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Abstract
We investigate the initial value problem of a very general class of 3+ 1 non-
Newtonian compressible fluids in which the viscous stress tensor with shear
and bulk viscosity relaxes to its Navier–Stokes values. These fluids correspond
to the non-relativistic limit of well-known Israel–Stewart-like theories used
in the relativistic fluid dynamic simulations of high-energy nuclear and astro-
physical systems. After establishing the local well-posedness of the Cauchy
problem, we show for the first time in the literature that there exists a large
class of initial data for which the corresponding evolution breaks down in finite
time due to the formation of singularities. This implies that a large class of
non-Newtonian fluids do not have finite solutions defined at all times.
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1. Introduction

Fluid dynamics [1] plays a crucial role in the understanding of a variety of physical phenom-
ena defined at a multitude of length scales, ranging from the large-scale structure properties
of the Universe [2] to subatomic quark–gluon plasmas formed in colliders [3]. The ubiquit-
ousness of fluid dynamics stems from the fact that the equations of motion that govern the
hydrodynamic variables can be derived from very simple, yet fundamental, conservation laws
(mass, energy, and momentum) [1] together with general assumptions regarding the locality of
interactions [4]. Most fluids in nature can be described this way through the celebrated Navier–
Stokes equations [1], which describe how the fluid mass density, velocity, and temperature
evolve in space and time in the presence of external and internal viscous/dissipative forces.
Furthermore, understanding the mathematical properties of the Navier–Stokes equations is
also a fundamental problem in modern mathematics.

Many fundamental questions also remain in fluid dynamics in the relativistic regime.
The basic equations of relativistic fluid dynamics stem from the conservation of energy and
momentum, ∂µTµν = 0, where Tµν is the system’s energy–momentum tensor, and the dynam-
ics of a conserved current, ∂µJµ = 0, which describes, for example, baryon number conserva-
tion. In the absence of dissipation (i.e. in the zero entropy production limit), this defines a set of
five nonlinear partial differential equations (PDEs) that describe the time and spatial evolution
of the system’s energy density, baryon density, and flow velocity [5]. Several properties [6] are
known about the so-called relativistic perfect fluid equations, and a detailed account of all the
developments in this field is beyond the scope of this work (see, for example, [7] for a recent
review). However, a few results are worth mentioning here as they are connected to, or have
directly influenced, the work presented in this paper. For example, conditions for the local well-
posedness of the Cauchy problem (assuming standard physical constraints on the equation of
state) can be found in [6] by rewriting the system of equations as a first-order symmetric hyper-
bolic (FOSH) set of PDEs. In this regard, we emphasize the vital role of geometric-analytic
techniques from the theory of quasilinear wave equations in studying relativistic perfect fluids.
This is also illustrated by the work presented in [8] where a new formulation of the relativistic
perfect fluid equations tailored to the characteristics of the system (the sound cones and the
flow lines) has been used to investigate complex mathematical questions for which detailed
information about the behavior of solutions is needed. This led to new insights into the prob-
lem of shock formation for relativistic perfect fluids [9] and improved regularity of solutions
[10]. Further developments concerning the local well-posedness theory for the free boundary
relativistic Euler equations with a physical vacuum boundary on a Minkowski background
can be found in [11]. Global well-posedness for the relativistic Euler equations in an expand-
ing background has been proven in [12] (see [13–15] for the case with coupling to Einstein’s
equations and also [16, 17]). Despite such developments, important questions remain open in
the theory of relativistic ideal fluids, including a detailed description of the long-time behavior
of shock-forming solutions to the relativistic Euler equations [18, 19], local well-posedness of
the free-boundary Einstein–Euler system [7, 20], and a description of anomalous dissipation
in relativistic ideal fluids and its connection to relativistic turbulence [21], to mention just a
few examples.

The search for a consistent formulation of dissipative effects in relativistic fluids still attracts
significant interest from physicists [22] and mathematicians [7]. This is due, in part, to the fact
that the standard generalization of the Navier–Stokes equations to the relativistic domain, pion-
eered by Eckart [23] and Landau and Lifshitz [1], display unwanted features. These theories
have unphysical behavior manifested via causality violation and the fact that in such formula-
tions, the global equilibrium state is generally unstable to linear perturbations [24]. The latter
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is now understood to follow from the very general (and intuitive result) only proved recently
in [25, 26], which states that in a relativistic system, causality is a necessary condition for the
stability of the equilibrium state. The formulations from Eckart, Landau, and Lifshitz give rise
to non-hyperbolic PDEs [27], which necessarily violate relativistic causality, thus allowing for
the appearance of unphysical instabilities of the equilibrium state.

Only very recently a general formulation of these so-called first-order theories has been
proposed by Bemfica, Disconzi, Noronha, and Kovtun (BDNK) [25, 28–30], in which con-
ditions are given that ensure that the dynamics is causal and strongly hyperbolic in the fully
nonlinear regime (including shear, bulk, and conductivity effects), and the equilibrium state is
stable against small perturbations. The BDNK formulation consistently generalizes previous
developments presented in [1, 23, 31–35] where it was understood that the issues found in the
theories of Eckart and Landau and Lifshitz were connected to problematic definitions of the
hydrodynamic fields in an out of equilibrium state. In BDNK, following the standard effective
theory reasoning [36], non-equilibrium corrections are described in terms of the most general
expressions compatible with the symmetries involving first-order spacetime derivatives of the
standard hydrodynamic variables (e.g. temperature, fluid velocity, and chemical potential),
which vanish in equilibrium. This generates several new terms in the equations of motion,
which were not considered in the Eckart and Landau–Lifshitz formulations. These new terms
are crucial to recovering relativistic causality and stability. As a matter of fact, for BDNK
theories, local well-posedness has also been established for the system of PDEs describing
the viscous fluid coupled to Einstein’s equations in [25, 28, 30, 37, 38]. Shockwave solutions
[39, 40], as well as general numerical solutions to such fluid dynamic theories are currently
being developed, and progress in this direction can be found in [41–45]. Even though local
well-posedness has been established, very little is known about the global aspects of solutions
of this theory.While small-data global well-posedness for the BDNK system has been recently
proven in [46] for the case of a conformal fluid in flat space-time (which is likely the simplest
possible setting), it remains a challenge to generalize to the BDNK system most of the break-
throughs obtained for relativistic perfect fluids mentioned above. Therefore, when it comes to
studying the global well-posedness of solutions, it is conceivable that formulations of relativ-
istic viscous fluid dynamics naturally5 described in terms of a set of 1st-order transport-like
PDEs, more akin to the relativistic Euler equations, may provide a better route. Luckily, such
formulations already exist, as we discuss below.

