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Abstract | Genome-scale amounts of data and the development of novel statistical phylogenetic
approaches have greatly aided the reconstruction of a broad sketch of the tree of life and resolved
many of its branches. However, incongruence—the inference of conflicting evolutionary histories—
remains pervasive in phylogenomic data. We synthesize the biological and analytical factors that
drive incongruence, discuss methodological advances to diagnose and handle incongruence, and
identify avenues for future research. The study of incongruence has enabled a deeper understanding
of phylogenesis and improved our ability to reconstruct and interpret the tree of life.



25
26
27
28

29
30

31
32
33
34
35
36
37
38

39

40
41
42
43
44

45

46
47
48
49
50
51
52
53
54
55

"The stream of heredity makes phylogeny; in a sense, it is phylogeny.
Complete genetic analysis would provide the most priceless data for the mapping of this stream”

George Gaylord Simpson, 1945

Introduction

Phylogenetics aims to reconstruct the evolutionary histories of organisms, genes, traits, and other
biological features. Trees inferred from phylogenetic analyses of biological features represent the
best-supported hypotheses of their evolutionary histories, not the ground truth. Phylogenetic
approaches that use genome-scale amounts of data, or PHYLOGENOMICS, have become the gold
standard for understanding the evolution of lineages in the tree of life, a prerequisite for
understanding the evolution of biological features?=5. Phylogenomics revolutionized systematic
biology, resolving numerous branches of the tree of life that were previously contentious and

increasing our confidence in many others®12,

Despite these successes, different phylogenomic studies can sometimes support conflicting tree
topologiesi®14, suggesting that certain branches of the tree of life are challenging to resolve, even
with genome-scale data. Some of these branches concern relationships key to our understanding of
evolution’s most exciting episodes (see Box 1 for one example) and hinder our ability to resolve the

tree of life.

Incongruence is an umbrella term that describes the inference of conflicting tree topologies. This
phenomenon can be observed at all time scales, from very ancient (hundreds of millions to billions
of years old) to very recent (tens of thousands to millions of years old), and levels of genomic
organization, from whole chromosomes to individual sites (Fig. 1). The primary drivers of
incongruence are biological processes that cause the histories of DNA sequences to differ from the
histories of their species—hybridization or horizontal gene transfer events, for example*>—and
analytical shortcomings that lead to errors in inference—erroneous ortholog detection or poor model
fit, for instance!®. Dissecting the contribution of biological and analytical drivers of incongruence can
improve phylogenetic inference and deepen our understanding of phylogenesis and the evolutionary

process.
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Now, roughly two decades after the dawn of phylogenomics, the field’s understanding of the factors
contributing to incongruence has matured. Concomitant development of methods and software that
aid in diagnosing and accounting for incongruence in phylogenomic analyses has improved accuracy
in inference. This review synthesizes the factors that drive incongruence, methodological advances
to diagnose and handle incongruence, and highlights avenues for future research.

Biological factors

Several evolutionary processes influence the evolutionary histories of genomic regions while others
erase these histories; these biological factors cause the histories of genomic regions to deviate from

the history of the species and contribute to incongruence (Fig. 2).

Incomplete lineage sorting

INCOMPLETE LINEAGE SORTING is common across sexually reproducing organisms!®8, Incomplete
lineage sorting does not always result in gene trees that are incongruent with the species phylogeny,
but when it does, it is referred to as hemiplasy!® (Fig. 2, Table 1). Hemiplasy is particularly prevalent
when populations are large and the time interval between speciation events is short?°, and can affect
a substantial fraction of the genome. Examination of the evolutionary history of 500 base pair
windows from the human, chimpanzee, bonobo, gorilla, and orangutan genomes revealed that ~37%
of the human genome exhibits hemiplasy and the evolutionary histories of these loci conflict with the

species tree topology¢ (Fig. 2).

By modeling the underlying probability distribution of gene trees within a species tree, the
multispecies coalescent model provides a framework that incorporates incomplete lineage sorting in
phylogenomic inference?!. One approach for evaluating whether hemiplasy explains gene tree-
species tree incongruence is by simulating trees under the multispecies coalescent model and
comparing levels of observed and expected gene tree incongruence??. If the observed incongruence
is equal to the expected incongruence under the model, then hemiplasy is the major contributor to

incongruence; if not, other analytical or biological factors are likely (also) at play.

Other approaches, such as the one implemented by the BEAST software, use Bayesian statistics to

coestimate gene trees and species phylogenies in the presence of incomplete lineage sorting?2*
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(Table 2). These full coalescent methods are computationally expensive, hindering their use for large
phylogenomic data matrices. To reduce computational costs, summary coalescent-based methods
implemented in various software packages, including STAR, MP-EST, ASTRAL, ASTER, and
ASTEROID?*?° (Table 2), infer the species tree from pre-inferred single gene trees in phylogenomic
data matrices but at the cost of increased error rates in gene and species tree inference, especially
for ancient divergences (see Analytical factors section). Thus, while hemiplasy may contribute to
incongruence of both ancient and recent divergences, it is much more likely to be detectable in the

latter.

Horizontal gene transfer

Genomic regions that experienced HORIZONTAL OR LATERAL GENE TRANSFER also have histories that
deviate from the species tree (Fig. 2, Table 1). For example, eukaryotic acquisition of bacterial loci
leads to gene phylogenies where eukaryotic sequences are nested within clades of bacterial
sequences>3°. The contribution of horizontal gene transfer to incongruence is asymmetric across the
tree of life; horizontal gene transfer is very common in Bacteria and Archaea and is a significant
driver of genome evolution in these lineages!*2. Horizontal gene transfer in eukaryotes is less

common, but evidence of its importance in eukaryotic genome evolution is increasing®.

For lineages with low levels of horizontal gene transfer, incongruence stemming from horizontal gene
transfer can be ameliorated by removing genes with signatures of transfer from the phylogenomic
data matrix34. Horizontally transferred genes can be identified using phylogeny-based methods, such
as topology tests (implemented in major programs, such as RAXML and IQ-TREE 2) that evaluate
whether the gene tree topology indicative of horizontal gene transfer is significantly better than
topologies that do not invoke transfer3>. Horizontally transferred loci can also be detected by
sequence composition-based methods wherein notable changes in the GC content or codon usage
bias of one or more loci relative to the rest of the genome are used to identify signatures of horizontal
transfer®® or using sequence similarity-based methods to detect foreign sequences, such as alien
index®’. Sequence composition- and similarity-based methods are faster, can be implemented across
entire genomes, and are primarily suitable for recent events, whereas phylogeny-based methods are
generally more accurate but slower and typically used to test horizontal transfer for one or a few

loci.
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An alternative approach is to infer the species phylogeny through a probabilistic model of genome
evolution that explicitly models horizontal gene transfer as one of the processes that lead to gene
tree-species tree incongruence®3°, using programs such as SpeciesRax*°. Horizontal transfer can
occur between both closely related species as well as between distantly related ones. However,
irrespective of the method used, inference of gene transfers — and amelioration of its effects on

incongruence — among distantly related species is much easier than among close relatives.

