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 17 

Abstract | Genome-scale amounts of data and the development of novel statistical phylogenetic 18 

approaches have greatly aided the reconstruction of a broad sketch of the tree of life and resolved 19 

many of its branches. However, incongruence—the inference of conflicting evolutionary histories—20 

remains pervasive in phylogenomic data. We synthesize the biological and analytical factors that 21 

drive incongruence, discuss methodological advances to diagnose and handle incongruence, and 22 

identify avenues for future research. The study of incongruence has enabled a deeper understanding 23 

of phylogenesis and improved our ability to reconstruct and interpret the tree of life.  24 



“The stream of heredity makes phylogeny; in a sense, it is phylogeny. 25 

Complete genetic analysis would provide the most priceless data for the mapping of this stream” 26 

George Gaylord Simpson, 19451 27 

 28 

 29 

Introduction 30 

Phylogenetics aims to reconstruct the evolutionary histories of organisms, genes, traits, and other 31 

biological features. Trees inferred from phylogenetic analyses of biological features represent the 32 

best-supported hypotheses of their evolutionary histories, not the ground truth. Phylogenetic 33 

approaches that use genome-scale amounts of data, or PHYLOGENOMICS, have become the gold 34 

standard for understanding the evolution of lineages in the tree of life, a prerequisite for 35 

understanding the evolution of biological features2–5. Phylogenomics revolutionized systematic 36 

biology, resolving numerous branches of the tree of life that were previously contentious and 37 

increasing our confidence in many others6–12.  38 

 39 

Despite these successes, different phylogenomic studies can sometimes support conflicting tree 40 

topologies13,14, suggesting that certain branches of the tree of life are challenging to resolve, even 41 

with genome-scale data. Some of these branches concern relationships key to our understanding of 42 

evolution’s most exciting episodes (see Box 1 for one example) and hinder our ability to resolve the 43 

tree of life.  44 

 45 

Incongruence is an umbrella term that describes the inference of conflicting tree topologies. This 46 

phenomenon can be observed at all time scales, from very ancient (hundreds of millions to billions 47 

of years old) to very recent (tens of thousands to millions of years old), and levels of  genomic 48 

organization, from whole chromosomes to individual sites (Fig. 1). The primary drivers of 49 

incongruence are biological processes that cause the histories of DNA sequences to differ from the 50 

histories of their species—hybridization or horizontal gene transfer events, for example2,5—and 51 

analytical shortcomings that lead to errors in inference—erroneous ortholog detection or poor model 52 

fit, for instance15. Dissecting the contribution of biological and analytical drivers of incongruence can 53 

improve phylogenetic inference and deepen our understanding of phylogenesis and the evolutionary 54 

process. 55 



 56 

Now, roughly two decades after the dawn of phylogenomics, the field’s understanding of the factors 57 

contributing to incongruence has matured. Concomitant development of methods and software that 58 

aid in diagnosing and accounting for incongruence in phylogenomic analyses has improved accuracy 59 

in inference. This review synthesizes the factors that drive incongruence, methodological advances 60 

to diagnose and handle incongruence, and highlights avenues for future research.  61 

 62 

Biological factors 63 

Several evolutionary processes influence the evolutionary histories of genomic regions while others 64 

erase these histories; these biological factors cause the histories of genomic regions to deviate from 65 

the history of the species and contribute to incongruence (Fig. 2). 66 

 67 

Incomplete lineage sorting 68 

INCOMPLETE LINEAGE SORTING is common across sexually reproducing organisms16–18. Incomplete 69 

lineage sorting does not always result in gene trees that are incongruent with the species phylogeny, 70 

but when it does, it is referred to as hemiplasy19 (Fig. 2, Table 1). Hemiplasy is particularly prevalent 71 

when populations are large and the time interval between speciation events is short20, and can affect 72 

a substantial fraction of the genome. Examination of the evolutionary history of 500 base pair 73 

windows from the human, chimpanzee, bonobo, gorilla, and orangutan genomes revealed that ~37% 74 

of the human genome exhibits hemiplasy and the evolutionary histories of these loci conflict with the 75 

species tree topology16 (Fig. 2).  76 

 77 

By modeling the underlying probability distribution of gene trees within a species tree, the 78 

multispecies coalescent model provides a framework that incorporates incomplete lineage sorting in 79 

phylogenomic inference21. One approach for evaluating whether hemiplasy explains gene tree-80 

species tree incongruence is by simulating trees under the multispecies coalescent model and 81 

comparing levels of observed and expected gene tree incongruence22. If the observed incongruence 82 

is equal to the expected incongruence under the model, then hemiplasy is the major contributor to 83 

incongruence; if not, other analytical or biological factors are likely (also) at play. 84 

 85 

Other approaches, such as the one implemented by the BEAST software, use Bayesian statistics to 86 

coestimate gene trees and species phylogenies in the presence of incomplete lineage sorting23,24 87 



(Table 2). These full coalescent methods are computationally expensive, hindering their use for large 88 

phylogenomic data matrices. To reduce computational costs, summary coalescent-based methods 89 

implemented in various software packages, including STAR, MP-EST, ASTRAL, ASTER, and 90 

ASTEROID25–29 (Table 2), infer the species tree from pre-inferred single gene trees in phylogenomic 91 

data matrices but at the cost of increased error rates in gene and species tree inference, especially 92 

for ancient divergences (see Analytical factors section). Thus, while hemiplasy may contribute to 93 

incongruence of both ancient and recent divergences, it is much more likely to be detectable in the 94 

latter.  95 

 96 

 97 

Horizontal gene transfer 98 

Genomic regions that experienced HORIZONTAL OR LATERAL GENE TRANSFER also have histories that 99 

deviate from the species tree (Fig. 2, Table 1). For example, eukaryotic acquisition of bacterial loci 100 

leads to gene phylogenies where eukaryotic sequences are nested within clades of bacterial 101 

sequences5,30. The contribution of horizontal gene transfer to incongruence is asymmetric across the 102 

tree of life; horizontal gene transfer is very common in Bacteria and Archaea and is a significant 103 

driver of genome evolution in these lineages31,32. Horizontal gene transfer in eukaryotes is less 104 

common, but evidence of its importance in eukaryotic genome evolution is increasing33. 105 

 106 

For lineages with low levels of horizontal gene transfer, incongruence stemming from horizontal gene 107 

transfer can be ameliorated by removing genes with signatures of transfer from the phylogenomic 108 

data matrix34. Horizontally transferred genes can be identified using phylogeny-based methods, such 109 

as topology tests (implemented in major programs, such as RAxML and IQ-TREE 2) that evaluate 110 

whether the gene tree topology indicative of horizontal gene transfer is significantly better than 111 

topologies that do not invoke transfer35. Horizontally transferred loci can also be detected by 112 

sequence composition-based methods wherein notable changes in the GC content or codon usage 113 

bias of one or more loci relative to the rest of the genome are used to identify signatures of horizontal 114 

transfer36 or using sequence similarity-based methods to detect foreign sequences, such as alien 115 

index37. Sequence composition- and similarity-based methods are faster, can be implemented across 116 

entire genomes, and are primarily suitable for recent events, whereas phylogeny-based methods are 117 

generally more accurate but slower and typically used to test horizontal transfer for one or a few 118 

loci.  119 

 120 



An alternative approach is to infer the species phylogeny through a probabilistic model of genome 121 

evolution that explicitly models horizontal gene transfer as one of the processes that lead to gene 122 

tree-species tree incongruence38,39, using programs such as SpeciesRax40. Horizontal transfer can 123 

occur between both closely related species as well as between distantly related ones. However, 124 

irrespective of the method used, inference of gene transfers – and amelioration of its effects on 125 

incongruence – among distantly related species is much easier than among close relatives.  126 

