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Abstract: Organisms exhibit extensive variation in ecological niche breadth, from very narrow 83 

(specialists) to very broad (generalists). Two general paradigms have been proposed to explain 84 

this variation: trade-offs between performance efficiency and breadth; and the joint influence of 85 

extrinsic (environmental) and intrinsic (genomic) factors. We assembled genomic, metabolic, 86 

and ecological data from nearly all known species of the ancient fungal subphylum 87 

Saccharomycotina (1,154 yeast strains from 1,051 species), grown in 24 different environmental 88 

conditions, to examine niche breadth evolution. We found that large differences in the breadth of 89 

carbon utilization traits between yeasts stem from intrinsic differences in genes encoding specific 90 

metabolic pathways, but limited evidence for trade-offs. These comprehensive data argue that 91 

intrinsic factors shape niche breadth variation in microbes.  92 
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One-Sentence Summary: A nearly complete genomic and phenotypic catalog of the yeast 93 

subphylum illuminates the evolution of metabolic breadth. 94 

 95 

Main Text:  96 

Introduction 97 

The ecological niche is a fundamental concept in ecology and evolutionary biology that 98 

explains the diversity and resource use of organisms through space and time. Species with broad 99 

niche breadths are defined as generalists, while those with narrow ones are specialists. There are 100 

many biotic and abiotic dimensions of the niche that can and do vary among organisms (1–3), 101 

begging the question: What factors contribute to niche breadth variation?  102 

Two broad paradigms have been offered as answers across a variety of taxa. The first 103 

paradigm postulates that both niche generalism and specialism are governed by trade-offs 104 

between performance efficiency and niche breadth (4–9). In the context of metabolic niche 105 

breadth, selection for increased efficiency in utilizing a specific food source will be coupled to 106 

selection against utilizing other food sources and vice versa. Over the long-term, such selection 107 

produces generalists that utilize more substrates less efficiently and specialists that utilize fewer 108 

substrates more efficiently. Consistent with these expectations, selection for specialization in 109 

using a single food source in replicate populations of the bacterium Escherichia coli was coupled 110 

to a reduction in their ability to catabolize other food sources (10).    111 

The second paradigm postulates that generalist and specialist phenotypes are the outcome 112 

of the joint influence of diverse extrinsic (environmental) and intrinsic (genomic) factors (11–16). 113 

Here, generalists and specialists are shaped by the environments in which they occur and the 114 

evolvability of their metabolic pathways, rather than by trade-offs. These specific conditions will 115 

result in a unifying set of extrinsic and intrinsic features that govern the evolution of generalist 116 

and specialist phenotypes.   117 

Extrinsic factors are the environments in which species live. They can vary with respect 118 

to numerous abiotic and biotic factors, such as spatial and temporal heterogeneity, temperature, 119 

and carbon and nitrogen availability. For example, carbon sources have been shown to be limited 120 

within endothermic hosts (17, 18); temperatures and soil moisture can vary between woodland and 121 

meadow habitats due to canopy cover (19); and the availability of nitrogen sources (20, 21), carbon 122 

sources (22–24), and growth-inhibiting specialized metabolites can differ due to the activities of 123 

other organisms in the environment (25, 26). Variation in one or more of these extrinsic factors 124 

could exert selective pressure on traits, resulting in generalism and specialism (27).  125 

Intrinsic factors that may influence niche breadth include the evolution of promiscuous 126 

enzymes responsible for the utilization of multiple resources (17, 28–31), as well as overlapping 127 

biochemical, developmental, and genetic pathways (15, 16). For example, yeast MAL and IMA 128 

genes are promiscuous enzymes associated with the utilization of multiple carbon sources in 129 

yeasts; that is, they can increase niche breadth by enabling broader consumption (17, 28). 130 

Conversely, gene loss due to drift or relaxed selection, which is likely in environments with 131 

lower nutrient diversity, could lead to narrower niche breadths (32). The diversity of traits and the 132 

genes that control them leads to the hypothesis that niche breadth variation may reflect the 133 

interplay between evolutionary and ecological forces acting on intrinsic factors.  134 

The subphylum Saccharomycotina (phylum Ascomycota, kingdom Fungi), which 135 

includes the baker’s yeast Saccharomyces cerevisiae, the opportunistic pathogen Candida 136 

albicans, and the oleochemical cell factory Yarrowia lipolytica, exhibits extensive ecological, 137 
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genomic, and metabolic diversity. Thus, it is a superb system for testing paradigms for the 138 

evolution of metabolic niche breadth (Fig. 1). The genomes of Saccharomycotina species, 139 

commonly referred to as yeasts, are highly diverse; levels of gene sequence divergence across 140 

yeasts are comparable to levels observed across plants and animals, and the subphylum also 141 

harbors considerable variation in gene content, including metabolic genes (28). In addition, 142 

extensive experimental work in model yeasts, such as S. cerevisiae (33) and C. albicans (34), 143 

provides validated functional genetic information.  144 

Yeast growth profiles have been characterized across many carbon and nitrogen sources 145 

and environmental conditions (e.g., temperature), and they are highly variable across species (17, 146 

28, 35). This phenotypic diversity is coupled to their ecological diversity. Yeasts are found in 147 

almost every biome on a wide array of substrates, and the isolation environments (defined as the 148 

specific environmental location a strain was originally isolated) of these yeasts are associated 149 

with specific phenotypic traits. For example, both glucose and sucrose fermentation are 150 

positively associated with living on fruits, fermented substrates, and juices (17), particularly 151 

among multiple yeast genera that have been linked to wine production and food spoilage (17, 36, 152 

37). Opportunistic fungal pathogens have also evolved metabolic strategies that allow them to 153 

colonize the complex ecosystem of the human body, where carbon availability varies spatially 154 

and temporally (17, 38, 39). This treasure trove of genomic, metabolic, and environmental 155 

diversity across a subphylum makes Saccharomycotina an attractive and highly tractable system 156 

for studying niche breadth evolution.  157 

To gain insight into the factors that contribute to metabolic niche breadth variation, we 158 

quantified variation in genome content, isolation environment, and carbon and nitrogen 159 

metabolism for 1,154 yeast strains, which represent nearly all known species in the subphylum 160 