Relativistic viscous fluid dynamical modeling is the primary tool to describe the evolution
of the quark–gluon plasma created in ultra-relativistic heavy-ion collisions [47]. Current sim-
ulations (for a review, see [3]) are based on equations of motion that incorporate features and
ideas from the seminal work by Israel and Stewart [48]. These approaches, see [49, 50], differ
from the BDNK reasoning mentioned above because the dissipative terms are not expressed
solely in terms of the hydrodynamic variables and their derivatives. Instead, in those theories6,
the dissipative fluxes obey additional equations of motion (derived either from truncations in
kinetic theory [50], effective theory arguments [49], or extended thermodynamics [52, 53])
that describe how dissipative quantities evolve towards their first-order, asymptotic behavior
described by relativistic Navier–Stokes theory. This process is characterized by a relaxation

5 Of course, one can define new variables and reduce the order of a 2nd-order set of PDEs to find a new set of 1st-order
differential equations. However, this process is not guaranteed to generate a first-order system with good structure.
6 Generalizations of this approach, aimed at describing systems even farther from equilibrium, have also been
developed in the context of relativistic anisotropic hydrodynamics [51].
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time that effectively implements causality by introducing a time delay for the dissipative cur-
rents to approach Navier–Stokes values—causality imposes that flow gradients cannot be auto-
matically converted into acceleration (as it occurs in Navier–Stokes equations). Therefore, in
practice, causality requires relativistic fluids to be non-Newtonian fluids. This is the case not
only for Israel–Stewart systems since BDNK fluids also display the same property [25].

Despite the existence of numerical simulations developed by the heavy-ion physics com-
munity, the general properties displayed by solutions of the Israel–Stewart relativistic hydro-
dynamics equations are still broadly not understood. Nonlinear conditions for causality
involving shear and bulk viscosity have been derived in [54] and investigated in numerical
simulations of heavy-ion collisions in [55, 56]. The conditions under which Israel–Stewart-
like theories involving shear, bulk, and heat conductivity/particle diffusion effects are causal
and strongly hyperbolic in the fully nonlinear regime remain unknown. The only exception is
when only bulk viscosity is present. In that case, strong hyperbolicity and local well-posedness
have been established in the nonlinear regime in [57]. This is possible because, in the case of
pure bulk viscosity, the equations of motion are considerably simpler than the full case where
shear and particle diffusion are included. In fact, bulk-viscous effects in Israel–Stewart the-
ories are described by a single Lorentz scalar, and its inclusion in the dynamics amounts to
adding a single first-order relaxation-type equation to be solved together with the conservation
laws. The system of equations corresponds to a set of nonlinear 1st-order PDEs that is not so
different than the relativistic perfect fluid. Thus, it is conceivable that global well-posedness
analyses of solutions of the equations of motion can also be made.

Progress in this direction was obtained in [58] where it was shown that in Israel–Stewart-
like theories with bulk viscosity, there exists a class of smooth initial data for which the cor-
responding solutions to the Cauchy problem break down in finite time. [58] showed that, for
appropriate data, there exists a finite T > 0 such that, for times t> T solutions either cannot
remain C1 or they become acausal. Further work is needed to precisely determine the nature
of this unphysical behavior (for example, whether this implies shock formation). In any case,
it is important to stress that no results of this kind exist when the other dissipative effects are
considered, such as shear viscosity or heat conduction.

This work sheds new light on this problem from a different perspective. As mentioned
above, in relativity, the dissipative quantities (shear-stress tensor, bulk viscous scalar, heat flow)
cannot immediately take their Navier–Stokes values because of causality (for example, the
conversion of flow gradients into acceleration is bounded by the speed of light). This implies
that every causal and stable relativistic fluid is necessarily a non-Newtonian fluid. In this paper,
we use this fact to take the first steps towards understanding the global behavior of nonlinear
solutions of relativistic viscous fluids with bulk and shear viscosity by investigating the same
problem in an analog problem corresponding to a similar non-Newtonian fluid defined by
Israel–Stewart-like theories in the non-relativistic regime7. We determine the conditions under
which strong hyperbolicity and local well-posedness hold for the set of equations of motion
with shear and bulk viscosity in three spatial dimensions considered in this paper. For typical
choices of transport coefficients, we provide a proof à la Sideris [59] that C1 solutions in these
viscous fluids lose regularity at a finite time. This is the first time such a general result has been
proven for a large class of non-Newtonian fluids. Since they correspond to the non-relativistic
regime of the Israel–Stewart theories currently used in the description of the quark–gluon
plasma formed in heavy-ion collisions, our work shows, for the first time, that the regions in

7 For simplicity, we only consider compressible systems with barotropic equations of state (so that one does not need
to consider the dynamics of the temperature).
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the quark–gluon plasma where the flow velocity approaches the non-relativistic limit can lose
regularity at finite time.

Furthermore, the same can be said about the slow (i.e. non-relativistic) moving parts of the
matter formed in neutron star mergers that have been described in terms of Israel–Stewart-
like theories [60–63]. Therefore, our work not only unveils new mathematical properties of a
large class of non-Newtonian fluids but also leads to a new fundamental understanding of the
non-relativistic regime of relevant systems in high-energy nuclear physics and astrophysics.
Furthermore, we emphasize that the non-Newtonian fluids we consider are also interesting in
their own right as they appear in extended thermodynamic models [53] and also in the post-
Newtonian expansion of relativistic fluids in the inspiral phase of neutron star mergers [64].