 127 

Hybridization, Introgression, and Recombination 128 

The exchange of genetic material between species during HYBRIDIZATION or INTROGRESSION introduces 129 

alleles with evolutionary histories that deviate from the species’ history, leading to locus tree-species 130 

tree incongruence41,42. When the hybrid species has the same ploidy as the parental species, 131 

hybridization can be detected through phylogeny-based and sequence read-mapping methods. In 132 

phylogeny-based methods, phylogenomic data matrices containing loci from the hybrid and both 133 

parental species are expected to show equal support (using measures such as internode certainty 134 

and concordance factors; see In search for incongruence section) for two distinct topologies because 135 

half of the hybrid’s genome comes from one parent and half from the other43. Similarly, in sequence 136 

read-mapping methods, such as the one implemented in sppIDer44 (Table 2), half of the sequence 137 

reads of the hybrid are expected to map to one parental species and the other half to the other 138 

parental species. Hybrid species that differ in their ploidy from the parental species (e.g., allodiploid 139 

hybrids) can also be detected using the above methods, but their gene number is also expected to 140 

be the sum of the genes in the parental species45. Approaches that ameliorate the contribution of 141 

hybridization to incongruence include to first separate the hybrid genome into parental subgenomes 142 

prior to phylogenomic inference46 and using probabilistic models that explicitly incorporate 143 

hybridization as one of the processes contributing to incongruence47.    144 

 145 

Introgression can also impact large genomic regions and lead to incongruence, but it is potentially 146 

more challenging to detect because the percentage and distribution of introgressed regions can vary. 147 

Methods for introgression detection typically aim to identify allele patterns across species that 148 

significantly deviate from a null model in which these patterns are governed only by incomplete 149 

lineage sorting (and no introgression). These include the D-statistic (also known as the ABBA-BABA 150 

test) designed to detect gene flow between two taxa in a four-taxon phylogeny, DFOIL, which expands 151 

the D-statistic for the five-taxon case, D3, and the branch-length test that use the signal of pairwise 152 

divergence—wherein gene trees that support introgression have shorter branch lengths 48—for 153 



introgression detection42,49,50 (Table 2). Removing loci with signatures of introgression or directly 154 

modeling the process can ameliorate incongruence stemming from introgression42. For example, 155 

inclusion of introgressed regions (detected using the D-statistic) in a phylogenomic dataset of 156 

passerine birds led to an incorrect species phylogeny; inference of the true phylogeny required careful 157 

examination not only of the topologies of individual loci but also of some of their properties, such as 158 

recombination frequency and nucleotide diversity41.  159 

 160 

Recombination, a frequent phenomenon in diverse lineages including prokaryotes and viruses, can 161 

also give rise to mosaic sequences and incongruence. In these instances, incongruence depends on 162 

the fraction of recombinant sites and how closely related the taxa are 51. Sequences with evidence 163 

of recombination can be detected using PhyPack or RDP52,53 and removed from the data matrix before 164 

inference. Accurate inference of all three processes is inversely proportional to the age(s) of the 165 

event(s), such that evaluating whether they are contributing to incongruence in ancient divergences 166 

is challenging.  167 

 168 

Natural selection 169 

NATURAL SELECTION generally leads to the divergence of sequences, however, selection for the same 170 

or similar traits in distantly related taxa can result in CONVERGENT MOLECULAR EVOLUTION54 (Table 1). 171 

Thus, gene trees of genes that have experienced convergent evolution may erroneously infer that 172 

they are closely related, reflecting the shared influence of selection rather than common ancestry 173 

(Fig. 2). Phylogenetic analysis of the gene prestin, which encodes a transport protein present on the 174 

membrane of cochlear outer hair cells, shows that sequences from echolocating organisms, such as 175 

bats and whales, group together because they have experienced convergent molecular evolution 176 

even though bats and whales are not sister lineages55. One method for detecting convergent 177 

sequence evolution is reconstructing ancestral sequences and identifying convergent amino acid 178 

substitutions in independent branches of the species phylogeny, if known56. Ancestral sequence 179 

reconstruction can be done with diverse software including IQ-TREE57, FireProtASR58, and PhyloBot59 180 

(Table 2). Cases of convergent molecular evolution that affect one or a few genes are best handled 181 

by removing those genes from the data matrix prior to inference. 182 

 183 

Convergent molecular evolution can also be observed in phylogenomic analyses of entire genomes 184 

or proteomes. For example, convergent amino acid usage—such as the convergence observed in 185 

high-salt adapted Methanonatronarchaeia and Haloarchaea toward similarly acidified amino acid 186 



compositions in their proteomes—can obfuscate phylogenomic inference60. In such cases, 187 

incongruence can be reduced either through exclusion or recoding (see Characterter recoding 188 

section) of affected sites or through the use of models that explicitly account for compositional 189 

heterogeneity. For example, resolving the evolutionary origins of mitochondrial genomes, a case of 190 

incongruence where compositional biases are at play61, recent analyses using a model that 191 

accomodates both across-site and across-branch compositional heterogeneity supported 192 

mitochondria as the sister lineage to Alphaproteobacteria62. 193 

 194 

Analytical factors 195 

The content of phylogenomic datasets and choices in how these datasets are constructed and 196 

analyzed can also contribute to incongruence. These stochastic, systematic, and treatment errors are 197 

collectively called analytical factors (Fig. 3). Incongruence due to stochastic errors stems from 198 

statistical uncertainty when too few molecular markers or taxa are analyzed. Incongruence from 199 

systematic errors stems from incorrect or inadequate assumptions in analysis—such as substitution 200 

model misspecifications or the lack of realistic models and erroneous ortholog detection. Finally, 201 

choices in experimental design or treatment of phylogenomic data are an emerging category of error, 202 

sometimes exacerbating or leading to additional stochastic and / or systematic errors; they can also 203 

lead to incongruence. We term these treatment errors.  204 

 205 

Stochastic errors 206 

Taxon Sampling. TAXON SAMPLING plays a critical role in species tree inference and incongruence (Fig. 207 

3a) because the number and taxonomic distribution of the sampled taxa influence numerous 208 

downstream analyses, such as predicting orthologous groups of genes and the estimation of 209 

substitution model parameters (Table 1). Generally, including more taxa improves tree inference but 210 

can lead to speed versus accuracy trade-offs (see Treatment errors section). In some cases, 211 

incongruence can guide the sampling of additional taxa. For example, the placement of the family 212 

Ascoideaceae, represented by a single taxon, was unstable in early phylogenomic studies of 213 

Saccharomycotina yeasts63–65, but the inclusion of three additional taxa from Ascoideaceae stabilized 214 

its placement66. Similarly, the inclusion of additional taxa that diverged near the base of the land 215 

plant phylogeny increased the stability of phylogenetic inference67–69. However, taxon pruning—such 216 

as removing ROGUE TAXA—may also improve congruence and accuracy in some cases70,71. 217 

