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 34 

Abstract 35 

How genomic differences contribute to phenotypic differences is a major question in biology. The 36 
recently characterized genomes, isolation environments, and qualitative patterns of growth on 37 
122 sources and conditions of 1,154 strains from 1,049 fungal species (nearly all known) in the 38 
yeast subphylum Saccharomycotina provide a powerful, yet complex, dataset for addressing this 39 
question. We used a random forest algorithm trained on these genomic, metabolic, and 40 
environmental data to predict growth on several carbon sources with high accuracy. Known 41 
structural genes involved in assimilation of these sources and presence/absence patterns of 42 
growth in other sources were important features contributing to prediction accuracy. By further 43 
examining growth on galactose, we found that it can be predicted with high accuracy from either 44 
genomic (92.2%) or growth data (82.6%) but not from isolation environment data (65.6%). 45 
Prediction accuracy was even higher (93.3%) when we combined genomic and growth data. After 46 
the GALactose utilization genes, the most important feature for predicting growth on galactose 47 
was growth on galactitol, raising the hypothesis that several species in two orders, Serinales and 48 
Pichiales (containing the emerging pathogen Candida auris and the genus Ogataea, 49 
respectively), have an alternative galactose utilization pathway because they lack the GAL genes. 50 
Growth and biochemical assays confirmed that several of these species utilize galactose through 51 
an oxidoreductive D-galactose pathway, rather than the canonical GAL pathway. Machine 52 
learning approaches are powerful for investigating the evolution of the yeast genotype-phenotype 53 
map, and their application will uncover novel biology, even in well-studied traits.  54 

Significance Statement 55 

Can we predict which organisms will grow on a particular type of sugar from genetic data or from 56 
knowing on what other sugars they can grow? To answer these and similar questions, we used 57 
an artificial intelligence algorithm on a one-of-a-kind dataset of genomic, metabolic, and 58 
ecological data from more than a thousand yeast species. The algorithm predicted organisms’ 59 
growth on different sugars from their genomic data or from patterns of growth on other sugars 60 
with high accuracy. Focusing on galactose, a sugar found in milk and numerous plant products, 61 
our algorithm helped us discover yeast species that grow on galactose through a previously 62 
unknown metabolic pathway, illustrating the potential power of artificial intelligence in biological 63 
discovery from big data.   64 
 65 
Main Text 66 
 67 
Introduction 68 
Yeasts in the subphylum Saccharomycotina (hereafter referred to as yeasts) are genomically 69 
diverse, geographically widely distributed, found in diverse habitats, and utilized for diverse 70 
purposes by humans – the baker’s yeast Saccharomyces cerevisiae is the cornerstone of the 71 
winemaking, brewing, baking, and biotech industries; Candida albicans is a human commensal 72 
that thrives in the human gut and occasionally becomes a serious pathogen; Candida auris is an 73 
emerging fungal pathogen of great concern because of its innate resistance to available 74 
antifungal drugs; and Lipomyces starkeyi prodigiously produces lipids and has several 75 
biotechnological applications (1–3) .  76 
 77 
Yeast ecological diversity is thought to be intimately tied to the vast diversity in their diets, i.e., the 78 
diversity of primary metabolic capabilities that allow them to grow on many different sources of 79 
carbon and nitrogen (4). However, we currently lack a comprehensive understanding of how 80 
variation in yeast gene content or regulation is related to the metabolic diversity and 81 
environmental adaptation of the ~1,200 species found across the subphylum. Recently, the 82 
Y1000+ Project (http://y1000plus.org/) published draft genome sequences of 1,154 83 
representative strains (mostly taxonomic type strains) from 990 described and 61 candidates for 84 
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new species of yeasts (5–7). The Y1000+ Project has also systematically recorded (from the 85 
literature) and/or experimentally generated the isolation environments and qualitative and 86 
quantitative patterns of growth on diverse carbon sources, nitrogen sources, and environmental 87 
conditions (e.g., temperature and salinity) for a very large fraction of the same set of strains (4, 6). 88 
The availability of a comprehensive dataset that captures the vast genomic, environmental, and 89 
metabolic diversity of yeasts provides a unique testbed for understanding how adaptation to 90 
unique environments occurs in eukaryotic genomes (7). 91 
 92 
Several of the pathways that allow yeasts to grow on certain sources are well-characterized(8) 93 
(Riley et al 2016). For example, sucrose assimilation depends on the invertase Suc2p, and 94 
maltose assimilation depends on the maltose permease Mal31p and maltase (α-D-glucosidase) 95 
Mal32, which can also act on sucrose (9, 10). Arguably the best studied pathway is the Leloir or 96 
GALactose utilization pathway, which has become a model not only for understanding gene 97 
regulation in eukaryotes (11, 12), but also for how evolutionary changes in gene sequences, 98 
arrangement, and regulation contribute to ecological adaptation (13–19). In the GAL pathway of 99 
the baker’s yeast Saccharomyces cerevisiae, Gal2p or an Hxt transporter protein imports D-100 
galactose into the cell, where the mutarotase domain of Gal10p acts on the sugar, if necessary. 101 
Then, Gal1p converts it to galactose-1-phosphate, representing the first energy-consuming step 102 