Saccharomycotina. This dataset enabled us to evaluate the evidence for the two niche breadth 161 

evolution paradigms (trade-offs versus underlying intrinsic and extrinsic factors) across species 162 

with broad (generalists) and narrow (specialists) carbon niche breadths. Our evolutionary, 163 

machine learning, and network analyses uncovered a unifying set of intrinsic factors among 164 

generalists that were largely absent in specialists, and pinpointed specific genetic differences 165 

between generalists and specialists, including novel associations between carbon generalism and 166 

specific metabolic pathways. In contrast, we found limited evidence for trade-offs between 167 

carbon generalism and growth rate. Through ancestral trait reconstruction and coevolution 168 

analyses, we further demonstrated that generalists were more likely to have retained or gained 169 

traits, whereas specialists repeatedly arose through pervasive gene and trait loss. The genomic, 170 

metabolic, evolutionary, and ecological data for nearly all known species of the 400-million-171 

year-old yeast subphylum Saccharomycotina provided here, coupled with the availability of 172 

multiple genetic models in the subphylum, present an inimitable resource and framework for 173 

linking genomic variation to phenotypic and ecological variation.  174 

 175 

A genomic, evolutionary, and metabolic portrait of Saccharomycotina  176 

We sequenced and assembled 953 new genomes in this study and combined them with 177 

140 genomes previously sequenced by the Y1000+ Project (40) and 61 publicly available 178 

genomes (data S1A). Our dataset contained 1,154 genomes from 1,051 species, including 1,037 179 

taxonomic type (i.e., ex-type) strains. Multiple strains were sequenced from 41 species, including 180 

a total of 19 recognized varieties distributed across nine species (i.e., two to three varieties per 181 
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species). Sixty-one of the strains whose genomes were sequenced could not be assigned to any of 182 

the known species; thus, they are candidates for new species. The genomic dataset spans 96 yeast 183 

genera, which is about 90% of currently described genera (41). Excluded genera were typically 184 

those for which no living culture was available or those described after our last round of genome 185 

sequencing in February 2021. Our genome sequencing added between 1 and 336 species to each 186 

order, most notably expanding the order Serinales (previously major clade CUG-Ser1), which 187 

contains the human pathogens C. albicans and Candida auris, from 94 genomes to 430. All 188 

genome assemblies totaled ~15 billion base pairs. The assemblies had a mean N50 of 387.5 Kb, 189 

which was comparable to our previous smaller-scale dataset of 332 genomes (417.2 kb) (fig. 190 

S1A & data S1A) (28). All genomes were annotated to identify putative coding sequences. On 191 

average, 5,908 +/- 1069 (s.d.) protein-coding sequences were identified per genome with a range 192 

from 3,775 (Starmerella lactis-condensi) to 20,704 (Magnusiomyces magnusii) (fig. S1B) (42). 193 

Functional annotations were conducted using Kyoto Encyclopedia of Genes and Genomes 194 

(KEGG) and InterPro. GC content (subphylum mean = 41.1% +/- 6.61%) ranged from 23.9% 195 

(Candida bohioensis) to 66.8% (Candida pseudocylindracea), and genome size (subphylum 196 

mean = 13.2Mb +/- 3.5Mb) ranged from 7.2Mb (Starmerella lactis-condensi) to 41.3Mb 197 

(Magnusiomyces magnusii) (fig. S1C-D & data S1A). Of the 1,154 yeast genomes, 1,000 (~87%) 198 

had ≥ 90% of the 2,137 predefined single-copy orthologs defined by OrthoDB v10 (data S1A & 199 

data S1B) (43, 44).   200 

At least three independent nuclear codon reassignments are known to have occurred 201 

during the evolution of the subphylum (45). Given the large number of newly added genomes, we 202 

inferred codon tables and tRNA genes to confirm the known reassignments and test for potential 203 

new reassignments (data S2). These results were consistent with the previously observed codon 204 

reassignments. Notably, genomes of the order Ascoideales had a diversity of tRNAs with CAG 205 

anticodons predicted to decode CUG codons, which is consistent with previous findings that 206 

these yeasts may stochastically decode CUG as both leucine and serine (46). 207 

To infer the genome-scale phylogeny of the Saccharomycotina, we used 1,403 208 

orthologous groups (OGs) from 1,154 Saccharomycotina genomes and 21 outgroups. Nearly all 209 

internodes in both concatenation-based (1,136/1,153; 99%) and coalescent-based (1,123/1,153; 210 

97%) phylogenies received strong (≥ 95%) support (Fig. 2 and fig. S2 and fig. S3). The two 211 

phylogenies were highly congruent, with only 60/1,153 (5%) conflicting internodes (fig. S3). 212 

Moreover, relationships among the 12 recently circumscribed taxonomic orders (41) (previously 213 

major clades) were congruent with previous studies (28, 47, 48), including the placement of the 214 

Ascoideales (previously CUG-Ser2) and Alaninales (previously CUG-Ala).  215 

To examine the evolution of metabolic niche breadth across Saccharomycotina, we 216 

quantified the growth rates of 853 yeast strains on 18 carbon sources, 6 nitrogen sources, and a 217 

no-carbon control (data S3). We found that yeasts displayed variation in growth rates across 218 

carbon (fig. S4A) and nitrogen sources (fig. S4B); on average, each yeast strain could metabolize 219 

eight carbon (Fig. 3A) and two nitrogen sources (fig. S5). Comparison of growth rates on 220 

different carbon sources revealed that 65.22% of yeasts (n = 557) grew fastest on glucose, while 221 

the remaining 34.78% (n = 297) grew faster on another carbon source (fig. S6). Mannose, an 222 

epimer of glucose not typically tested in yeast growth experiments, was the carbon source on 223 

which yeasts grew fastest, on average, after glucose (n = 112). We also found that 77 yeasts grew 224 

faster on fructose than glucose, including cases where their maximum growth rate was on a third 225 

carbon source. Several of these yeasts (n = 7) were in Dipodascales, which contains many known 226 
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fructophilic yeasts (49). The ability to grow faster on fructose was independently verified in a 227 

second lab on a subset of yeasts (data S4). 228 

 229 

A lack of evidence for trade-offs between carbon niche breadth and growth rates 230 