Comprehensive taxon sampling may not always be possible, such as for ancient lineages that contain 218 

one or a few closely related extant species, such as coelacanths and lungfish72. However, studies of 219 



ancient DNA can shed light on phylogenetic relationships in cases where extant taxon sampling is 220 

difficult or impossible73,74. 221 

 222 

Locus sampling. How much sampling of sequence data is required is dependent on the specific 223 

evolutionary history of the lineage examined and how ancient or recent it is, on the information 224 

content of the loci used to reconstruct it, and on the evolutionary history of the loci (see the previous 225 

section on biological factors)7,75,76. Thus, incongruence stemming from limited sampling of sequence 226 

data can affect the resolution of ancient and recent divergences77,78, but can generally be ameliorated 227 

with additional sampling of molecular markers (Table 1). Additional molecular markers can be 228 

sampled using programs that can identify single-copy orthologs from gene families, for example, 229 

OrthoSNAP or DISCO79,80 (Table 2). However, there is a limit imposed by the sequence divergence 230 

of the genomes examined, such that the resolution of relationships of genome sequences that contain 231 

relatively few informative sites and/or many taxa—such as the SARS-CoV-2 whole-genome 232 

alignments—will be challenging from sequence data alone78. Additionally, datasets that contain short 233 

sequences (e.g., gene fragments or short genes) often contain insufficient numbers of sites for robust 234 

gene tree inference when using summary-based coalescence methods and can contribute to 235 

incongruence81 (Fig. 3a), but these can be overcome by collapsing poorly supported branches before 236 

species tree inference82. 237 

 238 

Molecular markers included in phylogenomic data matrices typically exhibit PARTIAL TAXON COVERAGE. 239 

This can increase statistical uncertainty, leading to identical support for multiple topologies, referred 240 

to as tree terraces83,84. For example, in a three-locus, 298-taxon data matrix from grasses with taxon 241 

coverage of 66%, the optimal tree is on a terrace with 61.2 million other equally supported 242 

topologies83. Tree terraces can be addressed through increased taxon coverage across molecular 243 

markers and locus sampling. Case in point, analysis of a 129-locus, 117-taxon data matrix of 244 

arthropods with a coverage density similar to that of the dataset of grasses, 65%, yielded a single 245 

optimal tree83,85. The gentrius function in IQ-TREE can help identify and characterize phylogenetic 246 

terraces86 (Table 2).  247 

 248 

Systematic errors  249 

Ortholog inference. Phylogenomic analyses often rely on single-copy orthologous genes, but errors 250 

in orthology inference, such as HIDDEN ORTHOLOGY, can lead to incongruence. The over-splitting of 251 

orthologous groups of genes can stem from sequence length biases among orthologs because both 252 



BLAST bit scores and expectation values have a length dependency such that longer sequences can 253 

have higher maximum bit scores and lower expectation values; thus, variation in sequence length 254 

within an orthologous group of genes can lead to exclusion of shorter sequences87 (Fig. 3a, Table 1). 255 

Hidden orthology can also stem from detection failure of rapidly evolving orthologs, an issue 256 

exacerbated across large evolutionary distances88, resulting in artifactual inferences of lineage-257 

specific genes. Hidden orthologs can be detected using “bridging” methods such as Leapfrog, an 258 

algorithm for identifying instances of reciprocal best BLAST hits in two different orthologous groups 259 

of genes89 (Table 1). Probabilistic modeling approaches, such as profile Hidden Markov Models 260 

implemented in HMMER that leverage site-specific parameterization of conservation (or lack thereof) 261 

from multiple sequence alignments are more sensitive in detecting rapidly evolving orthologs90 and 262 

reduce the risk of hidden orthology (Table 2). Improved taxon sampling (e.g., inclusion of under-263 

represented lineages) in multiple sequence alignments used to construct profile Hidden Markov 264 

Models, such as those implemented in TIAMMAt, can further improve the sensitivity of sequence 265 

similarity searches91 (Table 2).  266 

 267 

Another systematic error source is the asymmetry in rates of gene duplication and loss between 268 

species, which can result in HIDDEN PARALOGY. At shallow evolutionary depths, hidden paralogy can 269 

be detected by examining synteny. For example, examining the synteny of six yeast species that 270 

underwent differential patterns of gene loss since a shared whole-genome duplication event revealed 271 

that ~10% of inferred single-copy orthologs were hidden paralogs92. Detecting hidden paralogy 272 

instances in deep time is more challenging because synteny is likely not conserved. In such cases, 273 

hidden paralogs can potentially be detected by searching for gene trees where well-known clades 274 

are not monophyletic93,94. Alternatively, because hidden paralogs can be quite divergent from the 275 

rest of the sequences in an orthogroup, they can also be identified by examining gene trees for taxa 276 

that have unexpectedly long terminal branches using software such as TreeShrink, PhyloFisher, and 277 

PhyKIT94–97 (Table 2). INPARALOGS, especially species-specific ones, can easily be handled by retaining 278 

one of the two sequences, as implemented in PhyloTreePruner and OrthoSNAP98,99. 279 

 280 

Errors in ortholog inference can also stem from contaminated sequences in genome assemblies, a 281 

key concern in metagenome-assembled genomes. The degree of contamination (and completeness) 282 

of a given genome can be evaluated with the CheckM and miComplete programs61,100 and 283 

contaminant sequences can be removed prior to inference.  284 

 285 



Modeling substitutions. Traditional substitution models are site-homogeneous models, which use one 286 

reversible substitution matrix and the same nucleotide / amino acid frequencies for all sites in a data 287 

matrix. Early nucleotide models assumed equal substitution rates and base frequencies101 but later 288 

models incorporated biologically informed parameters, such as accounting for differences in the rates 289 

of transitions and transversions or base frequencies102,103. The most parameter-rich model among 290 

reversible models for nucleotide sequences is the generalized time-reversible model, which uses 291 

unequal substitution rates and unequal base frequencies104. Nucleotide substitution models that relax 292 

the assumptions of reversibility (i.e., the rate at which a particular nucleotide, say A, changes to 293 

another one, say G, is not the same as the rate of a G changing to an A), stationarity (nucleotide 294 

frequencies do not change over time), and independence (changes at each site in the alignment are 295 

independent of changes at other sites) also exist, but they are computationally expensive and not 296 

typically used in phylogenomic studies105. 297 

 298 

In contrast to these mechanistic substitution models for nucleotide sequences, substitution models 299 

for amino acid sequences are often inferred from empirical multiple sequence alignments. For 300 

example, the amino acid exchange probabilities in the mtMAM substitution model were estimated 301 

empirically by examining the rates of amino acid substitutions across the mitochondrial proteomes 302 

of 20 mammals106; other substitution models—such as WAG and LG—are derived by estimating 303 

substitution rates from larger, more diverse databases of amino acid sequence alignments like 304 

Pfam107,108.  305 

 306 

Determining the best-fitting nucleotide and amino acid substitution models is often done using 307 

likelihood ratio tests and Akaike or Bayesian information criteria109. The latter outperform likelihood 308 

ratio tests but also have their shortcomings resulting, at times, in the wrong model being favored110. 309 