This paper is organized as follows. In section 2, we discuss the relativistic Israel–Stewart-
like theory with bulk viscosity and define the equations of motion corresponding to its non-
relativistic regime. We show that linearized disturbances around global equilibrium are stable
in section 3. Conditions are found in section 4 for the equations of motion to admit a FOSH
formulation, which implies local well-posedness of the initial value problem with initial data
suitably defined in a Sobolev space HN for sufficiently large N [65]. Section 5 shows how
arguments originally derived by Sideris [59] for an ideal fluid could be used to prove that
solutions of the non-relativistic viscous equations with bulk viscosity develop singularities at
a finite time.We generalize these results to include shear viscosity in section 6. After presenting
the relevant computations, our treatment of the shear case closely follows that of the case with
only bulk and, thus, will be presented in a very concise manner.
Notation: We use natural units c= ℏ= kB = 1 and a mostly plus Minkowski metric gµν .

Greek indices run from 0 to 3, while Latin indices run from 1 to 3. When convenient, three-
dimensional vectors vi are also denoted as v, and inner products vi ai = v · a.

2. Non-relativistic Israel–Stewart-like equations with bulk viscosity

This section briefly explains how one can derive the non-relativistic regime of the Israel–
Stewart-like theory for bulk viscosity considered in [57]. This model describes bulk-viscous
effects in a variety of systems, such as the quark–gluon plasma formed in heavy-ion collisions
[22] and the chemical equilibration processes associated with flavor-changing reactions in the
dense matter formed in neutron star mergers [60, 62, 66].

The relativistic fluid is defined by an energy–momentum tensor

Tµν = (ε+P+Π)uµuν +(P+Π)gµν (1)

and a conserved rest-mass current

Jµ = ρuµ. (2)

Above, ε is the total energy density, P is the equilibrium pressure defined by the equation of
state, uµ is the 4-velocity of the fluid (which obeys uµuµ =−1), ρ is the rest-mass density,
and Π is the bulk scalar (Π = 0 in equilibrium). The evolution of the fluid is defined by the
equations of motion that stem from the conservation of energy and momentum

∂µT
µν = 0, (3)

the conservation of the rest-mass current

∂µJ
µ = 0, (4)

and the additional relaxation-type equation for the bulk scalar

τΠ u
α∂αΠ + δΠΠΠ ∂αu

α +λΠ2 + ζ∂αu
α = 0, (5)
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where ζ is the bulk viscosity coefficient, τΠ is the bulk relaxation time, and δΠΠ and λ are
second-order transport coefficients [50]. It was shown in [57] that this relativistic fluid is
causal, strongly hyperbolic, and the initial-value problem (IVP) is locally well-posed (LWP)
if [

ζ

τΠ
+

δΠΠ

τΠ
Π + ρ

(
∂P
∂ρ

)
ε

]
1

ε+P+Π
⩽ 1−

(
∂P
∂ε

)
ρ

. (6)

We note that, above, the coefficients τπ, δΠΠ, ζ,λ can depend on ε, ρ, and alsoΠ. Therefore, (6)
actually defines a vast class of systems determined by how the transport coefficients depend on
the dynamical variables. Causality is determined from the system’s characteristics [57]. Strong
hyperbolicity [67] follows from the result demonstrated in [57] that the full nonlinear set of
equations of motion (even when dynamically coupled to Einstein’s equations) can be written in
FOSH form. The fact that this implies that the IVP is LWP follows fromwell-known arguments
that can be found in standard references, such as [68].

This work investigates what can be said about this system in the non-relativistic regime. This
limit of equations (3)–(5) is obtained as follows. First, recall that in the non-relativistic limit8,
one uses the 3-velocity vi instead of the 4-velocity uµ = γv(1,vi), where γv = 1/

√
1− vi vi. In

fact, onemay simply drop the γv and use in this regime uµ → (1,vi) such that uµ∂µ → ∂t+ vi ∂i

(the material derivative). The same type of approximation implies ∂µuµ → ∂i vi. Thus, in this
limit, conservation of the rest-mass current (4) becomes

∂tρ+ ∂i
(
ρvi
)
= 0. (7)

Using that in a non-relativistic regime the energy density of the fluid is essentially given by the
rest-mass density and that the total pressure contribution to the energy density is negligible [5],
we find that uν∂µTµν = 0 leads to Euler’s equation for the velocity including a bulk viscous
term

ρ∂tvi + ρvk∂kvi + c2s∂i ρ+ ∂iΠ = 0, (8)

where we assumed that P only depends on ρ, and defined the speed of sound

cs =

√
∂P
∂ρ

, (9)

assumed to be nonvanishing and finite. In this case, the energy conservation equation does
not add any new information [1]. Finally, assuming that the transport coefficients survive the
Newtonian limit9, one obtains for the Israel–Stewart equation for Π (5) the following non-
relativistic equation

τΠ ∂tΠ + τΠ ∂i
(
viΠ
)
+Π + ζ∂i v

i = 0, (10)

where we assumed for simplicity that δΠΠ = τΠ and λ= 0. Equations (7), (8) and (10) define
the non-relativistic limit of the Israel–Stewart theory with bulk viscosity considered in this

8 Here, we will not investigate the non-relativistic limit from a rigorous perspective since our goal with such limit is to
point out a formal connection between IS-like theories and the non-Newtonian fluids we consider. Our results below
regarding the evolution problem for the non-Newtonian fluid, on the other hand, are mathematically rigorous.
9 In principle, one may devise other schemes where τΠ vanishes in the non-relativistic regime, see [64]. We will not
consider this case here.
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paper. These constitute a system of nonlinear PDEs for the variables ρ, vi, and Π. They
describe the motion of a class of non-Newtonian fluids where the bulk scalar obeys a relaxa-
tion equation, which can be very general since ζ and τΠ may depend on Π. We note that the
Navier–Stokes equations for compressible fluid with bulk viscosity (but no shear viscosity)
[1] are obtained from (10) in the limit where τΠ → 0 and ζ is only a function of ρ.

3. Local stability around the equilibrium state

We now investigate the local stability of equations (7), (8) and (10) against small disturbances
around the equilibrium state. This analysis is standard, and we included it here for complete-
ness. The goal is to show that the equilibrium state in the model is stable for all Galilean
observers. This mirrors typical stability analyses done in the relativistic regime [24], where
stability refers to the equilibrium state observed in any Lorentz frame.