of the pathway (20). Gal7p then converts galactose-1-phosphate to UDP-galactose. Gal10p acts 103 
on UDP-galactose using its epimerase domain, resulting in the production of UDP-glucose. 104 
Finally, Gal7p converts UDP-glucose to glucose-1-phosphate, which Pgm1p/Pgm2p then 105 
converts to glucose-6-phosphate, which enters glycolysis to produce energy for the cell (20).   106 
 107 
Galactose abundance varies widely across yeast environments. For example, due to both the 108 
dietary influx of galactose and the synthesis of the sugar, galactose is abundant in the gut, 109 
bloodstream, and urine of most mammals (including humans) in the form of oligosaccharides, 110 
glycoproteins, and glycolipids, as well as in milk and other dairy products in the form of lactose (a 111 
disaccharide composed of galactose and glucose subunits) (21). Galactose is also found in a 112 
variety of fruit, vegetable, and other plant products, such as legumes; levels of galactose in 113 
common fruits and vegetables range from <0.1 mg/100 g to 34 mg/100 g (22–24). Galactose is 114 
also part of oligosaccharides, such as lactose, raffinose, and melibiose, as well as glycoproteins 115 
and glycolipids, that vary in their distribution across environments (23, 24); hydrolysis of these 116 
molecules by microbial enzymes can release free galactose.  117 
 118 
The substantial variation in abundance of galactose in different environments is reflected in the 119 
evolution of the GAL pathway and its regulation across the subphylum Saccharomycotina. 120 
Numerous instances of wholesale pathway loss and gain, including by horizontal gene transfer, 121 
have been discovered (13, 15, 16, 19), as well as striking instances of ancient, multi-locus 122 
polymorphisms within species (16–18, 25). Different regulatory systems that lead to different 123 
modes of induction and rates of growth have also evolved in different lineages. For example, C. 124 
albicans exhibits an earlier graded induction in response to galactose, while S. cerevisiae has a 125 
more bimodal expression (14, 26, 27). 126 
 127 
The rich genomic, environmental, and metabolic data of the Y1000+ Project, coupled with 128 
extensive genetic and biochemical knowledge of yeast primary metabolism, provide a unique 129 
opportunity to explore the genotype-phenotype map, which models the interaction between the 130 
genes and the traits of an organism, and how it has evolved across a subphylum. However, the 131 
enormity and complexity of the Y1000+ Project’s data make standard statistical analyses less 132 
suitable. In recent years, machine learning algorithms have emerged as powerful tools for 133 
analyzing biological big data (28). Examples include predicting genes involved in specialized 134 
metabolism (29), predicting the bioactivities of specialized metabolites from genomic data (30, 135 
31), predicting protein expression and function from regulatory and protein sequences (32–34), 136 
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and distinguishing fungal ecological lifestyles, such as saprobes from plant pathogens (35) or 137 
generalists from specialists (6).  138 
 139 
One of the most successful machine learning algorithms for analyzing biological datasets is the 140 
random forest algorithm, which employs randomized decision trees trained on subsets of the data 141 
to identify the most informative data features (e.g., a gene’s presence / absence, a gene’s 142 
function, a strain’s ability to grow on a given substrate) for predicting a trait of interest (e.g., the 143 
ability to assimilate galactose). The algorithm is known to perform well in biological datasets, 144 
likely because it can handle datasets where the number of variables is larger than that the 145 
number of observations (36), it can be trained on a part of the dataset at a time, and it can 146 
capture interactive effects between features (37). Identification of the most important features that 147 
contribute to the prediction accuracy of the random forest algorithm is straightforward and 148 
efficient, facilitating the exploration of very large datasets for biological meaning and the 149 
generation of testable hypotheses.  150 
 151 
In this study, we used a random forest algorithm trained on environmental, metabolic, and/or 152 
genomic data to predict the growth of nearly all known species of Saccharomycotina on different 153 
carbon sources (Figure 1, Tables S1 – S4). Predicting growth on 29 different carbon sources 154 
tended to be highly accurate when the algorithm was trained on gene presence/absence and/or 155 
on presence/absence of growth on other carbon sources, which shows that both metabolic genes 156 
and the structure of the metabolic network are highly informative for understanding the evolution 157 
of yeast primary metabolism; in contrast, the predictive ability of isolation environment data was 158 
weak. Although the most important features associated with prediction accuracy were well-known 159 
genes and carbon sources associated with the source of interest, our machine learning approach 160 
also identified novel features not previously known to be associated with growth on a given 161 
carbon source. To illustrate the predictive ability of our approach, we used growth on galactose 162 
as a test case because our machine learning approach suggested a possible novel alternative 163 
pathway for galactose assimilation in the genus Ogataea and in a clade containing C. auris, 164 
which both lack GAL genes. Growth and biochemical assays validated that these species 165 
assimilate galactose through a hypothesized oxidoreductive D-galactose pathway, demonstrating 166 
the potential power of machine learning analysis for studying the relationship between genomic 167 
and phenotypic variation across vast evolutionary timescales.   168 
  169 
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 170 
 171 