Hybridization, Introgression, and Recombination

The exchange of genetic material between species during HYBRIDIZATION or INTROGRESSION introduces
alleles with evolutionary histories that deviate from the species’ history, leading to locus tree-species
tree incongruence**?, When the hybrid species has the same ploidy as the parental species,
hybridization can be detected through phylogeny-based and sequence read-mapping methods. In
phylogeny-based methods, phylogenomic data matrices containing loci from the hybrid and both
parental species are expected to show equal support (using measures such as internode certainty
and concordance factors; see In search for incongruence section) for two distinct topologies because
half of the hybrid’s genome comes from one parent and half from the other*3. Similarly, in sequence
read-mapping methods, such as the one implemented in sppIDer** (Table 2), half of the sequence
reads of the hybrid are expected to map to one parental species and the other half to the other
parental species. Hybrid species that differ in their ploidy from the parental species (e.g., allodiploid
hybrids) can also be detected using the above methods, but their gene number is also expected to
be the sum of the genes in the parental species*. Approaches that ameliorate the contribution of
hybridization to incongruence include to first separate the hybrid genome into parental subgenomes
prior to phylogenomic inference*® and using probabilistic models that explicitly incorporate

hybridization as one of the processes contributing to incongruence?®’.

Introgression can also impact large genomic regions and lead to incongruence, but it is potentially
more challenging to detect because the percentage and distribution of introgressed regions can vary.
Methods for introgression detection typically aim to identify allele patterns across species that
significantly deviate from a null model in which these patterns are governed only by incomplete
lineage sorting (and no introgression). These include the D-statistic (also known as the ABBA-BABA
test) designed to detect gene flow between two taxa in a four-taxon phylogeny, Dron, which expands
the D-statistic for the five-taxon case, D3 and the branch-length test that use the signal of pairwise

divergence—wherein gene trees that support introgression have shorter branch lengths “—for
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introgression detection??#>°% (Table 2). Removing loci with signatures of introgression or directly
modeling the process can ameliorate incongruence stemming from introgression*?. For example,
inclusion of introgressed regions (detected using the D-statistic) in a phylogenomic dataset of
passerine birds led to an incorrect species phylogeny; inference of the true phylogeny required careful
examination not only of the topologies of individual loci but also of some of their properties, such as

recombination frequency and nucleotide diversity*!.

Recombination, a frequent phenomenon in diverse lineages including prokaryotes and viruses, can
also give rise to mosaic sequences and incongruence. In these instances, incongruence depends on
the fraction of recombinant sites and how closely related the taxa are >!. Sequences with evidence
of recombination can be detected using PhyPack or RDP>2°3 and removed from the data matrix before
inference. Accurate inference of all three processes is inversely proportional to the age(s) of the
event(s), such that evaluating whether they are contributing to incongruence in ancient divergences

is challenging.

Natural selection

NATURAL SELECTION generally leads to the divergence of sequences, however, selection for the same
or similar traits in distantly related taxa can result in CONVERGENT MOLECULAR EVOLUTION>* (Table 1).
Thus, gene trees of genes that have experienced convergent evolution may erroneously infer that
they are closely related, reflecting the shared influence of selection rather than common ancestry
(Fig. 2). Phylogenetic analysis of the gene prestin, which encodes a transport protein present on the
membrane of cochlear outer hair cells, shows that sequences from echolocating organisms, such as
bats and whales, group together because they have experienced convergent molecular evolution
even though bats and whales are not sister lineages®. One method for detecting convergent
sequence evolution is reconstructing ancestral sequences and identifying convergent amino acid
substitutions in independent branches of the species phylogeny, if known®. Ancestral sequence
reconstruction can be done with diverse software including IQ-TREE*’, FireProt"**8, and PhyloBot>®
(Table 2). Cases of convergent molecular evolution that affect one or a few genes are best handled

by removing those genes from the data matrix prior to inference.

Convergent molecular evolution can also be observed in phylogenomic analyses of entire genomes
or proteomes. For example, convergent amino acid usage—such as the convergence observed in

high-salt adapted Methanonatronarchaeia and Haloarchaea toward similarly acidified amino acid



187
188
189
190
191
192
193

194

195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

compositions in their proteomes—can obfuscate phylogenomic inference®®. In such cases,
incongruence can be reduced either through exclusion or recoding (see Characterter recoding
section) of affected sites or through the use of models that explicitly account for compositional
heterogeneity. For example, resolving the evolutionary origins of mitochondrial genomes, a case of
incongruence where compositional biases are at play®!, recent analyses using a model that
accomodates both across-site and across-branch compositional heterogeneity supported

mitochondria as the sister lineage to Alphaproteobacteria®?.

Analytical factors

The content of phylogenomic datasets and choices in how these datasets are constructed and
analyzed can also contribute to incongruence. These stochastic, systematic, and treatment errors are
collectively called analytical factors (Fig. 3). Incongruence due to stochastic errors stems from
statistical uncertainty when too few molecular markers or taxa are analyzed. Incongruence from
systematic errors stems from incorrect or inadequate assumptions in analysis—such as substitution
model misspecifications or the lack of realistic models and erroneous ortholog detection. Finally,
choices in experimental design or treatment of phylogenomic data are an emerging category of error,
sometimes exacerbating or leading to additional stochastic and / or systematic errors; they can also

lead to incongruence. We term these treatment errors.

Stochastic errors

Taxon Sampling. TAXON SAMPLING plays a critical role in species tree inference and incongruence (Fig.
3a) because the number and taxonomic distribution of the sampled taxa influence numerous
downstream analyses, such as predicting orthologous groups of genes and the estimation of
substitution model parameters (Table 1). Generally, including more taxa improves tree inference but
can lead to speed versus accuracy trade-offs (see Treatment errors section). In some cases,
incongruence can guide the sampling of additional taxa. For example, the placement of the family
Ascoideaceae, represented by a single taxon, was unstable in early phylogenomic studies of
Saccharomycotina yeasts®3-%°, but the inclusion of three additional taxa from Ascoideaceae stabilized
its placement®®. Similarly, the inclusion of additional taxa that diverged near the base of the land
plant phylogeny increased the stability of phylogenetic inference®’-%°. However, taxon pruning—such
as removing ROGUE TAXA—may also improve congruence and accuracy in some cases’®7’!.
Comprehensive taxon sampling may not always be possible, such as for ancient lineages that contain

one or a few closely related extant species, such as coelacanths and lungfish’?>. However, studies of
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ancient DNA can shed light on phylogenetic relationships in cases where extant taxon sampling is

difficult or impossible’>74.

