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Abstract

We explore a class of splitting schemes employing implicit-explicit (IMEX) time-stepping to
achieve accurate and energy-stable solutions for thin-film equations and Cahn-Hilliard models
with variable mobility. This splitting method incorporates a linear, constant coefficient implicit
step, facilitating efficient computational implementation. We investigate the influence of stabi-
lizing splitting parameters on the numerical solution computationally, considering various initial
conditions. Furthermore, we generate energy-stability plots for the proposed methods, examin-
ing different choices of splitting parameter values and timestep sizes. These methods enhance
the accuracy of the original bi-harmonic-modified (BHM) approach, while preserving its energy-
decreasing property and achieving second-order accuracy. We present numerical experiments to
illustrate the performance of the proposed methods.

Keywords: Cahn-Hilliard equation, thin film equation, IMEX time-stepping schemes,
implicit-explicit methods, variable mobility

1. Introduction

Many problems in materials science, mathematical biology, and other areas can be described in
terms of phase-field models. These models use higher-order parabolic partial differential equations
to describe the evolution of a phase function u(x, t). In this paper, we will focus on numerical
methods for models of the form

∂u

∂t
= ∇ · (M(u)∇[W ′(u)−∆u]). (1)

The integral of u is conserved thanks to the divergence form of this evolution equation and the
flux is the product of a non-negative mobility function M(u) ≥ 0 and the gradient of a chemical
potential w. This potential is the variational derivative of an energy functional, w ≡ δE

δu
=

W ′(u)−∆u with

E(u) =
∫

Ω

W(u) +
1

2
|∇u|2 dx . (2)
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It follows that the dynamics of (1) is a gradient flow in a weighted H−1 norm for the monotone
decreasing energy functional

dE
dt

= −
∫

Ω

M(u) |∇w|2 dx ≤ 0 . (3)

Setting a constant mobility M = ϵ2 and potential W(u) = (u4 − 2u2)/(4ϵ2) yields the classic
Cahn-Hilliard (CH) equation,

∂u

∂t
= ∆(u3 − u− ϵ2∆u), (4)

where ϵ > 0 defines the lengthscale for the width of transition layers between equilibrium phases
u = ±1. This equation was originally formulated to model phase separation in a binary alloy
mixture [1] with the range −1 ≤ u ≤ 1 defining physically meaningful mixtures. Since then it
has been applied to many other problems including block co-polymers, image processing, and
biological systems [2–6].

There are extensive bodies of research on the analysis [2, 7, 8] and efficient numerical com-
putations for this equation [9]. Generic initial conditions starting near the unstable state u = 0
rapidly separate (sometimes called spinodal decomposition) into complicated arrays of nearly pure
(u = ±1) local states followed by slow dynamics of the phase boundaries leading to merging and
re-arrangements of the pure states (called coarsening or Ostwald ripening). If the initial data
satisfies |u0| < 1, then having the solution remain in the range −1 ≤ u ≤ 1 for all times has
been called the “positivity property” [10]. This is known to hold in one dimension, but not more
generally due to the curvature of phase interfaces (sometimes called the Gibbs-Thomson effect),
see for example [11, 12].

The Cahn-Hilliard equation with concentration-dependent mobility M(u) is known to yield
more detailed models for many physical applications in terms of better capturing the timescales of
the dynamics. The particular forms of M(u) that are of most interest exhibit degeneracy, reducing
the flux as one or both of the pure states are approached, M(u) → 0 as u → ±1. Such degeneracy
makes mathematical analysis of these models more challenging for obtaining results on existence
and uniqueness of solutions [13]. Indeed, in this case, it is not guaranteed that solutions remain in
the physical range, |u| ≤ 1, [12] and consequently the design of numerical methods must address
how to handle such possible behaviors [11, 14]. Very importantly, if positivity is not preserved
then forms for M(u) that have negative mobilities for u outside |u| ≤ 1 cannot be used since they
would allow the problem to become illposed.

Another important class of applications fitting within the framework of (1) are models of
viscous thin film fluid dynamics [15]. Derived from lubrication theory in the asymptotic limit of a
low Reynolds number and small aspect ratio, thin film (TF) equations describe the evolution of the
thickness, u(x, t) ≥ 0, of fluid layers coating solid substrates [16, 17]. In scaled non-dimensional
form, the model is a nonlinear fourth-order parabolic diffusion equation for u, of the form

ut = ∇·
(
u3∇[Π(u)−∆u]

)
. (5)

Here the role of the chemical potential is played by the hydrostatic pressure, p = Π(u)−∆u, giving
pressure contributions from surface tension and conservative forces describing physiochemical ma-
terial properties. The Π(u) function, called a disjoining pressure, is the derivative of a molecular
potential energy, as in Π(u) = W ′(u). The mobility in (5), M(u) = u3, is widely used for classic
models of fluid mechanics, but other forms of degenerate mobilities have been considered such as
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M(u) = un for n > 0 [18]. One simple form for Π(u) modeling fluid spreading on a hydrophobic
solid is

Π(u) =
ε2

u3
− ε3

u4
(6)

where ε > 0 sets a minimal film thickness determined by materials properties [19]. This gives
a double-well potential comparable to CH models generating phase separation between nearly-
uniform “precursor layers” with u = O(ε) ≪ 1 for ε → 0 and finite mass fluid droplets [20].
In [19] it was proved for the one-dimensional case that the singular nature of (6) for u → 0 is
sufficient to ensure that u maintains positivity (u > 0) for all times in (5), avoiding the difficulties
[14] for the degenerate-mobility CH equation when the potential is non-singular. The stages of
dynamics for thin film equations share most of the richness and complexity of the dynamics of
other Cahn-Hilliard problems [21]. While CH models in materials science and other settings are
applied to two- and three-dimensional problems, since TF equations describe fluid coatings, their
applications are limited to two dimensions. A key difference that can make computing TF problem
more challenging is that while CH solutions nominally span a finite range of values, |u| ≲ 1, TF
solutions have no a priori upper bound and hence the influence of the variable mobility can play
a stronger role. The effective W(u) potential for TF problems has a degenerate second well at
u → ∞. For both CH and TF problems, computations are generally used to describe statistical
properties on large domains evolving over long-time simulations. This has motivated studies to
advance efficient computational methods for these problems [22–24].

