

1 Incongruence in the phylogenomics era

2 *Jacob L. Steenwyk^{1,2,3}, Yuanning Li⁴, Xiaofan Zhou⁵, Xing-Xing Shen⁶, and Antonis
3 Rokas^{2,3,7†}*

4 **¹ Howards Hughes Medical Institute and the Department of Molecular and Cell Biology,
5 University of California, Berkeley, Berkeley, CA 94720, USA**

6 **² Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA**

7 **³ Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA**

8 **⁴ Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China**

9 **⁵ Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory
10 of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China
11 Agricultural University, Guangzhou 510642, China**

12 **⁶ Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of
13 Insect Sciences, Zhejiang University, Hangzhou 310058, China**

14 **⁷ Heidelberg Institute for Theoretical Studies, Heidelberg 69118, Germany**

15 [†]e-mail: antonis.rokas@vanderbilt.edu

16

17

18 **Abstract** | Genome-scale amounts of data and the development of novel statistical phylogenetic
19 approaches have greatly aided the reconstruction of a broad sketch of the tree of life and resolved
20 many of its branches. However, incongruence—the inference of conflicting evolutionary histories—
21 remains pervasive in phylogenomic data. We synthesize the biological and analytical factors that
22 drive incongruence, discuss methodological advances to diagnose and handle incongruence, and
23 identify avenues for future research. The study of incongruence has enabled a deeper understanding
24 of phylogenesis and improved our ability to reconstruct and interpret the tree of life.

25 "The stream of heredity makes phylogeny; in a sense, it is phylogeny.
26 Complete genetic analysis would provide the most priceless data for the mapping of this stream"
27 George Gaylord Simpson, 1945¹
28
29

30 **Introduction**

31 Phylogenetics aims to reconstruct the evolutionary histories of organisms, genes, traits, and other
32 biological features. Trees inferred from phylogenetic analyses of biological features represent the
33 best-supported hypotheses of their evolutionary histories, not the ground truth. Phylogenetic
34 approaches that use genome-scale amounts of data, or **PHYLOGENOMICS**, have become the gold
35 standard for understanding the evolution of lineages in the tree of life, a prerequisite for
36 understanding the evolution of biological features^{2–5}. Phylogenomics revolutionized systematic
37 biology, resolving numerous branches of the tree of life that were previously contentious and
38 increasing our confidence in many others^{6–12}.

39
40 Despite these successes, different phylogenomic studies can sometimes support conflicting tree
41 topologies^{13,14}, suggesting that certain branches of the tree of life are challenging to resolve, even
42 with genome-scale data. Some of these branches concern relationships key to our understanding of
43 evolution's most exciting episodes (see Box 1 for one example) and hinder our ability to resolve the
44 tree of life.

45
46 Incongruence is an umbrella term that describes the inference of *conflicting* tree topologies. This
47 phenomenon can be observed at all time scales, from very ancient (hundreds of millions to billions
48 of years old) to very recent (tens of thousands to millions of years old), and levels of genomic
49 organization, from whole chromosomes to individual sites (Fig. 1). The primary drivers of
50 incongruence are biological processes that cause the histories of DNA sequences to differ from the
51 histories of their species—hybridization or horizontal gene transfer events, for example^{2,5}—and
52 analytical shortcomings that lead to errors in inference—erroneous ortholog detection or poor model
53 fit, for instance¹⁵. Dissecting the contribution of biological and analytical drivers of incongruence can
54 improve phylogenetic inference and deepen our understanding of phylogenesis and the evolutionary
55 process.

56

57 Now, roughly two decades after the dawn of phylogenomics, the field's understanding of the factors
58 contributing to incongruence has matured. Concomitant development of methods and software that
59 aid in diagnosing and accounting for incongruence in phylogenomic analyses has improved accuracy
60 in inference. This review synthesizes the factors that drive incongruence, methodological advances
61 to diagnose and handle incongruence, and highlights avenues for future research.

62

63 **Biological factors**

64 Several evolutionary processes influence the evolutionary histories of genomic regions while others
65 erase these histories; these biological factors cause the histories of genomic regions to deviate from
66 the history of the species and contribute to incongruence (Fig. 2).

67

68 ***Incomplete lineage sorting***

69 INCOMPLETE LINEAGE SORTING is common across sexually reproducing organisms^{16–18}. Incomplete
70 lineage sorting does not always result in gene trees that are incongruent with the species phylogeny,
71 but when it does, it is referred to as hemiplasy¹⁹ (Fig. 2, Table 1). Hemiplasy is particularly prevalent
72 when populations are large and the time interval between speciation events is short²⁰, and can affect
73 a substantial fraction of the genome. Examination of the evolutionary history of 500 base pair
74 windows from the human, chimpanzee, bonobo, gorilla, and orangutan genomes revealed that ~37%
75 of the human genome exhibits hemiplasy and the evolutionary histories of these loci conflict with the
76 species tree topology¹⁶ (Fig. 2).

77

78 By modeling the underlying probability distribution of gene trees within a species tree, the
79 multispecies coalescent model provides a framework that incorporates incomplete lineage sorting in
80 phylogenomic inference²¹. One approach for evaluating whether hemiplasy explains gene tree-
81 species tree incongruence is by simulating trees under the multispecies coalescent model and
82 comparing levels of observed and expected gene tree incongruence²². If the observed incongruence
83 is equal to the expected incongruence under the model, then hemiplasy is the major contributor to
84 incongruence; if not, other analytical or biological factors are likely (also) at play.

85

86 Other approaches, such as the one implemented by the BEAST software, use Bayesian statistics to
87 coestimate gene trees and species phylogenies in the presence of incomplete lineage sorting^{23,24}

88 (Table 2). These full coalescent methods are computationally expensive, hindering their use for large
89 phylogenomic data matrices. To reduce computational costs, summary coalescent-based methods
90 implemented in various software packages, including STAR, MP-EST, ASTRAL, ASTER, and
91 ASTEROID²⁵⁻²⁹ (Table 2), infer the species tree from pre-inferred single gene trees in phylogenomic
92 data matrices but at the cost of increased error rates in gene and species tree inference, especially
93 for ancient divergences (see *Analytical factors* section). Thus, while hemiplasy may contribute to
94 incongruence of both ancient and recent divergences, it is much more likely to be detectable in the
95 latter.

96
97

98 **Horizontal gene transfer**

99 Genomic regions that experienced HORIZONTAL OR LATERAL GENE TRANSFER also have histories that
100 deviate from the species tree (Fig. 2, Table 1). For example, eukaryotic acquisition of bacterial loci
101 leads to gene phylogenies where eukaryotic sequences are nested within clades of bacterial
102 sequences^{5,30}. The contribution of horizontal gene transfer to incongruence is asymmetric across the
103 tree of life; horizontal gene transfer is very common in Bacteria and Archaea and is a significant
104 driver of genome evolution in these lineages^{31,32}. Horizontal gene transfer in eukaryotes is less
105 common, but evidence of its importance in eukaryotic genome evolution is increasing³³.

106
107 For lineages with low levels of horizontal gene transfer, incongruence stemming from horizontal gene
108 transfer can be ameliorated by removing genes with signatures of transfer from the phylogenomic
109 data matrix³⁴. Horizontally transferred genes can be identified using phylogeny-based methods, such
110 as topology tests (implemented in major programs, such as RAxML and IQ-TREE 2) that evaluate
111 whether the gene tree topology indicative of horizontal gene transfer is significantly better than
112 topologies that do not invoke transfer³⁵. Horizontally transferred loci can also be detected by
113 sequence composition-based methods wherein notable changes in the GC content or codon usage
114 bias of one or more loci relative to the rest of the genome are used to identify signatures of horizontal
115 transfer³⁶ or using sequence similarity-based methods to detect foreign sequences, such as alien
116 index³⁷. Sequence composition- and similarity-based methods are faster, can be implemented across
117 entire genomes, and are primarily suitable for recent events, whereas phylogeny-based methods are
118 generally more accurate but slower and typically used to test horizontal transfer for one or a few
119 loci.

120

121 An alternative approach is to infer the species phylogeny through a probabilistic model of genome
122 evolution that explicitly models horizontal gene transfer as one of the processes that lead to gene
123 tree-species tree incongruence^{38,39}, using programs such as SpeciesRax⁴⁰. Horizontal transfer can
124 occur between both closely related species as well as between distantly related ones. However,
125 irrespective of the method used, inference of gene transfers – and amelioration of its effects on
126 incongruence – among distantly related species is much easier than among close relatives.

127

128 ***Hybridization, Introgression, and Recombination***

129 The exchange of genetic material between species during HYBRIDIZATION or INTROGRESSION introduces
130 alleles with evolutionary histories that deviate from the species' history, leading to locus tree-species
131 tree incongruence^{41,42}. When the hybrid species has the same ploidy as the parental species,
132 hybridization can be detected through phylogeny-based and sequence read-mapping methods. In
133 phylogeny-based methods, phylogenomic data matrices containing loci from the hybrid and both
134 parental species are expected to show equal support (using measures such as internode certainty
135 and concordance factors; see *In search for incongruence* section) for two distinct topologies because
136 half of the hybrid's genome comes from one parent and half from the other⁴³. Similarly, in sequence
137 read-mapping methods, such as the one implemented in sppIDer⁴⁴ (Table 2), half of the sequence
138 reads of the hybrid are expected to map to one parental species and the other half to the other
139 parental species. Hybrid species that differ in their ploidy from the parental species (e.g., allotetraploid
140 hybrids) can also be detected using the above methods, but their gene number is also expected to
141 be the sum of the genes in the parental species⁴⁵. Approaches that ameliorate the contribution of
142 hybridization to incongruence include to first separate the hybrid genome into parental subgenomes
143 prior to phylogenomic inference⁴⁶ and using probabilistic models that explicitly incorporate
144 hybridization as one of the processes contributing to incongruence⁴⁷.

145

146 Introgression can also impact large genomic regions and lead to incongruence, but it is potentially
147 more challenging to detect because the percentage and distribution of introgressed regions can vary.
148 Methods for introgression detection typically aim to identify allele patterns across species that
149 significantly deviate from a null model in which these patterns are governed only by incomplete
150 lineage sorting (and no introgression). These include the *D*-statistic (also known as the ABBA-BABA
151 test) designed to detect gene flow between two taxa in a four-taxon phylogeny, D_{FOIL} , which expands
152 the *D*-statistic for the five-taxon case, D_3 , and the branch-length test that use the signal of pairwise
153 divergence—wherein gene trees that support introgression have shorter branch lengths⁴⁸—for

154 introgression detection^{42,49,50} (Table 2). Removing loci with signatures of introgression or directly
155 modeling the process can ameliorate incongruence stemming from introgression⁴². For example,
156 inclusion of introgressed regions (detected using the *D-statistic*) in a phylogenomic dataset of
157 passerine birds led to an incorrect species phylogeny; inference of the true phylogeny required careful
158 examination not only of the topologies of individual loci but also of some of their properties, such as
159 recombination frequency and nucleotide diversity⁴¹.

160
161 Recombination, a frequent phenomenon in diverse lineages including prokaryotes and viruses, can
162 also give rise to mosaic sequences and incongruence. In these instances, incongruence depends on
163 the fraction of recombinant sites and how closely related the taxa are⁵¹. Sequences with evidence
164 of recombination can be detected using PhyPack or RDP^{52,53} and removed from the data matrix before
165 inference. Accurate inference of all three processes is inversely proportional to the age(s) of the
166 event(s), such that evaluating whether they are contributing to incongruence in ancient divergences
167 is challenging.

168
169 ***Natural selection***
170 NATURAL SELECTION generally leads to the divergence of sequences, however, selection for the same
171 or similar traits in distantly related taxa can result in CONVERGENT MOLECULAR EVOLUTION⁵⁴ (Table 1).
172 Thus, gene trees of genes that have experienced convergent evolution may erroneously infer that
173 they are closely related, reflecting the shared influence of selection rather than common ancestry
174 (Fig. 2). Phylogenetic analysis of the gene *prestin*, which encodes a transport protein present on the
175 membrane of cochlear outer hair cells, shows that sequences from echolocating organisms, such as
176 bats and whales, group together because they have experienced convergent molecular evolution
177 even though bats and whales are not sister lineages⁵⁵. One method for detecting convergent
178 sequence evolution is reconstructing ancestral sequences and identifying convergent amino acid
179 substitutions in independent branches of the species phylogeny, if known⁵⁶. Ancestral sequence
180 reconstruction can be done with diverse software including IQ-TREE⁵⁷, FireProt^{ASR58}, and PhyloBot⁵⁹
181 (Table 2). Cases of convergent molecular evolution that affect one or a few genes are best handled
182 by removing those genes from the data matrix prior to inference.

183
184 Convergent molecular evolution can also be observed in phylogenomic analyses of entire genomes
185 or proteomes. For example, convergent amino acid usage—such as the convergence observed in
186 high-salt adapted Methanotronarchaeia and Haloarchaea toward similarly acidified amino acid

187 compositions in their proteomes—can obfuscate phylogenomic inference⁶⁰. In such cases,
188 incongruence can be reduced either through exclusion or recoding (see *Characterter recoding*
189 section) of affected sites or through the use of models that explicitly account for compositional
190 heterogeneity. For example, resolving the evolutionary origins of mitochondrial genomes, a case of
191 incongruence where compositional biases are at play⁶¹, recent analyses using a model that
192 accommodates both across-site and across-branch compositional heterogeneity supported
193 mitochondria as the sister lineage to Alphaproteobacteria⁶².

194

195 **Analytical factors**

196 The content of phylogenomic datasets and choices in how these datasets are constructed and
197 analyzed can also contribute to incongruence. These stochastic, systematic, and treatment errors are
198 collectively called analytical factors (Fig. 3). Incongruence due to stochastic errors stems from
199 statistical uncertainty when too few molecular markers or taxa are analyzed. Incongruence from
200 systematic errors stems from incorrect or inadequate assumptions in analysis—such as substitution
201 model misspecifications or the lack of realistic models and erroneous ortholog detection. Finally,
202 choices in experimental design or treatment of phylogenomic data are an emerging category of error,
203 sometimes exacerbating or leading to additional stochastic and / or systematic errors; they can also
204 lead to incongruence. We term these treatment errors.

205

206 **Stochastic errors**

207 *Taxon Sampling.* TAXON SAMPLING plays a critical role in species tree inference and incongruence (Fig.
208 3a) because the number and taxonomic distribution of the sampled taxa influence numerous
209 downstream analyses, such as predicting orthologous groups of genes and the estimation of
210 substitution model parameters (Table 1). Generally, including more taxa improves tree inference but
211 can lead to speed versus accuracy trade-offs (see *Treatment errors* section). In some cases,
212 incongruence can guide the sampling of additional taxa. For example, the placement of the family
213 Ascoideaceae, represented by a single taxon, was unstable in early phylogenomic studies of
214 Saccharomycotina yeasts^{63–65}, but the inclusion of three additional taxa from Ascoideaceae stabilized
215 its placement⁶⁶. Similarly, the inclusion of additional taxa that diverged near the base of the land
216 plant phylogeny increased the stability of phylogenetic inference^{67–69}. However, taxon pruning—such
217 as removing ROGUE TAXA—may also improve congruence and accuracy in some cases^{70,71}.
218 Comprehensive taxon sampling may not always be possible, such as for ancient lineages that contain
219 one or a few closely related extant species, such as coelacanths and lungfish⁷². However, studies of

220 ancient DNA can shed light on phylogenetic relationships in cases where extant taxon sampling is
221 difficult or impossible^{73,74}.

