranged from 7.2Mb (Starmerella lactis-condensi) to 41.3Mb
(Magnusiomyces magnusii) (fig. SIC-D & data S1A). Of the 1,154 yeast genomes, 1,000 (~87%)
had > 90% of the 2,137 predefined single-copy orthologs defined by OrthoDB v10 (data STA &
data S1B) (43, 44).

At least three independent nuclear codon reassignments are known to have occurred
during the evolution of the subphylum (45). Given the large number of newly added genomes, we
inferred codon tables and tRNA genes to confirm the known reassignments and test for potential
new reassignments (data S2). These results were consistent with the previously observed codon
reassignments. Notably, genomes of the order Ascoideales had a diversity of tRNAs with CAG
anticodons predicted to decode CUG codons, which is consistent with previous findings that
these yeasts may stochastically decode CUG as both leucine and serine (46).

To infer the genome-scale phylogeny of the Saccharomycotina, we used 1,403
orthologous groups (OGs) from 1,154 Saccharomycotina genomes and 21 outgroups. Nearly all
internodes in both concatenation-based (1,136/1,153; 99%) and coalescent-based (1,123/1,153;
97%) phylogenies received strong (= 95%) support (Fig. 2 and fig. S2 and fig. S3). The two
phylogenies were highly congruent, with only 60/1,153 (5%) conflicting internodes (fig. S3).
Moreover, relationships among the 12 recently circumscribed taxonomic orders (47) (previously
major clades) were congruent with previous studies (28, 47, 48), including the placement of the
Ascoideales (previously CUG-Ser2) and Alaninales (previously CUG-Ala).

To examine the evolution of metabolic niche breadth across Saccharomycotina, we
quantified the growth rates of 853 yeast strains on 18 carbon sources, 6 nitrogen sources, and a
no-carbon control (data S3). We found that yeasts displayed variation in growth rates across
carbon (fig. S4A) and nitrogen sources (fig. S4B); on average, each yeast strain could metabolize
eight carbon (Fig. 3A) and two nitrogen sources (fig. S5). Comparison of growth rates on
different carbon sources revealed that 65.22% of yeasts (n = 557) grew fastest on glucose, while
the remaining 34.78% (n = 297) grew faster on another carbon source (fig. S6). Mannose, an
epimer of glucose not typically tested in yeast growth experiments, was the carbon source on
which yeasts grew fastest, on average, after glucose (n = 112). We also found that 77 yeasts grew
faster on fructose than glucose, including cases where their maximum growth rate was on a third
carbon source. Several of these yeasts (n = 7) were in Dipodascales, which contains many known



227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

fructophilic yeasts (49). The ability to grow faster on fructose was independently verified in a
second lab on a subset of yeasts (data S4).

A lack of evidence for trade-offs between carbon niche breadth and growth rates

We statistically classified yeasts into three categories for both carbon and nitrogen
utilization niche breadths: specialist, standard, and generalist (data S3). We found that, for both
carbon and nitrogen metabolism, most yeasts were classified as standard yeasts (i.e., yeasts that
did not fall into the extremes for carbon niche breadth) (76.0%: 648/853 and 78.4%: 669/853,
respectively) (data S3 & Fig. 3A). Of the remaining 24.0% (n = 205/853), 53.7% (n = 110/205)
were specialists, and 46.3% (n = 95/205) were generalists for carbon sources (Fig. 3A). The
median numbers of carbon sources used by specialist, standard, and generalist yeasts were four,
eight, and twelve, respectively. Carbon generalists and specialists were widely distributed across
the subphylum (Fig. 2), and all orders with more than 15 phenotyped strains (n = 8) featured both
generalists and specialists. However, the relative proportion of generalists and specialists within
orders varied greatly. For example, the order Saccharomycetales (n=82) had 3 generalists and 33
specialists, while the order Serinales (n=347) had 53 generalists and 9 specialists. This result
suggests that yeast orders exhibit distinct eco-evolutionary trajectories.