Assume that the system starts in a global equilibrium state where Π = 0 and ρ= ρ0 >
0 and vi = v0i are constants, and is disturbed by a small deviation δρ, δvi, δΠ. A system is
locally stable if it returns to equilibrium, assuming the deviation is sufficiently small. This is
quantifiable by looking at the Fourier transform of the equations: if the imaginary part of the
frequency of the modes is negative, then the deviations will decrease in time and hence return
the system to equilibrium.

Assuming these deviations are sufficiently small, we may eliminate terms that are not first-
order, as the higher-order terms are insignificant for sufficiently small deviations. This leads
to the following equations:

∂tδρ+ ρ0∂kδv
k+ v0k∂

kδρ= 0, (11)

ρ0∂tδvi + c2s∂i δρ+ ρ0v
0
k∂

kδvi + ∂i δΠ = 0, (12)

τΠ∂tδΠ + ζ∂kδv
k+ τΠ v

0
k∂

kδΠ + δΠ = 0. (13)

We note that ζ, cs, and τΠ are constant in the equations above. This comes from the fact that
we are linearizing the system of equations around the uniform equilibrium state.

We look for solutions of the kind ∼ exp(−iωt+ ik · x) by taking the Fourier transform of
the equations of motion in both space and time, using variables ω for frequency and k for
wavenumber:

−(ω− v0 · k)δρ+ ρ0k · δv= 0, (14)

−ρ0 (ω− v0 · k)δvj+ c2skjδρ+ kjδΠ = 0, (15)

−i(ω− v0 · k)τΠ δΠ + δΠ + iζ k · δv= 0, (16)

where above, to ease the notation, we have not distinguished δρ(t,x) from its Fourier transform
δρ(ω,k).

To better analyze the system’s stability, let Ω be defined by Ω= ω− v0 · k. We note that, as
v0 and k are real-valued, and the imaginary parts ofΩ and ω are equal. With this new notation,
equations (14) and (16) give either trivial solutions where k is orthogonal to δv and Ω= 0, a
degenerate solution, or allow us to solve for δρ and δΠ in terms of δv. We use these solutions
to combine our equations, obtaining

−iτΠΩ3 +Ω2 − k2c2s + i τΠk2Ω

(
c2s +

ζ

ρ0

)
= 0. (17)

7
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This equation determines the dispersion relations of the modes, ω = ω(k). To obtain local
stability, we need the imaginary part of Ω to be negative or the real part of −iΩ (that is, −iω)
to be negative. This condition implies exponential decay of the variables δρ, δvi, δΠ after
taking the inverse Fourier transform. Since this equation can be viewed as a cubic in −iΩ, we
can use the Routh–Hurwitz criterion [69] after bringing the equation into the desired form,
with a positive constant term:

τΠ (−iΩ)3 +(−iΩ)2 + τΠk2

(
c2s +

ζ

ρ0

)
(−iΩ)+ k2c2s = 0. (18)

Thus, applying the Routh–Hurwitz criterion, we see that the system is stable if ∆i > 0 for
i = 1,2,3, where

∆1 = k2c2s (19)

∆2 = det

(
τΠk2

(
c2s +

ζ
ρ0

)
k2c2s

τΠ 1

)
(20)

∆3 = τΠ∆2. (21)

Since k and cs are real, this condition is equivalent to

τΠ > 0 (22)

τΠ
ζ

ρ0
> 0. (23)

As τΠ is the relaxation time, the condition above agrees with our intuition. Similarly, the dens-
ity is assumed to be positive everywhere, and thus, we derive that stability implies that ζ > 0
also. Therefore, disturbances near the equilibrium state are locally stable when τΠ, ζ,ρ > 0
(note that this is valid also when τΠ and ζ are nontrivial functions of the density). Hence,
we have shown the local stability of these equations around the equilibrium state under basic
physical assumptions. While further studies could be made about the linearized equations,
this is beyond the scope of this paper as our goal here in this section is to establish that our
equations display the expected behavior near equilibrium, where fluid dynamics is most easily
understood.

4. Hyperbolicity and local well-posedness

In this section, we show that the set of equations of motion (7), (8) and (10) for our non-
relativistic Israel–Stewart model with bulk viscosity is strongly hyperbolic and, hence, locally
well-posed given suitable initial data. The proof below is quite general, as we do not assume
that ζ and the relaxation time τΠ depend only on the mass density ρ (i.e. they may also depend
on Π). This implies that our proof is valid for a very general class of non-Newtonian fluids
parameterized by the dependence of the transport coefficients on the bulk stress.

We rewrite this system of equations (7), (8) and (10) in quasilinear form as follows

A0∂tΦ +A1∂1Φ +A2∂2Φ+A3∂3Φ +BΦ = 0, (24)

8
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where Φ = {ρ,v1,v2,v3,Π} and, in this case, A0, A1, A2, A3, B are 5× 5 symmetric real-
valued matrices given by

A0 =


1
ρ 0 0 0 0
0 ρ

c2s
0 0 0

0 0 ρ
c2s

0 0

0 0 0 ρ
c2s

0

0 0 0 0 τΠ
ζc2s

 ,A1 =


v1
ρ 1 0 0 0
1 v1

ρ
c2s

0 0 1
c2s

0 0 v1
ρ
c2s

0 0

0 0 0 v1
ρ
c2s

0

0 1
c2s

0 0 τΠ v1
ζc2s

 ,

A2 =


v2
ρ 0 1 0 0
0 v2

ρ
c2s

0 0 0

1 0 v2
ρ
c2s

0 1
c2s

0 0 0 v2
ρ
c2s

0

0 0 1
c2s

0 τΠ v2
ζc2s

A3 =


v3
ρ 0 0 1 0
0 v3

ρ
c2s

0 0 0

0 0 v3
ρ
c2s

0 0

1 0 0 v3
ρ
c2s

1
c2s

0 0 0 1
c2s

τΠ v3
ζc2s

 ,

B =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1

ζc2s
.