Numerical methods with explicit time discretization are impractical for these equations due to
time-stepping restrictions associated with numerical stability. This has motivated the development
of a variety of implicit and semi-implicit numerical methods [25–31]. A simple and elegant semi-
implicit approach was formulated by the highly influential work of Eyre [27]. For the general
phase-field model with variable mobility (1), applying Eyre’s splitting yields

∂u

∂t
= ∇·

(
M(u)∇

[
δE+
δu

+
δE−
δu

])
(7)

where the energy is separated into convex and concave parts E = E+ + E− and the convex and
concave parts of the energy are to be computed implicitly and explicitly respectively. If the
mobility function is taken to be constant (M(u) = 1) then (7) simplifies to

∂u

∂t
= ∆2

[
δE+
δu

+
δE−
δu

]
. (8)

It is often the case that the convex part of the energy ∆2
[
δE+
δu

]
is chosen to be linear in u so this

term can be computed implicitly very efficiently without the use of non-linear solvers associated
with Newton iterations. For the classic Cahn-Hilliard equation (4), the energy is separated into
convex and concave parts which implies W(u) = W+(u)+W−(u) with W ′′

+(u) > 0 and W ′′
−(u) < 0,

∂u

∂t
= ∆W ′

+(u)− ϵ2∆2u︸ ︷︷ ︸
Fcontract(u)

+ ∆W ′
−(u)︸ ︷︷ ︸

Fexpans(u)

(9)

yielding the indicated contractive and expansive operators. In numerical implementations Fcontract

is treated implicitly and Fexpans explicitly. Convexity-splitting has been successfully implemented
in many different contexts [31–34]. Various improvements and extensions of the method have also
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been made [35–37]. For the class of problems given by equation (4) and the case of constant
mobility, a series of schemes based on the convexity splitting idea were proposed by Glasner and
Orizaga [9].

On the other hand, if M(u) is variable then nonlinear terms in ∇·
(
M(u)∇

[
δE+
δu

])
seem

unavoidable. Unfortunately, the methods proposed in [9, 27] are not applicable to the above-
mentioned equations due to the concentration-dependent mobility M(u). This gives the moti-
vation for proposing a new framework that consists of a first-order energy-stable splitting ap-
proach coupled with an implicit-explicit (IMEX) time-stepping discretization to obtain accurate
and energy-stable solutions for equations of the form (1).

We will refer to (1) as the Cahn-Hilliard equation with variable mobility (CHVM) and use it
as the framework for considering numerical methods for both Cahn-Hilliard and thin-film type
problems. For some problems it will be convenient to re-expand this equation to separate the
second- and fourth-order spatial operators, which yields

∂u

∂t
= ∆G(u)−∇ · (M(u)∇∆u)

︸ ︷︷ ︸
F (u)

, where G(u) =
∫

M(u)W ′′(u) du . (10)

This form allows us to consider approaches splitting and stabilization that deal separately with
the nonlinearities of the second- and fourth-order terms. We will write models (1) and (10) in the
general form

∂u

∂t
= F (u) =⇒ ∂u

∂t
= Fim(u) + Fex(u) (11)

with splitting of the spatial operator into a linear stabilizing part that will be treated implicitly

Fim(u) = −
2∑

i=0

Mi(−∆)iu (12)

with constant coefficients Mi and the remainder that will be handled explicitly, Fex(u) = F (u)−
Fim(u).

In the study of time-dependent problems, splitting methods have been shown to provide efficient
computational results. Different splittings methods have been proposed, for the class of equations
of the form (1), in order for numerical implementations to produce accurate and stable solutions.
Some of the early work related to splitting methods can be traced back to early 1970’s in the
work of Dupont and Douglas [38]. More recently, two splittings methods can be found in the
work by Barrett and Blowey (1999) [39] and Bertozzi et al. (2011) [40]. These methods have
similar ideas, but the main distinction is that [40] proposes a scheme that is linear with respect to
its implicit terms while in [39] they consider a nonlinear implicit scheme that likewise builds on
the constant mobility case for the highest-order terms. In [41] Duchemin and Eggers used linear
stability analysis to show that forward Euler schemes can always be stabilized with a splitting
having a single-term Fim(u) with an appropriately selected coefficient. Their results are clear and
broadly applicable and provide necessary conditions to ensure stability. In considering the more
general form (12) our focus is primarily on how the Mi coefficients impact the accuracy of the
scheme.

For fourth-order phase-field models, choices for the splitting parameters M2,M1 in (12) have
been discussed in many previous papers [39, 42–49] but remain a very important issue with many
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unresolved questions. Values have often been selected to ensure convexity splitting (as in (9)) or
based on proofs for energy stability, so, like (3), the discretized dynamics have monotone decreasing
energy, E(Un+1) ≤ E(Un). However, some of these papers also comment on the parameter values
not being definitive [46, 48]. We will re-examine and interpret the influences of M2,M1 on energy-
stability and accuracy of the numerical methods. We will consider different cases for the splitting
parameter (fixed constant) as it is typically done for CH-type equations in which solutions are
bounded on [−1, 1] [9]. For TF equations the solution has a lower bound ϵ (thin layer of fluid), but
the solution maximum can exceed the value of u ≈ 1. For this reason, a fixed value of a splitting
parameter may not be suitable for TF equations. We will examine results when these splitting
parameters are fixed constants and also when they are allowed to evolve dynamically in relation
to properties of the solution, as considered in [40].