222

223 *Locus sampling.* How much sampling of sequence data is required is dependent on the specific
224 evolutionary history of the lineage examined and how ancient or recent it is, on the information
225 content of the loci used to reconstruct it, and on the evolutionary history of the loci (see the previous
226 section on *biological factors*)^{7,75,76}. Thus, incongruence stemming from limited sampling of sequence
227 data can affect the resolution of ancient and recent divergences^{77,78}, but can generally be ameliorated
228 with additional sampling of molecular markers (Table 1). Additional molecular markers can be
229 sampled using programs that can identify single-copy orthologs from gene families, for example,
230 OrthoSNAP or DISCO^{79,80} (Table 2). However, there is a limit imposed by the sequence divergence
231 of the genomes examined, such that the resolution of relationships of genome sequences that contain
232 relatively few informative sites and/or many taxa—such as the SARS-CoV-2 whole-genome
233 alignments—will be challenging from sequence data alone⁷⁸. Additionally, datasets that contain short
234 sequences (e.g., gene fragments or short genes) often contain insufficient numbers of sites for robust
235 gene tree inference when using summary-based coalescence methods and can contribute to
236 incongruence⁸¹ (Fig. 3a), but these can be overcome by collapsing poorly supported branches before
237 species tree inference⁸².

238

239 Molecular markers included in phylogenomic data matrices typically exhibit PARTIAL TAXON COVERAGE.
240 This can increase statistical uncertainty, leading to identical support for multiple topologies, referred
241 to as tree terraces^{83,84}. For example, in a three-locus, 298-taxon data matrix from grasses with taxon
242 coverage of 66%, the optimal tree is on a terrace with 61.2 million other equally supported
243 topologies⁸³. Tree terraces can be addressed through increased taxon coverage across molecular
244 markers and locus sampling. Case in point, analysis of a 129-locus, 117-taxon data matrix of
245 arthropods with a coverage density similar to that of the dataset of grasses, 65%, yielded a single
246 optimal tree^{83,85}. The gentrius function in IQ-TREE can help identify and characterize phylogenetic
247 terraces⁸⁶ (Table 2).

248

249 ***Systematic errors***

250 *Ortholog inference.* Phylogenomic analyses often rely on single-copy orthologous genes, but errors
251 in orthology inference, such as HIDDEN ORTHOLOGY, can lead to incongruence. The over-splitting of
252 orthologous groups of genes can stem from sequence length biases among orthologs because both

253 BLAST bit scores and expectation values have a length dependency such that longer sequences can
254 have higher maximum bit scores and lower expectation values; thus, variation in sequence length
255 within an orthologous group of genes can lead to exclusion of shorter sequences⁸⁷ (Fig. 3a, Table 1).
256 Hidden orthology can also stem from detection failure of rapidly evolving orthologs, an issue
257 exacerbated across large evolutionary distances⁸⁸, resulting in artifactual inferences of lineage-
258 specific genes. Hidden orthologs can be detected using “bridging” methods such as Leapfrog, an
259 algorithm for identifying instances of reciprocal best BLAST hits in two different orthologous groups
260 of genes⁸⁹ (Table 1). Probabilistic modeling approaches, such as profile Hidden Markov Models
261 implemented in HMMER that leverage site-specific parameterization of conservation (or lack thereof)
262 from multiple sequence alignments are more sensitive in detecting rapidly evolving orthologs⁹⁰ and
263 reduce the risk of hidden orthology (Table 2). Improved taxon sampling (e.g., inclusion of under-
264 represented lineages) in multiple sequence alignments used to construct profile Hidden Markov
265 Models, such as those implemented in TIAMMAt, can further improve the sensitivity of sequence
266 similarity searches⁹¹ (Table 2).

267

268 Another systematic error source is the asymmetry in rates of gene duplication and loss between
269 species, which can result in HIDDEN PARALOGY. At shallow evolutionary depths, hidden paralogy can
270 be detected by examining synteny. For example, examining the synteny of six yeast species that
271 underwent differential patterns of gene loss since a shared whole-genome duplication event revealed
272 that ~10% of inferred single-copy orthologs were hidden paralogs⁹². Detecting hidden paralogy
273 instances in deep time is more challenging because synteny is likely not conserved. In such cases,
274 hidden paralogs can potentially be detected by searching for gene trees where well-known clades
275 are not monophyletic^{93,94}. Alternatively, because hidden paralogs can be quite divergent from the
276 rest of the sequences in an orthogroup, they can also be identified by examining gene trees for taxa
277 that have unexpectedly long terminal branches using software such as TreeShrink, PhyloFisher, and
278 PhyKIT^{94–97} (Table 2). INPARALOGS, especially species-specific ones, can easily be handled by retaining
279 one of the two sequences, as implemented in PhyloTreePruner and OrthoSNAP^{98,99}.

280

281 Errors in ortholog inference can also stem from contaminated sequences in genome assemblies, a
282 key concern in metagenome-assembled genomes. The degree of contamination (and completeness)
283 of a given genome can be evaluated with the CheckM and miComplete programs^{61,100} and
284 contaminant sequences can be removed prior to inference.

285

286 *Modeling substitutions.* Traditional substitution models are site-homogeneous models, which use one
287 reversible substitution matrix and the same nucleotide / amino acid frequencies for all sites in a data
288 matrix. Early nucleotide models assumed equal substitution rates and base frequencies¹⁰¹ but later
289 models incorporated biologically informed parameters, such as accounting for differences in the rates
290 of transitions and transversions or base frequencies^{102,103}. The most parameter-rich model among
291 reversible models for nucleotide sequences is the generalized time-reversible model, which uses
292 unequal substitution rates and unequal base frequencies¹⁰⁴. Nucleotide substitution models that relax
293 the assumptions of reversibility (i.e., the rate at which a particular nucleotide, say A, changes to
294 another one, say G, is not the same as the rate of a G changing to an A), stationarity (nucleotide
295 frequencies do not change over time), and independence (changes at each site in the alignment are
296 independent of changes at other sites) also exist, but they are computationally expensive and not
297 typically used in phylogenomic studies¹⁰⁵.

298
299 In contrast to these mechanistic substitution models for nucleotide sequences, substitution models
300 for amino acid sequences are often inferred from empirical multiple sequence alignments. For
301 example, the amino acid exchange probabilities in the mtMAM substitution model were estimated
302 empirically by examining the rates of amino acid substitutions across the mitochondrial proteomes
303 of 20 mammals¹⁰⁶; other substitution models—such as WAG and LG—are derived by estimating
304 substitution rates from larger, more diverse databases of amino acid sequence alignments like
305 Pfam^{107,108}.

306
307 Determining the best-fitting nucleotide and amino acid substitution models is often done using
308 likelihood ratio tests and Akaike or Bayesian information criteria¹⁰⁹. The latter outperform likelihood
309 ratio tests but also have their shortcomings resulting, at times, in the wrong model being favored¹¹⁰.
310 Of note, model fit does not always predict phylogenetic tree accuracy, and models of variable fit can
311 sometimes result in consistent phylogenetic trees¹¹¹. For example, the generalized time-reversible
312 model is often the best-fitting nucleotide reversible model, however, the large number of estimated
313 parameters in this model may need to be revised for specific analyses¹¹². In general, the modeling
314 of substitutions is more challenging in ancient divergences than in more recent ones because the
315 variation of mutational processes and evolutionary rates is typically greater in analyses of distantly
316 related taxa. Another avenue of modeling sequence evolution is through direct experimental
317 measurement—mutagenesis, functional selection, and deep sequencing. These experimentally

318 derived models have substantially improved fit compared to those with few or hundreds of
319 parameters¹¹³.

320

321 Partitioning concatenated data matrices—i.e., applying different site-homogeneous substitution
322 models to distinct molecular markers or portions of an alignment—can account for heterogeneity in
323 substitutions among sites and lead to more accurate estimates of phylogeny¹¹⁴. Supermatrices can
324 be partitioned by biological features (e.g., genes or codon positions) or be algorithmically defined¹¹⁵.
325 An alternative to partitioning is site-heterogeneous models, wherein nucleotide or amino acid
326 equilibrium frequencies differ across sites of a multiple sequence alignment. Site-heterogeneous
327 models fit data better than site-homogeneous models and are thought to be superior at ameliorating
328 LONG-BRANCH ATTRACTION artifacts^{116,117}. Consequently, site-heterogeneous models have risen in
329 popularity and helped resolve the placement of several anciently diverged lineages^{118,119}, but are also
330 the focal point of controversies such as the rooting the animal tree (Box 1). In other cases, using
331 site-heterogeneous models has shed light on the evolutionary relationships among life's three
332 domains, supporting the hypothesis that eukaryotes originated from within Archaea (the two-domain
333 hypothesis)¹²⁰.

334

335 Substitution model misspecification can bias topology estimation, contributing to incongruence^{15,121–}
336 ¹²³ (Fig. 3c, Table 1). One well-known source of incongruence that stems from model misspecification
337 is long-branch attraction^{124,125}. Long-branch attraction is common in phylogenomic data matrices
338 containing taxa that greatly vary in their evolutionary rates or lineages undergoing accelerated
339 evolutionary rates, as observed in bacterial endosymbionts¹²⁶ and parasitic fungi¹²⁷. Outgroup taxa
340 may also introduce long branches, increasing the potential for long-branch attraction artifacts (see
341 next section). In addition to using site-heterogeneous models¹²⁴, long-branch attraction artifacts can
342 sometimes also be ameliorated by including taxa whose placements break long branches^{128,129} (see
343 also *Taxon sampling* section). Notably, long-branch attraction can also occur when models are
344 correctly specified and be exacerbated when partitioning phylogenomic datasets¹²⁵.

345

346 Other approaches attempt to approximate true processes of sequence evolution better. For example,
347 HETEROTACHY, which is not accounted for by either site-homogeneous or heterogeneous models¹³⁰,
348 can decrease phylogenetic accuracy due to long-branch attraction artifacts^{125,131}. The General
349 Heterogeneous evolution On a Single Topology (or GHOST) model of sequence evolution can account
350 for heterotachy, in part, by incorporating features of mixed substitution and mixed branch length

351 models. The GHOST model has helped resolve some phylogenetic controversies—such as the
352 placement of turtles⁶.

353

354 *Rooting strategy.* Rooting strategies have been debated for a long time, especially in the context of
355 outgroup taxa driving long-branch attraction artifacts¹³². The recent controversy surrounding the root
356 of animal phylogeny has highlighted the relevance of these debates (Box 1). Although there is no
357 consensus on selecting outgroup taxa¹³³, it is broadly accepted that thorough sampling of
358 representatives of diverse lineages improves phylogenetic inference¹³⁴.

359

360 Other methods aim to infer the root of a phylogenetic tree without using outgroup taxa. These include
361 the use of paralogs such as implemented in the software STRIDE^{135–137}, nonreversible Markov models
362 such as the one implemented in the software Root Digger^{138,139}, relaxed molecular clock models as
363 implemented in BEAST¹⁴⁰, the minimal ancestor deviation method that is also molecular clock-
364 based¹⁴¹, and modeling dynamics of gene family evolution³⁹. For example, modeling genome
365 duplication, horizontal gene transfer, and gene loss helped root the archaeal tree of life, placing it
366 between Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota, Nanohaloarchaea
367 (known as DPANN) and other Archaea³⁹.

368

369

370 **Treatment errors**

371 *Multiple sequence alignment.* Errors in multiple sequence alignment can result in inaccurate
372 phylogenetic inferences and incongruence^{142,143}. Alignment errors can stem from errors in ortholog
373 inference (from either hidden paralogy or hidden orthology) but can also occur when truly
374 orthologous sequences are aligned. Such errors are particularly common when sequences in the
375 alignment exhibit high levels of divergence¹⁴⁴ (Fig. 3b). Approaches to remedy errors in multiple
376 sequence alignments include alignment trimming (see next section), probabilistic modeling to identify
377 clusters of homologous characters and dividing the alignment accordingly (as implemented in
378 Divvier¹⁴⁵) or masking putative errors in multiple sequence alignments using two-dimensional outlier
379 detection methods (as implemented in TAPER¹⁴⁶).

380

381 *Alignment trimming.* Although trimming of sites during multiple sequence alignment is a widespread
382 practice for reducing errors in multiple sequence alignment, it can also reduce the accuracy of
383 phylogenetic inference, increase statistical uncertainty, and lead to incongruence (Fig. 3b, Table 1).

384 Generally, more aggressive alignment trimming that removes larger numbers of sites increases errors
385 in single gene tree inferences¹⁴⁷. For example, entropy-based trimming, which removes divergent
386 sites, or multiple rounds of trimming, which often remove more than 20% of sites in an alignment,
387 can significantly worsen phylogenetic inferences of tree topology, support, and branch length
388 estimation^{147,148}. Recently developed approaches that focus on retaining phylogenetically informative
389 sites—such as ClipKIT (Table 2)—are equally accurate and more time-saving than no-trimming
390 approaches¹⁴⁸.

391

392 *Character recoding.* Saturation by multiple substitutions and compositional biases can lead to
393 inaccurate phylogenetic inferences and contribute to incongruence. Recoding nucleotides or amino
394 acids into fewer character states can combat these issues^{149–152} (Fig. 3b). However, the benefit of
395 combating compositional heterogeneity and substitutional saturation can be outweighed by the loss
396 of information from reducing the number of character states during recoding and increase statistical
397 uncertainty, especially among shorter alignments^{153,154}. Thus, recoding can also increase, rather than
398 ameliorate, error. Appropriate ways forward include adequately assessing how recoding impacts
399 compositional heterogeneity or implementing alternative recoding schemes—for example, in amino
400 acid sequence alignments, a greater number of recoding states outperformed the most frequently
401 implemented six-state recoding strategies¹⁵³. Notably, errors in multiple sequence alignment,
402 excessive trimming, and inappropriate character recoding all contribute to erosion of phylogenetic
403 signal.

404

405 *Concatenation vs. coalescence.* Phylogenomic data matrices can be analyzed as a single supermatrix,
406 an approach known as concatenation, or each gene alignment can be analyzed separately under the
407 multispecies coalescent framework, an approach known as coalescence. The two approaches
408 sometimes yield different tree topologies, contributing to incongruence^{66,155}. Determining which
409 approach is more appropriate for a phylogenomic dataset is difficult. For example, using simulated
410 multilocus data, concatenation slightly outperformed a full coalescent-based approach (wherein gene
411 trees and species trees are coestimated), whereas using coalescent independent sites, both
412 approaches performed comparably¹⁵⁶. Moreover, there can be differences in the performance of full
413 and summary coalescent-based methods (wherein gene trees are first estimated and then the species
414 tree is estimated by summarizing the collection of gene trees). Summary coalescent-based methods
415 are more vulnerable to errors in gene tree inference, but newer implementations of summary
416 coalescent-based methods take gene tree uncertainty into account²⁸. Analyses with both full and

417 summary coalescent-based methods can be improved through targetted data filtering, such as
418 removing loci with low phylogenetic informativeness¹⁵⁷. Loci that are inconsistent between
419 concatenation- and coalescence-based methods can also be pruned from data matrices¹⁵⁸.