Results 172 
 173 
Machine learning accurately predicts growth on 29 different carbon sources from 174 
metabolic and genomic data but not from environmental data 175 
A random forest algorithm (Figure 1) trained on the metabolic data matrix had high balanced 176 
accuracy (on average, 82%) for predicting growth of the 893 strains representing 885 of the 177 
Y1000+ yeast species on 29 different carbon sources. This result indicates that variation in the 178 
content and structure of the primary metabolic network in different strains informs patterns of 179 
growth on these substrates (Figure 2, Table S5). A random forest algorithm trained on the 180 
genomic data matrices (comprised of InterPro and/or KEGG Orthology (KO) annotations) was 181 
similarly accurate for predicting growth on these 29 sources (on average, 80-81% balanced 182 
accuracy). Interestingly, KO annotations were able to predict growth on substrates, such as D-183 
xylose (~82% accurate) and L-sorbose (~79% accurate), with good accuracy; several previous 184 
studies have noted that the utilization of these substrates cannot be inferred solely from patterns 185 
of gene presence / absence, since the presence of certain genes (e.g., the XYL genes) is 186 
required for growth on these substrates but is not sufficient for predicting the ability to grow on 187 
them (8, 38–40).  188 
 189 
In contrast, when the random forest algorithm was trained on environmental datasets, the 190 
balanced accuracy was between 49-60% (on average, 55%), which is only marginally above 191 
random accuracy (Figure 2, Table S5). This result suggests that our environmental dataset does 192 
not provide useful predictors for growth on these sources. Examination of the ROC/AUC curves, 193 
confusion matrices, and most important features for predicting growth on xylose, sucrose, and 194 
galactose supports this hypothesis: accuracy is only marginally above random using 195 
environmental data, and the most important features concern isolation environments not known to 196 
have high amounts of these sugars (Figure S1).  197 
 198 
However, the accuracy of predicting growth on 29 carbon sources using a random forest 199 
algorithm trained on isolation environments was on average 60% when only specialists were 200 
included in the analysis, which compared favorably to 54% average accuracy when only 201 
generalists were included and 55% accuracy when all species were included. This result 202 
suggests that isolation environment is more informative for predicting carbon utilization of 203 
specialists (Figure S5, Table S12). Additionally, generalists tended to be better predicted on more 204 
commonly utilized substrates, while specialists were better predicted on more rarely utilized 205 
substrates (Figure S5, Table S12). 206 
 207 
Top features for predicting growth on a specific carbon source are related sources and 208 
metabolic genes 209 
The top features for predicting growth on the 29 carbon sources examined were often biologically 210 
relevant (Figure 2, Figure 3, Table S5). For example, for xylose, the most important feature was 211 
growth on xylitol, a metabolic intermediate in the typical xylose-degrading pathway in yeasts and 212 
other fungi (39, 41), while for sucrose, the most important feature was maltose, another 213 
disaccharide containing a glucose moiety (10) (Figure 3). For galactose, the top features included 214 
2-keto-D-gluconate and L-sorbose, which are generated from glucose or galactose, respectively, 215 
by the enzymes acting on an alternative galactose-degrading pathways in some bacteria and 216 
fungi (41–44), as well as lactose and melibiose, disaccharides that contain galactose (Figure 3). 217 
When the top feature from each metabolic trait matrix was removed for xylose, sucrose, and 218 
galactose, and then the random forest was re-ran recursively, accuracy decreased rapidly at first 219 
for sucrose and more slowly for xylose and galactose, even though xylose and galactose were 220 
initially less accurate (~80% accuracy) than sucrose (~90% accurate) (Figure S4, Table S11). 221 
After removing the top feature from the algorithm around 30 times, the accuracy of predicting 222 
growth on xylose, sucrose, and galactose remained around 60%-70% and continued to slowly 223 
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decline (Figure S4, Table S11). At around 90 top features removed, accuracy started declining 224 
more steeply toward 50% or random accuracy (Figure S4, Table S11). This analysis 225 
demonstrates how much connectivity there is between metabolic traits in the random forest 226 
algorithm, as there remains a moderate level of accuracy even while removing top related traits to 227 
each carbon substrate.  228 
 229 
A random forest algorithm trained on KEGG Orthology (KO) annotations was similarly accurate 230 
for predicting growth on xylose (~82%), sucrose (~87%), and galactose (~91%) to the combined 231 
KO and InterPro genomic dataset (Figure 2, Figure 3). Despite the larger size of the genomic 232 
data matrix (over 5,000 features compared to the metabolic data matrix of 122 features), the top 233 
features of the genomic data matrix were still often related to genetic pathways or enzymes 234 
known to be involved in the utilization of each source. The top features for the highly accurate 235 
prediction of growth on galactose were GAL7 and GAL10 (specifically the mutarotase domain), 236 
which are parts of the yeast GAL pathway (13). Despite the mis-annotation of the yeast GAL1 by 237 
KO (see Methods), the algorithm was still nearly as accurate when trained on the entire genomic 238 
data matrix as when trained on the manually curated GAL gene orthologs (Figure 5). The top 239 
feature for the algorithm predicting growth on sucrose was oligo-1,6-glucosidase (K01182), which 240 