First, we tested for a trade-off between growth rate and carbon niche breadth by asking if
specialists had a growth rate advantage over other yeasts in some conditions. We compared all
growth rates within each carbon source by classifying growth into three categories: slow (growth
rate in the lower quartile), intermediate, and fast (growth rate in the upper quartile.) We found a
statistically significant interaction between carbon classification and growth rate (p-value < 2.2e-
16); specialists were more often slow growers (38%: 146/381 growth rates) than fast growers
(15%: 54/381), whereas generalists were more often fast growers (33%: 403/1,222 growth rates)
than slow growers (20%: 238/1,222 growth rates) (Fig. 3B). Moreover, there were fewer
specialists than generalists in the fast category across all tested carbon sources (data S5). We also
examined linear phylogenetically corrected correlations between growth rates and carbon niche
breadth. We found that growth rates on five carbon sources were positively correlated with
carbon niche breadth when accounting for phylogeny and multiple-testing correction (glucose p
=0.0028, mannose p = 0.0056, myo-inositol p = 0.0083, galactose p=0.0024, and fructose p =
0.0111: all slopes between 0.001 and 0.002) (table S1 and fig. S7A). No significant negative
correlations were identified, which would have indicated that specialists were faster growers.

Second, we repeated these analyses using only the fastest growth rate for each yeast
because specialists might outperform other yeasts only in the environment in which they are
specialized. We found that the proportion of fast-growing specialists was 9% (10/107), a
decrease from the 15% of fast-growing specialists found when we compared all growth rates
across all substrates, while the proportion of fast-growing generalists was 43% (38/89), an
increase from 33% (Fig. 3B). Thus, the strong interaction between carbon classification and
growth rates persisted when only the fastest rates were considered (p-value = 7.8 x10°'!). In this
case, carbon niche breadth was significantly and positively correlated with growth rates on
glucose (p-value = 0.0002, slope = 0.002), sucrose (p-value =0.0032, slope = 0.001), and
fructose (p-value=0.0062, slope = 0.001) after accounting for multiple testing and phylogeny
(table S1 and fig. S7B).
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A third analysis using the fastest growth rate for each specialist compared to all other
growth rates yielded similar results (table S1 and fig. S7C). In this analysis, the growth rate for a
carbon source included only specialists whose growth rate was highest on that carbon source and
any growth rates for standard and generalist yeasts. Moreover, specialists were not the fastest-
growing yeast in any of the carbon sources tested, including glucose. Our findings suggest that
generalists grow faster on more substrates than specialists, including under conditions preferred
by specialists.

We next tested whether there was a trade-off between carbon and nitrogen breadth. We
found significantly fewer carbon generalists that were also nitrogen specialists (n = 1) and carbon
specialists that were also nitrogen generalists (n = 2) than expected by chance (p-value =
3.26x107'%) (Fig. 3C). Moreover, trait-trait co-evolutionary analysis found that carbon generalists
tended to also be nitrogen generalists (Bayes factor >2). Furthermore, our analyses of co-
evolution between carbon and nitrogen generalism showed that nitrogen generalism arises almost
exclusively in a genetic background of carbon generalism (i.e. in carbon generalism lineages;
table S2). In other words, carbon generalism mainly arises before and may facilitate nitrogen
generalism. Additionally, phylogenetic regression analysis showed a strong positive correlation
between carbon and nitrogen niche breadth (reported p-value of 0.000, slope of correlation =
0.92; table S2). These results suggest that there is an evolutionarily conserved functional
connection between carbon and nitrogen metabolism in yeasts. Consistent with our finding, it is
well known that certain amino acids can serve as both a carbon and nitrogen source and, as such,
are dually regulated by both carbon and nitrogen signaling systems (50, 57). Additionally, many
metabolic pathways are known to be controlled by signals from other compounds or nutrients. In
bacteria, nitrogen, sulfur, phosphorus, and iron metabolism can even be controlled by carbon
metabolism (50, 52).

Our previous analysis of 332 yeasts identified a pervasive pattern of trait loss (28), which
suggests that generalists have either retained carbon-acquisition traits over long evolutionary
timescales or gained traits, unlike their non-generalist relatives. To test these hypotheses, we
compared the relative rates of carbon trait gain or loss, either across all yeasts or specifically
within generalist lineages, while taking phylogeny into account (Fig. 3D, table S3). For the eight
carbon traits found in less than 75% of generalists, we identified a strong trend of trait loss across
the entire phylogeny but some evidence of trait gain in the generalist background. Therefore,
carbon generalists appear to have both gained and retained carbon traits that were otherwise lost
broadly across the rest of the subphylum.