Locus sampling. How much sampling of sequence data is required is dependent on the specific
evolutionary history of the lineage examined and how ancient or recent it is, on the information
content of the loci used to reconstruct it, and on the evolutionary history of the loci (see the previous
section on biological factors)’”>7%. Thus, incongruence stemming from limited sampling of sequence
data can affect the resolution of ancient and recent divergences’”:”8, but can generally be ameliorated
with additional sampling of molecular markers (Table 1). Additional molecular markers can be
sampled using programs that can identify single-copy orthologs from gene families, for example,
OrthoSNAP or DISCO”°# (Table 2). However, there is a limit imposed by the sequence divergence
of the genomes examined, such that the resolution of relationships of genome sequences that contain
relatively few informative sites and/or many taxa—such as the SARS-CoV-2 whole-genome
alignments—will be challenging from sequence data alone’8. Additionally, datasets that contain short
sequences (e.g., gene fragments or short genes) often contain insufficient numbers of sites for robust
gene tree inference when using summary-based coalescence methods and can contribute to
incongruence®! (Fig. 3a), but these can be overcome by collapsing poorly supported branches before

species tree inference®.

Molecular markers included in phylogenomic data matrices typically exhibit PARTIAL TAXON COVERAGE.
This can increase statistical uncertainty, leading to identical support for multiple topologies, referred
to as tree terraces®3*84. For example, in a three-locus, 298-taxon data matrix from grasses with taxon
coverage of 66%, the optimal tree is on a terrace with 61.2 million other equally supported
topologies®. Tree terraces can be addressed through increased taxon coverage across molecular
markers and locus sampling. Case in point, analysis of a 129-locus, 117-taxon data matrix of
arthropods with a coverage density similar to that of the dataset of grasses, 65%, yielded a single
optimal tree®3®>, The gentrius function in IQ-TREE can help identify and characterize phylogenetic

terraces® (Table 2).

Systematic errors
Ortholog inference. Phylogenomic analyses often rely on single-copy orthologous genes, but errors
in orthology inference, such as HIDDEN ORTHOLOGY, can lead to incongruence. The over-splitting of

orthologous groups of genes can stem from sequence length biases among orthologs because both
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BLAST bit scores and expectation values have a length dependency such that longer sequences can
have higher maximum bit scores and lower expectation values; thus, variation in sequence length
within an orthologous group of genes can lead to exclusion of shorter sequences®” (Fig. 3a, Table 1).
Hidden orthology can also stem from detection failure of rapidly evolving orthologs, an issue
exacerbated across large evolutionary distances®, resulting in artifactual inferences of lineage-
specific genes. Hidden orthologs can be detected using “bridging” methods such as Leapfrog, an
algorithm for identifying instances of reciprocal best BLAST hits in two different orthologous groups
of genes® (Table 1). Probabilistic modeling approaches, such as profile Hidden Markov Models
implemented in HMMER that leverage site-specific parameterization of conservation (or lack thereof)
from multiple sequence alignments are more sensitive in detecting rapidly evolving orthologs®® and
reduce the risk of hidden orthology (Table 2). Improved taxon sampling (e.g., inclusion of under-
represented lineages) in multiple sequence alignments used to construct profile Hidden Markov
Models, such as those implemented in TIAMMAL, can further improve the sensitivity of sequence
similarity searches®! (Table 2).

Another systematic error source is the asymmetry in rates of gene duplication and loss between
species, which can result in HIDDEN PARALOGY. At shallow evolutionary depths, hidden paralogy can
be detected by examining synteny. For example, examining the synteny of six yeast species that
underwent differential patterns of gene loss since a shared whole-genome duplication event revealed
that ~10% of inferred single-copy orthologs were hidden paralogs®?. Detecting hidden paralogy
instances in deep time is more challenging because synteny is likely not conserved. In such cases,
hidden paralogs can potentially be detected by searching for gene trees where well-known clades
are not monophyletic®*®4. Alternatively, because hidden paralogs can be quite divergent from the
rest of the sequences in an orthogroup, they can also be identified by examining gene trees for taxa
that have unexpectedly long terminal branches using software such as TreeShrink, PhyloFisher, and
PhyKIT®+®7 (Table 2). INPARALOGS, especially species-specific ones, can easily be handled by retaining

one of the two sequences, as implemented in PhyloTreePruner and OrthoSNAP%:%°,

Errors in ortholog inference can also stem from contaminated sequences in genome assemblies, a
key concern in metagenome-assembled genomes. The degree of contamination (and completeness)
of a given genome can be evaluated with the CheckM and miComplete programs®-1% and

contaminant sequences can be removed prior to inference.
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Modeling substitutions. Traditional substitution models are site-homogeneous models, which use one
reversible substitution matrix and the same nucleotide / amino acid frequencies for all sites in a data
matrix. Early nucleotide models assumed equal substitution rates and base frequencies!®! but later
models incorporated biologically informed parameters, such as accounting for differences in the rates
of transitions and transversions or base frequencies!®1%, The most parameter-rich model among
reversible models for nucleotide sequences is the generalized time-reversible model, which uses
unequal substitution rates and unequal base frequencies!®. Nucleotide substitution models that relax
the assumptions of reversibility (i.e., the rate at which a particular nucleotide, say A, changes to
another one, say G, is not the same as the rate of a G changing to an A), stationarity (nucleotide
frequencies do not change over time), and independence (changes at each site in the alignment are
independent of changes at other sites) also exist, but they are computationally expensive and not

typically used in phylogenomic studies'®.

In contrast to these mechanistic substitution models for nucleotide sequences, substitution models
for amino acid sequences are often inferred from empirical multiple sequence alignments. For
example, the amino acid exchange probabilities in the mtMAM substitution model were estimated
empirically by examining the rates of amino acid substitutions across the mitochondrial proteomes
of 20 mammalsi®; other substitution models—such as WAG and LG—are derived by estimating
substitution rates from larger, more diverse databases of amino acid sequence alignments like

Pfam107,108.