corresponds to the α-glucosidases encoded by MAL32 and MAL12, as well as IMA1-IMA5, which 241 
indeed do act on sucrose, as well as maltose in some yeasts (9, 10). The distribution of XYL1, 242 
XYL2, and XYL3 does not always correlate with yeast growth on xylose (8, 40). Even though the 243 
XYL genes were present in the KO database (except for XYL3, which was misannotated), they 244 
were not among the top features contributing to the 85% prediction accuracy, but an α-xylosidase 245 
(K01811) was the fifth most important feature (Figure 3).  Since galactose metabolism and its 246 
associated genetic pathway has been thoroughly studied in yeasts, the remainder of this paper is 247 
focused on using growth on galactose as a test case for the utility of this machine-learning 248 
pipeline. 249 
 250 
The GAL genes are highly predictive of growth on galactose in most, but not all, yeasts 251 
Plotting the presence/absence of the GAL genes jointly with the presence/absence of growth on 252 
galactose on genome-scale phylogeny of 1,154 yeast strains showed that the distributions of the 253 
GAL genes were tightly correlated with the distribution of growth on galactose. Specifically, 254 
526/558 strains that can grow on galactose have the GAL genes, and 277/310 strains that cannot 255 
grow on galactose lack the GAL genes. Notably, there are two lineages in the orders Serinales 256 
and Pichiales that can grow on galactose but lack the GAL genes (Figure 4). One lineage 257 
contains species closely related to the emerging opportunistic pathogen Candida auris in the 258 
order Serinales. The second lineage contains species belonging to the genus Ogataea in the 259 
order Pichiales. Isolation environments, such as isolation from plants, showed no significant 260 
association with growth on galactose (Figure 4).  261 
 262 
Using the scores from the sequence similarity searches (from the jackhmmer software) of GAL1, 263 
GAL7, GAL102, and GAL10, the algorithm was even more accurate in its predictions of growth on 264 
galactose (92.2%). When the metabolic dataset was added to the training data, the accuracy 265 
increased even further to 93.1% (Figure 5). This increase in accuracy suggests that there are 266 
strains for which presence or absence of the GAL genes cannot accurately predict growth on 267 
galactose; if that were the case, then the increase in accuracy due to the inclusion of the rest of 268 
the metabolic dataset raises the possibility that there might be an alternative galactose-degrading 269 
pathway in some yeasts. After the GAL genes, the most predictive feature was growth on 270 
galactitol, pointing to a possible role for this metabolite as an intermediate in a potential 271 
alternative pathway (Figure 5). Previous work in filamentous fungi identified a galactose-272 
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degrading pathway that involves galactitol as an intermediate(42, 45), leading us to hypothesize 273 
that a similar pathway may be present in these yeasts and contribute to the increase in accuracy.  274 
 275 
Machine learning predicts an alternative galactose-degrading pathway in two yeast 276 
lineages that lack GAL genes  277 
To further explore the possibility of an alternative galactose utilization pathway that uses galactitol 278 
as an intermediate, we trained our random forest algorithm just on the GAL genes and growth on 279 
galactitol. We found that this algorithm was almost as accurate as when the rest of the metabolic 280 
dataset was added (93.1% versus 93.3%). Examination of the confusion matrices when the 281 
algorithm was trained using just the GAL gene data versus when trained on the GAL gene data 282 
and metabolic data suggested that the increase in accuracy came from 16 species that were 283 
previously classified as false negatives and were now true positives (Figure 6). Since these 284 
species lack the GAL genes, our original algorithm predicted that they could not grow on 285 
galactose; when growth on galactitol was added, however, they were correctly predicted to grow 286 
on galactose, further supporting the hypothesis that they have an alternative galactose-degrading 287 
pathway (Figure 6). These 16 species are all able to grow on galactitol and belong to the two 288 
lineages that lack GAL genes, as noted previously in Figure 4: the lineage of species closely 289 
related to Candida auris in Serinales and the genus Ogataea in Pichiales. Even with this highly 290 
accurate algorithm, there were several species that were still not correctly predicted: 22 false 291 
negatives (strains that are predicted not to grow, but do) (Table S7) and 35 false positives (strains 292 
that are predicted to grow, but do not) remained, plus 3 species with low GAL gene sequence 293 
similarity scores also became false positives with this new algorithm, bringing the total to 38 false 294 
positives (Table S8). These species warrant further investigation as they may contain other 295 
alternative pathways, grow weakly on galactose or only under specific conditions (46), use 296 
galactose in glycosylation but not for assimilation (as the fission yeast Schizosaccharomyces 297 
pombe) (47), or have pseudogenized GAL genes (48). We note that the GAL genes of yeasts that 298 
were false positives in our classification exhibited, on average, lower sequence similarity scores 299 
in our GAL gene searches than the GAL genes of yeasts that were true positives (Table S9), 300 
which is consistent with reduced purifying selection.  301 
 302 
Some Pichiales and Serinales species utilize galactose through an oxidoreductive 303 
galactose utilization pathway 304 
To test the hypothesis that some species lacking GAL pathways can indeed utilize galactose, we 305 
tested three species (Table S10) from two different orders, C. ruelliae and C. duobushaemulonii 306 