420

421 **Irreproducibility.** A tenet of scientific inquiry is reproducibility. PHYLOGENETIC IRREPRODUCIBILITY
422 contributes to incongruence and can be caused by: increasing the number of threads (because
423 threads can be initialized in different orders between runs); errors in floating point arithmetic such
424 as rounding errors, and numerical over- and under-flows (the storing of a value greater than or
425 smaller than the maximum and minimum supported value, respectively); and differences in
426 software compilers that result in binaries with slightly different orders of operations^{159,160}. Genes
427 with low phylogenetic signal (i.e., few parsimony-informative sites) are particularly susceptible to
428 irreproducibility. This means that summary coalescent-based methods, which typically rely on
429 accurately inferred gene tree topologies, can be particularly susceptible¹⁶⁰. Some problems of
430 irreproducibility and issues plaguing bioinformatic software can be remedied through rigorous
431 software development practices—such as extensive testing and continuous integration
432 pipelines^{148,159}. Studies that further our understanding of the accuracy and information content of
433 multiple sequence alignments may facilitate predicting genes with greater phylogenetic signal^{75,161–}
434 ¹⁶³.

435

436 Detecting incongruence

437 Because several biological and analytical factors, often initially unknown, can contribute to
438 incongruence, several methods examine the presence and magnitude of incongruence *per se* in
439 phylogenomic datasets without assuming the presence of a specific underlying biological or
440 analytical factor(s).

441

442 *Measures of branch support.* Traditional approaches, such as nonparametric bootstrapping¹⁶⁴ and
443 Bayesian posterior probabilities, are frequently used to examine bipartition support in a phylogeny;
444 low branch support values can be indicative of incongruence. Other branch support methods
445 include approximate likelihood-ratio tests and the Shimodaira-Hasegawa approximate likelihood
446 ratio test¹⁶⁵. The transfer bootstrap expectation method—an approach based on traditional
447 bootstrapping but that measures the presence of branches among bootstrap trees as a gradual

448 “transfer” distance rather than a binary presence/absence—is more accurate for assessing support
449 among deep branches in datasets with large numbers of taxa¹⁶⁶. The usefulness of many of these
450 measures in concatenation analyses of phylogenomic datasets is rather low because they almost
451 invariably yield absolute support values, even if there is substantial incongruence between sites or
452 loci⁷⁷. However, these measures are highly informative when using summary coalescent-based
453 methods to remove loci with low amounts of phylogenetic signal¹⁶⁷.

454

455 *Gene support frequencies and concordance factors.* Gene support frequencies measure the
456 frequency of recovering an individual branch in a set of gene trees from a phylogenomic data
457 matrix^{94,168}. Branches with low gene support frequencies are likely to be incongruent. Concordance
458 factors were initially defined as the proportion of the genome that supports a given branch in the
459 species tree^{169,170} and can be measured using BUCKy, a Bayesian approach that estimates the joint
460 probability distribution of genes and their phylogenies (or a gene-to-tree map) genome-wide^{169,171}.
461 Recently, concordance factors were redefined as equivalent to gene support frequencies¹⁶⁸, which
462 can be calculated using IQ-TREE and PhyKIT^{57,172} (Table 2).

463

464 *Internode certainty.* Internode certainty is an information theory-based approach that considers the
465 relative prevalence of a branch and the second most common conflicting branch in a set of trees;
466 internode certainty-all considers the relative prevalence of a branch relative to all alternative
467 conflicting branches in a set of trees^{173–176}. Internode certainty measures can help identify
468 branches with substantial conflict, which can be then further examined for underlying causes
469 contributing to incongruence. Internode certainty measures are distinct in that the prevalence of
470 conflicting alternative branches is accounted for, thereby providing a measure of the degree of
471 conflict for every branch in a phylogenomic tree. Internode certainty can be calculated using the
472 software QuartetScores¹⁷⁷ (Table 2).

473

474 *Phylogenetic networks.* Evolutionary relationships among organisms are often depicted as bifurcating
475 trees, but this may not always be appropriate. As discussed earlier, many genomes bear the
476 hallmarks of biological factors that make the histories of genes and genomes deviate from strict
477 vertical inheritance. By relaxing the assumption of a strictly bifurcating topology, reconstruction of
478 the histories of loci from such lineages as PHYLOGENETIC NETWORKS enables the description and
479 visualization of incongruence. The underlying data and theory used to infer a phylogenetic network

480 can differ¹⁷⁸—for example, split networks depict all possible splits in a set of phylogenies¹⁷⁹; reticulate
481 networks depict putative evolutionary events, such as hybridizations¹⁸⁰. Software for inferring
482 phylogenetic networks include SplitsTree¹⁸¹, PhyloNet¹⁸², and NetRAX¹⁸³ (Table 2).

483

484 *Incongruence search protocols.* In addition to the above methods, several protocols have been
485 used to search for incongruence in phylogenomic datasets. These include repeated subsampling of
486 smaller subsets of loci with robust phylogenetic signal and re-inference of the species
487 phylogeny¹⁶², gene genealogy interrogation¹⁸⁴, examination of phylogenetic signal¹⁸⁵, and quartet
488 sampling¹⁸⁶.

489

490 *Polytomies.* Several clades in the tree of life, such as cichlids and finches, have experienced
491 elevated rates of speciation giving rise to EVOLUTIONARY RADIATIONS. Such clades have often been
492 influenced by multiple biological (e.g., introgression, lineage sorting) and analytical (e.g., long
493 branch attraction for ancient radiations) factors, making phylogenomic inference particularly
494 challenging and often present as a POLYTOMIES. Polytomies can be detected by identifying cases of
495 equal support for multiple distinct topologies in sets of single gene trees^{94,187}. Support can be
496 measured using gene trees or the quartets of taxa present in these gene trees using ASTRAL⁸²,
497 PhyKIT¹⁷², and IQ-TREE⁵⁷ (Table 2).

498

499

500 **Future Directions**

501 Our knowledge of the tree of life, and the evolution of traits and genomes, has been transformed
502 by phylogenomics, but incongruence continues to cloud our understanding of some of its branches.
503 We discussed biological and analytical factors contributing to incongruence, methods for its
504 detection, and approaches that have helped improve the accuracy of phylogenomic inference. In
505 this final section, we identified avenues ripe for research and discovery.

506

507 **Which factors matter and when?**

508 Although the effects of multiple factors on specific instances of incongruence have been
509 investigated^{31,157,160}, a general framework for assessing the contribution of multiple biological and
510 analytical factors to a given case of incongruence is lacking. The evolutionary depth of each case of

511 incongruence further complicates assessing any factor's relative importance because our ability to
512 detect their effects varies across time scales. For example, incomplete lineage sorting and
513 hybridization are biological factors that likely contribute to incongruence of ancient and recent
514 relationships but are typically detectable only in studies of recently diverged lineages. In contrast, it
515 is typically much easier to detect horizontal gene transfer between distantly related taxa than
516 between closely related ones. We also know that errors in ortholog inference or multiple sequence
517 alignment are greater contributors to incongruence when studying ancient divergences than recent
518 ones^{188,189}. However, for a given case of incongruence in deep time, simultaneously evaluating the
519 relative contribution of incongruence stemming from multiple biological and analytical factors is
520 challenging (see also Box 1). A related issue is identifiability, that is figuring out why the observed
521 conflict should be ascribed to certain factors and not others. For example, ancient horizontal gene
522 transfer is often difficult to distinguish from gene duplication followed by extensive gene loss;
523 attributing incongruence to one factor and ruling out another is challenging and often depends on
524 *a priori* knowledge on which process is more likely. Developing methods and computational
525 pipelines that enable simultaneous evaluation of potential contributing factors will be key for fully
526 understanding the drivers of incongruence.

527

528 ***The forest grows: how can tree space be efficiently examined?***

529 As the amount of genomic data increases, phylogenomic studies sampling several hundreds to
530 thousands of organisms are becoming commonplace. One challenge with inferring phylogenies from
531 such taxon-rich datasets is that tree space is vast, making computation challenging. For example,
532 the numbers of possible unrooted trees for three, five, seven, and nine taxa are one, 15, 945, and
533 135,135, respectively. As tree space grows, the likelihood of finding the nonoptimal tree increases,
534 leading to speed-accuracy trade-offs and incongruence. Efficiently searching tree space, however, is
535 key to finding an optimal tree; phylogenetic inference programs that yield the highest likelihood
536 scores on phylogenomic data matrices are the ones that perform the most extensive explorations of
537 tree space and require the longest runtimes¹⁹⁰. Moreover, gene-rich datasets present their own
538 challenges, such as optimizing tree parameters. It is possible that the phylogenetic signal in whole
539 genomes will prove insufficient for resolving phylogenies of all known species in each major lineage.
540 Developing algorithms, including those that leverage the power of machine learning^{163,191–193}, that
541 can heuristically explore tree space in a reasonable amount of time or evaluate the degree of difficulty
542 in the inference task will be critical for resolving the tree of life.

543

544 ***Data and datasets of ever higher quality***

545 Data quality is paramount to phylogenomic inference. As sequencing technologies and other
546 downstream processes—such as methods for genome assembly and gene annotation—improve, so
547 does the field of phylogenomics. Higher quality and more complete genomes, coupled with increased
548 sampling of organisms from taxa underrepresented in genomic databases, will help reduce the impact
549 of hidden paralogy and orthology in phylogenomic datasets. Denser datasets will also help increase
550 confidence in inferences of the underlying analytical or biological drivers of incongruence; for
551 example, confidence in inferring hybridization as a potential driver of incongruence may be weak in
552 a dataset of 100 molecular markers but strong in a 5,000-marker dataset.

553

554 ***Mitigating errors in dataset construction***

555 Errors can be introduced at all stages of phylogenomic analyses, including data matrix construction,
556 and contribute to incongruence. Some errors may stem from certain strategies employed in a
557 phylogenomic pipeline—such as multiple sequence alignment and trimming—being suitable for some,
558 but not all, genes. Some features that may influence the efficacy of alignment and trimming
559 strategies may be the taxa sampled and their evolutionary breadth, although, numerous other
560 technical contributors of incongruence may be at play. The development of pipelines for reproducibly
561 handling phylogenomic data matrix construction will greatly facilitate comparative analyses of
562 analytical drivers of incongruence across studies.

563

564 ***Phylogenomics and green computing***

565 End-to-end phylogenomic analysis requires substantial computational resources and large amounts
566 of energy. As the planet grapples with the consequences of global climate change, we must work to
567 minimize the environmental toll of phylogenomic analyses¹⁹⁴. We can reduce the carbon footprint of
568 phylogenomics through judicious use of computing infrastructure, careful experimental design, and
569 software choice. For example, evaluating substitution model fit using fast and robust software like
570 ModelTest-NG¹⁹⁵ and jModelTest¹⁹⁶ can result in a 90% reduction in energy use, resulting in 10%
571 less greenhouse gas emissions¹⁹⁷. Similarly, choosing faster programs in quantifiably difficult-to-
572 analyze datasets does not alter the quality of inference but can save energy¹⁹⁸.

573

574 ***Acknowledgements***

575 J.L.S. and A.R. were funded by the Howard Hughes Medical Institute through the James H. Gilliam
576 Fellowships for Advanced Study program. Research in A.R.’s lab is supported by grants from the

577 National Science Foundation (DEB-2110404), the National Institutes of Health/National Institute of
578 Allergy and Infectious Diseases (R01 AI153356), and the Burroughs Wellcome Fund. A.R.
579 acknowledges support from a Klaus Tschira Guest Professorship from the Heidelberg Institute for
580 Theoretical Studies and from a Visiting Research Fellowship from Merton College of the University
581 of Oxford. X.X.S. was supported by the National Key R&D Program of China (2022YFD1401600).
582 Y.L. was supported by Shandong University Outstanding Youth Fund (62420082260514). The
583 funders had no role in study design, data collection and analysis, decision to publish, or preparation
584 of the manuscript.

585

586 **Competing interests**

587 J.L.S. is a scientific consultant for Latch AI Inc. J.L.S. is a scientific advisor for WittGen
588 Biotechnologies. J.L.S. is an advisor for ForensisGroup Inc. A.R. is a scientific consultant for
589 LifeMine Therapeutics, Inc.

590 **Table 1** | Drivers of incongruence.

Driver of incongruence	Factor	Literature about topic
Sampling, taxon and locus	Analytical, Stochastic error	81,199,200
Insufficient number of genes or divergent sites	Analytical, Stochastic error	2,7,9,78
Erroneous ortholog detection	Analytical, Systematic error	93,96,201–203
Model misspecification	Analytical, Systematic error	6,124,125,204
Multiple sequence alignment errors	Analytical, Treatment error	142,143
Excessive trimming	Analytical, Treatment error	147,148
Inappropriate character recoding	Analytical, Treatment error	205,206
Incomplete lineage sorting	Biological	18,22,207
Horizontal gene transfer	Biological	34,208–210
Hybridization / Introgression and Recombination	Biological	41,42
Natural selection	Biological	55,56

591

592

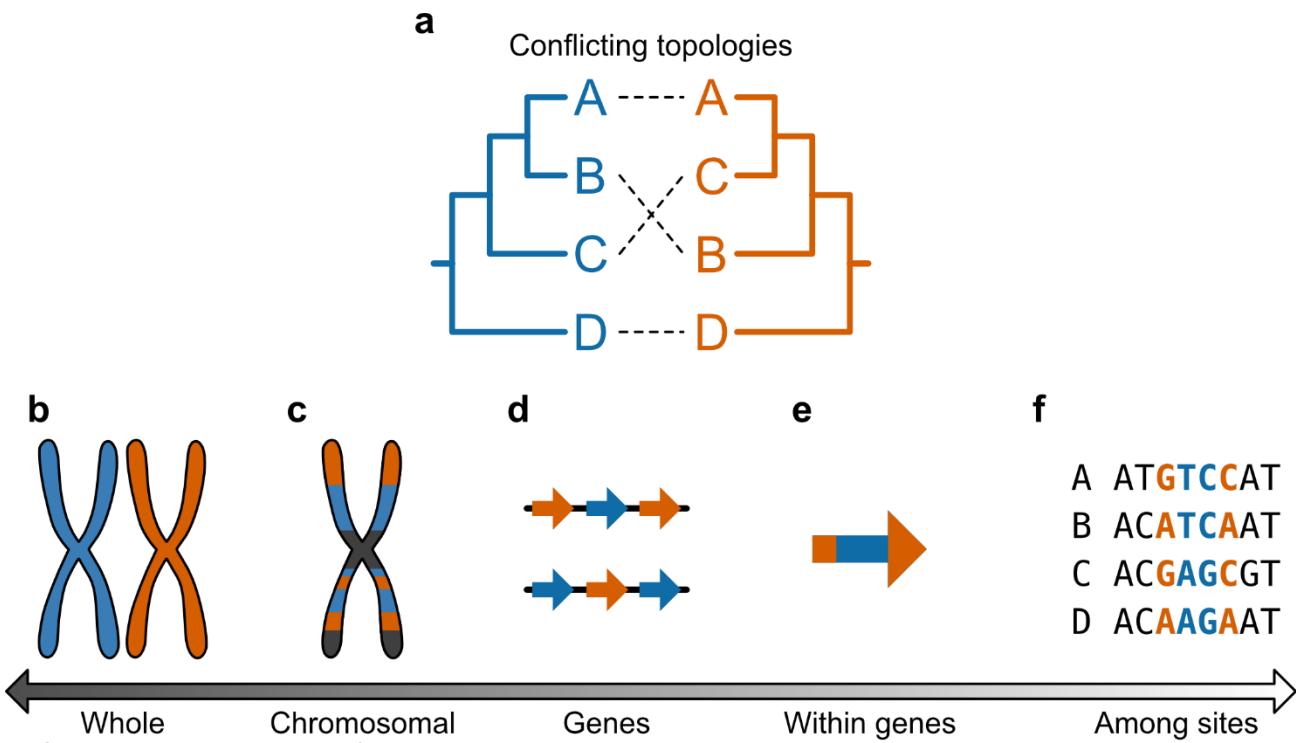
593 **Table 2** | Tools for investigating incongruence large genomic data sets.