Of note, model fit does not always predict phylogenetic tree accuracy, and models of variable fit can 310 

sometimes result in consistent phylogenetic trees111. For example, the generalized time-reversible 311 

model is often the best-fitting nucleotide reversible model, however, the large number of estimated 312 

parameters in this model may need to be revised for specific analyses112. In general, the modeling 313 

of substitutions is more challenging in ancient divergences than in more recent ones because the 314 

variation of mutational processes and evolutionary rates is typically greater in analyses of distantly 315 

related taxa.  Another avenue of modeling sequence evolution is through direct experimental 316 

measurement—mutagenesis, functional selection, and deep sequencing. These experimentally 317 



derived models have substantially improved fit compared to those with few or hundreds of 318 

parameters113. 319 

 320 

Partitioning concatenated data matrices—i.e., applying different site-homogeneous substitution 321 

models to distinct molecular markers or portions of an alignment—can account for heterogeneity in 322 

substitutions among sites and lead to more accurate estimates of phylogeny114. Supermatrices can 323 

be partitioned by biological features (e.g., genes or codon positions) or be algorithmically defined115. 324 

An alternative to partitioning is site-heterogeneous models, wherein nucleotide or amino acid 325 

equilibrium frequencies differ across sites of a multiple sequence alignment. Site-heterogeneous 326 

models fit data better than site-homogeneous models and are thought to be superior at ameliorating 327 

LONG-BRANCH ATTRACTION artifacts116,117. Consequently, site-heterogeneous models have risen in 328 

popularity and helped resolve the placement of several anciently diverged lineages118,119, but are also 329 

the focal point of controversies such as the rooting the animal tree (Box 1). In other cases, using 330 

site-heterogeneous models has shed light on the evolutionary relationships among life’s three 331 

domains, supporting the hypothesis that eukaryotes originated from within Archaea (the two-domain 332 

hypothesis)120. 333 

 334 

Substitution model misspecification can bias topology estimation, contributing to incongruence15,121–335 

123 (Fig. 3c, Table 1). One well-known source of incongruence that stems from model misspecification 336 

is long-branch attraction124,125. Long-branch attraction is common in phylogenomic data matrices 337 

containing taxa that greatly vary in their evolutionary rates or lineages undergoing accelerated 338 

evolutionary rates, as observed in bacterial endosymbionts126 and parasitic fungi127. Outgroup taxa 339 

may also introduce long branches, increasing the potential for long-branch attraction artifacts (see 340 

next section). In addition to using site-heterogeneous models124, long-branch attraction artifacts can 341 

sometimes also be ameliorated by including taxa whose placements break long branches128,129 (see 342 

also Taxon sampling section). Notably, long-branch attraction can also occur when models are 343 

correctly specified and be exacerbated when partitioning phylogenomic datasets125.  344 

 345 

Other approaches attempt to approximate true processes of sequence evolution better. For example, 346 

HETEROTACHY, which is not accounted for by either site-homogeneous or heterogeneous models130, 347 

can decrease phylogenetic accuracy due to long-branch attraction artifacts125,131. The General 348 

Heterogeneous evolution On a Single Topology (or GHOST) model of sequence evolution can account 349 

for heterotachy, in part, by incorporating features of mixed substitution and mixed branch length 350 



models. The GHOST model has helped resolve some phylogenetic controversies—such as the 351 

placement of turtles6.  352 

 353 

Rooting strategy. Rooting strategies have been debated for a long time, especially in the context of 354 

outgroup taxa driving long-branch attraction artifacts132. The recent controversy surrounding the root 355 

of animal phylogeny has highlighted the relevance of these debates (Box 1). Although there is no 356 

consensus on selecting outgroup taxa133, it is broadly accepted that thorough sampling of 357 

representatives of diverse lineages improves phylogenetic inference134. 358 

 359 

Other methods aim to infer the root of a phylogenetic tree without using outgroup taxa. These include 360 

the use of paralogs such as implemented in the software STRIDE135–137, nonreversible Markov models 361 

such as the one implemented in the software Root Digger138,139, relaxed molecular clock models as 362 

implemented in BEAST140, the minimal ancestor deviation method that is also molecular clock-363 

based141, and modeling dynamics of gene family evolution39. For example, modeling genome 364 

duplication, horizontal gene transfer, and gene loss helped root the archaeal tree of life, placing it 365 

between Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota, Nanohaloarchaea 366 

(known as DPANN) and other Archaea39. 367 

 368 

 369 

Treatment errors  370 

Multiple sequence alignment. Errors in multiple sequence alignment can result in inaccurate 371 

phylogenetic inferences and incongruence142,143. Alignment errors can stem from errors in ortholog 372 

inference (from either hidden paralogy or hidden orthology) but can also occur when truly 373 

orthologous sequences are aligned. Such errors are particularly common when sequences in the 374 

alignment exhibit high levels of divergence144 (Fig. 3b). Approaches to remedy errors in multiple 375 

sequence alignments include alignment trimming (see next section), probabilistic modeling to identify 376 

clusters of homologous characters and dividing the alignment accordingly (as implemented in 377 

Divvier145) or masking putative errors in multiple sequence alignments using two-dimensional outlier 378 

detection methods (as implemented in TAPER146). 379 

 380 

Alignment trimming. Although trimming of sites during multiple sequence alignment is a widespread 381 

practice for reducing errors in multiple sequence alignment, it can also reduce the accuracy of 382 

phylogenetic inference, increase statistical uncertainty, and lead to incongruence (Fig. 3b, Table 1). 383 



Generally, more aggressive alignment trimming that removes larger numbers of sites increases errors 384 

in single gene tree inferences147. For example, entropy-based trimming, which removes divergent 385 

sites, or multiple rounds of trimming, which often remove more than 20% of sites in an alignment, 386 

can significantly worsen phylogenetic inferences of tree topology, support, and branch length 387 

estimation147,148. Recently developed approaches that focus on retaining phylogenetically informative 388 

sites—such as ClipKIT (Table 2)—are equally accurate and more time-saving than no-trimming 389 

approaches148.  390 

 391 

Character recoding. Saturation by multiple substitutions and compositional biases can lead to 392 

inaccurate phylogenetic inferences and contribute to incongruence. Recoding nucleotides or amino 393 

acids into fewer character states can combat these issues149–152 (Fig. 3b). However, the benefit of 394 

combating compositional heterogeneity and substitutional saturation can be outweighed by the loss 395 

of information from reducing the number of character states during recoding and increase statistical 396 

uncertainty, especially among shorter alignments153,154. Thus, recoding can also increase, rather than 397 

ameliorate, error. Appropriate ways forward include adequately assessing how recoding impacts 398 

compositional heterogeneity or implementing alternative recoding schemes—for example, in amino 399 

acid sequence alignments, a greater number of recoding states outperformed the most frequently 400 

implemented six-state recoding strategies153. Notably, errors in multiple sequence alignment, 401 

excessive trimming, and inappropriate character recoding all contribute to erosion of phylogenetic 402 

signal. 403 

 404 

Concatenation vs. coalescence. Phylogenomic data matrices can be analyzed as a single supermatrix, 405 

an approach known as concatenation, or each gene alignment can be analyzed separately under the 406 

multispecies coalescent framework, an approach known as coalescence. The two approaches 407 

sometimes yield different tree topologies, contributing to incongruence66,155. Determining which 408 

approach is more appropriate for a phylogenomic dataset is difficult. For example, using simulated 409 

multilocus data, concatenation slightly outperformed a full coalescent-based approach (wherein gene 410 

trees and species trees are coestimated), whereas using coalescent independent sites, both 411 

approaches performed comparably156. Moreover, there can be differences in the performance of full 412 

and summary coalescent-based methods (wherein gene trees are first estimated and then the species 413 

tree is estimated by summarizing the collection of gene trees). Summary coalescent-based methods 414 

are more vulnerable to errors in gene tree inference, but newer implementations of summary 415 

coalescent-based methods take gene tree uncertainty into account28. Analyses with both full and 416 



summary coalescent-based methods can be improved through targetted data filtering, such as 417 

removing loci with low phylogenetic informativeness157. Loci that are inconsistent between 418 

concatenation- and coalescence-based methods can also be pruned from data matrices158.  419 