from Serinales and O. methanolica from Pichiales (49), for growth on galactose as the sole 307 
carbon source and measured galactose consumption. All three species grew to high cell densities 308 
and accumulated more biomass than the S. cerevisiae positive control (Figure S3A), which 309 
contains an intact GAL pathway. Sugar quantification indicated galactose consumption in all three 310 
species (Figure 7A). The first step of the known oxidoreductive galactose pathway in species of 311 
Aspergillus fungi (outside of Saccharomycotina yeasts) utilizes an aldose reductase, which 312 
reduces galactose to the sugar alcohol galactitol while oxidizing NADPH to NADP+ (50) (Figure 313 
7B). Thus, we developed a biochemical assay for NADPH-dependent enzymatic activity on 314 
galactose as the sole carbon source. In this assay, species that exhibit the hypothesized 315 
enzymatic activity are predicted to show a decrease in NADPH absorbance at 340 nm over time, 316 
while species that do not exhibit enzymatic activity are predicted to show no decrease in NADPH 317 
over time (Figure 7C). All three species displayed decreases in absorbance of NADPH compared 318 
to their respective negative controls with no substrate (Figure 7D) and no extracted protein 319 
(Figure S3B), which indicates that the cells express NADPH-dependent enzymatic activity that is 320 
dependent on the presence of galactose. The S. cerevisiae negative control used for this 321 
experiment possessed an intact GAL pathway and did not show a decrease in NADPH 322 
absorbance over time, indicating a lack of NADPH-dependent enzymatic activity on galactose as 323 
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the sole carbon source. Thus, we conclude that these three species possess at least the first step 324 
of an oxidoreductive pathway. 325 
 326 
 327 
Discussion  328 
 329 
In this study, we employed machine learning on the rich environmental, metabolic, and genomic 330 
data from nearly all known species of an entire eukaryotic subphylum to predict patterns of yeast 331 
growth on different carbon sources. We found that we could accurately predict growth on diverse 332 
sources of carbon from genomic and/or metabolic data but not from environmental data (Figure 333 
2). Previous research showed that many yeast traits are connected in a trait-trait network, likely 334 
due to shared genes in different metabolic pathways (4, 6). These connections and overlap in 335 
gene functions likely explain the high accuracy of prediction from metabolic and/or genomic data. 336 
Interestingly, accuracy of prediction was high, even for carbon sources for which enzyme 337 
specificity was lacking, such as xylose (Figure 3) (40). However, accuracy for xylose growth was 338 
lower than for predicting growth on sources, such as galactose, whose utilization pathways 339 
contain dedicated enzymes (Figure 3).  340 
 341 
In contrast, the accuracy of prediction of growth on different carbon sources from isolation 342 
environment data was marginally better than random (Figure 3). There are two possible 343 
explanations for this finding. The first is that isolation environments may be heterogenous in their 344 
carbon sources and thus capable of supporting metabolically diverse yeast species. An 345 
alternative, not necessarily mutually exclusive explanation, is that isolation environments can be 346 
informative with respect to yeast diets, but that our current environmental data are incomplete. 347 
Notably, our isolation environmental data for each yeast included in the data matrix stem from 348 
information present in the taxonomic description of the type strain of each species. A dataset that 349 
contains the range of isolation environments of each yeast species would potentially be much 350 
more informative but is currently unavailable. 351 
 352 
We also found that machine learning accuracy for predicting growth on galactose was higher 353 
when both the presence / absence of GAL genes and growth on galactitol were used in training 354 
compared to just the presence / absence of the GAL genes alone (Figure 5), suggesting the 355 
presence of a rare alternative galactose-degrading pathway. We discovered that this alternative 356 
galactose-degrading pathway is found in two distinct lineages that grow in galactose in the 357 
absence of GAL genes; we further proposed that this alternative pathway involves galactitol as a 358 
metabolic intermediate (Figures 4-6). Enzyme assays validated the oxidoreductive activity of 359 
three species in these two lineages when grown on galactose, providing additional support for the 360 
hypothesized mechanism of utilization (Figure 7). We are currently investigating which genes are 361 
involved in this alternative pathway.  362 
 363 
This work illustrates the remarkable breadth of yeast metabolic diversity and how machine 364 
learning approaches can help uncover novel biology, even in well-studied traits, such as 365 
galactose assimilation. The potential for additional discoveries using machine learning is further 366 
highlighted by considering the several yeasts that appear as false positives or false negatives in 367 
our machine learning predictions. There are several possible explanations for why we currently 368 
cannot accurately predict growth on galactose for every strain in the subphylum. One explanation 369 
for some of the false positives could be that the GAL pathway is inactivated in some of the strains 370 
examined, but that their genomes contain GAL pseudogenes. Examples of GAL pseudogenes 371 
are known from several different species (16, 18, 48), but strains with pseudogenes would still 372 
give positive hits in our ortholog detection analyses. In support of this hypothesis, the average 373 
sequence similarity scores for the GAL genes in yeasts classified as false positives were lower 374 