Intrinsic factors shape carbon niche breadth variation in yeasts

Given the extreme carbon niche breadths of generalists and specialists, we next tested
whether these two groups have independent factors favoring generalist and specialist phenotypes.
Extrinsic factors, such as carbon availability in an isolation environment, could shape variation
in metabolic niche breadth. Similar environments, which are likely to share extrinsic factors, may
favor the evolution of generalists or specialists. To explore the possibility that some
environments contain extrinsic factors that shape carbon niche breadth, we identified the precise
isolation environment for each possible yeast strain (1,088 total). We then grouped strains by
similar environments using a formal hierarchical ontology of isolation environments. This
ontology contained 1,597 classes (specific environments) (fig. S8, data S6). Environment
classifications at the highest level of our ontology generally contained similar numbers of
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generalists and specialists: Arthropoda (24 generalists and 16 specialists), Chordata (7 and 8),
plants (25 and 31), and food or drink (5 and 16). Furthermore, generalists and specialists shared
environments. For example, Hyphopichia homilentoma (generalist) and Wickerhamomyces
sydowiorum (specialist) were both isolated from tunnels of the wood-boring beetle Sinoxylon
ruficorne in the red bushwillow Combretum apiculatus. Given the limited number of generalists
and specialists within an environment and the fact that we only had a single environment per
strain, we were unable to rigorously test for extrinsic factors that favor generalists or specialists.
We anticipate that incorporation of improved characterizations of yeast habitats and the addition
of isolation environment data into our formal ontology will enable future investigations of the
environmental factors shaping carbon niche breadth evolution.

We next hypothesized that the genomes of generalists may contain a larger number of
metabolic genes, which are intrinsic factors, than those of specialists. We found that both the
total number of genes and the number of KEGG ortholog groups (KOs) were both positively and
significantly associated with carbon niche breadth (Fig. 4A & fig. SI0A-B). Strikingly, we found
that, for every additional carbon source a yeast could metabolize, its genome contained, on
average, an additional 36 genes and 2 KOs.

Metabolic networks, including the carbon metabolism network, are more complex than
just the total number of genes because they are highly interconnected due to shared enzymes and
pathways. To examine whether metabolic network structure varied between generalists and
specialists, we used KOs to build metabolic networks for all yeasts and tested for a correlation
between carbon niche breadth and six common network properties that reflect biological
complexity (Fig. 4B and fig. S10C-F, data S7) (53, 54). Relative to carbon specialists, carbon
generalists had a higher edge-count, or more connections between nodes of the network (Fig. 4B)
(55). Both carbon generalists and specialists had disassortative networks, or networks with high
levels of connection between nodes with dissimilar properties, a property of all biological
networks (56). However, relative to specialists, the generalist networks were less disassortative,
or had more highly interconnected nodes (Fig. 4B). There were no significant correlations
between carbon niche breadth and the other network properties (fig. SI0C-F). Despite the
extreme difference in carbon metabolism capabilities, carbon generalists and specialists had only
slight differences in the size and shape of their global KEGG metabolic networks. These results
suggest that generalist and specialist networks are overall similar in size and shape but differ in
how they are wired.

We next investigated differences in the composition of generalist and specialist networks.
Generalists and specialists largely showed similar compositions across KOs, but a small set of
KOs was depleted (presence < 20%) in specialists and enriched (presence >85%) in generalists
(table S4). Generalist-enriched KOs were related to nitrogen, fructose, mannose, and galactose
metabolisms. Enrichment of these terms suggests that differences in gene content contribute to
the overall carbon metabolism trait differences observed between generalists and specialists.

Unifying genetic features of carbon niche breadth generalists

To gain further insight into the genes and pathways contributing to the observed carbon
niche breadth variation across the yeast subphylum, we employed machine learning. Specifically,
we trained a supervised random forest classifier to use KO presence and absence as predictive
features for carbon niche breadth classification. Niche breadth classification of generalists and
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specialists was used instead of the actual number of carbon sources because there were
insufficient numbers of yeasts for some values to adequately train our model (e.g., there was only
one yeast that grew on 17/18 carbon sources, but there were 64 yeasts that grew on five carbon
sources). The resulting classifier was both highly sensitive and specific, correctly classifying
88% of specialists and 89% of generalists (AUC=0.93; Fig. 4C). The high accuracy suggests that
generalist and specialist KEGG networks differ in ways that were not detected in the KO
enrichment analysis.

Examination of the features on which the classifier relied using dropout analysis
identified 2,050 KOs that significantly contributed to classification accuracy. Approximately
5,000 unique yeast KOs were used to train the algorithm, suggesting that many KOs contributed
some information to niche breadth classification. We further examined the top four features
because the fifth feature had only half the relative importance score of each of the fourth. Two of
the top four features had direct links to the catabolism of specific carbon substrates,
demonstrating the power and precision of our algorithm. The KO for manB (K01192), which
encodes a f-mannosidase, had the second highest relative importance (relative importance
0.048). This KO was identified in 7% of specialists (8/111) and 80% of generalists (76/95). f-
mannosidases are known to have a role in microbial utilization of N-glycans as a carbon source
(57). Almost all the carbon generalists (93/95) can utilize mannose, which leads to the hypothesis
that generalists likely use the mannose moieties present in N-glycans as a carbon and energy
source.