The structure of the paper is as follows: Section 2 discusses the biharmonic modified method
applied to time-dependent problems and introduces the four main numerical methods considered
in this paper BHM-BEJ , BHM-CNJ , BHM-IMEX1 and BHM-IMEX2. In Section 3, we present
results from numerical simulations to illustrate issues for the order of accuracy of the schemes
and dependence on the splitting parameter as well as considerations of qualitative properties of
numerical solutions regarding energy-stability. Section 4, we provide illustrations of computed
dynamics for both the thin-film equation and the Cahn-Hilliard equation with variable mobility
for long enough running times to demonstrate the performance of the methods.

2. Methods

2.1. Biharmonic splitting and extensions

Applied to (10), the splitting method proposed in [40] can be constructed in the following
way. The mobility coefficient function in the fourth-order operator can be written as M(u) =
M2 + (M(u)−M2) to give the form

∂u

∂t
= −M2∆

2u︸ ︷︷ ︸
Fim(u)

+ ∆G(u)−∇·[(M(u)−M2)∇∆u]︸ ︷︷ ︸
Fex(u)

. (13)

This fits the form (11, 12) setting M1 = M0 = 0. We denote time-discretized approximation of
the solution as u(x, tn) ≈ Un where the discrete times will be expressed with respect to the local
timestep, h, by tn+1 = tn+h. Using the backward Euler difference for the time derivative and the
M2 term in (13) and treating Fex(u) explicitly yields the first-order implicit-explicit semi-discrete
method,

Un+1 − Un

h
= Fim(Un+1) + Fex(Un), (BHM) (14)

called the biharmonic modified scheme in [40]. If no stabilization is applied, Fim ≡ 0 and Fex =
F (u), and (14) reduces to the explicit forward Euler scheme for (11). Our focus is on choices for
different forms for the splitting of implicit and explicit terms in the time-stepping schemes that
can be applied with general spatial discretizations such as spectral methods, finite elements, or
finite differences.

We will use Fourier pseudo-spectral methods [50] for our computations. Fourier methods have
been widely applied to Cahn-Hilliard models in many studies [47, 49, 51–53]. We illustrate the
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spatial discretization for (14) (and the application to other schemes we consider follows similarly).
The two-dimensional discrete Fourier transform of U can be written as

U ≈
N/2−1∑

kx=−N/2

N/2−1∑

ky=−N/2

Û(kx, ky, t) exp
[
i (kxx+ kyy)

]
.

Consequently, the Fourier transforms of the harmonic and biharmonic operators can be expressed

as ∆̂U = −k2Û and ∆̂2U = k4Û where k2 = k2
x + k2

y. Applied to (14), this yields

Ûn+1 =
Ûn + hFex(Un)̂

1 + hM2k4
, (15)

giving an efficient means for evaluating Ûn+1 and then the inverse transform is applied to obtain
Un+1. Following the approach in [41], this form can be used to analyze conditions for linear

stability by re-writing Fex(Un)̂ = F (Un)̂− Fim(Un)̂ yielding

Ûn+1 = Ûn +
hF (Un)̂

1 + hM2k4
. (16)

Then the principal part (highest order terms) of F can be used to estimate F (Un + en)̂ ≈ F (Un)̂−
C0k

4ên and the amplification factor for the growth of errors to Un is given by σ = 1− hC0k
4/(1+

hM2k
4). Unconditional stability can then be achieved if M2 > C0/2.

The local truncation error for (14) can be derived by Taylor-expanding U(t) about tn for h → 0
to yield

τn =

[
1
2

δFn

δu
F (Un) +M2∆

2F (Un)

]
h+O(h2) (17)

where δuFn is the functional derivative of F (u) evaluated at Un. As is expected, τn is formally
first-order accurate, and we can see the magnitude of the error depends on how the full operator
compares with the biharmonic stabilizing term. As described in [41], while linearized stability can
always be achieved in this scheme, considerations of the accuracy of the computed solution (i.e.
the size of the coefficient in τ ∼ C1h) may become the limiting factor for determining time-steps.

A generalization of Bertozzi’s backward Euler biharmonic splitting (14) can be written as

U(j) − Un

h
− Fim(U(j)) = Fex(U(j−1)) (BHM-BEJ) (18)

for j = 1, 2, · · · , J , where the initial iterate at each timestep can be U(0) = Un (or some mul-
tistep extrapolation when available, like U(0) = 2Un − Un−1 [9]). Without iteration, this re-
duces to Bertozzi’s scheme (14), with U(0) = Un and generating Un+1 = U(1). By iterating
(18) at each time-step, more accurate solutions can be obtained. To see that the iterates for
j = 1, 2, 3, · · · , J approach the backward Euler solution, U(j) → Un+1 if they converge, write
U(j) = Un+1 + e(j). Using fixed-point analysis, the sequence will converge, with |e(j)| < |e(j−1)|, if
||h(I+ hM2∆

2)
−1
δuFex(Un+1)|| < 1.

Similarly, we can formulate a second-order Crank-Nicolson (or trapezoidal) type scheme as

U(j) − Un

h
− 1

2
Fim(U(j)) =

1
2
Fex(U(j−1)) +

1
2
F (Un) (BHM-CNJ) (19)
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for j = 1, 2, · · · , J . Without iteration, CN1 is first-order accurate and reduces to (14) with
M2,CN = 2M2,BE. We will see that with iterations, the solutions approach second-order accuracy
with the error coefficient approaching the lower bound set by the results from the true Crank-
Nicolson nonlinear implicit scheme.