than the scores for GAL genes in yeasts classified as true positives (Tables S8 and S9). Another 375 
possible explanation for false positives could be that some yeasts may contain GAL genes that 376 
are used in other processes, such as glycosylation, but not in assimilation; although such 377 
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examples are not currently known from the Saccharomycotina, the fission yeast 378 
Schizosaccharomyces pombe (subphylum Schizosaccharomycotina) is a case in point (51). They 379 
may also be growing very weakly or under specific conditions not tested here. Furthermore, since 380 
growth on galactitol is predictive of this alternative pathway of galactose utilization in the genus 381 
Ogatea and the C. auris lineage, our algorithm now predicts that any strain that grows on 382 
galactitol can also grow on galactose, which may not always true (e.g., some yeasts in these 383 
lineages may be lacking the gene(s) to convert galactose to galactitol). In fact, there are six 384 
yeasts (five from these two lineages, plus one Starmerella species) in the list of false positives 385 
that grow in galactitol but do not grow in galactose. Finally, we note that there are more false 386 
positives in lineages other than the more extensively studied Serinales and Saccharomycetales; 387 
this could be because the availability of fewer strains from other lineages results in less accurate 388 
identification of gene presence/absence. Alternatively, the induction of GAL genes or use of the 389 
pathway may be different in these lineages (Table S8).  390 
 391 
Yeasts that appear as false negatives in our analyses, which indicates that they can indeed grow 392 
on galactose but are not predicted to grow, may be growing weakly or they may have other 393 
alternative pathways that do not involve galactitol. These may also lack the appropriate inducing 394 
conditions for growth on galactitol since they are often closely related to our documented 395 
alternative pathway species (Table S7). Additionally, eleven (out of 22) of these have GAL genes 396 
that are highly divergent in their sequences, indicating that they may have homologs that do not 397 
reach the sequence similarity threshold (Table S7). These yeasts could have very divergent, but 398 
still functional, GAL genes; their GAL genes may have been misannotated; or they have 399 
incomplete genomes that are missing the full sequences of the GAL genes. These yeasts may 400 
also require cryptic inducing conditions to test positive for growth on galactitol since they are often 401 
closely related to our documented alternative pathway species (Table S7).  402 
 403 
The broader take-home message of our study is that machine learning approaches harbor great 404 
promise for studying the macroevolution of the genotype-phenotype map. The random forest 405 
algorithm used to analyze this dataset was very efficient in finding relevant genes and traits that 406 
predict growth on several carbon substrates with high accuracy, without requiring extensive 407 
manual parameter tuning. Part of its success is likely because we used the one-of-a-kind matrix 408 
of genomic, metabolic, and ecological data of the Y1000+ Project (6). While similar data matrices 409 
for other fungal or eukaryotic lineages are currently lacking, it would be fascinating to apply this 410 
type of analysis in clades with different morphologies, ecologies, or lifestyles than those of 411 
Saccharomycotina. While generation of data matrices equivalent to the one currently available for 412 
Saccharomycotina will undoubtedly require extensive effort and coordination, the potential for 413 
discovery is likely to be greater in lesser studied lineages. 414 
 415 
Of course, how successful machine learning or any other genotype-phenotype association 416 
approach (52) will be for bridging genomic and phenotypic variation across macroevolutionary 417 
timescales will depend on numerous factors, including: the genetic architecture of the trait 418 
(oligogenic vs. polygenic); the degree to which the evolution of the trait is correlated with the 419 
evolution of other traits (univariate vs. multivariate); how often the trait has evolved (once vs. 420 
repeatedly); and whether the evolutionary mechanisms that contribute the trait are conserved 421 
(conserved vs. divergent). Oligogenic, univariate, repeatedly evolved traits that arise by the same 422 
evolutionary mechanisms will be the easiest to study. In certain respects, the GAL pathway fits 423 
these descriptions quite well; the ability to grow on galactose is encoded by a few genes (13), 424 
growth on galactose is only weakly correlated with growth on other traits (4), and the trait has 425 
been repeatedly gained and lost (15, 19). We therefore find it striking that machine learning 426 
enabled us to discover novel biology, namely the existence of an alternative pathway not 427 
previously known to be present in Saccharomycotina, in such a well-studied trait. When coupled 428 
with rich data, such as the treasure-trove of genomic, metabolic, and ecological data of the 429 
Y1000+ Project (6), we believe that machine learning approaches hold tremendous power to 430 
elucidate how genomic variation transforms into phenotypic variation across the tree of life.  431 
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 432 
Materials and Methods 433 
 434 
Genomic data matrix 435 
Using the KEGG (53, 54) and InterProScan (55) gene functional annotations generated by the 436 
Y1000+ Project (6), a data matrix was built with presence and absence of each unique KEGG 437 
Orthology (KO) and counts of each unique InterPro ID number in each genome. Each genome 438 
was its own row, and each unique KO (N = 5,043) or InterPro ID (N = 12,242) present in one or 439 
more of the 1,154 yeast genomes was its own column. A python script recorded the presence 440 