The KO with the third highest importance was K17738 (relative importance 0.043),
which is the ARD gene encoding D-arabinitol 2-dehydrogenase, an important component of the
pentose and glucuronate interconversions pathway (Fig. 4D, step 5). This KO was more
frequently present in the genomes of generalists (96%, 91/95) than in the genomes of specialists
(71%, 79/111). Indeed, in a portion of this pathway, 5 of the 8 reactions were among the 2,050
KOs (with two falling in the top 100 KOs) that contributed to the classification of carbon
generalists and specialists (black boxes in Fig. 4D). Importantly, growth on xylose was included
in our carbon classification, and the xylose metabolism genes XYL/ (Step 2 in Fig. 4D), XYL2
(Step 3), and XYL3 (Step 8) were all identified as important features (with XYL/ falling within
the top 100), suggesting that xylose metabolism genes may be promiscuous and have multiple
metabolic capabilities (58). This result also supports the hypothesis that intrinsic genetic factors
contribute to niche breadth by connecting pathways.

The feature with the highest relative importance was K03940 (relative importance 0.062),
which encodes an NADH ubiquinone oxidoreductase core subunit (NDUFS7 in humans) of
Complex I of the mitochondrial electron transport chain. This KO was identified in 29% of
specialists (32/111) and 95% of generalists (90/95). Interestingly, Complex I is known to vary
widely, in presence and makeup, including the presence of an alternative pathway in some yeasts
(59). For example, in S. cerevisiae, the NADH oxidoreductase function of Complex I is
conducted by three single-subunit enzymes (Ndilp, Ndelp, or Nde2p) (60). Conversely, in Y.
lipolytica, Complex I is composed of 42 subunits, including the NADH ubiquinone
oxidoreductase NUKM (K03940) (67). Thirty additional Complex I enzymes were within the top
2,050 KOs, and two fell within the top 10%: K03941 and K03966, which are both NADH
ubiquinone oxidoreductases in the f subcomplex (KEGG map00190). The Saccharomycetales
and Saccharomycodales have both completely lost the canonical Complex I and contain many
specialist yeasts (59). The relatively high importance of K03940, however, is not solely due to
these orders, as the effect is widespread. For example, within the Pichiales, 100% (5/5) of
generalist genomes encode K03940, in contrast to only 18% (6/33) of specialists. Complex I has
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been implicated in C. albicans growth and virulence (62), as a global regulator of fungal
secondary metabolism in Aspergillus (63), and results in a higher proton motive force compared
to the alternative pathway in S. cerevisiae. The presence of Complex I in generalists, therefore,
may support increased carbon niche breadth and elevated growth rates.

The last KO we investigated was K00474 (relative importance 0.043), which encodes a
trimethyllysine dioxygenase involved in lysine degradation. Every step in the pathway that
degrades lysine to carnitine, except the last step, was identified as important in the machine
learning classification. The last step (Fig. 4E, Step 7) was not annotated by KEGG in any of our
yeasts. Therefore, we annotated the BBH2 gene, which encodes the trimethyllysine dioxygenase,
directly from our predicted coding sequences using previously published reference sequences
(64). After manual annotation of BBH2, we found that most carbon generalists were predicted to
be able to complete the carnitine biosynthesis pathway (91%: 86/95), while relatively few carbon
specialists were predicted to do so (20%: 22/111). Carnitine plays an important role in the
transport of acetyl coenzyme A (acetyl-CoA), which in turn is a major metabolite that
contributes to many metabolic pathways, including the production of ATP in the mitochondrial
tricarboxylic acid (TCA) cycle. Acetyl-CoA can be produced within the mitochondria when
glucose is available or, when glucose is unavailable, it can be transported into the mitochondria
using the carnitine shuttle (65). Some yeasts, including C. albicans, rely solely on the carnitine
shuttle for this transport (64), while other yeasts, such as S. cerevisiae, can use a carnitine-
independent method for acetyl-CoA transport (66). Similarly, some yeasts, such as C. albicans,
can synthesize carnitine; others, such as S. cerevisiae, cannot and rely on exogenous sources. A
complete carnitine synthesis pathway may ensure acetyl-CoA transport when glucose is
unavailable, especially in species that rely solely on the carnitine shuttle.