More generally, both second-order and fourth-order splitting can be considered with the above
time-stepping schemes,

∂u

∂t
= −M2∆

2u+M1∆u︸ ︷︷ ︸
Fim(u)

+ ∆(G(u)−M1u)−∇·[(M(u)−M2)∇∆u]︸ ︷︷ ︸
Fex(u)

, (20)

Here we will call M2 the fourth-order splitting or stabilization parameter, and M1 is the second-
order parameter. For M1 = 0 this reverts to (13), while retaining M1 allows for a linear-type
convexity splitting of the potential. Since the definition of G(u) combines the potential with the
mobility, we note that (20) can also be re-written in terms of the linear splitting W ′ = W1u +
(W ′(u)−W1u) yielding Fex(u) = ∇ · (M(u)∇(W ′(u)−W1u))−∇·[(M(u)−M2)∇(∆u−W1u)]
which is equivalent to (20) if M1 = M2W1. For constant mobility, with M(u) ≡ M2, (20) reduces
to splitting methods applied only to the second-order operators, as considered in [9] and other
papers. The task of computing the nonlinear part of energy implicitly in (7) is mitigated with the
bi-harmonic splitting. Equation (20) is a modified version of the original Eyre’s splitting (7) and
for this reason unconditional energy stability may not be guaranteed.

2.2. IMEX Methods

Implicit-explicit (IMEX) schemes can be seen as extensions and improvements over the orig-
inal Runge-Kutta schemes. For our purposes, we can informally understand IMEX schemes as
integrating tools that apply to model equations after a splitting (such as biharmonic-modified)
has taken place. For the case of time-dependent partial differential equations (PDEs), after space
discretization has taken place what is left is an ordinary differential equation (ODE) system in
the time variable which can be numerically integrated by IMEX methods.

These methods can also be seen as multi-step methods and they have been successfully applied
to a number of problems including the Navier-Stokes equations, systems of conservation laws and
more recently to reaction-diffusion equations [54–56].

We now use a general form for IMEX methods [25, 56] to discretize (11) as an s-stage scheme:

U(0) = Un, (21a)

U(i) =
i∑

j=1

ai,jU(j−1) + h

i∑

j=1

(
bi,jFex(U(j−1)) + ci,jFim(U(j))

)
, i = 1, 2, · · · , s, (21b)

Un+1 = U(s), (21c)

where s indicates the number of stages in the scheme and the coefficients for the scheme are
determined based on numerical consistency and order of accuracy [55]. The ai,j coefficients satisfy∑i

j=1 ai,j = 1 to yield consistency in the schemes [55]. The lower triangular form for ci,j allows for
an efficient implementation of the scheme and is used in diagonally implicit Runge-Kutta (DIRK)
schemes.
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In this paper, we consider a three-stage (s = 3) and second-order energy-stable method [56]

U(0) = Un, (BHM-IMEX1)

U(1) = U(0) + h
(
Fex(U(0)) + Fim(U(1))

)
,

U(2) =
3
2
U(0) − 1

2
U(1) + h

(
1
2
Fex(U(1)) +

1
2
Fim(U(2))

)
,

U(3) = U(2) + h
(
Fex(U(2)) + Fim(U(3))

)
,

Un+1 = U(3),

(22)

and a second two-stage IMEX scheme (BHM-IMEX2) which is also second-order method and can
be expressed in the form [25]

U(0) = Un, (BHM-IMEX2)

U(1) = U(0) + h
(
γFex(U(0)) + γFim(U(1))

)
,

U(2) = U(0) + h
(
δFex(U(0)) + (1− δ)Fex(U(1)) + (1− γ)Fim(U(1)) + γFim(U(2))

)
,

Un+1 = U(2),

(23)

where γ = 1− 1/
√
2 and δ = −1/

√
2. The above IMEX time-stepping formulations are motivated

from their successful implementation in Cahn-Hilliard problems with constant mobility [56] and
concentration-dependent mobility [14]. Both formulations proposed in [14, 56] are different from
what is presented in this paper since the basis for their methods relied on either a convexity
splitting approach [56] or a variable mobility product rule expansion [14].

3. Numerical Tests

We now examine the performance of these numerical methods for solving Cahn-Hilliard and
thin film problems. The test examples that we present in the spirit of benchmark problems [57]
will be used to illustrate the accuracy and stability of the numerical schemes and the dependence
on the splitting parameters. Further examples are also presented in the Supplementary Material.

3.1. Tests of accuracy

First, we present convergence plots for h → 0 to show the order of accuracy of the schemes.
Particular attention will be focused on how the fourth-order splitting parameter M2 influences
the error. The M1 term in Fim also contributes to this, but will be discussed in more detail in
section 3.2 in connection with energy stability.

The values used for M2 can be expected to depend on the range spanned by the mobility
function; it will be convenient to define the maximum value of the mobility exhibited by the
solution at a given time,

M(tn) = max
x∈Ω

|M(Un)| . (24)

Indeed, some papers [39, 40, 43, 58] have suggested that the splitting parameter should satisfy
M2 ≥ Mmax where

Mmax = max
0≤tn≤T

M(tn), (25)

namely, M2 should exceed the mobility everywhere over the whole simulation. However, we will
show that this lower bound is not sharp, and improving this estimate can be important for im-
proving the accuracy of simulations. Indeed, some papers have pointed to the accuracy of methods
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Figure 1: Thin film test problem 1: (left) The final state of the reference solution U∗(x, T ) at T = 1. (right)
Convergence plots for the four non-iterative schemes (18, 19, 22, 23), with splitting parameters M2 = 0.32275,M1 =
0.

using splitting as being a significant concern, up to the level of qualitatively changing solution
trends for large-time behaviors [59].

3.1.1. Test problem 1: accuracy with fixed splitting parameters

We consider a typical problem for the dewetting thin film equation (5),

∂u

∂t
= ∇ ·

[
u3∇

(
ε2

u3 − ε3

u4 −∆u
)]

on Ω = [0, 12π]2 , (26)

with ε = 0.1 and periodic boundary conditions. In terms of forms (1) and (10), this corresponds to
M(u) = u3, G(u) = −4ε3/u−3ε2 ln(u), andW(u) = −ε2u−2/2+ε3u−3/3. For initial conditions, we
use a nearly-uniform film with a small-amplitude spatial oscillation, u0(x, y) = 0.35 + 0.1 cos(x+
y) at t = 0. The initial stage of the dynamics, analogous to spinodal decomposition in the
Cahn-Hilliard equation, can be estimated from the prediction of linearized dynamics for small
perturbation about the unstable constant state ū = 0.35. To ensure that our simulations capture
the influences of the nonlinearities of (26), we evolve the solution to time t = 100 to yield a large-
amplitude nontrivial initial condition. Testing of numerical convergence then consisted of evolving
from this state, U0(x, y), for one unit of time to the final state U∗(x, y, T ) at T = 1, with different
equally-spaced timesteps. The spatial discretization is implemented using Fourier pseudo-spectral
methods with 256× 256 modes.