Determining the best-fitting nucleotide and amino acid substitution models is often done using
likelihood ratio tests and Akaike or Bayesian information criteria'®. The latter outperform likelihood
ratio tests but also have their shortcomings resulting, at times, in the wrong model being favored*1°,
Of note, model fit does not always predict phylogenetic tree accuracy, and models of variable fit can
sometimes result in consistent phylogenetic trees!!!l. For example, the generalized time-reversible
model is often the best-fitting nucleotide reversible model, however, the large number of estimated
parameters in this model may need to be revised for specific analyses!'?. In general, the modeling
of substitutions is more challenging in ancient divergences than in more recent ones because the
variation of mutational processes and evolutionary rates is typically greater in analyses of distantly
related taxa. Another avenue of modeling sequence evolution is through direct experimental

measurement—mutagenesis, functional selection, and deep sequencing. These experimentally
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derived models have substantially improved fit compared to those with few or hundreds of

parameters!’3,

Partitioning concatenated data matrices—i.e., applying different site-homogeneous substitution
models to distinct molecular markers or portions of an alignment—can account for heterogeneity in
substitutions among sites and lead to more accurate estimates of phylogeny!!*. Supermatrices can
be partitioned by biological features (e.g., genes or codon positions) or be algorithmically defined!*.
An alternative to partitioning is site-heterogeneous models, wherein nucleotide or amino acid
equilibrium frequencies differ across sites of a multiple sequence alignment. Site-heterogeneous
models fit data better than site-homogeneous models and are thought to be superior at ameliorating
LONG-BRANCH ATTRACTION artifacts!'®1!’, Consequently, site-heterogeneous models have risen in
popularity and helped resolve the placement of several anciently diverged lineages!!®!!°, but are also
the focal point of controversies such as the rooting the animal tree (Box 1). In other cases, using
site-heterogeneous models has shed light on the evolutionary relationships among life’s three
domains, supporting the hypothesis that eukaryotes originated from within Archaea (the two-domain
hypothesis)!%.

Substitution model misspecification can bias topology estimation, contributing to incongruence!>!2-
123 (Fig. 3c, Table 1). One well-known source of incongruence that stems from model misspecification
is long-branch attraction'?*1%>, Long-branch attraction is common in phylogenomic data matrices
containing taxa that greatly vary in their evolutionary rates or lineages undergoing accelerated
evolutionary rates, as observed in bacterial endosymbionts!?® and parasitic fungi'?’. Outgroup taxa
may also introduce long branches, increasing the potential for long-branch attraction artifacts (see
next section). In addition to using site-heterogeneous models!?*, long-branch attraction artifacts can
sometimes also be ameliorated by including taxa whose placements break long branches!?%1?° (see
also 7axon sampling section). Notably, long-branch attraction can also occur when models are

correctly specified and be exacerbated when partitioning phylogenomic datasets!?°.

Other approaches attempt to approximate true processes of sequence evolution better. For example,
HETEROTACHY, which is not accounted for by either site-homogeneous or heterogeneous models'°,
can decrease phylogenetic accuracy due to long-branch attraction artifacts!?>!3!, The General
Heterogeneous evolution On a Single Topology (or GHOST) model of sequence evolution can account

for heterotachy, in part, by incorporating features of mixed substitution and mixed branch length
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models. The GHOST model has helped resolve some phylogenetic controversies—such as the

placement of turtles®.

Rooting strategy. Rooting strategies have been debated for a long time, especially in the context of
outgroup taxa driving long-branch attraction artifacts*2. The recent controversy surrounding the root
of animal phylogeny has highlighted the relevance of these debates (Box 1). Although there is no
consensus on selecting outgroup taxa!®, it is broadly accepted that thorough sampling of

representatives of diverse lineages improves phylogenetic inference!34.

Other methods aim to infer the root of a phylogenetic tree without using outgroup taxa. These include
the use of paralogs such as implemented in the software STRIDE!3>-137, nonreversible Markov models
such as the one implemented in the software Root Digger'3®13, relaxed molecular clock models as
implemented in BEAST'%, the minimal ancestor deviation method that is also molecular clock-
based!*!, and modeling dynamics of gene family evolution®. For example, modeling genome
duplication, horizontal gene transfer, and gene loss helped root the archaeal tree of life, placing it
between Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota, Nanohaloarchaea
(known as DPANN) and other Archaea.

Treatment errors

Multiple sequence alignment. Errors in multiple sequence alignment can result in inaccurate
phylogenetic inferences and incongruence!*?143, Alignment errors can stem from errors in ortholog
inference (from either hidden paralogy or hidden orthology) but can also occur when truly
orthologous sequences are aligned. Such errors are particularly common when sequences in the
alignment exhibit high levels of divergence!** (Fig. 3b). Approaches to remedy errors in multiple
sequence alignments include alignment trimming (see next section), probabilistic modeling to identify
clusters of homologous characters and dividing the alignment accordingly (as implemented in
Divvierl*®) or masking putative errors in multiple sequence alignments using two-dimensional outlier

detection methods (as implemented in TAPER!#).

Alignment trimming. Although trimming of sites during multiple sequence alignment is a widespread
practice for reducing errors in multiple sequence alignment, it can also reduce the accuracy of

phylogenetic inference, increase statistical uncertainty, and lead to incongruence (Fig. 3b, Table 1).
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Generally, more aggressive alignment trimming that removes larger numbers of sites increases errors
in single gene tree inferences'*’. For example, entropy-based trimming, which removes divergent
sites, or multiple rounds of trimming, which often remove more than 20% of sites in an alignment,
can significantly worsen phylogenetic inferences of tree topology, support, and branch length
estimation!*”1*8, Recently developed approaches that focus on retaining phylogenetically informative
sites—such as ClipKIT (Table 2)—are equally accurate and more time-saving than no-trimming

approaches!®,

Character recoding. Saturation by multiple substitutions and compositional biases can lead to
inaccurate phylogenetic inferences and contribute to incongruence. Recoding nucleotides or amino
acids into fewer character states can combat these issues!***>2 (Fig. 3b). However, the benefit of
combating compositional heterogeneity and substitutional saturation can be outweighed by the loss
of information from reducing the number of character states during recoding and increase statistical
uncertainty, especially among shorter alignments!>3!>4, Thus, recoding can also increase, rather than
ameliorate, error. Appropriate ways forward include adequately assessing how recoding impacts
compositional heterogeneity or implementing alternative recoding schemes—for example, in amino
acid sequence alignments, a greater number of recoding states outperformed the most frequently
implemented six-state recoding strategies!>3. Notably, errors in multiple sequence alignment,
excessive trimming, and inappropriate character recoding all contribute to erosion of phylogenetic

signal.