 420 

Irreproducibility. A tenet of scientific inquiry is reproducibility. PHYLOGENETIC IRREPRODUCIBILITY 421 

contributes to incongruence and can be caused by: increasing the number of threads (because 422 

threads can be initialized in different orders between runs); errors in floating point arithmetic such 423 

as rounding errors, and numerical over- and under-flows (the storing of a value greater than or 424 

smaller than the maximum and minimum supported value, respectively); and differences in 425 

software compilers that result in binaries with slightly different orders of operations159,160. Genes 426 

with low phylogenetic signal (i.e., few parsimony-informative sites) are particularly susceptible to 427 

irreproducibility. This means that summary coalescent-based methods, which typically rely on 428 

accurately inferred gene tree topologies, can be particularly susceptible160. Some problems of 429 

irreproducibility and issues plaguing bioinformatic software can be remedied through rigorous 430 

software development practices—such as extensive testing and continuous integration 431 

pipelines148,159. Studies that further our understanding of the accuracy and information content of 432 

multiple sequence alignments may facilitate predicting genes with greater phylogenetic signal75,161–433 

163.  434 

 435 

Detecting incongruence 436 

Because several biological and analytical factors, often initially unknown, can contribute to 437 

incongruence, several methods examine the presence and magnitude of incongruence per se in 438 

phylogenomic datasets without assuming the presence of a specific underlying biological or 439 

analytical factor(s). 440 

 441 

Measures of branch support. Traditional approaches, such as nonparametric bootstrapping164 and 442 

Bayesian posterior probabilities, are frequently used to examine bipartition support in a phylogeny; 443 

low branch support values can be indicative of incongruence. Other branch support methods 444 

include approximate likelihood-ratio tests and the Shimodaira-Hasegawa approximate likelihood 445 

ratio test165. The transfer bootstrap expectation method—an approach based on traditional 446 

bootstrapping but that measures the presence of branches among bootstrap trees as a gradual 447 



“transfer” distance rather than a binary presence/absence—is more accurate for assessing support 448 

among deep branches in datasets with large numbers of taxa166. The usefulness of many of these 449 

measures in concatenation analyses of phylogenomic datasets is rather low because they almost 450 

invariably yield absolute support values, even if there is substantial incongruence between sites or 451 

loci77. However, these measures are highly informative when using summary coalescent-based 452 

methods to remove loci with low amounts of phylogenetic signal167.  453 

 454 

Gene support frequencies and concordance factors. Gene support frequencies measure the 455 

frequency of recovering an individual branch in a set of gene trees from a phylogenomic data 456 

matrix94,168. Branches with low gene support frequencies are likely to be incongruent. Concordance 457 

factors were initially defined as the proportion of the genome that supports a given branch in the 458 

species tree169,170 and can be measured using BUCKy, a Bayesian approach that estimates the joint 459 

probability distribution of genes and their phylogenies (or a gene-to-tree map) genome-wide169,171. 460 

Recently, concordance factors were redefined as equivalent to gene support frequencies168, which 461 

can be calculated using IQ-TREE and PhyKIT57,172 (Table 2). 462 

 463 

Internode certainty. Internode certainty is an information theory-based approach that considers the 464 

relative prevalence of a branch and the second most common conflicting branch in a set of trees; 465 

internode certainty-all considers the relative prevalence of a branch relative to all alternative 466 

conflicting branches in a set of trees173–176. Internode certainty measures can help identify 467 

branches with substantial conflict, which can be then further examined for underlying causes 468 

contributing to incongruence. Internode certainty measures are distinct in that the prevalence of 469 

conflicting alternative branches is accounted for, thereby providing a measure of the degree of 470 

conflict for every branch in a phylogenomic tree. Internode certainty can be calculated using the 471 

software QuartetScores177 (Table 2). 472 

 473 

Phylogenetic networks. Evolutionary relationships among organisms are often depicted as bifurcating 474 

trees, but this may not always be appropriate. As discussed earlier, many genomes bear the 475 

hallmarks of biological factors that make the histories of genes and genomes deviate from strict 476 

vertical inheritance. By relaxing the assumption of a strictly bifurcating topology, reconstruction of 477 

the histories of loci from such lineages as PHYLOGENETIC NETWORKS enables the description and 478 

visualization of incongruence. The underlying data and theory used to infer a phylogenetic network 479 



can differ178—for example, split networks depict all possible splits in a set of phylogenies179; reticulate 480 

networks depict putative evolutionary events, such as hybridizations180. Software for inferring 481 

phylogenetic networks include SplitsTree181, PhyloNet182, and NetRAX183 (Table 2). 482 

 483 

Incongruence search protocols. In addition to the above methods, several protocols have been 484 

used to search for incongruence in phylogenomic datasets. These include repeated subsampling of 485 

smaller subsets of loci with robust phylogenetic signal and re-inference of the species 486 

phylogeny162, gene genealogy interrogation184, examination of phylogenetic signal185, and quartet 487 

sampling186.  488 

 489 

Polytomies. Several clades in the tree of life, such as cichlids and finches, have experienced 490 

elevated rates of speciation giving rise to EVOLUTIONARY RADIATIONS. Such clades have often been 491 

influenced by multiple biological (e.g., introgression, lineage sorting) and analytical (e.g., long 492 

branch attraction for ancient radiations) factors, making phylogenomic inference particularly 493 

challenging and often present as a POLYTOMIES. Polytomies can be detected by identifying cases of 494 

equal support for multiple distinct topologies in sets of single gene trees94,187. Support can be 495 

measured using gene trees or the quartets of taxa present in these gene trees using ASTRAL82, 496 

PhyKIT172, and IQ-TREE57 (Table 2).  497 

 498 

 499 

Future Directions 500 

Our knowledge of the tree of life, and the evolution of traits and genomes, has been transformed 501 

by phylogenomics, but incongruence continues to cloud our understanding of some of its branches. 502 