An accurate numerical reference solution U∗(x, t) was constructed using Richardson extrapo-
lation with a very small time-step, h = 10−7, and the errors were computed in terms of the L1

norm by comparing solutions for various time increments against the reference solution at final
time T = 1,

Error(h) =

∫

Ω

|U(x, T ;h)− U∗(x, T )| dx. (27)

The solution was observed to cover the range of mobilities, 0.1227 < M(t) < 0.1242 on 0 ≤ t ≤ T .

Figure 1(right) shows a comparison of the four basic (non-iterative) time-stepping methods
we consider: (22), (23), along with (18) and (19) both with J = 1. The two single-step methods
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Figure 2: Test problem 1 (continued): (left) Comparison of the IMEX schemes with the iterative BHM-BEJ scheme
for J = 1, 2, 4, 8, all with M2 = 0.32275 and M1 = 0. (right) Error curves for the BHM-BEJ iterative methods
with splitting parameters M2 = 0.07,M1 = 0.

exhibit first-order accuracy with (19) having a smaller scaling coefficient. The two IMEX methods
yield second-order accuracy with IMEX2 producing consistently smaller errors. We note that all
of these methods were tested with fixed values for the splitting constants of M2 = 0.32275 and
M1 = 0; this value of M2 satisfies M2 > Mmax. We will return to issues connected with the choice
of these parameters below.

Figure 2(left) compares the accuracy of IMEX1, IMEX2 and BHM-BE1 with the iterative
extension of BHM, BHM-BEJ (18), for J = 2, 4, 8. Increasing the number of iterations decreases
the error, but increases the computational work per timestep. Using pseudo-spectral methods, the
linear implicit terms are straightforward, so the main computational workload is attributable to
each evaluation of the nonlinear explicit operator Fex(U). The BHM-BEJ method has J evaluations
of Fex per timestep compared with 3 evaluations per timestep for both IMEX1 and IMEX2. After
two iterations, BHM-BE2 has an error that is only slightly larger than IMEX1 with somewhat
lower computational work involved. Increasing the number of iterations to J = 4 to compete
with IMEX2 shifts the speed advantage to IMEX2. An unusual aspect of the error curves for the
BHM-BEJ iterative methods is that they appear to scale like Ch2, like the curves for the second-
order IMEX methods. However, this is not actually the asymptotic behavior for the BHM-BEJ

methods for h → 0; we will see that that it only holds for an intermediate range of time-step
sizes. Increasing the number of iterations lowers the error at each fixed value of h. The “bend” in
the error curve for BHM-BE8 on 10−5 ≤ h ≤ 10−4 recovers the first-order accuracy expected for
Backward Euler methods. We will discuss how this behavior is influenced by the implicit/explicit
splitting parameter M2 next.

In Figure 2(right) the first-order accuracy of the BHM-BEJ iterative methods is made more
clear through the use of a smaller value of the splitting parameter, here M2 = 0.07 compared to
M2 = 0.32275 used in the earlier figure. Here increasing the number of iterations exposes the first-
order rate of convergence over a wider range of timesteps. We conjecture that for large numbers
of iterations (J ≥ 4) the error curve could approach the error produced by the fully implicit
(nonlinear) backward-Euler method. The reduction in the error relative to the non-iterative BE1

method is seen to be over a factor of ten. The numerical results suggest that more careful analysis
beyond (17) would show the truncation error to scale like ||τ || ∼ C1(M2; J)h+ C2(M2; J)h

2 with
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Figure 3: Test problem 1 (continued): The error for the time-stepping methods at fixed h = 0.125 over a range of
values for the M2 splitting parameter. The curves terminate at minimum values M∗

2
below which simulations went

unstable. Vertical lines at fixed values for the α ratio in (28) are shown for reference.

a relatively large C2 coefficient.

In simulations of each of the numerical schemes, we observed that at any fixed h, decreasing
M2 decreases the error. There must be a positive lower bound on M2 for stable simulations. If
M2 were set to zero, then the methods reduce to explicit methods that have severe limitations
on the maximum timestep, h = O(∆x4) for conditional stability for stiff fourth-order parabolic
PDEs. Figure 3 shows error curves for three methods (BHM-BE1, IMEX1, IMEX2) over a range
of values for M2 with a fixed value of the timestep, h = 0.125. Above a critical minimum value of
the splitting parameter, M2 > M∗

2 , the errors are monotone decreasing for each scheme. Below M∗
2

numerical instabilities producing large errors were observed. Estimates for these critical values
were found as M∗

2,BE1 ≈ 0.0528, M∗
2,IMEX1 ≈ 0.0628, and M∗

2,IMEX2 ≈ 0.120. These values are
specific to this test problem but to interpret them in a broader context, we can re-cast them
relative to (25) using

M2 = α Mmax (28)

to give α ∗
BE1 ≈ 0.43, α ∗

IMEX1 ≈ 0.51, and α ∗
IMEX2 ≈ 0.97. These estimates are based on a single

fixed timestep size, in section 3.2 we will re-examine this using a different approach. Noting that
all of these are below the case of α = 1 given by (25), we observe that it is possible to lower M2

to thus gain more accurate solutions. Some previous papers have offered results for single-step
schemes suggesting α ≥ 1/2 in (28) is stable, for example [41, 42, 49, 51, 60, 61]. The value
obtained for α ∗

BE1 in Fig. 3 being slightly below the stability criterion is unexpected but may be
due to the results being carried out at a moderate-sized timestep. Other papers have suggested
that using α > 1 could yield possible instabilities [28]. Returning to the convergence results shown
in Figure 2, in terms of (28) the BHM-BE simulations shown there were done with αBE ≈ 2.6 and
αBE ≈ 0.57 respectively.