Concatenation vs. coalescence. Phylogenomic data matrices can be analyzed as a single supermatrix,
an approach known as concatenation, or each gene alignment can be analyzed separately under the
multispecies coalescent framework, an approach known as coalescence. The two approaches
sometimes yield different tree topologies, contributing to incongruence®:!>>. Determining which
approach is more appropriate for a phylogenomic dataset is difficult. For example, using simulated
multilocus data, concatenation slightly outperformed a full coalescent-based approach (wherein gene
trees and species trees are coestimated), whereas using coalescent independent sites, both
approaches performed comparably*>¢. Moreover, there can be differences in the performance of full
and summary coalescent-based methods (wherein gene trees are first estimated and then the species
tree is estimated by summarizing the collection of gene trees). Summary coalescent-based methods
are more vulnerable to errors in gene tree inference, but newer implementations of summary

coalescent-based methods take gene tree uncertainty into account?. Analyses with both full and
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summary coalescent-based methods can be improved through targetted data filtering, such as
removing loci with low phylogenetic informativeness!®’. Loci that are inconsistent between

concatenation- and coalescence-based methods can also be pruned from data matrices®>8.

Irreproducibility. A tenet of scientific inquiry is reproducibility. PHYLOGENETIC IRREPRODUCIBILITY
contributes to incongruence and can be caused by: increasing the number of threads (because
threads can be initialized in different orders between runs); errors in floating point arithmetic such
as rounding errors, and numerical over- and under-flows (the storing of a value greater than or
smaller than the maximum and minimum supported value, respectively); and differences in
software compilers that result in binaries with slightly different orders of operations5%16%, Genes
with low phylogenetic signal (i.e., few parsimony-informative sites) are particularly susceptible to
irreproducibility. This means that summary coalescent-based methods, which typically rely on
accurately inferred gene tree topologies, can be particularly susceptible®®. Some problems of
irreproducibility and issues plaguing bioinformatic software can be remedied through rigorous
software development practices—such as extensive testing and continuous integration
pipelines4®159_ Studies that further our understanding of the accuracy and information content of

multiple sequence alignments may facilitate predicting genes with greater phylogenetic signal?5-161~

163

Detecting incongruence

Because several biological and analytical factors, often initially unknown, can contribute to
incongruence, several methods examine the presence and magnitude of incongruence per sein
phylogenomic datasets without assuming the presence of a specific underlying biological or

analytical factor(s).

Measures of branch support. Traditional approaches, such as nonparametric bootstrappingé4 and
Bayesian posterior probabilities, are frequently used to examine bipartition support in a phylogeny;
low branch support values can be indicative of incongruence. Other branch support methods
include approximate likelihood-ratio tests and the Shimodaira-Hasegawa approximate likelihood
ratio test'>. The transfer bootstrap expectation method—an approach based on traditional

bootstrapping but that measures the presence of branches among bootstrap trees as a gradual
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“transfer” distance rather than a binary presence/absence—is more accurate for assessing support
among deep branches in datasets with large numbers of taxa'®®. The usefulness of many of these
measures in concatenation analyses of phylogenomic datasets is rather low because they almost
invariably yield absolute support values, even if there is substantial incongruence between sites or
loci””. However, these measures are highly informative when using summary coalescent-based

methods to remove loci with low amounts of phylogenetic signalt®?,

Gene support frequencies and concordance factors. Gene support frequencies measure the
frequency of recovering an individual branch in a set of gene trees from a phylogenomic data
matrix®4168, Branches with low gene support frequencies are likely to be incongruent. Concordance
factors were initially defined as the proportion of the genome that supports a given branch in the
species tree!®%17% and can be measured using BUCKy, a Bayesian approach that estimates the joint
probability distribution of genes and their phylogenies (or a gene-to-tree map) genome-widet6%171,
Recently, concordance factors were redefined as equivalent to gene support frequencies®®, which
can be calculated using IQ-TREE and PhyKIT%7:172 (Table 2).

Internode certainty. Internode certainty is an information theory-based approach that considers the
relative prevalence of a branch and the second most common conflicting branch in a set of trees;
internode certainty-all considers the relative prevalence of a branch relative to all alternative
conflicting branches in a set of treest”3-176, Internode certainty measures can help identify
branches with substantial conflict, which can be then further examined for underlying causes
contributing to incongruence. Internode certainty measures are distinct in that the prevalence of
conflicting alternative branches is accounted for, thereby providing a measure of the degree of
conflict for every branch in a phylogenomic tree. Internode certainty can be calculated using the

software QuartetScores!’” (Table 2).

Phylogenetic networks. Evolutionary relationships among organisms are often depicted as bifurcating
trees, but this may not always be appropriate. As discussed earlier, many genomes bear the
hallmarks of biological factors that make the histories of genes and genomes deviate from strict
vertical inheritance. By relaxing the assumption of a strictly bifurcating topology, reconstruction of
the histories of loci from such lineages as PHYLOGENETIC NETWORKS enables the description and
visualization of incongruence. The underlying data and theory used to infer a phylogenetic network
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can differ'”®—for example, split networks depict all possible splits in a set of phylogenies'’?; reticulate
networks depict putative evolutionary events, such as hybridizations!®, Software for inferring
phylogenetic networks include SplitsTree!®!, PhyloNet!®?, and NetRAX!®3 (Table 2).

Incongruence search protocols. In addition to the above methods, several protocols have been
used to search for incongruence in phylogenomic datasets. These include repeated subsampling of
smaller subsets of loci with robust phylogenetic signal and re-inference of the species
phylogeny'62, gene genealogy interrogation®, examination of phylogenetic signal*®®, and quartet

sampling8s,

Polytomies. Several clades in the tree of life, such as cichlids and finches, have experienced
elevated rates of speciation giving rise to EVOLUTIONARY RADIATIONS. Such clades have often been
influenced by multiple biological (e.g., introgression, lineage sorting) and analytical (e.g., long
branch attraction for ancient radiations) factors, making phylogenomic inference particularly
challenging and often present as a POLYTOMIES. Polytomies can be detected by identifying cases of
equal support for multiple distinct topologies in sets of single gene trees®#187, Support can be
measured using gene trees or the quartets of taxa present in these gene trees using ASTRAL®?,
PhyKIT72, and IQ-TREE® (Table 2).

Future Directions

Our knowledge of the tree of life, and the evolution of traits and genomes, has been transformed
by phylogenomics, but incongruence continues to cloud our understanding of some of its branches.
We discussed biological and analytical factors contributing to incongruence, methods for its
detection, and approaches that have helped improve the accuracy of phylogenomic inference. In
this final section, we identified avenues ripe for research and discovery.