Additionally, carnitine and carnitine acetyltransferases can be essential for growth on
some nonfermentable carbon sources. These include ethanol, as well as glycerol in certain S.
cerevisiae mutants with disrupted citrate metabolism (67). We found that 90.5% (86/95) of
generalists can grow on glycerol compared to only 24.5% (27/110) of specialists (table S2).
Moreover, specialists that could grow on glycerol were more likely to have the complete
carnitine synthesis pathway than those that did not (z-test, "= 10.425, p-value = 0.0186). These
results suggest that carnitine production affords metabolic flexibility and carbon niche breadth.

Human yeast pathogens include both carbon generalists and specialists

This comprehensive dataset and analytical framework provide the opportunity to study
how the observed genomic, metabolic, and environmental variation across the subphylum is
associated with any complex trait of interest (68-70).To illustrate this potential, we examined the
metabolic niche breadths of yeast pathogens of humans compared to those of their non-
pathogenic close relatives (using a specific phylogenetic distance cutoff to standardize the
clades) (Fig. 5). The World Health Organization (WHO) recently released its first-ever fungal
priority pathogens list, which included six Saccharomycotina species (7/). We defined 11 yeasts
as opportunistic human pathogens because they are known to cause human infections and
generally require biosafety level 2 (BSL-2) precautions in research laboratories.

Carbon sources and availability vary in vivo in humans, suggesting that carbon niche
breadth may play an important role in promoting or preventing fungal pathogenesis (72). Yeasts
are subject to diverse micro-environments characterized by varying nutrients within a host (39, 72,
73). Their capacity to survive under fluctuating carbon conditions has been closely associated
with virulence. For example, lactate assimilation across the C. albicans clade and, in
Nakaseomyces glabratus (syn. Candida glabrata), is associated with increased antifungal and
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osmotic stress resistance and has been shown to reduce phagocytosis within the host (73).
Interestingly, these pathogens exhibit reduced resistance to the antifungal drug amphotericin B
when grown in culture media containing lactate relative to culture media containing glucose (73).
We found that pathogens spanned the range of carbon niche breadth classifications and included
specialist, standard, and generalist yeasts. Carbon niche breadths within pathogenic yeasts ranged
from 15 in Meyerozyma guilliermondii to only 2 in N. glabratus (74). Furthermore, the proportion
of pathogenic yeasts classified as standard, generalist, and specialist was similar to that of their
non-pathogenic relatives (Fig. SA-B). Collectively, these results suggest that yeast pathogenicity
is not associated with carbon niche breadth.

Previous work in C. albicans linked its pathogenicity to its high growth rate (75). To
examine whether this link holds across yeast pathogens, we visualized all pathogenic yeasts and
their relatives on a phylogenetically corrected principal component analysis using all our growth
rate data (Fig. 5C). We observed no clustering of pathogenic yeasts using carbon growth rates.
Moreover, yeast pathogens within the same clade varied in their growth rate on glucose by
almost 3-fold: Candida parapsilosis had a growth rate of 0.042, while Candida tropicalis had a
growth rate of 0.124. Our growth rate data, however, were collected at a specific temperature in
defined media and may not reflect growth rates in human infections.

We also examined the role of temperature, gene content, and environment in yeast
pathogenicity. One feature known to be necessary, but insufficient, for pathogenicity is growth at
human body temperature or 37°C (Fig. 5D) (39). We observed that relatives of human pathogens
had an elevated rate of growth at 37°C (~64%) compared to all yeasts for which growth at this
temperature was measured (~41%). This result likely reflects the necessity of growth at 37°C to
evolve prior to pathogenicity. Heat shock proteins (HSPs) are also known to impact temperature
tolerance (76). Examination of copy number variation in the genes encoding HSPs in the
pathogenic species and their relatives identified a slight increase in HSP70 gene copy number
among pathogenic yeasts (Fig. 5D). Finally, we found that pathogenic yeasts and their relatives
had been isolated from all examined environments (Fig SE). The analyses shown here suggest
that pathogenicity can emerge in species across the spectrum of carbon metabolic breadth.
Moreover, the lack of notable differences between yeast pathogens and their non-pathogenic
relatives supports the hypothesis that the traits and genetic elements contributing to pathogenicity
are not broadly shared across pathogens but unique to each (77). The data and analyses presented
here provide a model for the investigation of other complex traits across Saccharomycotina using
our ensemble of genomic, metabolic, and environmental data.