Further simulations on this test problem showed that increasing the second-order splitting
parameter from M1 = 0 generally increased the error. This will be revisited in section 3.2.2 where
it is shown that M1 can improve results from the schemes but must be selected carefully.
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Figure 4: Test problem 2: (left) Error curves for the BHM-CNJ iterative methods with J = 1, 2, 4, 8 and the
two IMEX schemes, (right) Error curves for IMEX2 using fixed splitting parameter M2 = Mmax compared with
dynamic splitting with M2,n = M(tn) and M2,n = 0.9M(tn).

3.1.2. Test problem 2: static vs. dynamic splitting

We briefly consider a second test problem to more carefully examine how choices for splitting
parameters influence the accuracy of these methods.

A common approach for constructing test problems is by adding an inhomogeneous forcing
term to the PDE to make a given function an exact solution, see for example [48] for a test
problem for the forced Cahn-Hilliard equation. For the thin film equation (26), the function
uexact(x, y, t) = 0.3 + 0.1 sin(x) sin(y)et/2 can made to be an exact solution by inserting it into

equation (26) and obtaining the corresponding forcing term as f̃(x, y, t) ≡ ∂uexact/∂t− F (uexact).
This gives the following modified or forced problem,

∂u

∂t
= ∇ ·

[
u3∇

(
ε2

u3 (1− ε
u
)−∆u

)]
+ f̃(x, y, t) , (29)

beginning with u = uexact(x, y, 0) as initial data.

Figure 4(left) shows error curves for the iterative BHM-CNJ (19) methods with J = 1, 2, 4, 8
and M2 = 0.125, M1 = 0. Without iteration, the error for the BHM-CN1 schemes shows only
first-order accuracy. However, adding even one iteration makes the method approach second-
order accuracy (J ≥ 2), and like the backward Euler results, we expect that with sufficient
iterations per time-step, this method may converge to the accuracy of the corresponding nonlinear
implicit Crank-Nicolson scheme. In terms of computational workload, the CNJ method requires
J + 1 evaluations of Fex per timestep vs. 3 evaluations per timestep for the two multi-step IMEX
methods. In terms of accuracy considerations alone, the CN2 becomes competitive with the IMEX
schemes producing slightly better errors than IMEX1 and just under-performing the IMEX2 errors.
For higher numbers of iterations CNJ , J = 4, 8 generates smaller errors compared to both IMEX
schemes but for many iterations the CNJ scheme becomes more computationally expensive.

In this test problem, since the solution is growing, the mobility is likewise monotone increasing,
having 0.065 < M(t) < 0.125 on 0 ≤ t ≤ T with T = 1.4. Figure 4(right) compares the accuracy
of the IMEX2 scheme with two different choices for the splitting parameter: (i) a fixed value

12



M2 = Mmax = 0.125 as in Fig. 4(left) (i.e. (28) with α = 1), vs. (ii) selecting M2 to be a dynamic
parameter with a different value at each timestep,

M2,n = α M(tn), (30)

used here with α = 1 and α = 0.9. This kind of fixed-ratio choice for the dynamic fourth-order
splitting parameter was also used in [40]. Relative to static splitting, dynamic splitting with the
same ratio (α = α) yields smaller values for M2 all times tn when the global maximum for M(U)
has not been attained, and hence will yield smaller errors at almost all steps. Figure 4(right)
shows that using a dynamic M2,n can improve the accuracy by a factor of two and can be further
improved for lower values of α down to the lower-bound α > α∗ for yield stable computations for
the scheme being used.

In the next section we will consider the stability of computations with different values for the
M2,M1 splitting parameters.

3.2. Tests of energy stability

Since the Cahn-Hilliard and thin film PDE’s both have monotone dissipated energy (3),
discrete-time energy stability (also called gradient stability [40]) of the numerical schemes is nec-
essary for consistency of simulation results,

E(Un+1) ≤ E(Un) ∀n . (31)

Determining if some classes of implicit-explicit numerical schemes are unconditionally energy stable
for all timesteps, h > 0, has received a lot of attention in the numerical analysis literature [62, 63].
The interest in large timesteps is motivated by the use of adaptive timestepping that becomes
very relevant for practical computations for these PDE models since their long-time behaviors can
exhibit very slow dynamics.

Many papers have presented analytical estimates for conditions on energy stability for various
numerical methods [56, 63]; here we carry out direct numerical tests to see if (31) holds for our
schemes. For each test, simulations of the PDE will be run over a range of numerical parameters,
the timestep h and one of the splitting parameters (M2 or α or M1) and if (31) is satisfied for the
entire simulation will be recorded in a plot of the parameter plane. For the figures in this section,
success will be marked in yellow, while if (31) fails at any timestep the simulation will be shown
in blue (e.g. see Fig. 5). Our results suggest there are fairly robust dividing curves separating
stable from unstable parameter ranges. These tests are not definitive, but their results will be
very suggestive of parameter ranges where unconditional stability of the numerical methods could
be potentially provable. Starting from a fixed choice of initial condition, the PDE is simulated
using one of the schemes to evolve the solution for a fixed number of time-steps, N , independent
of the size of h. Further remarks on comparisons with alternative ways to test (31) are given in
the Supplementary Material. We will present two test problems to show how energy stability can
depend on the M1 or M2 parameters separately and where M1,M2 must be considered together.