Software/Method	Utility category	Utility details	Reference
Bag of little bootstraps	Bipartition support metric	Median bagging of bootstrap support assessed using few little samples and small subset of sites is a rapid method to infer bootstrap trees and provides similar patterns of support compared to traditional bootstrapping procedures	211
Gene and site concordance factors	Bipartition support metric	Bipartition support that details how many “decisive” genes or sites support a given bipartition in a reference tree	168
Internode certainty / Tree certainty	Bipartition support metric	Identifies bipartitions in a reference phylogeny that also have a well-supported alternative topology	173–175
UFBoot2	Bipartition support metric	Ultrafast bootstrap approximations that are robust to model violation	212
IQ-TREE 2, FireProt ^{ASR} , PhyloBot	Convergent sequence evolution	Software for inferring ancestral sequences across nodes of a phylogeny. These pieces of software can be used to detect convergent sequence evolution.	57–59
RERconverge	Convergent sequence evolution	Identifies genes in phylogenomic data matrices with signatures of convergent relative evolutionary rates in lineages with similar phenotypes	213
ClipKIT	Data processing and analysis	Multiple sequence alignment trimming wherein informative sites are retained rather than removing highly divergent sites	148
Concaterpillar	Data processing and analysis	Identifies congruent loci in a phylogenomic data matrix	214
ConJak	Data processing and analysis	Identifies sequence outliers compared to the central mean of a phylogenomic data matrix	215

ConWin	Data processing and analysis	Tests for within protein incongruence using a sliding window approach	215
PhyKIT	Data processing and analysis	Broadly applicable phylogenomic toolkit for data processing and analysis—such as examining information content biases, gene-gene coevolution, and polytomy testing	216
PhyloFisher	Data processing and analysis	Collection of scripts for dataset building and trimming phylogenomic data sets. Also features a database of eukaryotic orthologs	97
RogueNaRok	Data processing and analysis	Identification of rogue taxa in a phylogenomic dataset	70
Root Digger	Data processing and analysis	Uses a non-reversible Markov model to calculate the likelihood of the root position in a tree	217
TreeShrink, PhyloFisher, and PhyKIT	Data processing and analysis	Identifies spurious orthologs from unexpectedly long terminal branches	96,216,218
abSENSE	Homology/ortholog detection	Calculates probability that homolog detection may fail	88
BLAST	Homology/ortholog detection	Searches for similar sequences by using measures of local similarity	219
Leapfrog	Homology/ortholog detection	Combines over split orthologs using reciprocal best BLAST hits	89
OrthoFinder	Homology/ortholog detection	Infers groups of orthologous genes	201
OrthoSNAP and DISCO	Homology/ortholog detection	Decompose multi-copy gene families into subgroups of single-copy orthologous genes	99,220
Profile Hidden Markov Models	Homology/ortholog detection	Probabilistic inference method that accounts for position-specific variation in sequences	90
TIAMMAt	Homology/ortholog detection	Increases sensitivity of sequence similarity searches by incorporating underrepresented lineages in profile Hidden Markov Models	91

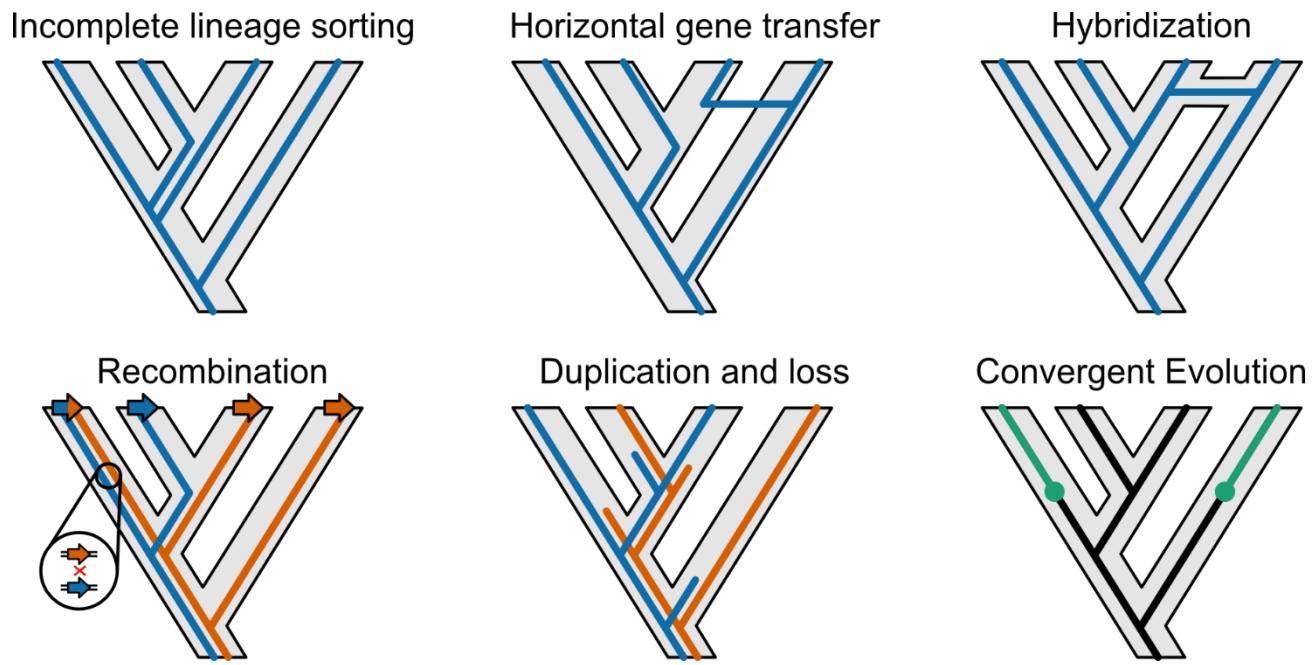
ASTRAL and PhyKIT	Hypothesis testing	Both pieces of software enable researchers to conduct polytomy testing at a specific bipartition in a phylogeny	27,216
Gene- and site-wise log likelihood scores; gene-wise quartet scores	Hypothesis testing	Allows researchers to examine gene- and site-wise support between two topologies using maximum likelihood; gene-wise support can also be examined using quartet scores	158,221
D-statistic (also known as the ABBA-BABA test), D_{FOIL} , D_3 , and the branch-length test	Introgression detection	Diverse methods that detect introgression events using sequence or phylogenetic information	42,49,50
NetRAX	Phylogenetic network inference	Maximum likelihood inference of phylogenetic networks when incomplete lineage sorting is not a factor	183
PhyloNet	Tree inference	Maximum parsimony, maximum likelihood, and Bayesian inference of phylogenetic networks from locus tree estimates	222
SplitsTree	Phylogenetic network inference	Splits graph inference using multiple sequence alignments, distance matrices, or sets of trees	181
General Heterogeneous evolution On a Single Topology model	Substitution models	Edge-unlinked mixture model consisting of several site classes with separate sets of model parameters and edge lengths on the same tree topology	6
QMaker	Substitution models	Estimates general time-reversible protein matrices—which describe rates of substitutions between amino acids—from multiple sequence alignments	204
Asteroid	Tree inference	Supertree method for species tree inference that is robust to missing data	223

ASTRAL, ASTRAL-PRO and ASTER	Tree inference	Quartet-based supertree method that accounts for partial gene trees, paralogs, and gene tree uncertainty	27,224,225
BEAST	Tree inference	Bayesian approach for phylogenetic tree inference and divergence time estimation	226
BPP	Tree inference	Full-likelihood implementation of the multispecies coalescent	227
IQ-TREE 2	Tree inference	Maximum likelihood tree inference method that uses hill-climbing and stochastic perturbation to search tree space. Moreover, the gentrius function can help identify and characterize phylogenetic terraces	86
MP-EST	Tree inference	Maximum pseudo-likelihood approach for species tree inference	228
PhyloBayes MPI	Tree inference	Bayesian tree inference method that incorporates finite and infinite mixture models to account for site variation	229
RAxML-NG	Tree inference	Maximum likelihood tree inference method that uses a greedy tree search algorithm to explore tree space	230
STAR	Tree inference	Inference of species trees using average ranks of coalescences	231
SVDQuartets	Tree inference	Inference of relationships using quartets and the coalescent model	232

595 **Figure legends**

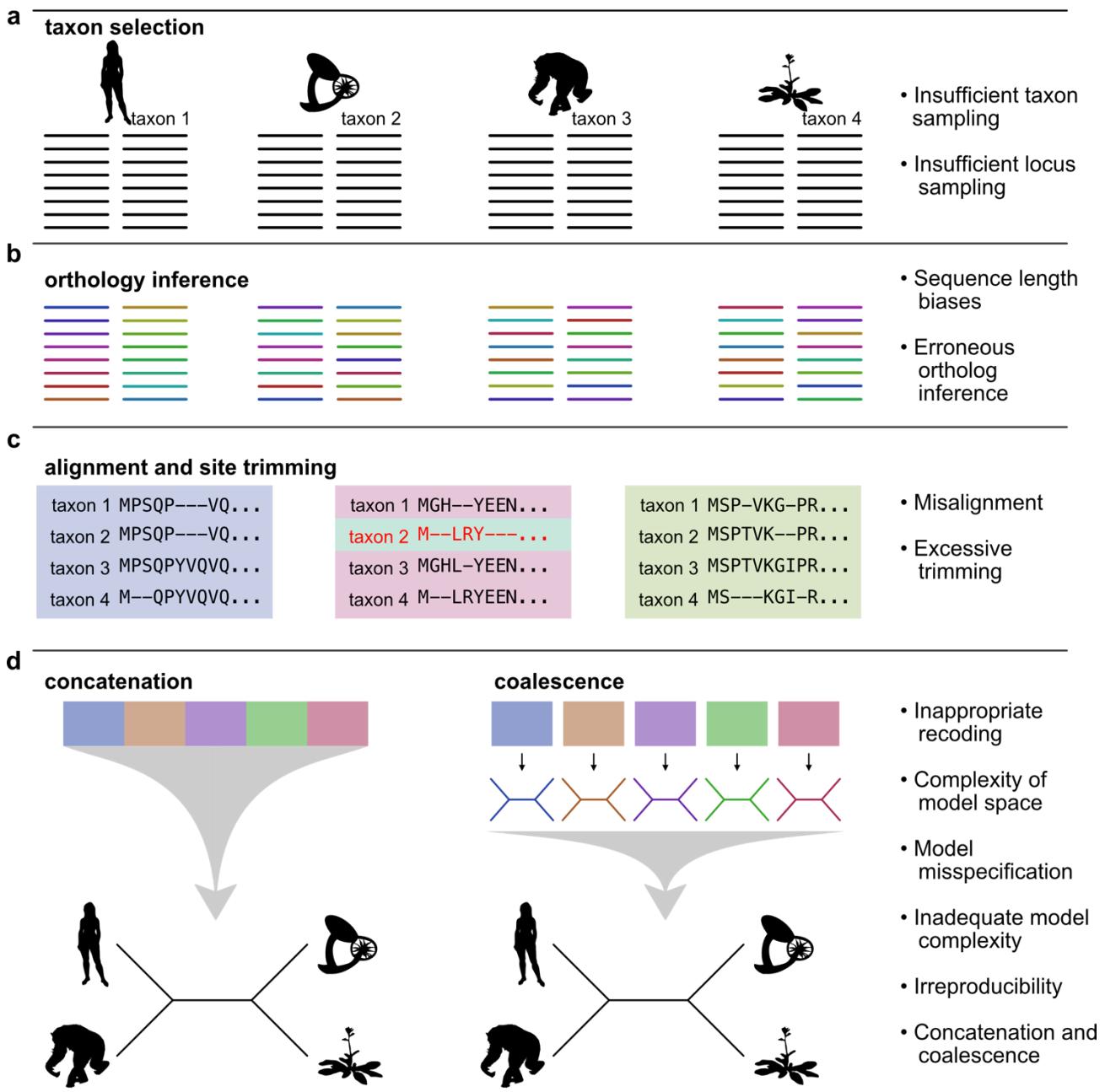
596

Figure 1 | Incongruence at different levels of genomic organization. a | The topology
 597 shown in blue supports a sister group relationship of taxa A and B, whereas the orange topology
 598 supports a sister group relationship of taxa A and C. The inference of such conflicting topologies
 599 defines incongruence. Incongruence can occur at different levels in the genome, such as among **c** |
 600 whole chromosomes (e.g., analyses of one chromosome support the blue topology but analyses of
 601 another support the orange topology), **d** | regions of a chromosome (dark grey regions represent
 602 lack of homology), **e** | genes (or loci), **f** | within a gene or locus (e.g., different domains support
 603 different topologies), and **g** | among sites in a multiple sequence alignment. Note that
 604 incongruence is also prevalent in other types of data (e.g., behavioral or morphological traits) and
 605 can occur at all evolutionary depths.



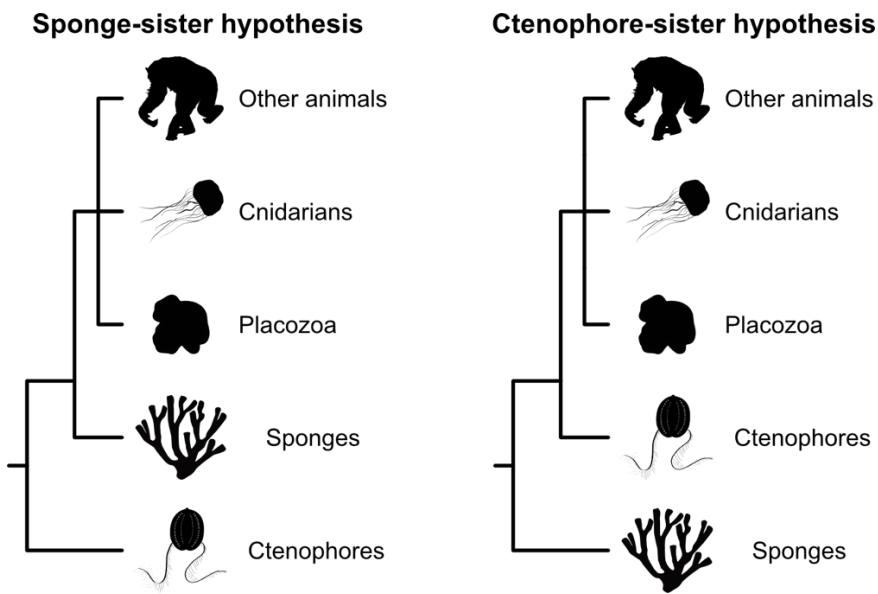
607
 608 **Figure 2 | Major biological factors that contribute to incongruence.** *Incomplete lineage*
 609 *sorting* can lead to gene trees that differ from the species phylogeny due to variation in the
 610 sorting of ancestral polymorphisms. *Horizontal gene transfer*, *hybridization*, and *introgression* can
 611 all lead to gene phylogenies that differ from the species tree. *Recombination* can result in loci with
 612 chimeric evolutionary histories. *Duplication and loss* can lead to hidden paralogy. Independently
 613 evolved traits in different phylogenetic lineages can be associated with *convergent molecular*
 614 *evolution* (green), contributing to incongruence.
 615

Contributor of incongruence



624 Species tree inference via concatenation (left) or coalescence (right) is susceptible to multiple
625 additional sources of error—complexity of model space, model misspecification, and inadequate
626 model complexity, to name just a few.