Conclusions

Here we focused on two predominant paradigms proposed to underlie the evolution of
yeast carbon niche breadth. The first paradigm, where trade-offs dominate, was not supported
when we analyzed over 10,000 growth rates measured across 853 yeasts. We found that
generalists typically grew faster on carbon sources than specialists, even on those carbon sources
for which specialists had their maximum growth rates. Thus, the ability to metabolize additional
carbon sources does not come at the cost of reduced growth rates on other carbon sources.
Carbon metabolism traits found within generalists were either maintained across evolutionary
time or gained, even though there was a strong overall trend for trait loss across the subphylum.
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Of course, trade-offs between carbon metabolism traits likely exist in natural habitats. Future
experiments along gradients of different environmental conditions, such as temperature,
competition, or oxygen availability may shed additional light on condition-specific trade-offs in
carbon niche breadth evolution.

In contrast, we found strong support for the second paradigm in the form of intrinsic
factors that underlie the generalist phenotype. Machine learning allowed us to identify specific
genes, complexes, and pathways shared by generalists but largely absent from specialists. These
genes were directly involved in carbon and energy metabolism, often by enhancing metabolic
flexibility and robustness. This finding supports the second paradigm because we identify a
shared set of intrinsic genomic features across the generalist phenotype, even though generalists
vary in the specific carbon sources they can metabolize. This finding does not support the
hypothesis of trade-offs for two reasons. First, the pathways enriched in generalists are
hypothesized to increase metabolic efficiency, which is contrary to the proposed trade-off
between carbon niche breadth and efficiency. Second, under the trade-off paradigm, specialists
and generalists would both have unique traits that provide them with a selective advantage.
However, we found that generalists, as compared to specialists, have more genes in their
genomes, including those not directly associated with carbon metabolism.

Given the advantages of wide carbon niche breadth and the absence of detectable
efficiency costs, the question remains: what forces are shaping specialist yeasts? In some cases,
carbon specialism could be associated with rapid gene loss. For example, in the genus
Hanseniaspora (10/14 or 71.4% specialists), there were widespread gene losses, including of
genes involved in DNA repair and carbon metabolism (78). Another hypothesis is that each
specialist is subject to unique evolutionary pressures that would obviate unifying features.
Finally, it is also possible that there are growth-associated trade-offs that we are unable to
measure. Features, such as enhanced carbon sequestration, killer yeast toxins, pathogenicity, and
microbial community composition, could provide specialists with advantages in highly specific
environments. For example, Hanseniaspora species have a growth advantage over other species,
including S. cerevisiae, on grapes at harvest and in the early stages of alcoholic fermentation (79).
Further investigations into the evolution of yeast generalism and specialism will likely be
fruitful, but a plethora of additional questions could be addressed with these data including:
quantifying correlations among genes, traits, and/or ecologies; investigations of gene family
evolution; research into the origins of pathogenesis; and genome-informed bioprospecting of
yeasts and their genes for the sustainable production of cellulosic biofuels and bioproducts. More
broadly, by coupling a comprehensive dataset with a robust analytical framework for studying
macroevolutionary processes, the Y1000+ Project provides a roadmap that connects DNA to
diversity.

Summary of Methods

Detailed materials and methods can be found in the supplementary materials (80). All data
generated as a part of the project have been deposited in a FigShare repository (42).

Genome sequencing, annotation, and phylogenomics
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Strains were obtained primarily from the NRRL (USA) and CBS (Netherlands) culture
collections (USA). We sequenced pair-end libraries using the Illumina HiSeq 2500 platform and
assembled genomes using the meta-assembler pipeline iWGS (87). We assessed assembly quality
using Benchmarking Universal Single-Copy Orthologs (BUSCO) (44) and filtered the assemblies
to remove mitochondrial and bacterial DNA contaminants. Genomes were functionally annotated
using KEGG (55) and InterPro (82, 83) databases. We constructed a phylogenomic data matrix
from 1,403 orthologous groups (taxon occupancy for each group > 50%; 719,591 amino acid
sites); we inferred the phylogeny of the subphylum using both concatenation and coalescence
under maximum likelihood using 1Q-Tree (84) and ASTRAL-III (85) respectively, and estimated
the yeast time tree using the RelTime method (86).

Phenotyping, niche breadth classification, and testing for trade-offs and trait co-evolution

We generated quantitative growth data on 18 carbon and 6 nitrogen sources for 853
yeasts, measuring optical density every two hours for a week on the BMG Omega SpectroStar
Plate Reader. We conducted all experiments in triplicate, and a new yeast colony was picked for
each yeast across replicates. We calculated growth rates using a logistic model using the R
package grofit (87). We classified yeasts as specialist, standard, or generalist for both carbon and
nitrogen metabolism by calculating the binomial confidence intervals of carbon and nitrogen
breadth relative to randomized growth data. We measured the correlation between carbon and
nitrogen breadth and tested for trade-offs between carbon niche breadth and efficiency (by
measuring the correlation between growth rates and carbon niche breadth classifications) using
phylogenetic generalized least squares analyses with PGLScaper (88). Finally, we inferred the co-
evolution of carbon traits and carbon generalism/specialism using BayesTraits
(http://www.evolution.reading.ac.uk).