3.2.1. Test problem 3: energy stability for the Cahn-Hilliard equation

The Cahn-Hilliard equation (4) with ϵ = 0.02 on Ω = [0, π]2, and a specified initial condition
was used as a computational test problem in [9]. Matching this PDE with form (10) gives M(u) =
ϵ2 and G(u) = u3 − u. Since the mobility is a constant, setting M2 = ϵ2 gives the full fourth-order
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Figure 5: Test problem 3: Energy stability of numerical solutions of the Cahn-Hilliard equation (4) using the BHM-
BE1 method. Simulations with (h,M1) parameters that are energy-stable are marked yellow, unstable parameters
are shown in blue.

operator exactly. For the second order operator, we write G−(u) = u3−u−M1u and G+(u) = M1u.
The convexity splitting condition from (9) yields that G ′

−(u) = 3u2 − (1 +M1) < 0 for the range
of values for the solution, nominally assumed to be −1 ≤ u ≤ 1 suggests that M1 > 2 should be
used. The numerical method used in [9] is equivalent to the BHM-BE1 scheme (14) with M2 = ϵ2

and for specified values of M1. Interestingly, in [9], the value M1 = 3/2 (below the convexity
splitting threshold) was used and produced accurate, energy-stable results.

Figure 5(a) shows the energy stability results for this problem for a range of M1 with N = 500
time-steps for 10−4 ≤ h ≤ 106. These results suggest that the method could be unconditionally
energy stable for all M1 > 1 [28]. This supports the use of M1 = 3/2 from [9] as a stable splitting
that would be more accurate than using M1 = 2.

3.2.2. Test problem 4: energy stability for the thin film equation

We now consider the thin film equation (26) with ε = 0.1 on Ω = [0, 6π]2 and 0 ≤ t ≤ 200 with
initial conditions describing a weakly perturbed film with mean thickness ū ≈ 0.6. The dynamics
of the solution are illustrated in Figure 6. In the early stages, the amplitude of perturbations grows
and one local minimum dominates to approach near-rupture. The rupture point then grows to
form a well-defined “hole” with u ≈ ε. The maximum of the mobility is found to be Mmax ≈ 0.621
achieved near t ≈ 200 having started from Mmax ≈ 0.216 at t = 0 (see Figure 6(c)). We will now
see that there are interactions between the second- and fourth-order splitting parameters involved
in the energy-stable of the thin film equation.

We will describe the results obtained for the IMEX-1 scheme applied to this problem. We found
that all of the methods considered in this paper yield qualitatively similar parameter dependence
for their energy stability. The plots in Figure 7 show that for the thin film equation it was not
possible to obtain consistent solutions for arbitrarily large time-steps. This is suggestive of the loss
of accuracy becoming the limiting factor in simulations that might still be formally unconditionally
stable [41]. Fig. 7(left) shows that IMEX-1 simulations with M1 = 0 and M2 set by (30) are energy
stable for moderate time-steps for α ≥ α∗

IMEX1 ≈ 0.5. For α < α∗ the limitation on the maximum
time-step is comparable to the linear stability bound for explicit methods, h = O(∆x4). Our
further energy stability tests suggest the critical fourth-order parameters for the other numerical
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Figure 6: Test problem 4: Numerical solution of the thin film equation (26) using BHM-IMEX2 with M2 = 1,
M1 = 0 and h = 0.001. (a) Solution at time t = 40. (b) Solution at time t = 200. (c) Evolution of the maximum
of the mobility coefficient, M(t), (24).
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Figure 7: Test problem 4: Energy stability plots for the IMEX1 method applied to the thin film equation (26).
(left) Dependence of the energy stability on the α-ratio for the fourth-order dynamic splitting parameter (30).
(right) Dependence on the second-order splitting parameter M1 with α = 1 in (30).

schemes are αBE1 ≈ 0.5, αCN1 ≈ 1.0, and αIMEX2 ≈ 0.85.

The Cahn-Hilliard and thin film equations can both be expressed in terms of (10), but dif-
ferences with respect to their second order operators may be very significant. The second order
nonlinearity G(u) for (26) can be split similarly to what was done in section 3.2.1. Requiring
convexity of G−(u) = G(u) − M1u for u ≥ ϵ suggests that the splitting parameter can be any
value M1 ≥ ϵ. However, it appears that this condition is not necessary for energy stability, as
Figure 7(left) used M1 = 0 and still showed ranges of energy stability.

Figure 7(right) shows results for the IMEX1 with α = 1 for a large range of values for the
second-order splitting parameter M1. Above a certain critical value for M1, here M∗

1 ≈ 1000, the
influence of the second-order splitting allows for the use of significantly larger timesteps. Above
M∗

1 the size of the maximum timestep depends on M1 and this requires further study. However,
for a fixed value of M1 ≥ M∗

1 we have observed that hmax is larger than in Fig. 7(left) and is
generally independent of the value of α > α∗ used for the fourth-order splitting. This suggests
that the second-order splitting is primarily responsible for the energy stability. This may fit with
the results of Duchemin and Eggers [41] showing that numerical schemes for PDE can be stabilized
using lower-order operators.
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Our simulations suggest that the methods are not able to obtain true unconditional energy
stability (i.e. (31) for unbounded timesteps). This is attributed to the fact that the variable
mobility M(u) makes the component in the TF equation that needs to be computed implicitly to

become non-linear, ∇·
(
M(u)∇

[
δE+
δu

])
, and this implicit computation is mitigated by partially

performing the task with the fourth-order splitting M2. In order words, the unconditional energy-
stability property is not guaranteed since the splitting applied to TF or CH equations with variable
mobility becomes a modified version of the original convexity-splitting scheme proposed by Eyre
[27]. The present energy stability results provide a basic description of the parameter space for
the fourth-order and second-order splittings. These results could provide a guideline for choosing
energy-stable parameters in a given simulation and help to understand and quantify the advantages
and limitations of the currently available splittings. Future investigations should explore and
develop new splittings or methods that improve the energy-stability property with respect to the
choices in the parameter space.