We statistically classified yeasts into three categories for both carbon and nitrogen 231 

utilization niche breadths: specialist, standard, and generalist (data S3). We found that, for both 232 

carbon and nitrogen metabolism, most yeasts were classified as standard yeasts (i.e., yeasts that 233 

did not fall into the extremes for carbon niche breadth) (76.0%: 648/853 and 78.4%: 669/853, 234 

respectively) (data S3 & Fig. 3A). Of the remaining 24.0% (n = 205/853), 53.7% (n = 110/205) 235 

were specialists, and 46.3% (n = 95/205) were generalists for carbon sources (Fig. 3A). The 236 

median numbers of carbon sources used by specialist, standard, and generalist yeasts were four, 237 

eight, and twelve, respectively. Carbon generalists and specialists were widely distributed across 238 

the subphylum (Fig. 2), and all orders with more than 15 phenotyped strains (n = 8) featured both 239 

generalists and specialists. However, the relative proportion of generalists and specialists within 240 

orders varied greatly. For example, the order Saccharomycetales (n=82) had 3 generalists and 33 241 

specialists, while the order Serinales (n= 347) had 53 generalists and 9 specialists. This result 242 

suggests that yeast orders exhibit distinct eco-evolutionary trajectories.  243 

First, we tested for a trade-off between growth rate and carbon niche breadth by asking if 244 

specialists had a growth rate advantage over other yeasts in some conditions. We compared all 245 

growth rates within each carbon source by classifying growth into three categories: slow (growth 246 

rate in the lower quartile), intermediate, and fast (growth rate in the upper quartile.) We found a 247 

statistically significant interaction between carbon classification and growth rate (p-value < 2.2e-248 

16); specialists were more often slow growers (38%: 146/381 growth rates) than fast growers 249 

(15%: 54/381), whereas generalists were more often fast growers (33%: 403/1,222 growth rates) 250 

than slow growers (20%: 238/1,222 growth rates) (Fig. 3B). Moreover, there were fewer 251 

specialists than generalists in the fast category across all tested carbon sources (data S5). We also 252 

examined linear phylogenetically corrected correlations between growth rates and carbon niche 253 

breadth. We found that growth rates on five carbon sources were positively correlated with 254 

carbon niche breadth when accounting for phylogeny and multiple-testing correction (glucose p 255 

= 0.0028, mannose p = 0.0056, myo-inositol p = 0.0083, galactose p=0.0024, and fructose p = 256 

0.0111: all slopes between 0.001 and 0.002) (table S1 and fig. S7A). No significant negative 257 

correlations were identified, which would have indicated that specialists were faster growers.  258 

Second, we repeated these analyses using only the fastest growth rate for each yeast 259 

because specialists might outperform other yeasts only in the environment in which they are 260 

specialized. We found that the proportion of fast-growing specialists was 9% (10/107), a 261 

decrease from the 15% of fast-growing specialists found when we compared all growth rates 262 

across all substrates, while the proportion of fast-growing generalists was 43% (38/89), an 263 

increase from 33% (Fig. 3B). Thus, the strong interaction between carbon classification and 264 

growth rates persisted when only the fastest rates were considered (p-value = 7.8 x10-11). In this 265 

case, carbon niche breadth was significantly and positively correlated with growth rates on 266 

glucose (p-value = 0.0002, slope = 0.002), sucrose (p-value =0.0032, slope = 0.001), and 267 

fructose (p-value=0.0062, slope = 0.001) after accounting for multiple testing and phylogeny 268 

(table S1 and fig. S7B).  269 
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A third analysis using the fastest growth rate for each specialist compared to all other 270 

growth rates yielded similar results (table S1 and fig. S7C). In this analysis, the growth rate for a 271 

carbon source included only specialists whose growth rate was highest on that carbon source and 272 

any growth rates for standard and generalist yeasts. Moreover, specialists were not the fastest-273 

growing yeast in any of the carbon sources tested, including glucose. Our findings suggest that 274 

generalists grow faster on more substrates than specialists, including under conditions preferred 275 

by specialists.  276 

We next tested whether there was a trade-off between carbon and nitrogen breadth. We 277 

found significantly fewer carbon generalists that were also nitrogen specialists (n = 1) and carbon 278 

specialists that were also nitrogen generalists (n = 2) than expected by chance (p-value = 279 

3.26x10-14) (Fig. 3C). Moreover, trait-trait co-evolutionary analysis found that carbon generalists 280 

tended to also be nitrogen generalists (Bayes factor >2). Furthermore, our analyses of co-281 

evolution between carbon and nitrogen generalism showed that nitrogen generalism arises almost 282 

exclusively in a genetic background of carbon generalism (i.e. in carbon generalism lineages; 283 

table S2). In other words, carbon generalism mainly arises before and may facilitate nitrogen 284 

generalism. Additionally, phylogenetic regression analysis showed a strong positive correlation 285 

between carbon and nitrogen niche breadth (reported p-value of 0.000, slope of correlation = 286 

0.92; table S2). These results suggest that there is an evolutionarily conserved functional 287 

connection between carbon and nitrogen metabolism in yeasts. Consistent with our finding, it is 288 

well known that certain amino acids can serve as both a carbon and nitrogen source and, as such, 289 

are dually regulated by both carbon and nitrogen signaling systems (50, 51). Additionally, many 290 

metabolic pathways are known to be controlled by signals from other compounds or nutrients. In 291 

bacteria, nitrogen, sulfur, phosphorus, and iron metabolism can even be controlled by carbon 292 

metabolism (50, 52). 293 

Our previous analysis of 332 yeasts identified a pervasive pattern of trait loss (28), which 294 

suggests that generalists have either retained carbon-acquisition traits over long evolutionary 295 

timescales or gained traits, unlike their non-generalist relatives. To test these hypotheses, we 296 

compared the relative rates of carbon trait gain or loss, either across all yeasts or specifically 297 

within generalist lineages, while taking phylogeny into account (Fig. 3D, table S3). For the eight 298 

carbon traits found in less than 75% of generalists, we identified a strong trend of trait loss across 299 

the entire phylogeny but some evidence of trait gain in the generalist background. Therefore, 300 

carbon generalists appear to have both gained and retained carbon traits that were otherwise lost 301 

broadly across the rest of the subphylum. 302 

 303 

Intrinsic factors shape carbon niche breadth variation in yeasts 304 

 Given the extreme carbon niche breadths of generalists and specialists, we next tested 305 

whether these two groups have independent factors favoring generalist and specialist phenotypes. 306 