Which factors matter and when?
Although the effects of multiple factors on specific instances of incongruence have been
investigated3\.157:160 3 general framework for assessing the contribution of multiple biological and

analytical factors to a given case of incongruence is lacking. The evolutionary depth of each case of
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incongruence further complicates assessing any factor’s relative importance because our ability to
detect their effects varies across time scales. For example, incomplete lineage sorting and
hybridization are biological factors that likely contribute to incongruence of ancient and recent
relationships but are typically detectable only in studies of recently diverged lineages. In contrast, it
is typically much easier to detect horizontal gene transfer between distantly related taxa than
between closely related ones. We also know that errors in ortholog inference or multiple sequence
alignment are greater contributors to incongruence when studying ancient divergences than recent
ones'®18 However, for a given case of incongruence in deep time, simultaneously evaluating the
relative contribution of incongruence stemming from multiple biological and analytical factors is
challenging (see also Box 1). A related issue is identifiability, that is figuring out why the observed
conflict should be ascribed to certain factors and not others. For example, ancient horizontal gene
transfer is often difficult to distinguish from gene duplication followed by extensive gene loss;
attributing incongruence to one factor and ruling out another is challenging and often depends on
a priori knowledge on which process is more likely. Developing methods and computational
pipelines that enable simultaneous evaluation of potential contributing factors will be key for fully

understanding the drivers of incongruence.

The forest grows: how can tree space be efficiently examined?

As the amount of genomic data increases, phylogenomic studies sampling several hundreds to
thousands of organisms are becoming commonplace. One challenge with inferring phylogenies from
such taxon-rich datasets is that tree space is vast, making computation challenging. For example,
the numbers of possible unrooted trees for three, five, seven, and nine taxa are one, 15, 945, and
135,135, respectively. As tree space grows, the likelihood of finding the nonoptimal tree increases,
leading to speed-accuracy trade-offs and incongruence. Efficiently searching tree space, however, is
key to finding an optimal tree; phylogenetic inference programs that yield the highest likelihood
scores on phylogenomic data matrices are the ones that perform the most extensive explorations of
tree space and require the longest runtimes!®®. Moreover, gene-rich datasets present their own
challenges, such as optimizing tree parameters. It is possible that the phylogenetic signal in whole
genomes will prove insufficient for resolving phylogenies of all known species in each major lineage.
Developing algorithms, including those that leverage the power of machine learning®3°1-1%3, that
can heuristically explore tree space in a reasonable amount of time or evaluate the degree of difficulty
in the inference task will be critical for resolving the tree of life.
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Data and datasets of ever higher quality

Data quality is paramount to phylogenomic inference. As sequencing technologies and other
downstream processes—such as methods for genome assembly and gene annotation—improve, so
does the field of phylogenomics. Higher quality and more complete genomes, coupled with increased
sampling of organisms from taxa underrepresented in genomic databases, will help reduce the impact
of hidden paralogy and orthology in phylogenomic datasets. Denser datasets will also help increase
confidence in inferences of the underlying analytical or biological drivers of incongruence; for
example, confidence in inferring hybridization as a potential driver of incongruence may be weak in

a dataset of 100 molecular markers but strong in a 5,000-marker dataset.

Mitigating errors in dataset construction

Errors can be introduced at all stages of phylogenomic analyses, including data matrix construction,
and contribute to incongruence. Some errors may stem from certain strategies employed in a
phylogenomic pipeline—such as multiple sequence alignment and trimming—Dbeing suitable for some,
but not all, genes. Some features that may influence the efficacy of alignment and trimming
strategies may be the taxa sampled and their evolutionary breadth, although, numerous other
technical contributors of incongruence may be at play. The development of pipelines for reproducibly
handling phylogenomic data matrix construction will greatly facilitate comparative analyses of

analytical drivers of incongruence across studies.

Phylogenomics and green computing

End-to-end phylogenomic analysis requires substantial computational resources and large amounts
of energy. As the planet grapples with the consequences of global climate change, we must work to
minimize the environmental toll of phylogenomic analyses!®*. We can reduce the carbon footprint of
phylogenomics through judicious use of computing infrastructure, careful experimental design, and
software choice. For example, evaluating substitution model fit using fast and robust software like
ModelTest-NG'*> and jModelTest!®® can result in a 90% reduction in energy use, resulting in 10%
less greenhouse gas emissions'®’. Similarly, choosing faster programs in quantifiably difficult-to-

analyze datasets does not alter the quality of inference but can save energy*?.
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Table 1 | Drivers of incongruence.

Driver of

) Factor Literature about topic

incongruence
Sampling, taxon and Analytical, Stochastic

81,199,200
locus error
Insufficient number of . _
Analytical, Stochastic 27078

genes or divergent

sites

error

Erroneous ortholog

detection

Analytical, Systematic

error

93,96,201-203

Model misspecification

Analytical, Systematic

6,124,125,204

error
Multiple sequence Analytical, Treatment 142143
alignment errors error
. o Analytical, Treatment
Excessive trimming 147,148
error
Inappropriate character | Analytical, Treatment 205,206
recoding error
Incomplete lineage . .
. Biological 18,22,207
sorting
Horizontal gene . .
Biological 34,208-210
transfer
Hybridization /
Introgression and Biological 41,42
Recombination
Natural selection Biological 55,56
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Table 2 | Tools for investigating incongruence large genomic data sets.

Software/Method | Utility category Utility details Reference
Median bagging of bootstrap support assessed
. o using few little samples and small subset of sites
Bag of little Bipartition support | . .
_ is a rapid method to infer bootstrap trees and 211
bootstraps metric . o
provides similar patterns of support compared to
traditional bootstrapping procedures
Gene and site o Bipartition support that details how many
Bipartition support . _ .
concordance . “decisive” genes or sites support a given 168
metric
factors bipartition in a reference tree
Internode o ldentifies bipartitions in a reference phylogeny
_ Bipartition support )
certainty / Tree i that also have a well-supported alternative 173175
metric
certainty topology
Bipartition support | Ultrafast bootstrap approximations that are
UFBoot2 212
metric robust to model violation
Software for inferring ancestral sequences
IQ-TREE 2, Convergent _
_ across nodes of a phylogeny. These pieces of
FireProtASR, sequence 57-59
. software can be used to detect convergent
PhyloBot evolution .
sequence evolution.
Identifies genes in phylogenomic data matrices
Convergent o .
with signatures of convergent relative
RERconverge sequence . o o 213
. evolutionary rates in lineages with similar
evolution
phenotypes
. Multiple sequence alignment trimming wherein
. Data processing _ _ _ _
ClipKIT _ informative sites are retained rather than 148
and analysis
removing highly divergent sites
. Data processing Identifies congruent loci in a phylogenomic data
Concaterpillar _ . 214
and analysis matrix
Data processing Identifies sequence outliers compared to the 15