and absence of KO annotations (Table S1), the number of each InterPro ID for each genome 441 
(Table S2), and put them in the appropriate cells of the data matrix. Upon observing that accuracy 442 
was typically similar for predicting growth on 29 carbon sources between a random forest 443 
algorithm trained just on the KO dataset and the combined KO and InterPro dataset, the KO 444 
genomic dataset was used for all subsequent analyses, and the InterPro data was dropped from 445 
the genomic analyses following Figure 2. Comparison of our own GAL gene searches with the 446 
KO dataset revealed that GAL1 was misannotated, and that the mutarotase and epimerase 447 
domains of GAL10 were annotated separately by KEGG. 448 
 449 
Metabolic data matrix 450 
Our metabolic data matrix contained 122 traits from 893 yeast strains from 885 species in the 451 
subphylum. The list of traits included growth on different carbon and nitrogen sources, such as 452 
galactose, raffinose, and urea, as well as on environmental conditions, such as growth at different 453 
temperatures and salt concentrations (Table S3). The metabolic data were sourced from 454 
information available for each of the sequenced strains from the CBS strain database. These data 455 
were gathered from strains studied as part of the in the published descriptions of species, 456 
additional data on strains obtained by previous studies done in the Westerdijk Fungal Biodiversity 457 
Institute (CBS), or additional data provided by the depositors of the strains in the CBS culture 458 
collection. The data matrix contained metabolic data for 893/1,154 species. The percentage of 459 
missing data in the data matrix was 37.5% (40,906 missing values out of 108,946 total). Less 460 
thoroughly studied traits tended to have more missing data than more commonly found and/or 461 
thoroughly studied traits. For example, our data matrix included data on melibiose fermentation, 462 
which was estimated to be present in 12% (28/234) of yeasts, but only 26.2% (234/893 of strains 463 
have been tested for growth on this substrate. In contrast, our data matrix included data on 464 
galactose assimilation, which was estimated to be present in 64.2% (558/868), but 97.2% 465 
(868/893) of strains have been tested. Since there were 25 strains for which growth on galactose 466 
was not characterized, the total number of strains for which we have both genomic data and 467 
galactose assimilation data was 868.  468 
 469 
Environmental data matrix and ontology 470 
The isolation environments for 1,088 (94%) out of the 1,154 yeasts examined were gathered from 471 
strain databases, species descriptions, or from The Yeasts: A Taxonomic Study (6, 56). Strains 472 
without isolation environments either had been significantly domesticated via crossing or 473 
subculturing or were lacking information in our searches. Written descriptions of the environments 474 
were converted into a hierarchical trait matrix using a controlled vocabulary. The ontology was 475 
built with Web Protégé (https://webprotege.stanford.edu/), with six broader categories: animal, 476 
plant, environmental, fungal, industrial products, and victuals (food or drink). Within these 477 
categories, more specific controlled vocabulary annotations were connected to each strain: for 478 
example, an isolation environment reported as “Drosophila hibisci on Hibiscus heterophyllus” was 479 
associated in our ontology with the animal subclass “Drosophila hibisci” and the plant subclass 480 
“Hibiscus heterophyllus”. This ontology was converted to a binary trait matrix containing all the 481 
unique environmental descriptors (Table S4). The same ontology was used in the recent Y1000+ 482 
manuscript (6), but that manuscript only considered the first subclass in subsequent analyses; our 483 
analyses here used all connections in the ontology for training a random forest algorithm.  484 
 485 
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Predicting growth on different carbon sources using machine learning algorithms trained 486 
on genomic, metabolic, and/or environmental data 487 
To test whether we could predict growth on 29 different carbon sources from genomic, 488 
environmental, and/or (the rest of the) metabolic data, we used a random forest algorithm. These 489 
29 traits were selected because they were measured in at least 743 strains and were present in 490 
20%-80% of strains included in this analysis. For each trait, a random forest algorithm was 491 
trained separately on environmental, metabolic, or genomic datasets to evaluate the accuracy of 492 
prediction and identify the most important predictive features (Table S5).   493 
 494 
We trained a machine learning algorithm built by an XGBoost (1.7.3) (57) random forest classifier 495 
(XGBRFClassifier()) with the parameters “ max_depth=12 and n_estimators=100; all other 496 
parameters were in their default settings. The max_depth parameter specifies the depth of each 497 
decision tree, determining how complex the random forest will be to prevent overfitting while 498 
maintaining accuracy. The n_estimators parameter specifies the number of decision trees in the 499 
forest—after testing the increase in accuracy while increasing each of these parameters, we 500 
found that having a higher max_depth or more decision trees per random forest did not further 501 
increase accuracy. 502 
 503 
 The random forest algorithm was trained on 90% of the data, and used the remaining 10% for 504 
cross-validation, using the RepeatedStratifiedKFold and cross_val_score functions from the 505 
sklearn.model_selection (58) (1.2.1) package. Cross validation is a method for assessing 506 
accuracy involving 10 trials, each of which holds back a random 10% of the training data for 507 