Extrinsic factors, such as carbon availability in an isolation environment, could shape variation 307 

in metabolic niche breadth. Similar environments, which are likely to share extrinsic factors, may 308 

favor the evolution of generalists or specialists. To explore the possibility that some 309 

environments contain extrinsic factors that shape carbon niche breadth, we identified the precise 310 

isolation environment for each possible yeast strain (1,088 total). We then grouped strains by 311 

similar environments using a formal hierarchical ontology of isolation environments. This 312 

ontology contained 1,597 classes (specific environments) (fig. S8, data S6). Environment 313 

classifications at the highest level of our ontology generally contained similar numbers of 314 
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generalists and specialists: Arthropoda (24 generalists and 16 specialists), Chordata (7 and 8), 315 

plants (25 and 31), and food or drink (5 and 16). Furthermore, generalists and specialists shared 316 

environments. For example, Hyphopichia homilentoma (generalist) and Wickerhamomyces 317 

sydowiorum (specialist) were both isolated from tunnels of the wood-boring beetle Sinoxylon 318 

ruficorne in the red bushwillow Combretum apiculatus. Given the limited number of generalists 319 

and specialists within an environment and the fact that we only had a single environment per 320 

strain, we were unable to rigorously test for extrinsic factors that favor generalists or specialists. 321 

We anticipate that incorporation of improved characterizations of yeast habitats and the addition 322 

of isolation environment data into our formal ontology will enable future investigations of the 323 

environmental factors shaping carbon niche breadth evolution.  324 

We next hypothesized that the genomes of generalists may contain a larger number of 325 

metabolic genes, which are intrinsic factors, than those of specialists. We found that both the 326 

total number of genes and the number of KEGG ortholog groups (KOs) were both positively and 327 

significantly associated with carbon niche breadth (Fig. 4A & fig. S10A-B). Strikingly, we found 328 

that, for every additional carbon source a yeast could metabolize, its genome contained, on 329 

average, an additional 36 genes and 2 KOs.  330 

Metabolic networks, including the carbon metabolism network, are more complex than 331 

just the total number of genes because they are highly interconnected due to shared enzymes and 332 

pathways. To examine whether metabolic network structure varied between generalists and 333 

specialists, we used KOs to build metabolic networks for all yeasts and tested for a correlation 334 

between carbon niche breadth and six common network properties that reflect biological 335 

complexity (Fig. 4B and fig. S10C-F, data S7) (53, 54). Relative to carbon specialists, carbon 336 

generalists had a higher edge-count, or more connections between nodes of the network (Fig. 4B) 337 

(55). Both carbon generalists and specialists had disassortative networks, or networks with high 338 

levels of connection between nodes with dissimilar properties, a property of all biological 339 

networks (56). However, relative to specialists, the generalist networks were less disassortative, 340 

or had more highly interconnected nodes (Fig. 4B). There were no significant correlations 341 

between carbon niche breadth and the other network properties (fig. S10C-F). Despite the 342 

extreme difference in carbon metabolism capabilities, carbon generalists and specialists had only 343 

slight differences in the size and shape of their global KEGG metabolic networks. These results 344 

suggest that generalist and specialist networks are overall similar in size and shape but differ in 345 

how they are wired. 346 

We next investigated differences in the composition of generalist and specialist networks. 347 

Generalists and specialists largely showed similar compositions across KOs, but a small set of 348 

KOs was depleted (presence < 20%) in specialists and enriched (presence >85%) in generalists 349 

(table S4). Generalist-enriched KOs were related to nitrogen, fructose, mannose, and galactose 350 

metabolisms. Enrichment of these terms suggests that differences in gene content contribute to 351 

the overall carbon metabolism trait differences observed between generalists and specialists. 352 

 353 

Unifying genetic features of carbon niche breadth generalists 354 

To gain further insight into the genes and pathways contributing to the observed carbon 355 

niche breadth variation across the yeast subphylum, we employed machine learning. Specifically, 356 

we trained a supervised random forest classifier to use KO presence and absence as predictive 357 

features for carbon niche breadth classification. Niche breadth classification of generalists and 358 
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specialists was used instead of the actual number of carbon sources because there were 359 

insufficient numbers of yeasts for some values to adequately train our model (e.g., there was only 360 

one yeast that grew on 17/18 carbon sources, but there were 64 yeasts that grew on five carbon 361 

sources). The resulting classifier was both highly sensitive and specific, correctly classifying 362 

88% of specialists and 89% of generalists (AUC=0.93; Fig. 4C). The high accuracy suggests that 363 

generalist and specialist KEGG networks differ in ways that were not detected in the KO 364 

enrichment analysis.  365 

Examination of the features on which the classifier relied using dropout analysis 366 

identified 2,050 KOs that significantly contributed to classification accuracy. Approximately 367 

5,000 unique yeast KOs were used to train the algorithm, suggesting that many KOs contributed 368 

some information to niche breadth classification. We further examined the top four features 369 

because the fifth feature had only half the relative importance score of each of the fourth. Two of 370 

the top four features had direct links to the catabolism of specific carbon substrates, 371 

demonstrating the power and precision of our algorithm. The KO for manB (K01192), which 372 

encodes a β-mannosidase, had the second highest relative importance (relative importance 373 

0.048). This KO was identified in 7% of specialists (8/111) and 80% of generalists (76/95). β-374 

mannosidases are known to have a role in microbial utilization of N-glycans as a carbon source 375 

(57). Almost all the carbon generalists (93/95) can utilize mannose, which leads to the hypothesis 376 

that generalists likely use the mannose moieties present in N-glycans as a carbon and energy 377 

source. 378 

The KO with the third highest importance was K17738 (relative importance 0.043), 379 

which is the ARD gene encoding D-arabinitol 2-dehydrogenase, an important component of the 380 

pentose and glucuronate interconversions pathway (Fig. 4D, step 5). This KO was more 381 

frequently present in the genomes of generalists (96%, 91/95) than in the genomes of specialists 382 