627

Box 1 | Rooting the animal tree.

629

630 Few branches in the tree of life are as intensely debated as the root of the animal phylogeny. The
 631 two leading hypotheses debate whether sponges^{93,233–236} or comb jellies
 632 (ctenophores)^{10,14,65,200,237,238} are the sister group to a clade of all other animals. These two
 633 hypotheses have come to be known as the sponge-sister and ctenophore-sister hypotheses,
 634 respectively (see figure). Resolution of the root of the animal tree bears on our understanding of
 635 how animal cell types and tissues evolved²³⁹. Sponges lack muscles and a nervous system and are
 636 thought of as morphologically “simpler” animals compared to ctenophores, which have both^{240,241}.
 637 Which hypothesis is correct also has implications for whether ctenophore nervous systems are
 638 structurally and genetically homologous to those of bilaterian animals^{242,243}, with some arguing
 639 that the ctenophore nervous system evolved independently²⁴⁴.

640

641 Numerous biological and analytical factors contribute to this challenging phylogenetic problem. Much
 642 of the controversy has centered around whether site-homogeneous (with gene partitioning) or site-
 643 heterogeneous models of sequence evolution are most appropriate for reconstructing the animal
 644 phylogeny^{200,245}. These models are largely employed to combat long-branch attraction, an artifact
 645 central to the debate because ctenophores have a long branch leading up to the lineage²⁴⁶. Site-
 646 heterogeneous models with many categories tend to support the sponge-sister hypothesis^{13,247},
 647 whereas site-heterogeneous models with fewer categories and site-homogeneous models tend to
 648 support the ctenophore-sister hypothesis²⁴⁷. Some simulation analyses suggest that site-
 649 heterogeneous models underperform site-homogeneous models with gene partitioning²⁴⁸ and others

650 suggest the opposite²⁴⁶. Aimed at reducing saturation and compositional biases, data matrix recoding
651 analyses supported the sponge-sister hypothesis^{152,249}; however, some of these analyses²⁴⁹ failed to
652 recover well-established monophyletic clades, such as Chordata, suggesting that analyses of non-
653 recoded data were more accurate²⁵⁰. Poor taxon sampling has also long impacted this phylogenetic
654 question, but new genomes and transcriptomes have recently been made available for key lineages
655 — sponges, ctenophores, cnidarians, and placozoans^{13,14,152}. Outgroup choice has also been
656 important to the debate—the sponge-sister hypothesis is most frequently supported when
657 choanoflagellates are chosen as the outgroup, whereas the ctenophore-sister hypothesis is supported
658 when a broader sampling of single-celled relatives of animals (Holozoa) and fungi (Opisthokonta) is
659 used²⁰⁰.

660

661 Several other factors, such as ortholog inference errors and multiple sequence alignment errors,
662 are likely at play. The possibility that additional biological factors, such as hybridization or
663 incomplete lineage sorting, also contributed cannot be excluded; however, detecting the effect of
664 multiple analytical and biological factors in such an ancient divergence is challenging. Resolving the
665 root of the root of the animal tree may require extensive amounts of new (high-quality) data such
666 as expanded taxon sampling of sponge, ctenophore, and choanoflagellate genomes²³⁹. Similarly,
667 other lines of evidence, such as investigations of synteny conservation using chromosome-level
668 genome assemblies²⁵¹, an independent line of evidence that does not have the same pitfalls as
669 sequence data analyses, may shed light on the root of the animal tree.

670

671 **Glossary**

672

673 CONVERGENT MOLECULAR EVOLUTION

674 Independent evolution of similar or identical molecular changes (e.g., gene deletions, nucleotide

675 substitutions, gene order rearrangements) in organisms from different lineages that exhibit similar

676 adaptations

677

678 EVOLUTIONARY RADIATION

679 The occurrence of an elevated rate of speciation events in a narrow window of evolutionary time

680

681 HETEROTACHY

682 The phenomenon of changes in the evolutionary rate of a nucleotide or amino acid sequence through time

683

684 HIDDEN ORTHOLOGY

685 Undetected orthologous relationships of genes

686

687 HIDDEN PARALOGY

688 Orthologous groups of genes that contain orthologs and paralogs (inparalogs and outparalogs) stemming

689 from asymmetric patterns of duplication and loss

690

691 HORIZONTAL OR LATERAL GENE TRANSFER

692 The transfer of genetic material from one organism to another by mechanisms other than sexual

693 reproduction

694

695 HYBRIDIZATION

696 The interbreeding of two distinct species or lineages

697

698 INCOMPLETE LINEAGE SORTING

699 When alleles in a population fail to coalesce due to retention and random sorting of ancestral polymorphisms,

700 causing, at times, alleles to first coalesce with more distantly related alleles

701

702 INPARALOG

703 Lineage- or species-specific paralogs wherein the duplication event occurred after divergence from a

704 reference common ancestor

705

706 INTROGRESSION

707 The interbreeding of two distinct species or lineages followed by backcrossing with one of the parental
708 species

709

710 LONG BRANCH ATTRACTION

711 The inaccurate inference of taxa with high evolutionary rates (giving rise to long branches in their
712 phylogenetic trees) as closely related

713

714 MODEL OF SEQUENCE EVOLUTION OR SUBSTITUTION

715 Models that describe rates of nucleotide or amino acid substitutions in a locus during evolution

716

717 OHNOLOGS

718 Paralogs that stem from a whole genome duplication event

719

720 OUTPARALOGS

721 Paralogs wherein the duplication event occurred before divergence from a reference common ancestor

722

723 PHYLOGENETIC NETWORKS

724 Graphs of evolutionary relationships that, in addition to depicting the splitting of lineages, also depict the
725 merging of lineages (due to events such as hybridization and convergent molecular evolution or due to
726 different gene tree topologies)

727

728 PHYLOGENOMICS

729 Defined initially as predicting gene function from phylogenies of homologous genes ²⁵², the term was later
730 expanded also to include phylogenetic inference using genome-scale amounts of data ²⁵³

731

732 POLYTOMY

733 The node where more than two descendant lineages stem from an ancestral one

734

735 TAXON SAMPLING

736 Which and how many taxa are selected for a phylogenetic analysis

737

738 PARTIAL OR INCOMPLETE TAXON COVERAGE

739 The lack of sequences (either because they are genuinely absent or because they were not collected) from
740 particular taxa in a group of orthologous genes

741

742 PHYLOGENETIC IRREPRODUCIBILITY

743 Lack of reproducibility of a tree topology between two replicate tree inferences using the same software
744 parameters (e.g., same model of sequence evolution, starting seed, etc.)
745
746 ROGUE TAXA
747 Taxa whose placement is unstable across a set of trees (e.g., across a set of gene trees)
748
749 STOCHASTIC ERROR
750 Error that occurs due to limited sampling and/or statistical uncertainty; can be eliminated by increasing the
751 amount of data
752
753 SYSTEMATIC ERROR
754 Error that occurs due to incorrect assumptions (e.g., model misspecification); it leads to bias in inference and
755 certainty in an incorrect result increases as larger amounts of data are used
756
757 TREATMENT ERROR
758 Error that stems from incorrect handling of data; depending on the source, it can result in stochastic or
759 systematic error
760
761
762
763

764 **References**

- 765 1. Simpson, G. G., 1902-. *The principles of classification and a classification of mammals*. ([American Museum of Natural History], 1945).
- 766 2. Jarvis, E. D. *et al.* Whole-genome analyses resolve early branches in the tree of life of modern birds. *Science* **346**, 1320–1331 (2014).
- 767 3. Parks, D. H. *et al.* A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. *Nature Biotechnology* **36**, 996–1004 (2018).
- 768 4. One Thousand Plant Transcriptomes Initiative. One thousand plant transcriptomes and the phylogenomics of green plants. *Nature* **574**, 679–685 (2019).
- 769 5. Li, Y. *et al.* HGT is widespread in insects and contributes to male courtship in lepidopterans. *Cell* **185**, 2975-2987.e10 (2022).
- 770 6. Crotty, S. M. *et al.* GHOST: Recovering Historical Signal from Heterotachously Evolved Sequence Alignments. *Systematic Biology* (2019) doi:10.1093/sysbio/syz051.
- 771 7. Rokas, A., Williams, B. L., King, N. & Carroll, S. B. Genome-scale approaches to resolving incongruence in molecular phylogenies. *Nature* **425**, 798–804 (2003).
- 772 8. Kawahara, A. Y. *et al.* Phylogenomics reveals the evolutionary timing and pattern of butterflies and moths. *Proceedings of the National Academy of Sciences* **116**, 22657–22663 (2019).
- 773 9. Misof, B. *et al.* Phylogenomics resolves the timing and pattern of insect evolution. *Science* **346**, 763–767 (2014).
- 774 10. Dunn, C. W. *et al.* Broad phylogenomic sampling improves resolution of the animal tree of life. *Nature* **452**, 745–749 (2008).
- 775 11. Bond, J. E. *et al.* Phylogenomics Resolves a Spider Backbone Phylogeny and Rejects a Prevailing Paradigm for Orb Web Evolution. *Current Biology* **24**, 1765–1771 (2014).

788 12. Li, Y. *et al.* A genome-scale phylogeny of the kingdom Fungi. *Current Biology* **31**,
789 1653-1665.e5 (2021).

790 13. Simion, P. *et al.* A Large and Consistent Phylogenomic Dataset Supports Sponges as
791 the Sister Group to All Other Animals. *Current Biology* **27**, 958–967 (2017).

792 14. Whelan, N. V. *et al.* Ctenophore relationships and their placement as the sister group
793 to all other animals. *Nature Ecology & Evolution* **1**, 1737–1746 (2017).

794 15. Lemmon, A. R. & Moriarty, E. C. The Importance of Proper Model Assumption in
795 Bayesian Phylogenetics. *Systematic Biology* **53**, 265–277 (2004).

796 16. Mao, Y. *et al.* A high-quality bonobo genome refines the analysis of hominid evolution.
797 *Nature* **594**, 77–81 (2021).

798 17. Meleshko, O. *et al.* Extensive Genome-Wide Phylogenetic Discordance Is Due to
799 Incomplete Lineage Sorting and Not Ongoing Introgression in a Rapidly Radiated
800 Bryophyte Genus. *Mol Biol Evol* **38**, 2750–2766 (2021).

801 18. Feng, S. *et al.* Incomplete lineage sorting and phenotypic evolution in marsupials. *Cell*
802 **185**, 1646-1660.e18 (2022).

803 19. Avise, J. C. & Robinson, T. J. Hemiplasy: A New Term in the Lexicon of
804 Phylogenetics. *Systematic Biology* **57**, 503–507 (2008).

805 20. Maddison, W. & Knowles, L. Inferring phylogeny despite incomplete lineage sorting.
806 *Systematic Biology* **55**, 21–30 (2006).

807 21. Degnan, J. H. & Rosenberg, N. A. Gene tree discordance, phylogenetic inference and
808 the multispecies coalescent. *Trends in Ecology & Evolution* **24**, 332–340 (2009).

809 22. Song, S., Liu, L., Edwards, S. V. & Wu, S. Resolving conflict in eutherian mammal
810 phylogeny using phylogenomics and the multispecies coalescent model. *Proceedings
811 of the National Academy of Sciences* **109**, 14942–14947 (2012).

812 23. Flouri, T., Jiao, X., Rannala, B. & Yang, Z. Species Tree Inference with BPP Using
813 Genomic Sequences and the Multispecies Coalescent. *Mol Biol Evol* **35**, 2585–2593
814 (2018).

815 24. Bouckaert, R. *et al.* BEAST 2.5: An advanced software platform for Bayesian
816 evolutionary analysis. *PLoS Comput Biol* **15**, e1006650 (2019).

817 25. Liu, L., Yu, L., Kubatko, L., Pearl, D. K. & Edwards, S. V. Coalescent methods for
818 estimating phylogenetic trees. *Mol Phylogenet Evol* **53**, 320–328 (2009).

819 26. Liu, L., Yu, L. & Edwards, S. V. A maximum pseudo-likelihood approach for estimating
820 species trees under the coalescent model. *BMC Evol Biol* **10**, 302 (2010).

821 27. Zhang, C., Rabiee, M., Sayyari, E. & Mirarab, S. ASTRAL-III: polynomial time species
822 tree reconstruction from partially resolved gene trees. *BMC Bioinformatics* **19**, 153
823 (2018).

824 28. Zhang, C. & Mirarab, S. *Weighting by Gene Tree Uncertainty Improves Accuracy of
825 Quartet-based Species Trees.*
826 <http://biorxiv.org/lookup/doi/10.1101/2022.02.19.481132> (2022)
827 doi:10.1101/2022.02.19.481132.

828 29. Morel, B., Williams, T. A. & Stamatakis, A. *Asteroid: a new minimum balanced
829 evolution supertree algorithm robust to missing data.*
830 <http://biorxiv.org/lookup/doi/10.1101/2022.07.22.501101> (2022)
831 doi:10.1101/2022.07.22.501101.

832 30. Kominek, J. *et al.* Eukaryotic Acquisition of a Bacterial Operon. *Cell* **176**, 1356–
833 1366.e10 (2019).

834 31. Arnold, B. J., Huang, I.-T. & Hanage, W. P. Horizontal gene transfer and adaptive
835 evolution in bacteria. *Nat Rev Microbiol* **20**, 206–218 (2022).

836 32. Gophna, U. & Altman-Price, N. Horizontal Gene Transfer in Archaea—From
837 Mechanisms to Genome Evolution. *Annu. Rev. Microbiol.* **76**, 481–502 (2022).

838 33. Van Etten, J. & Bhattacharya, D. Horizontal Gene Transfer in Eukaryotes: Not if, but
839 How Much? *Trends in Genetics* **36**, 915–925 (2020).

840 34. Lapierre, P., Lasek-Nesselquist, E. & Gogarten, J. P. The impact of HGT on
841 phylogenomic reconstruction methods. *Briefings in Bioinformatics* **15**, 79–90 (2014).

842 35. Wisecaver, J. H. & Rokas, A. Fungal metabolic gene clusters—caravans traveling
843 across genomes and environments. *Front. Microbiol.* **6**, (2015).

844 36. Sevillya, G., Adato, O. & Snir, S. Detecting horizontal gene transfer: a probabilistic
845 approach. *BMC Genomics* **21**, 106 (2020).

846 37. Gladyshev, E. A., Meselson, M. & Arkhipova, I. R. Massive Horizontal Gene Transfer
847 in Bdelloid Rotifers. *Science* **320**, 1210–1213 (2008).

848 38. Szöllősi, G. J., Boussau, B., Abby, S. S., Tannier, E. & Daubin, V. Phylogenetic
849 modeling of lateral gene transfer reconstructs the pattern and relative timing of
850 speciations. *Proc. Natl. Acad. Sci. U.S.A.* **109**, 17513–17518 (2012).

851 39. Williams, T. A. *et al.* Integrative modeling of gene and genome evolution roots the
852 archaeal tree of life. *Proc. Natl. Acad. Sci. U.S.A.* **114**, (2017).

853 40. Morel, B. *et al.* SpeciesRax: A Tool for Maximum Likelihood Species Tree Inference
854 from Gene Family Trees under Duplication, Transfer, and Loss. *Molecular Biology and*
855 *Evolution* **39**, msab365 (2022).

856 41. Zhang, D. *et al.* Most Genomic Loci Misrepresent the Phylogeny of an Avian Radiation
857 Because of Ancient Gene Flow. *Systematic Biology* **70**, 961–975 (2021).