4. Illustrations of computed dynamics

Dynamics in thin-film problems may take a longer time to exhibit full drop formation, so our
schemes must be able to perform accurately and efficiently for longer runs. We illustrate the
performance of BHM-IMEX2 by solving the tf equation (26) with the same initial condition as
in section 3.1.1 and all parameters the same except that we consider a larger box Ω = [0, 24π]2

and T = 1250. The motivation for choosing a larger domain relies simply in the desire to capture
more well-defined drops at the end of the simulation. Using M2 = 5.0 and h = 0.1 the simulation
snapshots for t = 250, 500, 750 and 1250 (left to right) are shown in Figure 8. The method exhibits
the expected dynamics of a thin-film undergoing instabilities that result in drop formation. The
simulation results at t = 1250 illustrate well-defined drops that slowly evolve due to mass exchange
with remaining drops which is consistent with the physical evolution for the thin-film. For this
numerical experiment mass is conserved and the solution preserves the energy-decreasing property.
Similar numerical simulations capturing the correct dynamics were observed for the BHM-BEJ ,
BHM-CNJ and BHM-IMEX1 methods.

We note that while the methods considered in this paper are energy-stable and depending on
the accuracy requirements at hand, a timestep smaller than h = 1 would be recommended to
obtain more accurate solutions. However for computational tasks in which accuracy is modest,
a large time step such as h = 1 can serve the purpose of a quicker computation that allows to
explore and investigate the overall dewetting dynamics associated with the solution to Eq (5).

We also consider the CH equation with variable mobility (1) with M(u) = 1− ω2u2, W(u) =
1/4u4 − 1/2u2 and ω ∈ [0, 1]. Here we choose ω = 0.95 as it was done in [14] which allows us to
consider a case of variable mobility that is nearly degenerate [11, 12]. We consider an initial condi-
tion in the form u0(x, y, z) = ū0+ ηu1 where ū0 is a constant with −1 < ū0 < 1, and u1 represents
uniformly generated random numbers between (−1, 1) and η is a small parameter (η ≪ 1). We
let the initial condition vary around (ū0(x, y, z) ≈ 0.55) and consider the computational domain
Ω = [0, 2π]3 with 643 modes. Using BHM-IMEX1 with M2 = 0.5, ϵ = 0.1 and h = 0.01, we com-
pute the numerical solution of the CHVM (1) in three-dimensions and report the results in Figure
9. Figure 9 shows snapshots for times t = 1, 10, 50, 100. The expected dynamics of the CHVM
equation can be observed in Figure 9 as the coarsening process takes place in which spheres (in-
stead of circles for the 2-dimensional problem) evolve into configurations through mass-exchange
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Figure 8: Evolution of the numerical solution to the thin film equation (26) using the BHM-IMEX2 method with
Ω = [0, 24π]2, M2 = 5, h = 0.1 with profiles at times t = 250, 500, 750, 1250.

leading to bigger spheres dominating over smaller counterparts. We also employed adaptive time
step techniques [64, 65] to allow for high-accuracy computations during fast dynamics and effi-
ciency during slow dynamics. A detailed discussion of these simulation results is presented in the
Supplementary Material.

5. Conclusions

This paper presented new methods for the numerical solution of nonlinear fourth-order diffusion
equations with variable mobility. The methods are based on a splitting approach (BHM) followed
by different time-stepping discretizations and iterations. The main advantage of the splitting is
that implicit terms are chosen to be linear constant coefficient operators in u and computations
become very efficient using Fourier pseudo-spectral methods. Our methods improve the accuracy
of the biharmonic modified approach and achieve second order accuracy. We also provided a
computational study of the splitting parameters associated with the fourth-order and second-order
splitting M2, and M1 which until now have received limited attention [39, 40]. Their influence
in terms of accuracy and energy-stability of solutions was presented and discussed using the TF
equation with different test problems and the CH equation as it was presented in [9].

The robustness of the methods makes them appropriate to handle thin film problems and
variable mobility CH equations along with extensions of such models. The methods are very
efficient and the computing requirements are comparable to the ones required by the original
BHM method. We believe our approach could be a powerful tool, that is easy to implement,
to study problems associated with nonlinear diffusion equations with variable mobility. We also
believe that this paper has good potential for developing more fast and accurate methods for
nonlinear higher-order phase field equations and to re-invigorate discussions and conversations in
scientific communities interested in the TF and CH equations.

Further work will include a study of coarsening dynamics in 2D for the thin film equation, and
in 3D for the Cahn-Hilliard equation with variable mobility. We plan to migrate our schemes to
graphic processing unit (GPU) architecture [22], in particular for 3D simulations, to parallelize and
efficiently perform the computations associated with large-scale dynamics. We are also interested
in the phase field crystal (PFC) equation [31, 66, 67], the block copolymer (BCP) equation [3]
and the Functionalized Cahn-Hilliard (FCH) equation [68, 69]. Problems to consider will be
additional extensions or generalizations of Cahn-Hilliard equations [8] including coupled Cahn-
Hilliard/Allen-Cahn systems, Cahn-Hilliard/thin film equations with non-conserved fluxes [15, 70],
and CH coupled to Navier-Stokes equations. These mentioned problems have applications in the
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Figure 9: Numerical solution to the CHVM equation in 3D with small random initial data (ū0 = 0.55) on Ω =
[0, 2π]3 using BHM-IMEX1 with 643 elements and h = 0.01. Simulation snapshots taken at t = 1, 10, 50, 100 (a-d
respectively).

bio-sciences and complex domains with curved surfaces [71] are possible, where fast computational
methods are not available for the linear operator, which will give rise to new and interesting
computational challenges. A specific question of interest is how to select the stabilizing in Fim(u)
through the Mi coefficients to optimize the accuracy of computations. While we have focused on
the dependence on M2 via (30), careful selection of M1 as well as M0 in (12) may yield valuable
improvements. Some primarily work on tri-harmonic splitting, with an added M3∆

3u term has
already been applied to a sixth-order phase field model [69].
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