(71%, 79/111). Indeed, in a portion of this pathway, 5 of the 8 reactions were among the 2,050 383 

KOs (with two falling in the top 100 KOs) that contributed to the classification of carbon 384 

generalists and specialists (black boxes in Fig. 4D). Importantly, growth on xylose was included 385 

in our carbon classification, and the xylose metabolism genes XYL1 (Step 2 in Fig. 4D), XYL2 386 

(Step 3), and XYL3 (Step 8) were all identified as important features (with XYL1 falling within 387 

the top 100), suggesting that xylose metabolism genes may be promiscuous and have multiple 388 

metabolic capabilities (58). This result also supports the hypothesis that intrinsic genetic factors 389 

contribute to niche breadth by connecting pathways.  390 

The feature with the highest relative importance was K03940 (relative importance 0.062), 391 

which encodes an NADH ubiquinone oxidoreductase core subunit (NDUFS7 in humans) of 392 

Complex I of the mitochondrial electron transport chain. This KO was identified in 29% of 393 

specialists (32/111) and 95% of generalists (90/95). Interestingly, Complex I is known to vary 394 

widely, in presence and makeup, including the presence of an alternative pathway in some yeasts 395 

(59). For example, in S. cerevisiae, the NADH oxidoreductase function of Complex I is 396 

conducted by three single-subunit enzymes (Ndi1p, Nde1p, or Nde2p) (60). Conversely, in Y. 397 

lipolytica, Complex I is composed of 42 subunits, including the NADH ubiquinone 398 

oxidoreductase NUKM (K03940) (61). Thirty additional Complex I enzymes were within the top 399 

2,050 KOs, and two fell within the top 10%: K03941 and K03966, which are both NADH 400 

ubiquinone oxidoreductases in the β subcomplex (KEGG map00190). The Saccharomycetales 401 

and Saccharomycodales have both completely lost the canonical Complex I and contain many 402 

specialist yeasts (59). The relatively high importance of K03940, however, is not solely due to 403 

these orders, as the effect is widespread. For example, within the Pichiales, 100% (5/5) of 404 

generalist genomes encode K03940, in contrast to only 18% (6/33) of specialists. Complex I has 405 
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been implicated in C. albicans growth and virulence (62), as a global regulator of fungal 406 

secondary metabolism in Aspergillus (63), and results in a higher proton motive force compared 407 

to the alternative pathway in S. cerevisiae. The presence of Complex I in generalists, therefore, 408 

may support increased carbon niche breadth and elevated growth rates. 409 

The last KO we investigated was K00474 (relative importance 0.043), which encodes a 410 

trimethyllysine dioxygenase involved in lysine degradation. Every step in the pathway that 411 

degrades lysine to carnitine, except the last step, was identified as important in the machine 412 

learning classification. The last step (Fig. 4E, Step 7) was not annotated by KEGG in any of our 413 

yeasts. Therefore, we annotated the BBH2 gene, which encodes the trimethyllysine dioxygenase, 414 

directly from our predicted coding sequences using previously published reference sequences 415 

(64). After manual annotation of BBH2, we found that most carbon generalists were predicted to 416 

be able to complete the carnitine biosynthesis pathway (91%: 86/95), while relatively few carbon 417 

specialists were predicted to do so (20%: 22/111). Carnitine plays an important role in the 418 

transport of acetyl coenzyme A (acetyl-CoA), which in turn is a major metabolite that 419 

contributes to many metabolic pathways, including the production of ATP in the mitochondrial 420 

tricarboxylic acid (TCA) cycle. Acetyl-CoA can be produced within the mitochondria when 421 

glucose is available or, when glucose is unavailable, it can be transported into the mitochondria 422 

using the carnitine shuttle (65). Some yeasts, including C. albicans, rely solely on the carnitine 423 

shuttle for this transport (64), while other yeasts, such as S. cerevisiae, can use a carnitine-424 

independent method for acetyl-CoA transport (66). Similarly, some yeasts, such as C. albicans, 425 

can synthesize carnitine; others, such as S. cerevisiae, cannot and rely on exogenous sources. A 426 

complete carnitine synthesis pathway may ensure acetyl-CoA transport when glucose is 427 

unavailable, especially in species that rely solely on the carnitine shuttle.   428 

Additionally, carnitine and carnitine acetyltransferases can be essential for growth on 429 

some nonfermentable carbon sources. These include ethanol, as well as glycerol in certain S. 430 

cerevisiae mutants with disrupted citrate metabolism (67). We found that 90.5% (86/95) of 431 

generalists can grow on glycerol compared to only 24.5% (27/110) of specialists (table S2). 432 

Moreover, specialists that could grow on glycerol were more likely to have the complete 433 

carnitine synthesis pathway than those that did not (z-test, χ2= 10.425, p-value = 0.0186). These 434 

results suggest that carnitine production affords metabolic flexibility and carbon niche breadth. 435 

Human yeast pathogens include both carbon generalists and specialists 436 

This comprehensive dataset and analytical framework provide the opportunity to study 437 

how the observed genomic, metabolic, and environmental variation across the subphylum is 438 

associated with any complex trait of interest (68–70).To illustrate this potential, we examined the 439 

metabolic niche breadths of yeast pathogens of humans compared to those of their non-440 

pathogenic close relatives (using a specific phylogenetic distance cutoff to standardize the 441 

clades) (Fig. 5). The World Health Organization (WHO) recently released its first-ever fungal 442 

priority pathogens list, which included six Saccharomycotina species (71). We defined 11 yeasts 443 

as opportunistic human pathogens because they are known to cause human infections and 444 

generally require biosafety level 2 (BSL-2) precautions in research laboratories.   445 

Carbon sources and availability vary in vivo in humans, suggesting that carbon niche 446 

breadth may play an important role in promoting or preventing fungal pathogenesis (72). Yeasts 447 

are subject to diverse micro-environments characterized by varying nutrients within a host (39, 72, 448 

73). Their capacity to survive under fluctuating carbon conditions has been closely associated 449 

with virulence. For example, lactate assimilation across the C. albicans clade and, in 450 