858 42. Hibbins, M. S. & Hahn, M. W. Phylogenomic approaches to detecting and
859 characterizing introgression. *Genetics* **220**, iyab173 (2022).

860 43. Sang, T. & Zhong, Y. Testing Hybridization Hypotheses Based on Incongruent Gene
861 Trees. *Systematic Biology* **49**, 422–434 (2000).

862 44. Langdon, Q. K., Peris, D., Kyle, B. & Hittinger, C. T. *spplDer*: A Species Identification
863 Tool to Investigate Hybrid Genomes with High-Throughput Sequencing. *Molecular
864 Biology and Evolution* (2018) doi:10.1093/molbev/msy166.

865 45. Steenwyk, J. L. *et al.* Pathogenic Allodiploid Hybrids of *Aspergillus* Fungi. *Current
866 Biology* **30**, 2495-2507.e7 (2020).

867 46. Steenwyk, J. L. *et al.* Pathogenic Allodiploid Hybrids of *Aspergillus* Fungi. *Current
868 Biology* **30**, 2495-2507.e7 (2020).

869 47. Yu, Y., Dong, J., Liu, K. J. & Nakhleh, L. Maximum likelihood inference of reticulate
870 evolutionary histories. *Proc. Natl. Acad. Sci. U.S.A.* **111**, 16448–16453 (2014).

871 48. Suvorov, A. *et al.* Widespread introgression across a phylogeny of 155 *Drosophila*
872 genomes. *Current Biology* **32**, 111-123.e5 (2022).

873 49. Durand, E. Y., Patterson, N., Reich, D. & Slatkin, M. Testing for Ancient Admixture
874 between Closely Related Populations. *Molecular Biology and Evolution* **28**, 2239–
875 2252 (2011).

876 50. Pease, J. B. & Hahn, M. W. Detection and Polarization of Introgression in a Five-
877 Taxon Phylogeny. *Systematic Biology* **64**, 651–662 (2015).

878 51. Posada, D. & Crandall, K. A. The Effect of Recombination on the Accuracy of
879 Phylogeny Estimation. *J Mol Evol* **54**, 396–402 (2002).

880 52. Bruen, T. C., Philippe, H. & Bryant, D. A Simple and Robust Statistical Test for
881 Detecting the Presence of Recombination. *Genetics* **172**, 2665–2681 (2006).

882 53. Martin, D. P. *et al.* RDP5: a computer program for analyzing recombination in, and
883 removing signals of recombination from, nucleotide sequence datasets. *Virus*
884 *Evolution* **7**, veaa087 (2021).

885 54. Sackton, T. B. & Clark, N. Convergent evolution in the genomics era: new insights and
886 directions. *Phil. Trans. R. Soc. B* **374**, 20190102 (2019).

887 55. Li, Y., Liu, Z., Shi, P. & Zhang, J. The hearing gene Prestin unites echolocating bats
888 and whales. *Current Biology* **20**, R55–R56 (2010).

889 56. Castoe, T. A. *et al.* Evidence for an ancient adaptive episode of convergent molecular
890 evolution. *Proceedings of the National Academy of Sciences* **106**, 8986–8991 (2009).

891 57. Minh, B. Q. *et al.* IQ-TREE 2: New Models and Efficient Methods for Phylogenetic
892 Inference in the Genomic Era. *Molecular Biology and Evolution* **37**, 1530–1534 (2020).

893 58. Musil, M. *et al.* FireProtASR: A Web Server for Fully Automated Ancestral Sequence
894 Reconstruction. *Briefings in Bioinformatics* **22**, bbaa337 (2021).

895 59. Hanson-Smith, V. & Johnson, A. PhyloBot: A Web Portal for Automated
896 Phylogenetics, Ancestral Sequence Reconstruction, and Exploration of Mutational
897 Trajectories. *PLoS Comput Biol* **12**, e1004976 (2016).

898 60. Martijn, J. *et al.* Hikarchaeia demonstrate an intermediate stage in the methanogen-to-
899 halophile transition. *Nat Commun* **11**, 5490 (2020).

900 61. Martijn, J., Vosseberg, J., Guy, L., Offre, P. & Ettema, T. J. G. Deep mitochondrial
901 origin outside the sampled alphaproteobacteria. *Nature* **557**, 101–105 (2018).

902 62. Muñoz-Gómez, S. A. *et al.* Site-and-branch-heterogeneous analyses of an expanded
903 dataset favour mitochondria as sister to known Alphaproteobacteria. *Nat Ecol Evol* **6**,
904 253–262 (2022).

905 63. Riley, R. *et al.* Comparative genomics of biotechnologically important yeasts.

906 *Proceedings of the National Academy of Sciences* **113**, 9882–9887 (2016).

907 64. Shen, X.-X. *et al.* Reconstructing the Backbone of the Saccharomycotina Yeast

908 Phylogeny Using Genome-Scale Data. *G3: Genes|Genomes|Genetics* **6**, 3927–3939

909 (2016).

910 65. Shen, X.-X., Hittinger, C. T. & Rokas, A. Contentious relationships in phylogenomic

911 studies can be driven by a handful of genes. *Nature Ecology & Evolution* **1**, 0126

912 (2017).

913 66. Shen, X.-X. *et al.* Tempo and Mode of Genome Evolution in the Budding Yeast

914 Subphylum. *Cell* **175**, 1533-1545.e20 (2018).

915 67. Gitzendanner, M. A., Soltis, P. S., Wong, G. K.-S., Ruhfel, B. R. & Soltis, D. E. Plastid

916 phylogenomic analysis of green plants: A billion years of evolutionary history.

917 *American Journal of Botany* **105**, 291–301 (2018).

918 68. Wickett, N. J. *et al.* Phylotranscriptomic analysis of the origin and early diversification

919 of land plants. *Proceedings of the National Academy of Sciences* **111**, E4859–E4868

920 (2014).

921 69. Cheng, S. *et al.* Genomes of Subaerial Zygnematophyceae Provide Insights into Land

922 Plant Evolution. *Cell* **179**, 1057-1067.e14 (2019).

923 70. Aberer, A. J., Krompass, D. & Stamatakis, A. Pruning Rogue Taxa Improves

924 Phylogenetic Accuracy: An Efficient Algorithm and Webservice. *Systematic Biology*

925 **62**, 162–166 (2013).

926 71. Struck, T. H. TreSpEx—Detection of Misleading Signal in Phylogenetic

927 Reconstructions Based on Tree Information. *Evolutionary Bioinformatics* **10**,

928 EBO.S14239 (2014).

929 72. Amemiya, C. T. *et al.* The African coelacanth genome provides insights into tetrapod
930 evolution. *Nature* **496**, 311–316 (2013).

931 73. Liu, S. *et al.* Ancient and modern genomes unravel the evolutionary history of the
932 rhinoceros family. *Cell* **184**, 4874-4885.e16 (2021).

933 74. Perri, A. R. *et al.* Dire wolves were the last of an ancient New World canid lineage.
934 *Nature* **591**, 87–91 (2021).

935 75. Townsend, J. P. Profiling Phylogenetic Informativeness. *Systematic Biology* **56**, 222–
936 231 (2007).

937 76. Patel, S. Error in Phylogenetic Estimation for Bushes in the Tree of Life. *Phylogenetics*
938 *Evolutionary* **01**, (2013).

939 77. Rokas, A. & Carroll, S. B. Bushes in the Tree of Life. *PLoS Biology* **4**, e352 (2006).

940 78. Pipes, L., Wang, H., Huelsenbeck, J. P. & Nielsen, R. Assessing Uncertainty in the
941 Rooting of the SARS-CoV-2 Phylogeny. *Molecular Biology and Evolution* **38**, 1537–
942 1543 (2021).

943 79. Steenwyk, J. L. *et al.* OrthoSNAP: A tree splitting and pruning algorithm for retrieving
944 single-copy orthologs from gene family trees. *PLoS Biol* **20**, e3001827 (2022).

945 80. Willson, J., Roddur, M. S., Liu, B., Zaharias, P. & Warnow, T. DISCO: Species Tree
946 Inference using Multicopy Gene Family Tree Decomposition. *Systematic Biology*
947 (2021) doi:10.1093/sysbio/syab070.

948 81. Springer, M. S. & Gatesy, J. The gene tree delusion. *Molecular Phylogenetics and*
949 *Evolution* **94**, 1–33 (2016).

950 82. Zhang, C., Rabiee, M., Sayyari, E. & Mirarab, S. ASTRAL-III: polynomial time species
951 tree reconstruction from partially resolved gene trees. *BMC Bioinformatics* **19**, 153
952 (2018).

953 83. Sanderson, M. J., McMahon, M. M. & Steel, M. Terraces in Phylogenetic Tree Space.
954 *Science* **333**, 448–450 (2011).

955 84. Xi, Z. *et al.* Phylogenomics and a posteriori data partitioning resolve the Cretaceous
956 angiosperm radiation Malpighiales. *Proc. Natl. Acad. Sci. U.S.A.* **109**, 17519–17524
957 (2012).

958 85. Sanderson, M. J., McMahon, M. M., Stamatakis, A., Zwickl, D. J. & Steel, M. Impacts
959 of Terraces on Phylogenetic Inference. *Syst Biol* **64**, 709–726 (2015).

960 86. Minh, B. Q. *et al.* IQ-TREE 2: New Models and Efficient Methods for Phylogenetic
961 Inference in the Genomic Era. *Molecular Biology and Evolution* **37**, 1530–1534 (2020).

962 87. Emms, D. M. & Kelly, S. OrthoFinder: solving fundamental biases in whole genome
963 comparisons dramatically improves orthogroup inference accuracy. *Genome Biology*
964 **16**, 157 (2015).

965 88. Weisman, C. M., Murray, A. W. & Eddy, S. R. Many, but not all, lineage-specific genes
966 can be explained by homology detection failure. *PLoS Biol* **18**, e3000862 (2020).

967 89. Martín-Durán, J. M., Ryan, J. F., Vellutini, B. C., Pang, K. & Hejnol, A. Increased taxon
968 sampling reveals thousands of hidden orthologs in flatworms. *Genome Res.* **27**, 1263–
969 1272 (2017).

970 90. Eddy, S. R. Accelerated Profile HMM Searches. *PLoS Computational Biology* **7**,
971 e1002195 (2011).

972 91. Tassia, M. G., David, K. T., Townsend, J. P. & Halanych, K. M. TIAMMAT: Leveraging
973 Biodiversity to Revise Protein Domain Models, Evidence from Innate Immunity.
974 *Molecular Biology and Evolution* **38**, 5806–5818 (2021).

975 92. Scannell, D. R., Byrne, K. P., Gordon, J. L., Wong, S. & Wolfe, K. H. Multiple rounds
976 of speciation associated with reciprocal gene loss in polyploid yeasts. *Nature* **440**,
977 341–345 (2006).

978 93. Philippe, H. *et al.* Phylogenomics Revives Traditional Views on Deep Animal
979 Relationships. *Current Biology* **19**, 706–712 (2009).

980 94. Steenwyk, J. L. *et al.* PhyKIT: a broadly applicable UNIX shell toolkit for processing
981 and analyzing phylogenomic data. *Bioinformatics (Oxford, England)* (2021)
982 doi:10.1093/bioinformatics/btab096.

983 95. Hampl, V. *et al.* Phylogenomic analyses support the monophyly of Excavata and
984 resolve relationships among eukaryotic “supergroups”. *Proc. Natl. Acad. Sci. U.S.A.*
985 **106**, 3859–3864 (2009).

986 96. Mai, U. & Mirarab, S. TreeShrink: fast and accurate detection of outlier long branches
987 in collections of phylogenetic trees. *BMC Genomics* **19**, 272 (2018).

988 97. Tice, A. K. *et al.* PhyloFisher: A phylogenomic package for resolving eukaryotic
989 relationships. *PLOS Biology* **19**, e3001365 (2021).

990 98. Kocot, K. M., Citarella, M. R., Moroz, L. L. & Halanych, K. M. PhyloTreePruner: A
991 Phylogenetic Tree-Based Approach for selection of Orthologous sequences for
992 phylogenomics. *Evol Bioinform Online* **9**, EBO.S12813 (2013).

993 99. Steenwyk, J. L. *et al.* OrthoSNAP: A tree splitting and pruning algorithm for retrieving
994 single-copy orthologs from gene family trees. *PLoS Biol* **20**, e3001827 (2022).

995 100. Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM:
996 assessing the quality of microbial genomes recovered from isolates, single cells, and
997 metagenomes. *Genome Res.* **25**, 1043–1055 (2015).

998 101. Jukes, T. H. & Cantor, C. R. Evolution of Protein Molecules. in *Mammalian Protein*
999 *Metabolism* 21–132 (Elsevier, 1969). doi:10.1016/B978-1-4832-3211-9.50009-7.

1000 102. Kimura, M. A simple method for estimating evolutionary rates of base substitutions
1001 through comparative studies of nucleotide sequences. *J Mol Evol* **16**, 111–120 (1980).

1002 103. Felsenstein, J. Evolutionary trees from DNA sequences: A maximum likelihood
1003 approach. *Journal of Molecular Evolution* **17**, 368–376 (1981).

1004 104. Tavaré, S. Some probabilistic and statistical problems in the analysis of DNA
1005 sequences. *Lectures on mathematics in the life sciences* **17**, 57–86 (1986).

1006 105. Arenas, M. Trends in substitution models of molecular evolution. *Front. Genet.* **6**,
1007 (2015).

1008 106. Yang, Z., Nielsen, R. & Hasegawa, M. Models of amino acid substitution and
1009 applications to mitochondrial protein evolution. *Molecular Biology and Evolution* **15**,
1010 1600–1611 (1998).

1011 107. Whelan, S. & Goldman, N. A General Empirical Model of Protein Evolution Derived
1012 from Multiple Protein Families Using a Maximum-Likelihood Approach. *Molecular*
1013 *Biology and Evolution* **18**, 691–699 (2001).

1014 108. Le, S. Q. & Gascuel, O. An Improved General Amino Acid Replacement Matrix.
1015 *Molecular Biology and Evolution* **25**, 1307–1320 (2008).

1016 109. Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: more models, new
1017 heuristics and parallel computing. *Nat Methods* **9**, 772–772 (2012).

1018 110. Susko, E. & Roger, A. J. On the Use of Information Criteria for Model Selection in
1019 Phylogenetics. *Molecular Biology and Evolution* **37**, 549–562 (2020).

1020 111. Spielman, S. J. Relative Model Fit Does Not Predict Topological Accuracy in Single-
1021 Gene Protein Phylogenetics. *Molecular Biology and Evolution* **37**, 2110–2123 (2020).

1022 112. Abadi, S., Azouri, D., Pupko, T. & Mayrose, I. Model selection may not be a
1023 mandatory step for phylogeny reconstruction. *Nat Commun* **10**, 934 (2019).

1024 113. Bloom, J. D. An Experimentally Determined Evolutionary Model Dramatically Improves
1025 Phylogenetic Fit. *Molecular Biology and Evolution* **31**, 1956–1978 (2014).

1026 114. Kainer, D. & Lanfear, R. The Effects of Partitioning on Phylogenetic Inference.
1027 *Molecular Biology and Evolution* **32**, 1611–1627 (2015).

1028 115. Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T. & Calcott, B. PartitionFinder 2:
1029 New Methods for Selecting Partitioned Models of Evolution for Molecular and
1030 Morphological Phylogenetic Analyses. *Mol Biol Evol* msw260 (2016)
1031 doi:10.1093/molbev/msw260.