Underlying factors driving generalist and specialist phenotypes

We identified strain-specific isolation environments for 1,088 yeasts and standardized
them by creating an ontology of environments and their hierarchical network using Web Protégé
(https://github.com/protegeproject/webprotege). To identify underlying genomic features
contributing to generalists and specialist phenotypes, we used genome annotations to build
metabolic networks and quantify network variation among generalists and specialists while
accounting for phylogeny. We also identified KEGG ontologies enriched in generalists and
specialists using a KEGG enrichment analysis (89). Finally, we constructed a machine learning
algorithm using the XGBoost random forest classifier (90), which we trained using 90% of the
genomic data and using the remaining 10% for cross validation, to identify genes whose
presence/absence was most strongly associated with carbon generalism and specialism.
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Figure 1: Yeasts are morphologically, ecologically, and metabolically diverse.

A. Images of yeasts from different orders. The color of the box surrounding the image indicates
the species’ order. The color of the circle in the bottom right-hand corner of the image represents
the isolation environment for the strain of the species sequenced and phenotyped during this
study. Yeast colonies are morphologically diverse; they can vary in shape, color, size, dullness,
etc.

B. Yeasts have been isolated from every biome and continent. Strains studied were found on
plants, animals, in soil, and many other environments. Strain-level isolation data were placed
into an ecological ontology to allow for identification of yeasts that shared higher-level
ontological classes.

C. Yeasts are metabolically diverse. The image represents the KOs present across
Saccharomycotina metabolic networks. Any pathway that is highlighted in purple is present
across a subset of yeasts; the saturation of the purple represents the proportion of yeasts with the
pathway.
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Figure 2: Yeast traits are widely distributed across the phylogeny.

The phylogeny of 1,154 yeasts and fungal outgroups built from 1,403 orthologous groups of
genes. Branches are colored according to their taxonomic assignment to an order of
Saccharomycotina (47). The innermost rings are colored by the top-level type of isolation
environment in which each specific strain was isolated. The purple, yellow, and blue ring
identifies the carbon growth classification for each strain. This classification is based on the
carbon niche breadth, which is represented by the bar graph on the exterior of the tree, along
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with nitrogen breadth. All traits illustrated (isolation environment, carbon growth class, nitrogen
breadth, and carbon niche breadth) are widely distributed across the tree; no order has one trait
exclusively.
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Figure 3: Carbon specialists and generalists differ in nitrogen breadth, growth rate, and
evolutionary history.

A. Histogram of carbon niche breadth across yeasts (n = 853). The colors of the bars represent
the ranges for the different carbon classifications. Metabolic classifications were determined by
permuting the binary carbon growth matrix (n = 1000 permutations). To determine the metabolic
strategy of a yeast, we calculated the observed and expected (permuted) breadth for each yeast
and calculated the binomial confidence intervals to determine significant differences in breadth.
Generalists had a significantly larger carbon niche breadth than expected by chance, and
specialists had a significantly smaller carbon niche breadth. If a yeast was not classified as either
a generalist or a specialist, it was classified as standard.

B. The growth rates for each yeast on each of the 18 carbon sources were categorized as slow
(bottom 25%), intermediate (median 50%), or fast (top 25%) using either all the rates per yeast
(white outline) or only the highest rate per yeast (black outline). Carbon generalists had the
highest proportion of fast growth rates (33% all rates, 43% fastest rates), while specialists had
the smallest proportion (15% all rates, 9% fastest rates) The inverse was also true, with carbon
generalists having the smallest proportion of slow growth rates (19% all rates, 14% fastest rates)
and carbon specialists having the highest proportion of slow growth rates (38% all rates, 42%
fastest rates).

C. Stacked bar graph of carbon metabolic strategies within each nitrogen metabolic strategy.
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D. Carbon generalists shared many of the same growth traits: 10 out of 18 growth traits were
found in more than 75% of generalists. Many of the carbon sources had different evolutionary
trends in a generalist background as compared to across the whole tree. Three different
evolutionary models are shown: trait gain (black), trait loss (white), and equal rates of trait gain
and loss (gray). No box indicates that the trait was not co-evolving with background or across the
tree. More than one evolutionary model is shown in cases where the reverse jump model spent
75% or less of the time on a single model. For example, the model testing correlated evolution
between growth on D-glucosamine and generalist carbon classification reported a model string
with a greater rate of gain in 55% of the run and a model string with equal rates of gain and loss
in 29% of the run; therefore, we reported both the trait gain and equal gain/loss model in the
generalist analysis.
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Figure 4: Generalist and specialist metabolism differs in expected and unexpected ways.