Nakaseomyces glabratus (syn. Candida glabrata), is associated with increased antifungal and 451 
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osmotic stress resistance and has been shown to reduce phagocytosis within the host (73). 452 

Interestingly, these pathogens exhibit reduced resistance to the antifungal drug amphotericin B 453 

when grown in culture media containing lactate relative to culture media containing glucose (73). 454 

We found that pathogens spanned the range of carbon niche breadth classifications and included 455 

specialist, standard, and generalist yeasts. Carbon niche breadths within pathogenic yeasts ranged 456 

from 15 in Meyerozyma guilliermondii to only 2 in N. glabratus (74). Furthermore, the proportion 457 

of pathogenic yeasts classified as standard, generalist, and specialist was similar to that of their 458 

non-pathogenic relatives (Fig. 5A-B). Collectively, these results suggest that yeast pathogenicity 459 

is not associated with carbon niche breadth.  460 

Previous work in C. albicans linked its pathogenicity to its high growth rate (75). To 461 

examine whether this link holds across yeast pathogens, we visualized all pathogenic yeasts and 462 

their relatives on a phylogenetically corrected principal component analysis using all our growth 463 

rate data (Fig. 5C). We observed no clustering of pathogenic yeasts using carbon growth rates. 464 

Moreover, yeast pathogens within the same clade varied in their growth rate on glucose by 465 

almost 3-fold: Candida parapsilosis had a growth rate of 0.042, while Candida tropicalis had a 466 

growth rate of 0.124. Our growth rate data, however, were collected at a specific temperature in 467 

defined media and may not reflect growth rates in human infections.   468 

We also examined the role of temperature, gene content, and environment in yeast 469 

pathogenicity. One feature known to be necessary, but insufficient, for pathogenicity is growth at 470 

human body temperature or 37°C (Fig. 5D) (39). We observed that relatives of human pathogens 471 

had an elevated rate of growth at 37°C (~64%) compared to all yeasts for which growth at this 472 

temperature was measured (~41%). This result likely reflects the necessity of growth at 37°C to 473 

evolve prior to pathogenicity. Heat shock proteins (HSPs) are also known to impact temperature 474 

tolerance (76). Examination of copy number variation in the genes encoding HSPs in the 475 

pathogenic species and their relatives identified a slight increase in HSP70 gene copy number 476 

among pathogenic yeasts (Fig. 5D). Finally, we found that pathogenic yeasts and their relatives 477 

had been isolated from all examined environments (Fig 5E). The analyses shown here suggest 478 

that pathogenicity can emerge in species across the spectrum of carbon metabolic breadth. 479 

Moreover, the lack of notable differences between yeast pathogens and their non-pathogenic 480 

relatives supports the hypothesis that the traits and genetic elements contributing to pathogenicity 481 

are not broadly shared across pathogens but unique to each (77). The data and analyses presented 482 

here provide a model for the investigation of other complex traits across Saccharomycotina using 483 

our ensemble of genomic, metabolic, and environmental data.  484 

 485 

 486 

Conclusions 487 

Here we focused on two predominant paradigms proposed to underlie the evolution of 488 

yeast carbon niche breadth. The first paradigm, where trade-offs dominate, was not supported 489 

when we analyzed over 10,000 growth rates measured across 853 yeasts. We found that 490 

generalists typically grew faster on carbon sources than specialists, even on those carbon sources 491 

for which specialists had their maximum growth rates. Thus, the ability to metabolize additional 492 

carbon sources does not come at the cost of reduced growth rates on other carbon sources. 493 

Carbon metabolism traits found within generalists were either maintained across evolutionary 494 

time or gained, even though there was a strong overall trend for trait loss across the subphylum. 495 
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Of course, trade-offs between carbon metabolism traits likely exist in natural habitats. Future 496 

experiments along gradients of different environmental conditions, such as temperature, 497 

competition, or oxygen availability may shed additional light on condition-specific trade-offs in 498 

carbon niche breadth evolution. 499 

In contrast, we found strong support for the second paradigm in the form of intrinsic 500 

factors that underlie the generalist phenotype. Machine learning allowed us to identify specific 501 

genes, complexes, and pathways shared by generalists but largely absent from specialists. These 502 

genes were directly involved in carbon and energy metabolism, often by enhancing metabolic 503 

flexibility and robustness. This finding supports the second paradigm because we identify a 504 

shared set of intrinsic genomic features across the generalist phenotype, even though generalists 505 

vary in the specific carbon sources they can metabolize. This finding does not support the 506 

hypothesis of trade-offs for two reasons. First, the pathways enriched in generalists are 507 

hypothesized to increase metabolic efficiency, which is contrary to the proposed trade-off 508 

between carbon niche breadth and efficiency. Second, under the trade-off paradigm, specialists 509 

and generalists would both have unique traits that provide them with a selective advantage. 510 

However, we found that generalists, as compared to specialists, have more genes in their 511 

genomes, including those not directly associated with carbon metabolism.  512 

Given the advantages of wide carbon niche breadth and the absence of detectable 513 

efficiency costs, the question remains: what forces are shaping specialist yeasts? In some cases, 514 

carbon specialism could be associated with rapid gene loss. For example, in the genus 515 

Hanseniaspora (10/14 or 71.4% specialists), there were widespread gene losses, including of 516 

genes involved in DNA repair and carbon metabolism (78). Another hypothesis is that each 517 

specialist is subject to unique evolutionary pressures that would obviate unifying features. 518 

Finally, it is also possible that there are growth-associated trade-offs that we are unable to 519 

measure. Features, such as enhanced carbon sequestration, killer yeast toxins, pathogenicity, and 520 

microbial community composition, could provide specialists with advantages in highly specific 521 

environments. For example, Hanseniaspora species have a growth advantage over other species, 522 

including S. cerevisiae, on grapes at harvest and in the early stages of alcoholic fermentation (79). 523 