1032 116. Lartillot, N. & Philippe, H. A Bayesian Mixture Model for Across-Site Heterogeneities in
1033 the Amino-Acid Replacement Process. *Molecular Biology and Evolution* **21**, 1095–
1034 1109 (2004).

1035 117. Si Quang, L., Gascuel, O. & Lartillot, N. Empirical profile mixture models for
1036 phylogenetic reconstruction. *Bioinformatics* **24**, 2317–2323 (2008).

1037 118. Stairs, C. W. *et al.* Anaeramoebae are a divergent lineage of eukaryotes that shed
1038 light on the transition from anaerobic mitochondria to hydrogenosomes. *Current
1039 Biology* **31**, 5605-5612.e5 (2021).

1040 119. Galindo, L. J., López-García, P., Torruella, G., Karpov, S. & Moreira, D.
1041 Phylogenomics of a new fungal phylum reveals multiple waves of reductive evolution
1042 across Holomycota. *Nature Communications* **12**, 4973 (2021).

1043 120. Williams, T. A., Cox, C. J., Foster, P. G., Szöllősi, G. J. & Embley, T. M.
1044 Phylogenomics provides robust support for a two-domains tree of life. *Nat Ecol Evol* **4**,
1045 138–147 (2019).

1046 121. Minin, V., Abdo, Z., Joyce, P. & Sullivan, J. Performance-Based Selection of
1047 Likelihood Models for Phylogeny Estimation. *Systematic Biology* **52**, 674–683 (2003).

1048 122. Yang, Z. & Rannala, B. Molecular phylogenetics: principles and practice. *Nature*
1049 *Reviews Genetics* **13**, 303–314 (2012).

1050 123. Sullivan, J. & Swofford, D. L. Are guinea pigs rodents? The importance of adequate
1051 models in molecular phylogenetics. *Journal of Mammalian Evolution* (1997)
1052 doi:10.1023/A:1027314112438.

1053 124. Lartillot, N., Brinkmann, H. & Philippe, H. Suppression of long-branch attraction
1054 artefacts in the animal phylogeny using a site-heterogeneous model. *BMC Evol Biol* **7**,
1055 S4 (2007).

1056 125. Susko, E. & Roger, A. J. Long Branch Attraction Biases in Phylogenetics. *Systematic*
1057 *Biology* **70**, 838–843 (2021).

1058 126. Husník, F., Chrudimský, T. & Hypša, V. Multiple origins of endosymbiosis within the
1059 Enterobacteriaceae (γ -Proteobacteria): convergence of complex phylogenetic
1060 approaches. *BMC Biol* **9**, 87 (2011).

1061 127. Capella-Gutiérrez, S., Marcet-Houben, M. & Gabaldón, T. Phylogenomics supports
1062 microsporidia as the earliest diverging clade of sequenced fungi. *BMC Biol* **10**, 47
1063 (2012).

1064 128. Graybeal, A. Is It Better to Add Taxa or Characters to a Difficult Phylogenetic
1065 Problem? *Systematic Biology* **47**, 9–17 (1998).

1066 129. Hillis, D. M. Inferring complex phylogenies. *Nature* **383**, 130–131 (1996).

1067 130. Lopez, P., Casane, D. & Philippe, H. Heterotachy, an Important Process of Protein
1068 Evolution. *Molecular Biology and Evolution* **19**, 1–7 (2002).

1069 131. Philippe, H., Zhou, Y., Brinkmann, H., Rodrigue, N. & Delsuc, F. Heterotachy and
1070 long-branch attraction in phylogenetics. *BMC Evolutionary Biology* **5**, 50 (2005).

1071 132. Bergsten, J. A review of long-branch attraction. *Cladistics* **21**, 163–193 (2005).

1072 133. Geuten, K., Massingham, T., Darius, P., Smets, E. & Goldman, N. Experimental
1073 Design Criteria in Phylogenetics: Where to Add Taxa. *Systematic Biology* **56**, 609–622
1074 (2007).

1075 134. Pollock, D. D., Zwickl, D. J., McGuire, J. A. & Hillis, D. M. Increased Taxon Sampling
1076 Is Advantageous for Phylogenetic Inference. *Systematic Biology* **51**, 664–671 (2002).

1077 135. Brady, S. G., Litman, J. R. & Danforth, B. N. Rooting phylogenies using gene
1078 duplications: An empirical example from the bees (Apoidea). *Molecular Phylogenetics
1079 and Evolution* **60**, 295–304 (2011).

1080 136. Mathews, S., Clements, M. D. & Beilstein, M. A. A duplicate gene rooting of seed
1081 plants and the phylogenetic position of flowering plants. *Phil. Trans. R. Soc. B* **365**,
1082 383–395 (2010).

1083 137. Emms, D. M. & Kelly, S. STRIDE: Species Tree Root Inference from Gene Duplication
1084 Events. *Molecular Biology and Evolution* **34**, 3267–3278 (2017).

1085 138. Naser-Khdour, S., Quang Minh, B. & Lanfear, R. Assessing Confidence in Root
1086 Placement on Phylogenies: An Empirical Study Using Nonreversible Models for
1087 Mammals. *Systematic Biology* **71**, 959–972 (2022).

1088 139. Bettsworth, B. & Stamatakis, A. Root Digger: a root placement program for
1089 phylogenetic trees. *BMC Bioinformatics* **22**, 225 (2021).

1090 140. Drummond, A. J., Ho, S. Y. W., Phillips, M. J. & Rambaut, A. Relaxed Phylogenetics
1091 and Dating with Confidence. *PLoS Biol* **4**, e88 (2006).

1092 141. Tria, F. D. K., Landan, G. & Dagan, T. Phylogenetic rooting using minimal ancestor
1093 deviation. *Nat Ecol Evol* **1**, 0193 (2017).

1094 142. Ashkenazy, H., Sela, I., Levy Karin, E., Landan, G. & Pupko, T. Multiple Sequence
1095 Alignment Averaging Improves Phylogeny Reconstruction. *Systematic Biology* **68**,
1096 117–130 (2019).

1097 143. Li-San Wang *et al.* The Impact of Multiple Protein Sequence Alignment on
1098 Phylogenetic Estimation. *IEEE/ACM Trans. Comput. Biol. and Bioinf.* **8**, 1108–1119
1099 (2011).

1100 144. Landan, G. & Graur, D. Characterization of pairwise and multiple sequence alignment
1101 errors. *Gene* **441**, 141–147 (2009).

1102 145. Ali, R. H., Bogusz, M. & Whelan, S. Identifying Clusters of High Confidence
1103 Homologies in Multiple Sequence Alignments. *Molecular Biology and Evolution* **36**,
1104 2340–2351 (2019).

1105 146. Zhang, C., Zhao, Y., Braun, E. L. & Mirarab, S. TAPER: Pinpointing errors in multiple
1106 sequence alignments despite varying rates of evolution. *Methods Ecol Evol* **12**, 2145–
1107 2158 (2021).

1108 147. Tan, G. *et al.* Current Methods for Automated Filtering of Multiple Sequence
1109 Alignments Frequently Worsen Single-Gene Phylogenetic Inference. *Systematic
1110 Biology* **64**, 778–791 (2015).

1111 148. Steenwyk, J. L., Buida, T. J., Li, Y., Shen, X.-X. & Rokas, A. ClipKIT: A multiple
1112 sequence alignment trimming software for accurate phylogenomic inference. *PLOS
1113 Biology* **18**, e3001007 (2020).

1114 149. Susko, E. & Roger, A. J. On Reduced Amino Acid Alphabets for Phylogenetic
1115 Inference. *Molecular Biology and Evolution* **24**, 2139–2150 (2007).

1116 150. Blanquart, S. A Bayesian Compound Stochastic Process for Modeling Nonstationary
1117 and Nonhomogeneous Sequence Evolution. *Molecular Biology and Evolution* **23**,
1118 2058–2071 (2006).

1119 151. Phillips, M. J., Delsuc, F. & Penny, D. Genome-Scale Phylogeny and the Detection of
1120 Systematic Biases. *Molecular Biology and Evolution* **21**, 1455–1458 (2004).

1121 152. Laumer, C. E. *et al.* Support for a clade of Placozoa and Cnidaria in genes with
1122 minimal compositional bias. *eLife* **7**, e36278 (2018).

1123 153. Hernandez, A. M. & Ryan, J. F. Six-State Amino Acid Recoding is not an Effective
1124 Strategy to Offset Compositional Heterogeneity and Saturation in Phylogenetic
1125 Analyses. *Systematic Biology* (2021) doi:10.1093/sysbio/syab027.

1126 154. Foster, P. G. *et al.* Recoding amino acids to a reduced alphabet may increase or
1127 decrease phylogenetic accuracy. *Systematic Biology* syac042 (2022)
1128 doi:10.1093/sysbio/syac042.

1129 155. Steenwyk, J. L., Shen, X.-X., Lind, A. L., Goldman, G. H. & Rokas, A. A Robust
1130 Phylogenomic Time Tree for Biotechnologically and Medically Important Fungi in the
1131 Genera *Aspergillus* and *Penicillium*. *mBio* **10**, (2019).

1132 156. Wascher, M. & Kubatko, L. Consistency of SVDQuartets and Maximum Likelihood for
1133 Coalescent-Based Species Tree Estimation. *Systematic Biology* **70**, 33–48 (2021).

1134 157. Alda, F. *et al.* Resolving Deep Nodes in an Ancient Radiation of Neotropical Fishes in
1135 the Presence of Conflicting Signals from Incomplete Lineage Sorting. *Systematic
1136 Biology* **68**, 573–593 (2019).

1137 158. Shen, X.-X., Steenwyk, J. L. & Rokas, A. Dissecting Incongruence between
1138 Concatenation- and Quartet-Based Approaches in Phylogenomic Data. *Systematic
1139 Biology* **70**, 997–1014 (2021).

1140 159. Darriba, D., Flouri, T. & Stamatakis, A. The State of Software for Evolutionary Biology.

1141 *Molecular Biology and Evolution* **35**, 1037–1046 (2018).

1142 160. Shen, X.-X., Li, Y., Hittinger, C. T., Chen, X. & Rokas, A. An investigation of

1143 irreproducibility in maximum likelihood phylogenetic inference. *Nature Communications* **11**, 6096 (2020).

1144 161. Shen, X.-X., Salichos, L. & Rokas, A. A Genome-Scale Investigation of How

1145 Sequence, Function, and Tree-Based Gene Properties Influence Phylogenetic

1146 Inference. *Genome Biology and Evolution* **8**, 2565–2580 (2016).

1147 162. Mongiardino Koch, N. Phylogenomic Subsampling and the Search for Phylogenetically

1148 Reliable Loci. *Molecular Biology and Evolution* (2021) doi:10.1093/molbev/msab151.

1149 163. Haag, J., Höhler, D., Bettisworth, B. & Stamatakis, A. *From Easy to Hopeless -*

1150 *Predicting the Difficulty of Phylogenetic Analyses*.

1151 <http://biorxiv.org/lookup/doi/10.1101/2022.06.20.496790> (2022)

1152 doi:10.1101/2022.06.20.496790.

1153 164. Hillis, D. M. & Bull, J. J. An Empirical Test of Bootstrapping as a Method for Assessing

1154 Confidence in Phylogenetic Analysis. *Systematic Biology* **42**, 182–192 (1993).

1155 165. Anisimova, M., Gil, M., Dufayard, J.-F., Dessimoz, C. & Gascuel, O. Survey of Branch

1156 Support Methods Demonstrates Accuracy, Power, and Robustness of Fast Likelihood-

1157 based Approximation Schemes. *Systematic Biology* **60**, 685–699 (2011).

1158 166. Lemoine, F. *et al.* Renewing Felsenstein's phylogenetic bootstrap in the era of big

1159 data. *Nature* **556**, 452–456 (2018).

1160 167. Molloy, E. K. & Warnow, T. To Include or Not to Include: The Impact of Gene Filtering

1161 on Species Tree Estimation Methods. *Systematic Biology* **67**, 285–303 (2018).

1163 168. Minh, B. Q., Hahn, M. W. & Lanfear, R. New Methods to Calculate Concordance
1164 Factors for Phylogenomic Datasets. *Molecular Biology and Evolution* **37**, 2727–2733
1165 (2020).

1166 169. Ane, C., Larget, B., Baum, D. A., Smith, S. D. & Rokas, A. Bayesian Estimation of
1167 Concordance among Gene Trees. *Molecular Biology and Evolution* **24**, 412–426
1168 (2006).

1169 170. Baum, D. A. Concordance Trees, Concordance Factors, and the Exploration of
1170 Reticulate Genealogy. *Taxon* **56**, 417–426 (2007).

1171 171. Larget, B. R., Kotha, S. K., Dewey, C. N. & Ané, C. BUCKy: Gene tree/species tree
1172 reconciliation with Bayesian concordance analysis. *Bioinformatics* **26**, 2910–2911
1173 (2010).

1174 172. Steenwyk, J. L. *et al.* PhyKIT: a broadly applicable UNIX shell toolkit for processing
1175 and analyzing phylogenomic data. *Bioinformatics* **37**, 2325–2331 (2021).

1176 173. Salichos, L. & Rokas, A. Inferring ancient divergences requires genes with strong
1177 phylogenetic signals. *Nature* **497**, 327–331 (2013).

1178 174. Kober, K., Salichos, L., Rokas, A. & Stamatakis, A. Computing the Internode
1179 Certainty and Related Measures from Partial Gene Trees. *Molecular Biology and*
1180 *Evolution* **33**, 1606–1617 (2016).

1181 175. Zhou, X. *et al.* Quartet-Based Computations of Internode Certainty Provide Robust
1182 Measures of Phylogenetic Incongruence. *Systematic Biology* **69**, 308–324 (2020).

1183 176. Salichos, L., Stamatakis, A. & Rokas, A. Novel Information Theory-Based Measures
1184 for Quantifying Incongruence among Phylogenetic Trees. *Molecular Biology and*
1185 *Evolution* **31**, 1261–1271 (2014).

1186 177. Zhou, X. *et al.* Quartet-Based Computations of Internode Certainty Provide Robust
1187 Measures of Phylogenetic Incongruence. *Systematic Biology* **69**, 308–324 (2020).

1188 178. Huson, D. H. & Bryant, D. Application of Phylogenetic Networks in Evolutionary
1189 Studies. *Molecular Biology and Evolution* **23**, 254–267 (2006).

1190 179. Huson, D. H. SplitsTree: analyzing and visualizing evolutionary data. *Bioinformatics*
1191 (*Oxford, England*) **14**, 68–73 (1998).

1192 180. Huson, D. H., Klöpper, T., Lockhart, P. J. & Steel, M. A. Reconstruction of Reticulate
1193 Networks from Gene Trees. in *Research in Computational Molecular Biology* (eds.
1194 Miyano, S. *et al.*) 233–249 (Springer Berlin Heidelberg, 2005).

1195 181. Huson, D. H. SplitsTree: analyzing and visualizing evolutionary data. *Bioinformatics*
1196 **14**, 68–73 (1998).

1197 182. Wen, D., Yu, Y., Zhu, J. & Nakhleh, L. Inferring Phylogenetic Networks Using
1198 PhyloNet. *Systematic Biology* **67**, 735–740 (2018).

1199 183. Lutteropp, S., Scornavacca, C., Kozlov, A. M., Morel, B. & Stamatakis, A. NetRAX:
1200 accurate and fast maximum likelihood phylogenetic network inference. *Bioinformatics*
1201 **38**, 3725–3733 (2022).