A. Total annotated coding sequences (top) and total number of annotated KEGG ortholog groups
(KOs; bottom) are both positively and significantly correlated with carbon niche breadth using a
Phylogenetic Generalized Least Squares (PGLS) analysis. One outlier with a predicted number
of coding sequences is not visualized but was included in the analysis (Magnusiomyces
magnusii, number of protein-coding genes = 20,704, carbon niche breadth = 9).

B. Two KEGG network statistics were significantly and positively correlated with carbon niche
breadth when taking into account phylogenetic relatedness (PGLS). KEGG Edge Count (top) and
KEGG Assortativity (bottom) were both elevated in carbon generalists.

C. Yeasts were classified into generalists and specialists using a machine learning algorithm
trained on the KOs. The correct classification occurred in 88% of specialists and 89% of
generalists. The ROC analysis suggests that both the sensitivity and specificity of our model is
excellent (AUC=0.93).

D. Multiple reactions in the pentose and glucuronate interconversions pathway were important in
classifying yeasts into generalists and specialists as determined by the leave-out analysis, which
identified 2,050 informative KOs (black boxes.) Boxes are shaded as the percent of each carbon
classification with at least one enzyme in that step of the reaction. The reaction with the third
highest relative importance in the machine learning analysis is shown in Step 5 and is facilitated
by D-arabinitol 2-dehydrogenase. Interestingly, experimental studies suggest that yeast D-
arabinitol 2-dehydrogenase is also capable of completing the reaction in Step 4 (93). Step 8 was
among the top features used in the machine learning analysis, despite the fact that KEGG only
partially annotated this gene. The xylulokinase encoded by yeast XYL3 is well studied (58).
Therefore, we re-annotated the XYL3 gene and have shown its relative abundance (red star).

E. The carnitine biosynthesis pathway includes multiple reactions that are important for
classifying carbon generalists and specialists. The reaction in Step 4 had the fourth highest
relative importance in the machine learning classification of carbon classification. Step 7 was not
annotated by KEGG in any of our yeasts, but this step had been previously characterized in
Candida albicans as being facilitated by the trimethyllysine dioxygenase enzyme encoded by
BBH? (64). We re-annotated BBH?2 using this reference sequence and calculated the relative
abundance in each carbon classification (red star). Finally, we determined the number of yeasts
that could hypothetically complete the lysine to carnitine biosynthesis pathway.
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1391
1392 Figure 5: Carbon generalism and specialism are not associated with yeast pathogenicity.
1393 A. The phylogenetic clades containing human fungal pathogens. Clades reflect all species within
1394 a specific phylogenetic distance from the identified pathogen. Pathogens are found in three
1395 different orders, and at least one pathogen is classified in the generalist, specialist, and standard
1396 categories.
1397 B. Pathogens and their relatives had nearly identical proportions of generalist, specialist, and
1398 standard yeasts. This result suggests that carbon niche breadth is not a defining or predictive
1399 factor for the potential of a species to gain the ability to infect humans.
1400 C. Pathogens and their relatives did not differ substantially in their growth rates on carbon
1401 substrates. The phylogenetically corrected principal component analysis (pPCA) was constructed
1402 using growth rates on carbon substrates and projected onto the first two components (totaling
1403 80% of the total variance.) Pathogens did not cluster together, while generalists and specialists
1404 appeared further apart. This result suggests that pathogens do not have shared growth rate
1405 characteristics.
1406 D. Proportion of yeasts that can grow at 37°C in pathogens, their relatives, and all sampled
1407 yeasts. All yeasts identified as pathogens can grow at 37°C. Pathogenic yeasts were significantly
1408 more likely to grow at 37°C than their non-pathogenic relatives (¥, p = 0.042). Heat shock
1409 protein (HSP) gene copy number was determined using InterPro and KEGG orthologs. HSP gene
1410 copy number was not significantly associated with pathogenicity.
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1411
1412
1413
1414

E. Isolation environment for the specific strains of pathogens and their relatives. Circles are

proportional to the percent of yeasts isolated from Chordata (orange), Arthropoda (pink),
Victuals (teal), Environmental (blue), and Plants (green).
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