CondJak

and analysis

central mean of a phylogenomic data matrix




Data processing

Tests for within protein incongruence using a

ConWin 215
and analysis sliding window approach
Broadly applicable phylogenomic toolkit for data
Data processin rocessing and analysis—such as examinin
PhyKIT g _ J p _ 9 y J 216
and analysis information content biases, gene-gene
coevolution, and polytomy testing
. Collection of scripts for dataset building and
. Data processing o .
PhyloFisher _ trimming phylogenomic data sets. Also features | %/
and analysis
a database of eukaryotic orthologs
Data processin Identification of rogue taxa in a phylogenomic
RogueNaRok P _ J 9 phylog 70
and analysis dataset
. Data processing Uses a non-reversible Markov model to calculate
Root Digger _ o o 217
and analysis the likelihood of the root position in a tree
TreeShrink, . . .
. Data processing Identifies spurious orthologs from unexpectedly
PhyloFisher, and 96,216,218
and analysis long terminal branches
PhyKIT
Homology/ortholog | Calculates probability that homolog detection
abSENSE 88
detection may fail
Homology/ortholog | Searches for similar sequences by usin
BLAST gy g q y g 219
detection measures of local similarity
Homology/ortholog | Combines over split orthologs using reciprocal
Leapfrog 89
detection best BLAST hits
. Homology/ortholog
OrthoFinder _ Infers groups of orthologous genes 201
detection
OrthoSNAP and Homology/ortholog | Decompose multi-copy gene families into 59,220
DISCO detection subgroups of single-copy orthologous genes
Profile Hidden Homology/ortholog | Probabilistic inference method that accounts for %0
Markov Models detection position-specific variation in sequences
Increases sensitivity of sequence similarity
Homology/ortholog _ _
TIAMMAL _ searches by incorporating underrepresented 91
detection

lineages in profile Hidden Markov Models




Both pieces of software enable researchers to

ASTRAL and _ _ _ o
BhvKIT Hypothesis testing | conduct polytomy testing at a specific bipartition | 27216
Y in a phylogeny
Gene- and site- _ .
. Allows researchers to examine gene- and site-
wise log . . _
o _ _ wise support between two topologies using
likelihood scores; | Hypothesis testing _ o . 158,221
. maximum likelihood; gene-wise support can also
gene-wise quartet . .
be examined using quartet scores

scores
D-statistic (also
known as the . Diverse methods that detect introgression

Introgression 42,4950

ABBA-BABA test),

events using sequence or phylogenetic

detection
Dron, D3, and the information
branch-length test
_ Maximum likelihood inference of phylogenetic
Phylogenetic _ . o
NetRAX networks when incomplete lineage sorting is not | 18
network inference
a factor
Maximum parsimony, maximum likelihood, and
PhyloNet Tree inference Bayesian inference of phylogenetic networks 222
from locus tree estimates
_ Phylogenetic Splits graph inference using multiple sequence
SplitsTree _ . _ _ 181
network inference | alignments, distance matrices, or sets of trees
General . . o
Edge-unlinked mixture model consisting of
Heterogeneous o . .
. Substitution several site classes with separate sets of model
evolution On a 6
_ models parameters and edge lengths on the same tree
Single Topology
topology
model
Estimates general time-reversible protein
Substitution matrices—which describe rates of substitutions
QMaker _ . _ 204
models between amino acids—from multiple sequence
alignments
Supertree method for species tree inference that
Asteroid Tree inference 223

is robust to missing data




ASTRAL,

Quartet-based supertree method that accounts

ASTRAL-PRO Tree inference for partial gene trees, paralogs, and gene tree 21,224,225

and ASTER uncertainty
Bayesian approach for phylogenetic tree

BEAST Tree inference Y PP PyIed 226
inference and divergence time estimation

BPP Full-likelihood implementation of the

Tree inference _ . 227

multispecies coalescent
Maximum likelihood tree inference method that
uses hill-climbing and stochastic perturbation to

IQ-TREE 2 Tree inference search tree space. Moreover, the gentrius 86
function can help identify and characterize
phylogenetic terraces
Maximum pseudo-likelihood approach for

MP-EST Tree inference 228

species tree inference

PhyloBayes MPI

Tree inference

Bayesian tree inference method that
incorporates finite and infinite mixture models to

account for site variation

229

Maximum likelihood tree inference method that

RAXML-NG Tree inference uses a greedy tree search algorithm to explore | 230
tree space
. Inference of species trees using average ranks
STAR Tree inference 231
of coalescences
. Inference of relationships using quartets and the
SVDQuartets Tree inference 232

coalescent model
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595 Figure legends

Conflicting topologies

b c d e f
OO B ACATCAAT
> > ACAAGAAT

Whole Chromosomal | Genes Within genes Among sites
596 chromosomes regions

597 Figure 1 | Incongruence at different levels of genomic organization. a | The topology
598 shown in blue supports a sister group relationship of taxa A and B, whereas the orange topology
599  supports a sister group relationship of taxa A and C. The inference of such conflicting topologies
600 defines incongruence. Incongruence can occur at different levels in the genome, such as among c |
601  whole chromosomes (e.g., analyses of one chromosome support the blue topology but analyses of
602  another support the orange topology), d | regions of a chromosome (dark grey regions represent
603 lack of homology), e | genes (or loci), f | within a gene or locus (e.g., different domains support
604 different topologies), and g | among sites in a multiple sequence alignment. Note that

605 incongruence is also prevalent in other types of data (e.g., behavioral or morphological traits) and

606  can occur at all evolutionary depths.



Incomplete lineage sorting Horizontal gene transfer Hybridization

VA4

Recombination Duplication and loss Convergent Evolution

N NN

608 Figure 2 | Major biological factors that contribute to incongruence. /ncomplete lineage

609  sorting can lead to to gene trees that differ from the species phylogeny due to variation in the
610  sorting of ancestral polymorphisms. Horizontal gene transfer, hybridization, and introgression can
611  all lead to gene phylogenies that differ from the species tree. Recombination can result in loci with
612  chimeric evolutionary histories. Duplication and loss can lead to hidden paralogy. Independently
613  evolved traits in different phylogenetic lineages can be associated with convergent molecular

614  evolution (green), contributing to incongruence.

615
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Figure 3 | Analytical factors can contribute to incongruence at every step in a

* Model
misspecification

* Inadequate model
complexity

* Irreproducibility

* Concatenation and
coalescence

phylogenomic workflow. a | Taxon sampling can impact all downstream analyses in
phylogenomic studies. b | During orthology inference, biases (e.g., sequence length biases) and
analytical errors (e.g., erroneous orthology inferences) can contribute to incongruence. Each color
corresponds to a unique ortholog present in each of the four taxa. ¢ | Misalignment and excessive
trimming of individual groups of orthologous genes can further decrease the accuracy of

phylogenetic inferences. An example of erroneous ortholog inclusion is depicted using red font. d |
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Species tree inference via concatenation (left) or coalescence (right) is susceptible to multiple
additional sources of error—complexity of model space, model misspecification, and inadequate

model complexity, to name just a few.
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Box 1 | Rooting the animal tree.