Further investigations into the evolution of yeast generalism and specialism will likely be 524 

fruitful, but a plethora of additional questions could be addressed with these data including: 525 

quantifying correlations among genes, traits, and/or ecologies; investigations of gene family 526 

evolution; research into the origins of pathogenesis; and genome-informed bioprospecting of 527 

yeasts and their genes for the sustainable production of cellulosic biofuels and bioproducts. More 528 

broadly, by coupling a comprehensive dataset with a robust analytical framework for studying 529 

macroevolutionary processes, the Y1000+ Project provides a roadmap that connects DNA to 530 

diversity.  531 

  532 

Summary of Methods 533 

 534 

Detailed materials and methods can be found in the supplementary materials (80). All data 535 

generated as a part of the project have been deposited in a FigShare repository (42). 536 

 537 

Genome sequencing, annotation, and phylogenomics 538 
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Strains were obtained primarily from the NRRL (USA) and CBS (Netherlands) culture 539 

collections (USA). We sequenced pair-end libraries using the Illumina HiSeq 2500 platform and 540 

assembled genomes using the meta-assembler pipeline iWGS (81). We assessed assembly quality 541 

using Benchmarking Universal Single-Copy Orthologs (BUSCO) (44) and filtered the assemblies 542 

to remove mitochondrial and bacterial DNA contaminants. Genomes were functionally annotated 543 

using KEGG (55) and InterPro (82, 83)  databases. We constructed a phylogenomic data matrix 544 

from 1,403 orthologous groups (taxon occupancy for each group ≥ 50%; 719,591 amino acid 545 

sites); we inferred the phylogeny of the subphylum using both concatenation and coalescence 546 

under maximum likelihood using IQ-Tree (84) and ASTRAL-III (85) respectively, and estimated 547 

the yeast time tree using the RelTime method (86). 548 

 549 

Phenotyping, niche breadth classification, and testing for trade-offs and trait co-evolution 550 

We generated quantitative growth data on 18 carbon and 6 nitrogen sources for 853 551 

yeasts, measuring optical density every two hours for a week on the BMG Omega SpectroStar 552 

Plate Reader. We conducted all experiments in triplicate, and a new yeast colony was picked for 553 

each yeast across replicates. We calculated growth rates using a logistic model using the R 554 

package grofit (87). We classified yeasts as specialist, standard, or generalist for both carbon and 555 

nitrogen metabolism by calculating the binomial confidence intervals of carbon and nitrogen 556 

breadth relative to randomized growth data. We measured the correlation between carbon and 557 

nitrogen breadth and tested for trade-offs between carbon niche breadth and efficiency (by 558 

measuring the correlation between growth rates and carbon niche breadth classifications) using 559 

phylogenetic generalized least squares analyses with PGLScaper (88). Finally, we inferred the co-560 

evolution of carbon traits and carbon generalism/specialism using BayesTraits 561 

(http://www.evolution.reading.ac.uk). 562 

 563 

Underlying factors driving generalist and specialist phenotypes 564 

We identified strain-specific isolation environments for 1,088 yeasts and standardized 565 

them by creating an ontology of environments and their hierarchical network using Web Protégé 566 

(https://github.com/protegeproject/webprotege). To identify underlying genomic features 567 

contributing to generalists and specialist phenotypes, we used genome annotations to build 568 

metabolic networks and quantify network variation among generalists and specialists while 569 

accounting for phylogeny. We also identified KEGG ontologies enriched in generalists and 570 

specialists using a KEGG enrichment analysis (89). Finally, we constructed a machine learning 571 

algorithm using the XGBoost random forest classifier (90), which we trained using 90% of the 572 

genomic data and using the remaining 10% for cross validation, to identify genes whose 573 

presence/absence was most strongly associated with carbon generalism and specialism.   574 

 575 
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 1296 

 1297 
Figure 1: Yeasts are morphologically, ecologically, and metabolically diverse. 1298 

A. Images of yeasts from different orders. The color of the box surrounding the image indicates 1299 

the species’ order. The color of the circle in the bottom right-hand corner of the image represents 1300 

the isolation environment for the strain of the species sequenced and phenotyped during this 1301 

study. Yeast colonies are morphologically diverse; they can vary in shape, color, size, dullness, 1302 

etc. 1303 

B. Yeasts have been isolated from every biome and continent. Strains studied were found on 1304 

plants, animals, in soil, and many other environments. Strain-level isolation data were placed 1305 

into an ecological ontology to allow for identification of yeasts that shared higher-level 1306 

ontological classes. 1307 

C. Yeasts are metabolically diverse.  The image represents the KOs present across 1308 

Saccharomycotina metabolic networks. Any pathway that is highlighted in purple is present 1309 

across a subset of yeasts; the saturation of the purple represents the proportion of yeasts with the 1310 

pathway. 1311 

 1312 
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 1313 
Figure 2: Yeast traits are widely distributed across the phylogeny. 1314 

The phylogeny of 1,154 yeasts and fungal outgroups built from 1,403 orthologous groups of 1315 

genes. Branches are colored according to their taxonomic assignment to an order of 1316 

Saccharomycotina (41). The innermost rings are colored by the top-level type of isolation 1317 

environment in which each specific strain was isolated. The purple, yellow, and blue ring 1318 

identifies the carbon growth classification for each strain. This classification is based on the 1319 

carbon niche breadth, which is represented by the bar graph on the exterior of the tree, along 1320 



 

30 

 

with nitrogen breadth. All traits illustrated (isolation environment, carbon growth class, nitrogen 1321 

breadth, and carbon niche breadth) are widely distributed across the tree; no order has one trait 1322 

exclusively. 1323 

 1324 

 1325 
Figure 3: Carbon specialists and generalists differ in nitrogen breadth, growth rate, and 1326 

evolutionary history.  1327 

A. Histogram of carbon niche breadth across yeasts (n = 853). The colors of the bars represent 1328 

the ranges for the different carbon classifications. Metabolic classifications were determined by 1329 

permuting the binary carbon growth matrix (n = 1000 permutations). To determine the metabolic 1330 

strategy of a yeast, we calculated the observed and expected (permuted) breadth for each yeast 1331 

and calculated the binomial confidence intervals to determine significant differences in breadth. 1332 

Generalists had a significantly larger carbon niche breadth than expected by chance, and 1333 

specialists had a significantly smaller carbon niche breadth. If a yeast was not classified as either 1334 

a generalist or a specialist, it was classified as standard. 1335 

B. The growth rates for each yeast on each of the 18 carbon sources were categorized as slow 1336 

(bottom 25%), intermediate (median 50%), or fast (top 25%) using either all the rates per yeast 1337 