We discussed biological and analytical factors contributing to incongruence, methods for its 503 

detection, and approaches that have helped improve the accuracy of phylogenomic inference. In 504 

this final section, we identified avenues ripe for research and discovery. 505 

 506 

Which factors matter and when?  507 

Although the effects of multiple factors on specific instances of incongruence have been 508 

investigated31,157,160, a general framework for assessing the contribution of multiple biological and 509 

analytical factors to a given case of incongruence is lacking. The evolutionary depth of each case of 510 



incongruence further complicates assessing any factor’s relative importance because our ability to 511 

detect their effects varies across time scales. For example, incomplete lineage sorting and 512 

hybridization are biological factors that likely contribute to incongruence of ancient and recent 513 

relationships but are typically detectable only in studies of recently diverged lineages. In contrast, it 514 

is typically much easier to detect horizontal gene transfer between distantly related taxa than 515 

between closely related ones. We also know that errors in ortholog inference or multiple sequence 516 

alignment are greater contributors to incongruence when studying ancient divergences than recent 517 

ones188,189. However, for a given case of incongruence in deep time, simultaneously evaluating the 518 

relative contribution of incongruence stemming from multiple biological and analytical factors is 519 

challenging (see also Box 1). A related issue is identifiability, that is figuring out why the observed 520 

conflict should be ascribed to certain factors and not others. For example, ancient horizontal gene 521 

transfer is often difficult to distinguish from gene duplication followed by extensive gene loss; 522 

attributing incongruence to one factor and ruling out another is challenging and often depends on 523 

a priori knowledge on which process is more likely. Developing methods and computational 524 

pipelines that enable simultaneous evaluation of potential contributing factors will be key for fully 525 

understanding the drivers of incongruence. 526 

 527 

The forest grows: how can tree space be efficiently examined? 528 

As the amount of genomic data increases, phylogenomic studies sampling several hundreds to 529 

thousands of organisms are becoming commonplace. One challenge with inferring phylogenies from 530 

such taxon-rich datasets is that tree space is vast, making computation challenging. For example, 531 

the numbers of possible unrooted trees for three, five, seven, and nine taxa are one, 15, 945, and 532 

135,135, respectively. As tree space grows, the likelihood of finding the nonoptimal tree increases, 533 

leading to speed-accuracy trade-offs and incongruence. Efficiently searching tree space, however, is 534 

key to finding an optimal tree; phylogenetic inference programs that yield the highest likelihood 535 

scores on phylogenomic data matrices are the ones that perform the most extensive explorations of 536 

tree space and require the longest runtimes190. Moreover, gene-rich datasets present their own 537 

challenges, such as optimizing tree parameters. It is possible that the phylogenetic signal in whole 538 

genomes will prove insufficient for resolving phylogenies of all known species in each major lineage. 539 

Developing algorithms, including those that leverage the power of machine learning163,191–193, that 540 

can heuristically explore tree space in a reasonable amount of time or evaluate the degree of difficulty 541 

in the inference task will be critical for resolving the tree of life. 542 

 543 



Data and datasets of ever higher quality 544 

Data quality is paramount to phylogenomic inference. As sequencing technologies and other 545 

downstream processes—such as methods for genome assembly and gene annotation—improve, so 546 

does the field of phylogenomics. Higher quality and more complete genomes, coupled with increased 547 

sampling of organisms from taxa underrepresented in genomic databases, will help reduce the impact 548 

of hidden paralogy and orthology in phylogenomic datasets. Denser datasets will also help increase 549 

confidence in inferences of the underlying analytical or biological drivers of incongruence; for 550 

example, confidence in inferring hybridization as a potential driver of incongruence may be weak in 551 

a dataset of 100 molecular markers but strong in a 5,000-marker dataset. 552 

 553 

Mitigating errors in dataset construction 554 

Errors can be introduced at all stages of phylogenomic analyses, including data matrix construction, 555 

and contribute to incongruence. Some errors may stem from certain strategies employed in a 556 

phylogenomic pipeline—such as multiple sequence alignment and trimming—being suitable for some, 557 

but not all, genes. Some features that may influence the efficacy of alignment and trimming 558 

strategies may be the taxa sampled and their evolutionary breadth, although, numerous other 559 

technical contributors of incongruence may be at play. The development of pipelines for reproducibly 560 

handling phylogenomic data matrix construction will greatly facilitate comparative analyses of 561 

analytical drivers of incongruence across studies.  562 

 563 

Phylogenomics and green computing  564 

End-to-end phylogenomic analysis requires substantial computational resources and large amounts 565 

of energy. As the planet grapples with the consequences of global climate change, we must work to 566 

minimize the environmental toll of phylogenomic analyses194. We can reduce the carbon footprint of 567 

phylogenomics through judicious use of computing infrastructure, careful experimental design, and 568 

software choice. For example, evaluating substitution model fit using fast and robust software like 569 

ModelTest-NG195 and jModelTest196 can result in a 90% reduction in energy use, resulting in 10% 570 

less greenhouse gas emissions197. Similarly, choosing faster programs in quantifiably difficult-to-571 

analyze datasets does not alter the quality of inference but can save energy198.  572 
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Table 1 | Drivers of incongruence. 590 

Driver of 

incongruence 
Factor Literature about topic 

Sampling, taxon and 

locus 

Analytical, Stochastic 

error 

81,199,200 

Insufficient number of 

genes or divergent 

sites  

Analytical, Stochastic 

error 

2,7,9,78 

Erroneous ortholog 

detection  

Analytical, Systematic 

error 

93,96,201–203  

Model misspecification 
Analytical, Systematic 

error 

6,124,125,204 

Multiple sequence 

alignment errors 

Analytical, Treatment 

error 

142,143 

Excessive trimming 
Analytical, Treatment 

error 

147,148 

Inappropriate character 

recoding 

Analytical, Treatment 

error 

205,206 

Incomplete lineage 

sorting 
Biological 18,22,207 

Horizontal gene 

transfer 
Biological 34,208–210 

Hybridization / 

Introgression and 

Recombination 

Biological 41,42 

Natural selection Biological 55,56 

 591 

  592 



Table 2 | Tools for investigating incongruence large genomic data sets. 593 

Software/Method Utility category Utility details Reference 

Bag of little 

bootstraps 

Bipartition support 

metric 

Median bagging of bootstrap support assessed 

using few little samples and small subset of sites 

is a rapid method to infer bootstrap trees and 

provides similar patterns of support compared to 

traditional bootstrapping procedures 

211 

Gene and site 

concordance 

factors 

Bipartition support 

metric 

Bipartition support that details how many 

“decisive” genes or sites support a given 

bipartition in a reference tree 

168 

Internode 

certainty / Tree 

certainty 

Bipartition support 

metric 

Identifies bipartitions in a reference phylogeny 

that also have a well-supported alternative 

topology 

173–175 

UFBoot2 
Bipartition support 

metric 

Ultrafast bootstrap approximations that are 

robust to model violation 

212 

IQ-TREE 2, 

FireProtASR, 

PhyloBot 

Convergent 

sequence 

evolution 

Software for inferring ancestral sequences 

across nodes of a phylogeny. These pieces of 

software can be used to detect convergent 

sequence evolution. 