Sponge-sister hypothesis Ctenophore-sister hypothesis

— m Other animals — & Other animals

7“’"" . Cnidarians 7’;’ Cnidarians

— . Placozoa — ' Placozoa
e Sponges — Pg Ctenophores
— — N\ M
e ﬁ Ctenophores e Sponges
N

Few branches in the tree of life are as intensely debated as the root of the animal phylogeny. The

two leading hypotheses debate whether sponges?3:233-236 or comb jellies
(ctenophores)10:14,65,200,237,238 gre the sister group to a clade of all other animals. These two
hypotheses have come to be known as the sponge-sister and ctenophore-sister hypotheses,
respectively (see figure). Resolution of the root of the animal tree bears on our understanding of
how animal cell types and tissues evolved?3°. Sponges lack muscles and a nervous system and are
thought of as morphologically “simpler” animals compared to ctenophores, which have both240:241,
Which hypothesis is correct also has implications for whether ctenophore nervous systems are
structurally and genetically homologous to those of bilaterian animals?42%243, with some arguing

that the ctenophore nervous system evolved independently?44.

Numerous biological and analytical factors contribute to this challenging phylogenetic problem. Much
of the controversy has centered around whether site-homogeneous (with gene partitioning) or site-
heterogeneous models of sequence evolution are most appropriate for reconstructing the animal
phylogeny??24>, These models are largely employed to combat long-branch attraction, an artifact
central to the debate because ctenophores have a long branch leading up to the lineage®*. Site-
heterogeneous models with many categories tend to support the sponge-sister hypothesis!3?4,
whereas site-heterogeneous models with fewer categories and site-homogeneous models tend to
support the ctenophore-sister hypothesis®’. Some simulation analyses suggest that site-

heterogeneous models underperform site-homogeneous models with gene partitioning?*® and others



650  suggest the opposite?*¢. Aimed at reducing saturation and compositional biases, data matrix recoding
651  analyses supported the sponge-sister hypothesisi*??*°; however, some of these analyses?* failed to
652 recover well-established monophyletic clades, such as Chordata, suggesting that analyses of non-
653 recoded data were more accurate?*°. Poor taxon sampling has also long impacted this phylogenetic
654  question, but new genomes and transcriptomes have recently been made available for key lineages
655 — sponges, ctenophores, cnidarians, and placozoans!3%12, Qutgroup choice has also been
656 important to the debate—the sponge-sister hypothesis is most frequently supported when
657 choanoflagellates are chosen as the outgroup, whereas the ctenophore-sister hypothesis is supported
658 when a broader sampling of single-celled relatives of animals (Holozoa) and fungi (Opisthokonta) is
659  used?®,

660

661  Several other factors, such as ortholog inference errors and multiple sequence alignment errors,
662 are likely at play. The possibility that additional biological factors, such as hybridization or

663 incomplete lineage sorting, also contributed cannot be excluded; however, detecting the effect of
664  multiple analytical and biological factors in such an ancient divergence is challenging. Resolving the
665 root of the root of the animal tree may require extensive amounts of new (high-quality) data such
666 as expanded taxon sampling of sponge, ctenophore, and choanoflagellate genomes?39. Similarly,
667  other lines of evidence, such as investigations of synteny conservation using chromosome-level
668 genome assemblies?®!, an independent line of evidence that does not have the same pitfalls as
669 sequence data analyses, may shed light on the root of the animal tree.

670
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Glossary

CONVERGENT MOLECULAR EVOLUTION
Independent evolution of similar or identical molecular changes (e.g., gene deletions, nucleotide
substitutions, gene order rearrangements) in organisms from different lineages that exhibit similar

adaptations

EVOLUTIONARY RADIATION

The occurrence of an elevated rate of speciation events in a narrow window of evolutionary time

HETEROTACHY

The phenomenon of changes in the evolutionary rate of a nucleotide or amino acid sequence through time

HIDDEN ORTHOLOGY

Undetected orthologous relationships of genes

HIDDEN PARALOGY
Orthologous groups of genes that contain orthologs and paralogs (inparalogs and outparalogs) stemming

from asymmetric patterns of duplication and loss

HORIZONTAL OR LATERAL GENE TRANSFER
The transfer of genetic material from one organism to another by mechanisms other than sexual

reproduction

HYBRIDIZATION

The interbreeding of two distinct species or lineages

INCOMPLETE LINEAGE SORTING
When alleles in a population fail to coalesce due to retention and random sorting of ancestral polymorphisms,

causing, at times, alleles to first coalesce with more distantly related alleles
INPARALOG
Lineage- or species-specific paralogs wherein the duplication event occurred after divergence from a

reference common ancestor

INTROGRESSION
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The interbreeding of two distinct species or lineages followed by backcrossing with one of the parental

species

LONG BRANCH ATTRACTION
The inaccurate inference of taxa with high evolutionary rates (giving rise to long branches in their

phylogenetic trees) as closely related

MODEL OF SEQUENCE EVOLUTION OR SUBSTITUTION

Models that describe rates of nucleotide or amino acid substitutions in a locus during evolution

OHNOLOGS

Paralogs that stem from a whole genome duplication event

OUTPARALOGS

Paralogs wherein the duplication event occurred before divergence from a reference common ancestor

PHYLOGENETIC NETWORKS
Graphs of evolutionary relationships that, in addition to depicting the splitting of lineages, also depict the
merging of lineages (due to events such as hybridization and convergent molecular evolution or due to

different gene tree topologies)

PHYLOGENOMICS
Defined initially as predicting gene function from phylogenies of homologous genes 22, the term was later

expanded also to include phylogenetic inference using genome-scale amounts of data >3

PoLyTOMY

The node where more than two desendant lineages stem from an ancestral one

TAXON SAMPLING

Which and how many taxa are selected for a phylogenetic analysis
PARTIAL OR INCOMPLETE TAXON COVERAGE
The lack of sequences (either because they are genuinely absent or because they were not collected) from

particular taxa in a group of orthologous genes

PHYLOGENETIC IRREPRODUCIBILITY
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Lack of reproducibility of a tree topology between two replicate tree inferences using the same software

parameters (e.g., same model of sequence evolution, starting seed, etc.)

ROGUE TAXA

Taxa whose placement is unstable across a set of trees (e.g., across a set of gene trees)

STOCHASTIC ERROR
Error that occurs due to limited sampling and/or statistical uncertainty; can be eliminated by increasing the

amount of data

SYSTEMATIC ERROR
Error that occurs due to incorrect assumptions (e.g., model misspecification); it leads to bias in inference and

certainty in an incorrect result increases as larger amounts of data are used

TREATMENT ERROR
Error that stems from incorrect handling of data; depending on the source, it can result in stochastic or

systematic error
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