(white outline) or only the highest rate per yeast (black outline). Carbon generalists had the 1338 

highest proportion of fast growth rates (33% all rates, 43% fastest rates), while specialists had 1339 

the smallest proportion (15% all rates, 9% fastest rates) The inverse was also true, with carbon 1340 

generalists having the smallest proportion of slow growth rates (19% all rates, 14% fastest rates) 1341 

and carbon specialists having the highest proportion of slow growth rates (38% all rates, 42% 1342 

fastest rates).  1343 

C. Stacked bar graph of carbon metabolic strategies within each nitrogen metabolic strategy.  1344 
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D. Carbon generalists shared many of the same growth traits: 10 out of 18 growth traits were 1345 

found in more than 75% of generalists. Many of the carbon sources had different evolutionary 1346 

trends in a generalist background as compared to across the whole tree. Three different 1347 

evolutionary models are shown: trait gain (black), trait loss (white), and equal rates of trait gain 1348 

and loss (gray). No box indicates that the trait was not co-evolving with background or across the 1349 

tree. More than one evolutionary model is shown in cases where the reverse jump model spent 1350 

75% or less of the time on a single model. For example, the model testing correlated evolution 1351 

between growth on D-glucosamine and generalist carbon classification reported a model string 1352 

with a greater rate of gain in 55% of the run and a model string with equal rates of gain and loss 1353 

in 29% of the run; therefore, we reported both the trait gain and equal gain/loss model in the 1354 

generalist analysis. 1355 

 1356 
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Figure 4: Generalist and specialist metabolism differs in expected and unexpected ways. 1358 

A. Total annotated coding sequences (top) and total number of annotated KEGG ortholog groups 1359 

(KOs; bottom) are both positively and significantly correlated with carbon niche breadth using a 1360 

Phylogenetic Generalized Least Squares (PGLS) analysis. One outlier with a predicted number 1361 

of coding sequences is not visualized but was included in the analysis (Magnusiomyces 1362 

magnusii, number of protein-coding genes = 20,704, carbon niche breadth = 9). 1363 

B. Two KEGG network statistics were significantly and positively correlated with carbon niche 1364 

breadth when taking into account phylogenetic relatedness (PGLS). KEGG Edge Count (top) and 1365 

KEGG Assortativity (bottom) were both elevated in carbon generalists.  1366 

C. Yeasts were classified into generalists and specialists using a machine learning algorithm 1367 

trained on the KOs. The correct classification occurred in 88% of specialists and 89% of 1368 

generalists. The ROC analysis suggests that both the sensitivity and specificity of our model is 1369 

excellent (AUC=0.93).  1370 

D. Multiple reactions in the pentose and glucuronate interconversions pathway were important in 1371 

classifying yeasts into generalists and specialists as determined by the leave-out analysis, which 1372 

identified 2,050 informative KOs (black boxes.) Boxes are shaded as the percent of each carbon 1373 

classification with at least one enzyme in that step of the reaction. The reaction with the third 1374 

highest relative importance in the machine learning analysis is shown in Step 5 and is facilitated 1375 

by D-arabinitol 2-dehydrogenase. Interestingly, experimental studies suggest that yeast D-1376 

arabinitol 2-dehydrogenase is also capable of completing the reaction in Step 4 (93). Step 8 was 1377 

among the top features used in the machine learning analysis, despite the fact that KEGG only 1378 

partially annotated this gene. The xylulokinase encoded by yeast XYL3 is well studied (58). 1379 

Therefore, we re-annotated the XYL3 gene and have shown its relative abundance (red star).  1380 

E. The carnitine biosynthesis pathway includes multiple reactions that are important for 1381 

classifying carbon generalists and specialists. The reaction in Step 4 had the fourth highest 1382 

relative importance in the machine learning classification of carbon classification. Step 7 was not 1383 

annotated by KEGG in any of our yeasts, but this step had been previously characterized in 1384 

Candida albicans as being facilitated by the trimethyllysine dioxygenase enzyme encoded by 1385 

BBH2 (64). We re-annotated BBH2 using this reference sequence and calculated the relative 1386 

abundance in each carbon classification (red star). Finally, we determined the number of yeasts 1387 

that could hypothetically complete the lysine to carnitine biosynthesis pathway. 1388 

  1389 
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 1390 

 1391 
Figure 5: Carbon generalism and specialism are not associated with yeast pathogenicity. 1392 

A. The phylogenetic clades containing human fungal pathogens. Clades reflect all species within 1393 

a specific phylogenetic distance from the identified pathogen. Pathogens are found in three 1394 

different orders, and at least one pathogen is classified in the generalist, specialist, and standard 1395 

categories.   1396 

B. Pathogens and their relatives had nearly identical proportions of generalist, specialist, and 1397 

standard yeasts. This result suggests that carbon niche breadth is not a defining or predictive 1398 

factor for the potential of a species to gain the ability to infect humans.  1399 

C. Pathogens and their relatives did not differ substantially in their growth rates on carbon 1400 

substrates. The phylogenetically corrected principal component analysis (pPCA) was constructed 1401 

using growth rates on carbon substrates and projected onto the first two components (totaling 1402 

80% of the total variance.) Pathogens did not cluster together, while generalists and specialists 1403 

appeared further apart. This result suggests that pathogens do not have shared growth rate 1404 

characteristics.   1405 

D. Proportion of yeasts that can grow at 37°C in pathogens, their relatives, and all sampled 1406 

yeasts. All yeasts identified as pathogens can grow at 37°C. Pathogenic yeasts were significantly 1407 

more likely to grow at 37°C than their non-pathogenic relatives (χ2, p = 0.042). Heat shock 1408 

protein (HSP) gene copy number was determined using InterPro and KEGG orthologs. HSP gene 1409 

copy number was not significantly associated with pathogenicity.   1410 
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E. Isolation environment for the specific strains of pathogens and their relatives. Circles are 1411 

proportional to the percent of yeasts isolated from Chordata (orange), Arthropoda (pink), 1412 

Victuals (teal), Environmental (blue), and Plants (green).   1413 

 1414 