 . (25)

Note that we have assumed that ζ, cs, and ρ are nonzero. Given that the matrices are real
and symmetric, to show that these equations are FOSH, we need to find the conditions under
whichA0 is invertible. This matrix is diagonal and invertible when τΠ, cs, and ζ are nonzero. In
particular, based on our stability analysis in the previous section, it is clear that if one assumes
τΠ > 0, ζ > 0, and ρ> 0, the equations of motion are FOSH and also locally stable.

In the Physics literature, it is customary to define a set of quasilinear PDEs such as the one
in (24) as strongly hyperbolic when the inverse (A0)−1 exists and the matrices (A0)−1Ai are
diagonalizable with a set of real eigenvalues and a corresponding set of linearly independent
right eigenvectors [5]. According to this definition, every FOSH system is strongly hyper-
bolic, as is our system of equations. Furthermore, strongly hyperbolic PDEs are known to
have a locally well-posed initial-value problem, which means that solutions of our equations
of motion exist (at least for some time) and are unique for suitably defined initial data [6, 38,
70], although local well-posedness for FOSH can be proven without appealing to their strong
hyperbolic character [65].

Given that the system is FOSH, its characteristic velocities should be real and finite. We
shall now compute the characteristics for the FOSH system given by (7), (8) and (10). By
making the standard identifications ∂t → ξ0 and ∂i → ξi [6], the matrix defining the principal
part of (24) is given by

L= ξ0A0 + ξiAi =



1
ρα ξ1 ξ2 ξ3 0

ξ1
ρ
c2s
α 0 0 ξ1

c2s

ξ2 0 ρ
c2s
α 0 ξ2

c2s

ξ3 0 0 ρ
c2s
α ξ3

c2s

0 ξ1
c2s

ξ2
c2s

ξ3
c2s

τΠα
ζc2s


, (26)

9
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where α= ξ0 + ξi vi. The determinant of this matrix is given by

detL=
α3τΠ
ζc8s

(
α2 − c2v ξi ξ

i
)

(27)

where

cv =

√
c2s +

ζ

ρτΠ
. (28)

Solving detL= 0 for α, we obtain that either

ξ0 =−vi ξi (29)

or

ξ0 =−vi ξi ± cv
√
ξi ξi. (30)

These are real solutions if we assume that ζ,ρ,τΠ > 0, i.e. the standard physical assumptions.
Local well-posedness in H

5
2
+

of this FOSH set of PDEs follow from well-known results [65].
To accommodate conditions at infinity suitable for fluid applications (e.g. density approaching
a non-zero constant at infinity), it is more convenient to work with uniformly local Sobolev
spacesHN

u.l., for which the results [65] also apply. More precisely, from the foregoing, we have:

Theorem 1. Let ρ0(x) = ρ(0,x), v0(x) = v(0,x), Π0(x) = Π(0,x) be initial data for the sys-
tem (7), (8) and (10). Suppose that (ρ0,v0,Π0)(R3) is contained in the interior of a com-
pact set10 K⊂ R×R3 ×R. Assume that P= P(ρ), τΠ = τΠ(ρ,Π), ζ = ζ(ρ,Π) are smooth
functions of their arguments and that there exists a constant C> 1 such that ρ0 ⩾ 1/C
and 1/C⩽ cs(ρ0)⩽ C, 1/C⩽ τΠ(ρ

0,Π0)⩽ C, 1/C⩽ ζ(ρ0,Π0)⩽ C. Finally, suppose that

(ρ0,v0,Π0) ∈ H
5
2
+

u.l. (R3). Then, there exists a T> 0 and a unique solution

(ρ,v,Π) ∈ C0

(
[0,T] ,H

5
2
+

u.l.

(
R3
))

∩C1

(
[0,T] ,H

3
2
+

u.l.

(
R3
))

to equations (7), (8) and (10) taking the given initial data (ρ0,v0,Π0). Moreover, the solution

depends on continuously on the initial data relative to the C0([0,T],H
5
2
+

u.l. (R3)) topology.

We observe that, due to the Sobolev embedding theorem, solutions given by theorem 1 are
C1 (i.e. they are continuously differentiable and thus classical solutions). We also note that
the condition for hyperbolicity found in the non-relativistic model, ζ,ρ,τΠ,cs > 0, is simpler
than the condition for hyperbolicity found in the full relativistic case in (6). Also, note the
non-relativistic regime’s lack of an upper bound on ζ and τΠ. This occurs because, differently
than in the relativistic case, we do not have to impose that the characteristic velocities are
subliminal. Finally, we note that τΠ and ζ can be general functions not only on the density but
also on the bulk stress Π. Thus, our results are valid for a vast class of non-Newtonian fluids
parameterized by the dependence of the transport coefficients on the viscous stress.

5. Breakdown of classical solutions

In this section, we investigate the global properties of the solutions of our system defined by (7),
(8) and (10). We showed in the previous section that LWP holds when ζ,ρ,τΠ,cs > 0. We now

10 In other words, this means that along {t= 0} the data functions take values within a compact subset of state space.

10
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show that there is initial data for whichC1 solutions to the equations in three dimensions do not
exist for all time. This is the first result of this kind for the broad class of non-Newtonian fluids
considered in this paper. This is done by adapting the well-known result of Sideris proved in
[59] to our system of equations describing a non-relativistic compressible bulk-viscous fluid.

Consider the system described by equations (7), (8) and (10). Our equations can be con-
sidered a hyperbolic generalization of Euler equations with bulk viscosity. Thus, we will
extend the proof of theorem 1 of [59] to include viscous effects. The basic idea behind this
theorem is to show that a suitably defined quantity related to the fluid’s total momentum obeys
a differential inequality whose solution possesses a finite life span.

We now introduce the following assumptions: assume that all the fields {ρ,v,Π} depend on
t and x, and that ρ,ζ,cs, τΠ > 0. We further assume that the equation of state is P(ρ) = Aργ ,
with constant γ > 1 and A> 0, and that ζ and τΠ are positive constants. The latter assumption
is prevalent in the literature [1], implying that the transport coefficients do not vary appreciably
for the densities considered.

We start by defining

F(t) :=
ˆ
R3

d3xxi ρvi. (31)

This, and other integral quantities defined below, are easily seen to be finite under the assump-
tions of our theorems. The quantity above corresponds to an average of the radial component
of the momentum of the fluid, which remains finite as long as the solution is C1. We show
below that there is initial data for which F is not bounded for an arbitrarily large time.