57–59 

RERconverge 

Convergent 

sequence 

evolution 

Identifies genes in phylogenomic data matrices 

with signatures of convergent relative 

evolutionary rates in lineages with similar 

phenotypes  

213 

ClipKIT 
Data processing 

and analysis 

Multiple sequence alignment trimming wherein 

informative sites are retained rather than 

removing highly divergent sites 

148 

Concaterpillar 
Data processing 

and analysis 

Identifies congruent loci in a phylogenomic data 

matrix 

214 

ConJak 
Data processing 

and analysis 

Identifies sequence outliers compared to the 

central mean of a phylogenomic data matrix  

215 



ConWin 
Data processing 

and analysis 

Tests for within protein incongruence using a 

sliding window approach  

215 

PhyKIT 
Data processing 

and analysis 

Broadly applicable phylogenomic toolkit for data 

processing and analysis—such as examining 

information content biases, gene-gene 

coevolution, and polytomy testing 

216 

PhyloFisher 
Data processing 

and analysis 

Collection of scripts for dataset building and 

trimming phylogenomic data sets. Also features 

a database of eukaryotic orthologs  

97 

RogueNaRok 
Data processing 

and analysis 

Identification of rogue taxa in a phylogenomic 

dataset  

70 

Root Digger 
Data processing 

and analysis 

Uses a non-reversible Markov model to calculate 

the likelihood of the root position in a tree 

217 

TreeShrink, 

PhyloFisher, and 

PhyKIT 

Data processing 

and analysis 

Identifies spurious orthologs from unexpectedly 

long terminal branches 

96,216,218 

abSENSE 
Homology/ortholog 

detection 

Calculates probability that homolog detection 

may fail 

88 

BLAST 
Homology/ortholog 

detection 

Searches for similar sequences by using 

measures of local similarity 

219 

Leapfrog 
Homology/ortholog 

detection 

Combines over split orthologs using reciprocal 

best BLAST hits 

89 

OrthoFinder 
Homology/ortholog 

detection 
Infers groups of orthologous genes 201 

OrthoSNAP and 

DISCO 

Homology/ortholog 

detection 

Decompose multi-copy gene families into 

subgroups of single-copy orthologous genes 

99,220 

Profile Hidden 

Markov Models 

Homology/ortholog 

detection 

Probabilistic inference method that accounts for 

position-specific variation in sequences 

90 

TIAMMAt 
Homology/ortholog 

detection 

Increases sensitivity of sequence similarity 

searches by incorporating underrepresented 

lineages in profile Hidden Markov Models 

91 



ASTRAL and 

PhyKIT 
Hypothesis testing 

Both pieces of software enable researchers to 

conduct polytomy testing at a specific bipartition 

in a phylogeny 

27,216 

Gene- and site-

wise log 

likelihood scores; 

gene-wise quartet 

scores 

Hypothesis testing 

Allows researchers to examine gene- and site-

wise support between two topologies using 

maximum likelihood; gene-wise support can also 

be examined using quartet scores 

158,221 

D-statistic (also 

known as the 

ABBA-BABA test), 

DFOIL, D3, and the 

branch-length test 

Introgression 

detection 

Diverse methods that detect introgression 

events using sequence or phylogenetic 

information 

42,49,50 

NetRAX 
Phylogenetic 

network inference 

Maximum likelihood inference of phylogenetic 

networks when incomplete lineage sorting is not 

a factor 

183 

PhyloNet Tree inference 

Maximum parsimony, maximum likelihood, and 

Bayesian inference of phylogenetic networks 

from locus tree estimates 

222 

SplitsTree 
Phylogenetic 

network inference 

Splits graph inference using multiple sequence 

alignments, distance matrices, or sets of trees 

181 

General 

Heterogeneous 

evolution On a 

Single Topology 

model 

Substitution 

models 

Edge-unlinked mixture model consisting of 

several site classes with separate sets of model 

parameters and edge lengths on the same tree 

topology 

6 

QMaker 
Substitution 

models 

Estimates general time-reversible protein 

matrices—which describe rates of substitutions 

between amino acids—from multiple sequence 

alignments 

204 

Asteroid Tree inference 
Supertree method for species tree inference that 

is robust to missing data 

223 



ASTRAL, 

ASTRAL-PRO 

and ASTER 

Tree inference 

Quartet-based supertree method that accounts 

for partial gene trees, paralogs, and gene tree 

uncertainty 

27,224,225 

BEAST Tree inference 
Bayesian approach for phylogenetic tree 

inference and divergence time estimation 

226 

BPP 

 
Tree inference 

Full-likelihood implementation of the 

multispecies coalescent 

227 

IQ-TREE 2 Tree inference 

Maximum likelihood tree inference method that 

uses hill-climbing and stochastic perturbation to 

search tree space. Moreover, the gentrius 

function can help identify and characterize 

phylogenetic terraces 

86 

MP-EST Tree inference 
Maximum pseudo-likelihood approach for 

species tree inference 

228 

PhyloBayes MPI Tree inference 

Bayesian tree inference method that 

incorporates finite and infinite mixture models to 

account for site variation  

229 

RAxML-NG Tree inference 

Maximum likelihood tree inference method that 

uses a greedy tree search algorithm to explore 

tree space 

230 

STAR Tree inference 
Inference of species trees using average ranks 

of coalescences  

231 

SVDQuartets Tree inference 
Inference of relationships using quartets and the 

coalescent model 

232 
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Figure legends 595 

 596 

Figure 1 | Incongruence at different levels of genomic organization. a | The topology 597 

shown in blue supports a sister group relationship of taxa A and B, whereas the orange topology 598 

supports a sister group relationship of taxa A and C. The inference of such conflicting topologies 599 

defines incongruence. Incongruence can occur at different levels in the genome, such as among c | 600 

whole chromosomes (e.g., analyses of one chromosome support the blue topology but analyses of 601 

another support the orange topology), d | regions of a chromosome (dark grey regions represent 602 

lack of homology), e | genes (or loci), f | within a gene or locus (e.g., different domains support 603 

different topologies), and g | among sites in a multiple sequence alignment. Note that 604 

incongruence is also prevalent in other types of data (e.g., behavioral or morphological traits) and 605 

can occur at all evolutionary depths.  606 



 607 

Figure 2 | Major biological factors that contribute to incongruence. Incomplete lineage 608 

sorting can lead to to gene trees that differ from the species phylogeny due to variation in the 609 

sorting of ancestral polymorphisms. Horizontal gene transfer, hybridization, and introgression can 610 

all lead to gene phylogenies that differ from the species tree. Recombination can result in loci with 611 

chimeric evolutionary histories. Duplication and loss can lead to hidden paralogy. Independently 612 

evolved traits in different phylogenetic lineages can be associated with convergent molecular 613 

evolution (green), contributing to incongruence. 614 

  615 



 616 

Figure 3 | Analytical factors can contribute to incongruence at every step in a 617 

phylogenomic workflow. a | Taxon sampling can impact all downstream analyses in 618 

phylogenomic studies. b | During orthology inference, biases (e.g., sequence length biases) and 619 

analytical errors (e.g., erroneous orthology inferences) can contribute to incongruence. Each color 620 

corresponds to a unique ortholog present in each of the four taxa. c | Misalignment and excessive 621 

trimming of individual groups of orthologous genes can further decrease the accuracy of 622 

phylogenetic inferences. An example of erroneous ortholog inclusion is depicted using red font. d | 623 