1202 184. Arcila, D. *et al.* Genome-wide interrogation advances resolution of recalcitrant groups
1203 in the tree of life. *Nat Ecol Evol* **1**, 0020 (2017).

1204 185. Shen, X.-X., Hittinger, C. T. & Rokas, A. Contentious relationships in phylogenomic
1205 studies can be driven by a handful of genes. *Nat Ecol Evol* **1**, 0126 (2017).

1206 186. Pease, J. B., Brown, J. W., Walker, J. F., Hinchliff, C. E. & Smith, S. A. Quartet
1207 Sampling distinguishes lack of support from conflicting support in the green plant tree
1208 of life. *Am J Bot* **105**, 385–403 (2018).

1209 187. Sayyari, E. & Mirarab, S. Testing for Polytomies in Phylogenetic Species Trees Using
1210 Quartet Frequencies. *Genes* **9**, (2018).

1211 188. Ogden, T. H. & Rosenberg, M. S. Multiple Sequence Alignment Accuracy and
1212 Phylogenetic Inference. *Systematic Biology* **55**, 314–328 (2006).

1213 189. Weisman, C. M., Murray, A. W. & Eddy, S. R. Many, but not all, lineage-specific genes
1214 can be explained by homology detection failure. *PLoS Biol* **18**, e3000862 (2020).

1215 190. Zhou, X., Shen, X.-X., Hittinger, C. T. & Rokas, A. Evaluating Fast Maximum
1216 Likelihood-Based Phylogenetic Programs Using Empirical Phylogenomic Data Sets.
1217 *Molecular Biology and Evolution* **35**, 486–503 (2018).

1218 191. Suvorov, A., Hochuli, J. & Schrider, D. R. Accurate Inference of Tree Topologies from
1219 Multiple Sequence Alignments Using Deep Learning. *Systematic Biology* **69**, 221–233
1220 (2020).

1221 192. Azouri, D., Abadi, S., Mansour, Y., Mayrose, I. & Pupko, T. Harnessing machine
1222 learning to guide phylogenetic-tree search algorithms. *Nature Communications* **12**,
1223 1983 (2021).

1224 193. Rosenzweig, B. K., Hahn, M. W. & Kern, A. *Accurate Detection of Incomplete Lineage*
1225 *Sorting via Supervised Machine Learning*.
1226 <http://biorxiv.org/lookup/doi/10.1101/2022.11.09.515828> (2022)
1227 doi:10.1101/2022.11.09.515828.

1228 194. Grealey, J. *et al.* The Carbon Footprint of Bioinformatics. *Molecular Biology and*
1229 *Evolution* **39**, msac034 (2022).

1230 195. Darriba, D. *et al.* ModelTest-NG: A New and Scalable Tool for the Selection of DNA
1231 and Protein Evolutionary Models. *Molecular Biology and Evolution* **37**, 291–294
1232 (2020).

1233 196. Posada, D. jModelTest: Phylogenetic Model Averaging. *Molecular Biology and*
1234 *Evolution* **25**, 1253–1256 (2008).

1235 197. Kumar, S. Embracing Green Computing in Molecular Phylogenetics. *Molecular*
1236 *Biology and Evolution* **39**, msac043 (2022).

1237 198. Höhler, D., Haag, J., Kozlov, A. M. & Stamatakis, A. *A representative Performance*
1238 *Assessment of Maximum Likelihood based Phylogenetic Inference Tools.*
1239 <http://biorxiv.org/lookup/doi/10.1101/2022.10.31.514545> (2022)
1240 doi:10.1101/2022.10.31.514545.

1241 199. Nabhan, A. R. & Sarkar, I. N. The impact of taxon sampling on phylogenetic inference:
1242 a review of two decades of controversy. *Briefings in Bioinformatics* **13**, 122–134
1243 (2012).

1244 200. Li, Y., Shen, X.-X., Evans, B., Dunn, C. W. & Rokas, A. Rooting the Animal Tree of
1245 Life. *Molecular Biology and Evolution* **38**, 4322–4333 (2021).

1246 201. Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for
1247 comparative genomics. *Genome Biology* **20**, 238 (2019).

1248 202. Steenwyk, J. L., Shen, X.-X., Lind, A. L., Goldman, G. H. & Rokas, A. A Robust
1249 Phylogenomic Time Tree for Biotechnologically and Medically Important Fungi in the
1250 Genera *Aspergillus* and *Penicillium*. *mBio* **10**, e00925-19 (2019).

1251 203. Cheon, S., Zhang, J. & Park, C. Is Phylotranscriptomics as Reliable as
1252 Phylogenomics? *Mol Biol Evol* **37**, 3672–3683 (2020).

1253 204. Minh, B. Q., Dang, C. C., Vinh, L. S. & Lanfear, R. QMaker: Fast and Accurate Method
1254 to Estimate Empirical Models of Protein Evolution. *Systematic Biology* **70**, 1046–1060
1255 (2021).

1256 205. Hernandez, A. M. & Ryan, J. F. Six-State Amino Acid Recoding is not an Effective
1257 Strategy to Offset Compositional Heterogeneity and Saturation in Phylogenetic
1258 Analyses. *Systematic Biology* **70**, 1200–1212 (2021).

1259 206. Giacomelli, M., Rossi, M. E., Lozano-Fernandez, J., Feuda, R. & Pisani, D. Resolving
1260 tricky nodes in the tree of life through amino acid recoding. *iScience* **25**, 105594
1261 (2022).

1262 207. Scornavacca, C. & Galtier, N. Incomplete Lineage Sorting in Mammalian
1263 Phylogenomics. *Syst Biol* syw082 (2016) doi:10.1093/sysbio/syw082.

1264 208. Galtier, N. A Model of Horizontal Gene Transfer and the Bacterial Phylogeny Problem.
1265 *Systematic Biology* **56**, 633–642 (2007).

1266 209. Stolzer, M. *et al.* Inferring duplications, losses, transfers and incomplete lineage
1267 sorting with nonbinary species trees. *Bioinformatics* **28**, i409–i415 (2012).

1268 210. Szöllösi, G. J., Boussau, B., Abby, S. S., Tannier, E. & Daubin, V. Phylogenetic
1269 modeling of lateral gene transfer reconstructs the pattern and relative timing of
1270 speciations. *Proc. Natl. Acad. Sci. U.S.A.* **109**, 17513–17518 (2012).

1271 211. Sharma, S. & Kumar, S. Fast and accurate bootstrap confidence limits on genome-
1272 scale phylogenies using little bootstraps. *Nat Comput Sci* **1**, 573–577 (2021).

1273 212. Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2:
1274 Improving the Ultrafast Bootstrap Approximation. *Molecular Biology and Evolution* **35**,
1275 518–522 (2018).

1276 213. Kowalczyk, A. *et al.* RERconverge: an R package for associating evolutionary rates
1277 with convergent traits. *Bioinformatics* **35**, 4815–4817 (2019).

1278 214. Leigh, J. W., Susko, E., Baumgartner, M. & Roger, A. J. Testing Congruence in
1279 Phylogenomic Analysis. *Systematic Biology* **57**, 104–115 (2008).

1280 215. Al Jewari, C. & Baldauf, S. L. Conflict over the Eukaryote Root Resides in Strong
1281 Outliers, Mosaics and Missing Data Sensitivity of Site-Specific (CAT) Mixture Models.
1282 *Systematic Biology* syac029 (2022) doi:10.1093/sysbio/syac029.

1283 216. Steenwyk, J. L. *et al.* PhyKIT: a broadly applicable UNIX shell toolkit for processing
1284 and analyzing phylogenomic data. *Bioinformatics (Oxford, England)* (2021)
1285 doi:10.1093/bioinformatics/btab096.

1286 217. Bettsworth, B. & Stamatakis, A. Root Digger: a root placement program for
1287 phylogenetic trees. *BMC Bioinformatics* **22**, 225 (2021).

1288 218. Tice, A. K. *et al.* PhyloFisher: A phylogenomic package for resolving eukaryotic
1289 relationships. *PLoS Biol* **19**, e3001365 (2021).

1290 219. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local
1291 alignment search tool. *J Mol Biol* **215**, (1990).

1292 220. Willson, J., Roddur, M. S., Liu, B., Zaharias, P. & Warnow, T. DISCO: Species Tree
1293 Inference using Multicopy Gene Family Tree Decomposition. *Systematic Biology* **71**,
1294 610–629 (2022).

1295 221. Shen, X.-X., Hittinger, C. T. & Rokas, A. Contentious relationships in phylogenomic
1296 studies can be driven by a handful of genes. *Nature Ecology & Evolution* **1**, 0126
1297 (2017).

1298 222. Wen, D., Yu, Y., Zhu, J. & Nakhleh, L. Inferring Phylogenetic Networks Using
1299 PhyloNet. *Systematic Biology* **67**, 735–740 (2018).

1300 223. Morel, B., Williams, T. A. & Stamatakis, A. *Asteroid: a new minimum balanced*
1301 *evolution supertree algorithm robust to missing data.*
1302 <http://biorxiv.org/lookup/doi/10.1101/2022.07.22.501101> (2022)
1303 doi:10.1101/2022.07.22.501101.

1304 224. Zhang, C. & Mirarab, S. *Weighting by Gene Tree Uncertainty Improves Accuracy of*
1305 *Quartet-based Species Trees.*
1306 <http://biorxiv.org/lookup/doi/10.1101/2022.02.19.481132> (2022)
1307 doi:10.1101/2022.02.19.481132.

1308 225. Zhang, C., Scornavacca, C., Molloy, E. K. & Mirarab, S. ASTRAL-Pro: Quartet-Based
1309 Species-Tree Inference despite Paralogy. *Molecular Biology and Evolution* **37**, 3292–
1310 3307 (2020).

1311 226. Drummond, A. J. & Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling
1312 trees. *BMC Evol Biol* **7**, 214 (2007).

1313 227. Flouri, T., Jiao, X., Rannala, B. & Yang, Z. Species Tree Inference with BPP Using
1314 Genomic Sequences and the Multispecies Coalescent. *Molecular Biology and*
1315 *Evolution* **35**, 2585–2593 (2018).

1316 228. Liu, L., Yu, L. & Edwards, S. V. A maximum pseudo-likelihood approach for estimating
1317 species trees under the coalescent model. *BMC Evol Biol* **10**, 302 (2010).

1318 229. Lartillot, N., Rodrigue, N., Stubbs, D. & Richer, J. PhyloBayes MPI: Phylogenetic
1319 Reconstruction with Infinite Mixtures of Profiles in a Parallel Environment. *Systematic*
1320 *Biology* **62**, 611–615 (2013).

1321 230. Kozlov, A. M., Darriba, D., Flouri, T., Morel, B. & Stamatakis, A. RAxML-NG: a fast,
1322 scalable and user-friendly tool for maximum likelihood phylogenetic inference.
1323 *Bioinformatics* **35**, 4453–4455 (2019).

1324 231. Liu, L., Yu, L., Pearl, D. K. & Edwards, S. V. Estimating Species Phylogenies Using
1325 Coalescence Times among Sequences. *Systematic Biology* **58**, 468–477 (2009).

1326 232. Chifman, J. & Kubatko, L. Quartet Inference from SNP Data Under the Coalescent
1327 Model. *Bioinformatics* **30**, 3317–3324 (2014).

1328 233. Simion, P. *et al.* A Large and Consistent Phylogenomic Dataset Supports Sponges as
1329 the Sister Group to All Other Animals. *Current Biology* **27**, 958–967 (2017).

1330 234. Redmond, A. K. & McLysaght, A. Evidence for sponges as sister to all other animals
1331 from partitioned phylogenomics with mixture models and recoding. *Nature
1332 Communications* **12**, 1783 (2021).

1333 235. Pisani, D. *et al.* Genomic data do not support comb jellies as the sister group to all
1334 other animals. *Proceedings of the National Academy of Sciences* **112**, 15402–15407
1335 (2015).

1336 236. Feuda, R. *et al.* Improved Modeling of Compositional Heterogeneity Supports
1337 Sponges as Sister to All Other Animals. *Current Biology* **27**, 3864-3870.e4 (2017).

1338 237. Ryan, J. F. *et al.* The Genome of the Ctenophore *Mnemiopsis leidyi* and Its
1339 Implications for Cell Type Evolution. *Science* **342**, (2013).

1340 238. Moroz, L. L. *et al.* The ctenophore genome and the evolutionary origins of neural
1341 systems. *Nature* **510**, 109–114 (2014).

1342 239. King, N. & Rokas, A. Embracing Uncertainty in Reconstructing Early Animal Evolution.
1343 *Current Biology* **27**, R1081–R1088 (2017).

1344 240. Dunn, C. W., Leys, S. P. & Haddock, S. H. D. The hidden biology of sponges and
1345 ctenophores. *Trends in Ecology & Evolution* **30**, 282–291 (2015).

1346 241. Nielsen, C. Early animal evolution: a morphologist’s view. *Royal Society Open
1347 Science* **6**, 190638 (2019).

1348 242. Liebeskind, B. J., Hillis, D. M., Zakon, H. H. & Hofmann, H. A. Complex Homology and
1349 the Evolution of Nervous Systems. *Trends in Ecology & Evolution* **31**, 127–135 (2016).

1350 243. Sachkova, M. Y. *et al.* Neuropeptide repertoire and 3D anatomy of the ctenophore
1351 nervous system. *Current Biology* **31**, 5274-5285.e6 (2021).

1352 244. Burkhardt, P. Ctenophores and the evolutionary origin(s) of neurons. *Trends in*
1353 *Neurosciences* **45**, 878–880 (2022).

1354 245. Baños, H., Susko, E. & Roger, A. J. Are profile mixture models over-parameterized?
1355 *bioRxiv* 2022.02.18.481053 (2022) doi:10.1101/2022.02.18.481053.

1356 246. Kapli, P. & Telford, M. J. Topology-dependent asymmetry in systematic errors affects
1357 phylogenetic placement of Ctenophora and Xenacoelomorpha. *Sci. Adv.* **6**, eabc5162
1358 (2020).

1359 247. Li, Y., Shen, X.-X., Evans, B., Dunn, C. W. & Rokas, A. Rooting the Animal Tree of
1360 Life. *Molecular Biology and Evolution* **38**, 4322–4333 (2021).

1361 248. Whelan, N. V. & Halanych, K. M. Who Let the CAT Out of the Bag? Accurately
1362 Dealing with Substitutional Heterogeneity in Phylogenomic Analyses. *Syst Biol*
1363 syw084 (2016) doi:10.1093/sysbio/syw084.

1364 249. Redmond, A. K. & McLysaght, A. Evidence for sponges as sister to all other animals
1365 from partitioned phylogenomics with mixture models and recoding. *Nat Commun* **12**,
1366 1783 (2021).

1367 250. Whelan, N. V. & Halanych, K. M. Available data do not rule out Ctenophora as the
1368 sister group to all other Metazoa. *Nat Commun* **14**, 711 (2023).

1369 251. Parey, E. *et al.* Genome structures resolve the early diversification of teleost fishes.
1370 *Science* **379**, 572–575 (2023).

1371 252. Eisen, J. A. Phylogenomics: Improving Functional Predictions for Uncharacterized
1372 Genes by Evolutionary Analysis. *Genome Res.* **8**, 163–167 (1998).

1373 253. Delsuc, F., Brinkmann, H. & Philippe, H. Phylogenomics and the reconstruction of the
1374 tree of life. *Nature Reviews Genetics* **6**, 361–375 (2005).

1375