We define our initial data as follows. Let R> 0 be the radius of some ball in R3 containing
all the fluid at the initial time t= 0. The initial data is given by ρ(t= 0,x) = ρ0(x)> 0, v(t=
0,x) = v0(x), and Π(t= 0,x) = Π0(x), assumed to be H

5
2
+

(thus in particular C1) functions
in R3. Following [59], we consider constant initial data outside the bounded set such that
ρ0 = ρ̄ > 0, v0(x) = v̄, and Π0(x) = Π̄ for |x|⩾ R.

The results of the previous section guarantee that for this initial data, LWP holds for suf-
ficiently regular data. However, for the following proof to hold, it is sufficient to assume that
we have a C1 solution, which will be the case, for example, for initial data in H

5
2
+

, as already
noted. Since v̄= 0, the maximum propagation of the front of a smooth disturbance is governed
by

c̄v =

√
c̄2s +

ζ̄

ρ̄ τ̄Π
(32)

where

c̄s =
√
Aγρ̄γ−1 (33)

is the (ideal fluid) speed of sound at the front, and ζ̄ and τ̄Π are determined by ρ̄ and Π̄. Thus,
in terms of the domain [59]

B(t) =
{
x ∈ R3 : |x|⩽ R+ c̄v t

}
, (34)

which is the region containing the non-constant part of the fluid, the hyperbolic nature of our
equations implies that (ρ,v,Π) = (ρ̄,0,Π̄) outside B(t). Furthermore, one can use (7) to show
that the relative mass in B(t) with respect to the background

∆M(t) =
ˆ
R3

d3x (ρ− ρ̄) =

ˆ
B(t)

d3x (ρ− ρ̄) , (35)

11
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is constant in time. Finally, we define the average contribution from the non-equilibrium part
of the pressure

G(t) =
ˆ
R3

d3xΠ. (36)

We can now state the following result:

Theorem 2. Suppose that (ρ,v,Π) is a C1 solution of (7), (8) and (10). Suppose that ρ(0,x) =
ρ0(x)> 0, and that for some R> 0, ρ0(x) = ρ̄ > 0, v(0,x) = v0(x) = 0, Π(0,x) = Π0(x) = 0
for |x|⩾ R, where ρ̄ is a constant. Assume that ∆M(0)⩾ 0, F(0)> 16π

3 c̄vR4maxρ0(x), and
G(0)⩾ 0, where ∆M, F, and G are given by (35), (31) and (36), respectively. Assume that
the equation of state11 is given by P(ρ) = Aργ , where γ > 1 and A> 0 are constants. Finally,
suppose that τΠ and ζ are positive constants. Then, the lifespan12 of (ρ,v,Π) is finite.

Proof. Weprove the statement using proof by contradiction.Wewill show that for some T > 0
the quantity F ′(T ) does not exist.

Suppose that ρ,v,Π are C1 functions of x and t. Recall that v̄= 0 and Π̄ = 0. Using integ-
ration by parts, we obtain

∂tF(t) =
ˆ
B(t)

d3x
[
ρ|v|2 + 3(P− P̄)

]
+ 3G(t) , (37)

where P̄= P(ρ̄). We will show below that
´
B(t) d

3x (P− P̄)+G(t)> 0 when t⩾ 0, which

implies that ∂tF(t)⩾
´
B(t) d

3xρ|v|2 > 0 for all time.
Following [59], since γ > 1, one finds thatˆ

B(t)
d3xP= A

ˆ
B(t)

d3xργ

⩾ A(vol B(t))1−γ

(ˆ
B(t)

d3xρ

)γ

by Jensen’s inequality

= A(vol B(t))1−γ
(∆M+ ρ̄vol B(t))γ

⩾ A ρ̄γ vol B(t)

=

ˆ
B(t)

d3x P̄, (38)

where vol B(t) = 4π
3 (R+ c̄vt)3. To obtain the desired estimates for ∂tF(t), we must investigate

the sign of G(t).
Integrating the equation of motion for Π in (10) to find

τΠ ∂tG(t)+G(t) =−
ˆ
B(t)

d3xζ ∂i vi. (39)

Solving this ODE for G, we have

G(t) = e−
t

τΠ G(0)− 1
τΠ

ˆ t

0
dt ′ e−(t−t

′)/τΠ
ˆ
B(t ′)

d3xζ ∂i vi (t ′,x) . (40)

11 The key property of the equation of state that is employed in the proof is convexity. More general, convex equations
of state can be used with little or no change to the proof, but we will not do it here for the sake of concreteness.
12 We define the lifespan of C1 solutions in the usual way, i.e. as the supremum over all T > 0 such that the system
admits a C1 solution defined on [0,T ].
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This expression is general. But under our assumption that ζ is constant, we can integrate ∂i vi

by parts, and the last term on the right-hand side vanishes. Thus, when G(0)⩾ 0, we have
G(t)⩾ 0. Therefore, we have shown that

∂tF(t)⩾
ˆ
B(t)

d3xρ|v|2 > 0. (41)

Following [59], we use the Cauchy–Schwarz inequality to find

F(t)2 ⩽
(ˆ

B(t)
d3x |x|2ρ

)(ˆ
B(t)

d3xρ|v|2
)
, (42)

and in addition, we have

ˆ
B(t)

d3x |x|2ρ⩽ 4π
3

(R+ c̄vt)
5maxρ0 (x) , (43)

hence

∂tF(t)⩾
(
4π
3

(R+ c̄vt)
5maxρ0

)−1

F(t)2 . (44)

However, dividing by F(t)2 and integrating from 0 to T , we obtain

F(0)−1 ⩾ F(0)−1 −F(T )
−1 ⩾

(
16π
3
c̄vmaxρ0

)−1(
R−4 − (R+ c̄vT )

−4
)

(45)

which contradicts the original assumption that F(0)⩾ 16π
3 c̄vR4maxρ0(x) if T is very large.

Hence, the time of existence of the solution must be finite.