Species tree inference via concatenation (left) or coalescence (right) is susceptible to multiple 624 

additional sources of error—complexity of model space, model misspecification, and inadequate 625 

model complexity, to name just a few. 626 

  627 



Box 1 | Rooting the animal tree.  628 

 629 

Few branches in the tree of life are as intensely debated as the root of the animal phylogeny. The 630 

two leading hypotheses debate whether sponges93,233–236 or comb jellies 631 

(ctenophores)10,14,65,200,237,238 are the sister group to a clade of all other animals. These two 632 

hypotheses have come to be known as the sponge-sister and ctenophore-sister hypotheses, 633 

respectively (see figure). Resolution of the root of the animal tree bears on our understanding of 634 

how animal cell types and tissues evolved239. Sponges lack muscles and a nervous system and are 635 

thought of as morphologically “simpler” animals compared to ctenophores, which have both240,241. 636 

Which hypothesis is correct also has implications for whether ctenophore nervous systems are 637 

structurally and genetically homologous to those of bilaterian animals242,243, with some arguing 638 

that the ctenophore nervous system evolved independently244. 639 

 640 

Numerous biological and analytical factors contribute to this challenging phylogenetic problem. Much 641 

of the controversy has centered around whether site-homogeneous (with gene partitioning) or site-642 

heterogeneous models of sequence evolution are most appropriate for reconstructing the animal 643 

phylogeny200,245. These models are largely employed to combat long-branch attraction, an artifact 644 

central to the debate because ctenophores have a long branch leading up to the lineage246. Site-645 

heterogeneous models with many categories tend to support the sponge-sister hypothesis13,247, 646 

whereas site-heterogeneous models with fewer categories and site-homogeneous models tend to 647 

support the ctenophore-sister hypothesis247. Some simulation analyses suggest that site-648 

heterogeneous models underperform site-homogeneous models with gene partitioning248 and others 649 



suggest the opposite246. Aimed at reducing saturation and compositional biases, data matrix recoding 650 

analyses supported the sponge-sister hypothesis152,249; however, some of these analyses249 failed to 651 

recover well-established monophyletic clades, such as Chordata, suggesting that analyses of non-652 

recoded data were more accurate250. Poor taxon sampling has also long impacted this phylogenetic 653 

question, but new genomes and transcriptomes have recently been made available for key lineages 654 

— sponges, ctenophores, cnidarians, and placozoans13,14,152. Outgroup choice has also been 655 

important to the debate—the sponge-sister hypothesis is most frequently supported when 656 

choanoflagellates are chosen as the outgroup, whereas the ctenophore-sister hypothesis is supported 657 

when a broader sampling of single-celled relatives of animals (Holozoa) and fungi (Opisthokonta) is 658 

used200.  659 

 660 

Several other factors, such as ortholog inference errors and multiple sequence alignment errors, 661 

are likely at play. The possibility that additional biological factors, such as hybridization or 662 

incomplete lineage sorting, also contributed cannot be excluded; however, detecting the effect of 663 

multiple analytical and biological factors in such an ancient divergence is challenging. Resolving the 664 

root of the root of the animal tree may require extensive amounts of new (high-quality) data such 665 

as expanded taxon sampling of sponge, ctenophore, and choanoflagellate genomes239. Similarly, 666 

other lines of evidence, such as investigations of synteny conservation using chromosome-level 667 

genome assemblies251, an independent line of evidence that does not have the same pitfalls as 668 

sequence data analyses, may shed light on the root of the animal tree. 669 

  670 



Glossary 671 

 672 

CONVERGENT MOLECULAR EVOLUTION 673 

Independent evolution of similar or identical molecular changes (e.g., gene deletions, nucleotide 674 

substitutions, gene order rearrangements) in organisms from different lineages that exhibit similar 675 

adaptations 676 

 677 

EVOLUTIONARY RADIATION 678 

The occurrence of an elevated rate of speciation events in a narrow window of evolutionary time 679 

 680 

HETEROTACHY 681 

The phenomenon of changes in the evolutionary rate of a nucleotide or amino acid sequence through time 682 

 683 

HIDDEN ORTHOLOGY 684 

Undetected orthologous relationships of genes 685 

 686 

HIDDEN PARALOGY 687 

Orthologous groups of genes that contain orthologs and paralogs (inparalogs and outparalogs) stemming 688 

from asymmetric patterns of duplication and loss 689 

 690 

HORIZONTAL OR LATERAL GENE TRANSFER 691 

The transfer of genetic material from one organism to another by mechanisms other than sexual 692 

reproduction 693 

 694 

HYBRIDIZATION 695 

The interbreeding of two distinct species or lineages 696 

 697 

INCOMPLETE LINEAGE SORTING 698 

When alleles in a population fail to coalesce due to retention and random sorting of ancestral polymorphisms, 699 

causing, at times, alleles to first coalesce with more distantly related alleles 700 

 701 

INPARALOG 702 

Lineage- or species-specific paralogs wherein the duplication event occurred after divergence from a 703 

reference common ancestor 704 

 705 

INTROGRESSION 706 



The interbreeding of two distinct species or lineages followed by backcrossing with one of the parental 707 

species 708 

 709 

LONG BRANCH ATTRACTION 710 

The inaccurate inference of taxa with high evolutionary rates (giving rise to long branches in their 711 

phylogenetic trees) as closely related 712 

 713 

MODEL OF SEQUENCE EVOLUTION OR SUBSTITUTION 714 

Models that describe rates of nucleotide or amino acid substitutions in a locus during evolution 715 

 716 

OHNOLOGS 717 

Paralogs that stem from a whole genome duplication event 718 

 719 

OUTPARALOGS 720 

Paralogs wherein the duplication event occurred before divergence from a reference common ancestor 721 

 722 

PHYLOGENETIC NETWORKS 723 

Graphs of evolutionary relationships that, in addition to depicting the splitting of lineages, also depict the 724 

merging of lineages (due to events such as hybridization and convergent molecular evolution or due to 725 

different gene tree topologies) 726 

 727 

PHYLOGENOMICS 728 

Defined initially as predicting gene function from phylogenies of homologous genes 252, the term was later 729 

expanded also to include phylogenetic inference using genome-scale amounts of data 253 730 

 731 

POLYTOMY 732 

The node where more than two desendant lineages stem from an ancestral one  733 

 734 

TAXON SAMPLING 735 

Which and how many taxa are selected for a phylogenetic analysis 736 

 737 

PARTIAL OR INCOMPLETE TAXON COVERAGE 738 

The lack of sequences (either because they are genuinely absent or because they were not collected) from 739 

particular taxa in a group of orthologous genes 740 

 741 

PHYLOGENETIC IRREPRODUCIBILITY  742 



Lack of reproducibility of a tree topology between two replicate tree inferences using the same software 743 

parameters (e.g., same model of sequence evolution, starting seed, etc.) 744 

 745 

ROGUE TAXA 746 

Taxa whose placement is unstable across a set of trees (e.g., across a set of gene trees) 747 

 748 

STOCHASTIC ERROR 749 

Error that occurs due to limited sampling and/or statistical uncertainty; can be eliminated by increasing the 750 

amount of data 751 

 752 

SYSTEMATIC ERROR 753 

Error that occurs due to incorrect assumptions (e.g., model misspecification); it leads to bias in inference and 754 

certainty in an incorrect result increases as larger amounts of data are used 755 

 756 

TREATMENT ERROR 757 

Error that stems from incorrect handling of data; depending on the source, it can result in stochastic or 758 

systematic error 759 

 760 

 761 

 762 
  763 
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