6. Full case with shear and bulk viscosities

The effects of shear viscosity are significant in studying relativistic fluid dynamics. Many
systems, such as gases and incompressible fluids, exhibit shear viscous effects. This section
considers the full nonrelativistic equations, including the effects of shear viscosity and bulk
viscosity. After casting the equations in a strongly hyperbolic form, our results in this section
closely parallel those of the previous sections. Thus, our presentation will be brief.

6.1. Equations of motion and local well-posedness

Here, we briefly describe the equations of motion in the shear case and local well-posedness
results. As in section 2, one starts by considering the relativistic Israel–Stewart equations and
taking the non-relativistic limit of these equations. We assume, for simplicity, that the shear
relaxation time is equal to τΠ and that the second-order transport coefficients are such that the
equations of motion for the fluid are in the end given by:

13
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1
ρ
∂tρ+ ∂kv

k+
1
ρ
vk∂kρ= 0 (46)

ρ

c2s
∂tvi + ∂i ρ+

ρ

c2s
(v · ∂)vi +

1
c2s
∂jΠ

j
i = 0 (47)

τΠ∂tΠij+ η∂i vj+ η∂jvi+ δij

(
ζ − 2η

3

)
∂kv

k+ τΠ ∂k
(
vkΠij

)
+Πij = 0. (48)

Here η is the shear viscosity transport coefficient. This describes a class of non-Newtonian
fluids with shear and bulk viscosity, where the viscous stress tensor relaxes towards its Navier–
Stokes value. In this context, our equations resemble Grad’s 13-moments theory [71], though
we remark that in our case, there is a nonzero bulk viscosity (given thatΠij is not traceless) but
no heat flux. Furthermore, we note that in our case, τΠ, ζ, and η can depend on ρ and, also, on
Πij, which contributes to the generality of our results. In addition, we note that the normalized
trace of the viscous stress tensor, Π ≡Πi

i/3, obeys equation (10). Finally, we stress that these
are first-order nonlinear equations with a very similar structure to those discussed in section 2.
While they no longer form a symmetric hyperbolic system (unless ζ = 2η/3), we will find that
they have similar properties to the purely bulk-viscous case.

We now show that this non-Newtonian fluid with bulk and shear viscosity is strongly hyper-
bolic and, hence, locally well-posed for initial data in a sufficient Sobolev space. After rewrit-
ing the system in quasilinear form

A0∂tΦ +A1∂1Φ +A2∂2Φ+A3∂3Φ +BΦ = 0, (49)

we may compute the characteristic matrix. Direct computation shows that it is diagonalizable,
with all eigenvalues being real. The characteristic polynomial of the system is

τ 3
Πα

4

c6sρ

(
α2ρτΠ − ηξi ξ

i
)(

α2ρτΠ −
(
ζ +

4
3
η+ c2sρτΠ

)
ξi ξ

i

)
, (50)

where α= ξ0 + vi ξi, as in section 2. We solve for α, finding

α= 0,
√

η

ρτΠ
,

√
c2s +

ζ + 4
3η

ρτΠ
(51)

as our solutions. Since we have a first-order hyperbolic equation with a diagonalizable matrix,

we conclude that it is locally well-posed inH
5
2
+

and inH
5
2
+

u.l. [6, 38, 70]. In particular, the corres-
ponding solutions areC1. For the sake of brevity, we will not state a detailed LWP theorem, but
the interested reader should have no difficulty mimicking theorem 1 for this case. In contrast
to the full viscous case in the relativistic regime, where local well-posedness is not yet proven,
we proved local well-posedness under basic physical assumptions in the non-relativistic limit.
Once again, we did not need to assume any upper bounds on ζ,Πij, τΠ,η,ρ. Furthermore,
local well-posedness follows as long as the typical physical conditions are employed, i.e.
ρ,τΠ, ζ,η > 0. In particular, we also remark that hyperbolicity follows even if τΠ and ζ and
η are nontrivial functions of the density and the stresses. We note that isotropy dictates that a
dependence of the transport coefficients on Πij can only appear via the rotationally invariant
combinations ΠijΠ

ij and Π =Πi
i/3. Thus, we see that our local well-posedness results for the

system with shear and bulk viscosity are valid for a very general class of non-Newtonian fluids
parameterized by the dependence of the transport coefficients on the stress tensor.

One can similarly establish local stability results, as in section 3. For completeness, we show
below in section 6.2 that if ρ,τΠ, ζ,η > 0, the system is stable under perturbations around the
equilibrium state.

14
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6.2. Local stability around the equilibrium state

In this section, we prove the local stability of (46)–(48) under small perturbations from equilib-
rium. As in section 3, we begin by taking the Fourier transform of our equations and linearizing
around the equilibrium where Πij vanishes. This procedure grants us the following system of
equations:

−i (ω− v0 · k)δρ+ iρ0k · δv= 0 (52)

−i ρ0

c2s
(ω− v0 · k)δvi + i kjδρ+

1
c2s
kjδΠij = 0 (53)

−i(ω− v0 · k)τΠ δΠjm+ δΠjm+ iηkjδvm+ iηkmδvj+ iδjm

(
ζ − 2η

3

)
kℓδv

ℓ = 0. (54)

We now re-express this as a matrix equation

CΨ = 0 (55)

where Ψ =

 δρ
δvi
δΠij

 is a 10-vector. This equation has solutions if and only if detC= 0. This

gives us a polynomial, which we may use to solve for the value of Ω= ω− v0 · k. This gives
us the equation

(1− τΠ iΩ)
3

3c6sρ

(
−iΩ(1− iτΠΩ)ρ+ ηk2

)(
ρτΠ (−iΩ)3 + ρ(−iΩ)2

+ (−iΩ)
(
3ζ + 4η+ c2sρτΠ

)
k2 + c2sρk

2
)
= 0. (56)

We now determine the conditions for −iΩ to have a positive real part, as we did in section 3.
The linear term grants us that τΠ > 0, and using that with the quadratic term, we must also
have ρ> 0, η > 0. Finally, using the Routh–Hurwitz condition for the cubic term, as we did in
section 3, we obtain that−iΩ is negative if and only if τΠ, ρ, ζ, η > 0, as desired. Therefore, we
have shown that the full viscous non-Newtonian fluid is locally stable under the basic physical
assumptions of τΠ, ρ, ζ, η > 0.

6.3. Breakdown of classical solutions

This section extends theorem 2 to the full viscous case. The setting is very similar to that of
theorem 2, the main difference being that the assumption

´
R3 Π

0 d3x⩾ 0 is now replaced by´
R3(Π

0)ii ,d
3x⩾ 0. We do not need further assumptions on the other viscous shear stress tensor

components or η. Therefore, the results in this section are very general when it comes to the
properties of shear-viscous stresses because the shear viscosity coefficient η can be a very
general function13 of Π and ΠijΠ

ij, parameterizing a large class of non-Newtonian fluids.

13 It is physical to assume that η> 0 for stability.
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Theorem 3. Suppose that (ρ,v,Πij) is a C1 solution of (46)–(48). Suppose that ρ(0,x) =
ρ0(x)> 0, and that for some R> 0, ρ0(x) = ρ̄ > 0, v(0,x) = v0(x) = 0,Πij(0,x) = Π0

ij(x) = 0
for |x|⩾ R, where ρ̄ is a constant. Assume that ∆M(0)⩾ 0, F(0)> 16π

3 c̄vR4maxρ0(x), and
G(0)⩾ 0, where∆M and F are given by (35) and (31), respectively, and

G(t) :=
ˆ
R3

Πi
i d

3x.

Assume that the equation of state is given by P(ρ) = Aργ , where γ > 1 and A> 0 are constants.
Finally, suppose that τΠ and ζ are positive constants. Then, the lifespan of (ρ,v,Πij) is finite.

Proof. Direct computation yields

∂tF(t) =
ˆ
B(t)

ρ|v|2 d3x+
ˆ
B(t)

3(P− P̄) d3x+
ˆ
B(t)

Πi
i d

3x (57)

As the equation for Πi
i is the same as (10) from the purely bulk-viscous case, we may apply

the rest of the proof and obtain the desired result.

We emphasize that this is the first result of this kind in the literature. The theorem above
gives precise conditions under which the solutions of the equations of motion of the system
with shear and bulk viscosity lose C1 status.

7. Conclusions and outlook

In this paper, we considered a large class of non-Newtonian compressible fluids with shear
and bulk viscosities, where the viscous stress tensor relaxes towards its Navier–Stokes form.
After pointing out that such fluids can formally be derived from the non-relativistic limit of
well-known Israel–Stewart-like theories, we considered their evolution problem. We showed
that the Cauchy problem is locally well-posed in standard functions spaces but that it is not
generally globally well-posed, as we have constructed initial data for which the solution’s
lifespan is finite. Interestingly, the shear part of the viscous stress tensor did not actively par-
ticipate in the global well-posed analysis because the presence of singularities at finite time
followed directly from the properties of the bulk viscosity sector. In fact, one could use the
results presented here to investigate global well-posedness in an even larger class of theor-
ies, where the bulk sector would lead to singularities and the shear channel would act as a
‘spectator’ in the analysis. Therefore, our results show for the first time in the literature that a
large class of non-Newtonian fluids, parameterized by the dependence of the transport coef-
ficients on the stress tensor, have solutions that lose regularity at finite time. This is the first
result of this kind when it comes to the global well-posedness properties of solutions of such
systems. Since they correspond to the non-relativistic regime of the Israel–Stewart theories
currently used in the description of the quark–gluon plasma formed in heavy-ion collisions,
our work shows, for the first time, that the regions in the quark–gluon plasma where the flow
velocity approaches the non-relativistic limit can lose regularity at finite time. Additionally, a
similar statement can be made about the slow (i.e. non-relativistic) moving parts of the mat-
ter formed in neutron star mergers that have been described in terms of Israel–Stewart-like
theories [60–63]. Therefore, our work reveals new mathematical properties of a large class
of non-Newtonian fluids and leads to a deeper understanding of the non-relativistic regime of
relevant systems in high-energy nuclear physics and astrophysics.
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Abetter understanding of themathematical properties of this theory can be beneficial in ana-
lyzing the mathematical behavior of second-order theories of the Israel–Stewart type. While
both theories share many features, such as the use of extended variables and a description of
the evolution of the viscous component of the fluid via relaxation-type equations, the non-
relativistic, non-Newtonian equations considered here are significantly simpler. Thus, under-
standing its mathematical features can be a valuable guide for the mathematical study of its
relativistic counterpart. This is especially the case given that many important mathematical
questions, such as LWP, remain open for the latter under general conditions, as mentioned in
the introduction.

In addition, it is interesting to notice that the class of non-Newtonian fluids studied here
resembles (in essence) Grad’s 13-moment theory and other extended variables approaches [52,
53]. The latter are well-studied models of non-Newtonian fluids, which deserve full mathem-
atical investigation on their own. In that context, it is known that Grad’s equations lose hyper-
bolicity for significant deviations from equilibrium [52]. The theories considered here remain
strongly hyperbolic, even arbitrarily far from equilibrium. However, as mentioned above, the
solutions can develop singularities at a finite time.

Finally, as mentioned previously, our results have direct consequences for the non-
relativistic regime of non-Newtonian fluids found in high-energy nuclear physics and astro-
physics. It would also be interesting to investigate applications of our results to other non-
Newtonian fluids [72, 73]. Furthermore, one may also explore how turbulence emerges in the
class of non-Newtonian fluids considered here. Many studies of turbulence in non-Newtonian
fluids exist in the literature, for instance, [74]. Differently than the standard case studied within
the Navier–Stokes equations, where the transition from the viscous to the Eulerian limit corres-
ponds to going from parabolic to hyperbolic equations, here both the ideal and viscous regimes
are described by a hyperbolic set of equations of motion. Thus, it is conceivable that study-
ing the transition to turbulence in the model considered here may shed light on the much less
understood problem of relativistic turbulence [21, 75], where coupling to Einstein’s equations
requires that the fluid equations of motion must possess a locally well-posed initial value
problem [6], regardless of whether there is dissipation or not. In particular, one may study
fully developed turbulence in the non-Newtonian models considered here following [75]. We
leave these questions to future work.
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