testing (57, 58). The mean accuracy of the algorithm from this test was used for our in-depth 508 
xylose, sucrose, and galactose analyses, as those datasets were relatively balanced; that is, 509 
there were relatively similar numbers of strains that grew in these substrates (growers) and 510 
strains that did not grow in them (non-growers). For the analyses involving all 29 carbon 511 
substrates, we used balanced accuracy, which takes the mean of the true positive rate and the 512 
true negative rate, since there were unequal numbers of growers and non-growers in many of 513 
these substrates. For both measures, an accuracy value of 50% would be equivalent to randomly 514 
guessing.  515 
 516 
Receiver Operator Characteristic (ROC) curves, which plot the true positive rate against the false 517 
positive rate, were also generated for each prediction analysis to visualize the accuracy of the 518 
algorithm in predicting growth on a given substrate—values of area under the curve (AUC) 519 
greater than 0.5 in these plots indicate better than random accuracy. We also used the 520 
cross_val_predict() function from Sci-Kit Learn separately to generate the confusion matrices; 521 
these matrices show the numbers of strains correctly predicted to grow or not grow on a specific 522 
carbon source (True Positives and True Negatives, respectively) and incorrectly predicted (False 523 
Positives, predicted to grow but do not; and False Negatives, not predicted to grow but do). This 524 
function also employs a 10-fold cross validation step, but it keeps track of which species are 525 
classified as True/False Positives and True/False Negatives during each of these 10 trials, while 526 
entering the final results into a confusion matrix. Top features were automatically generated by 527 
the XGBRFClassifier function using Gini importance, which uses node impurity (the amount of 528 
variance in growth on a given carbon source for strains that either have or do not have this 529 
trait/feature).  530 
 531 
In each prediction analysis, we excluded from each training dataset growth and fermentation data 532 
for each of the 29 carbon sources under investigation. For example, we excluded growth on 533 
galactose and galactose fermentation from the training dataset for predicting growth on 534 
galactose; thus, the final metabolic data matrix used in the training contained data from 120 535 
sources and conditions, instead of the total 122. Similarly, we excluded growth on sucrose and 536 
sucrose fermentation from the training dataset for predicting growth on sucrose; we excluded 537 
xylose and xylose fermentation from the training dataset for predicting growth on xylose.  The 538 
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code used for these analyses is available at 539 
https://github.com/mcharrison95/RF_for_ML_GAL_paper.  540 
 541 
GAL1, GAL7, GAL10, and GAL102 gene searches 542 
To determine presence/absence of genes in the GAL pathway in each of the genomes of the 543 
1,154 strains included in our study, we conducted sequence similarity searches for the GAL1, 544 
GAL7, GAL102, and GAL10 genes using the jackhmmer function from the HMMER software, 545 
version 3.3.2 (59). Using the representative GAL gene sequences from the Candida albicans 546 
genome, jackhmmer searched for all hits above a similarity score of 200, which captured genes 547 
from all 12 Saccharomycotina taxonomic orders, and then used these results to build a new 548 
profile to search for the gene throughout the phylogeny. jackhmmer repeated this method until the 549 
results converged, which was three rounds for all genes except GAL10, which required five 550 
rounds, likely because the mutarotase and epimerase domains are part of the same protein in 551 
some yeast orders (e.g., Saccharomycetales and Serinales) but belong to two separate proteins 552 
(encoded by GALM and GALE, respectively) in others (e.g., Lipomycetales) (15, 19). In analyses 553 
where only the GAL gene dataset was used as genomic data, both the presence/absence and 554 
similarity score produced by jackhammer for GAL1, GAL7, and GAL10 were included in the 555 
dataset; hits with similarity scores below 200 were considered absent and were entered as 0 556 
(Table S6). As noted above, comparison of our own GAL gene searches with the KO dataset 557 
revealed that GAL1 was misannotated, and that the mutarotase and epimerase domains of 558 
GAL10 were annotated separately by KEGG. 559 
 560 
Quantification of galactose utilization in strains lacking the GAL pathway 561 
To validate galactose utilization by certain strains lacking the GAL genes that were identified in 562 
our qualitative metabolic data matrix, we quantified growth and galactose consumption in liquid 563 
culture.  Standard undefined yeast lab media was prepared as previously described (60). YPD 564 
medium for culturing yeasts contained 10 g/L yeast extract, 20 g/L peptone, 20 g/L glucose, and 565 
18 g/L agar (US Biological). Cells were streaked onto YPD plates, and single colonies were 566 
picked. Cells were inoculated into 5 mL of YP (10 g/L yeast extract, 20 g/L peptone) + 2% 567 
galactose (Amresco) and grown to mid-log phase (48 – 55 hours depending on the strain, see 568 
Table S10 for further information) on a tissue culture wheel at room temperature. The optical 569 
density of the cells was measured at 600 nm (OD600) using an OD600 DiluPhotometer (Implen). 570 
Cells were inoculated into 50 mL YP + 2% galactose at a starting OD600 0.05 for all species 571 
except for the negative control species, Saccharomycopsis malanga, which was inoculated at 572 
starting OD600 0.01 due to the low cell density caused by the absence of its GAL pathway. The 573 
cultures were shaken in non-baffled 150-mL Erlenmeyer flasks (Fisher Scientific) at 250 rpm at 574 
room temperature for seven days. 1 mL of culture was collected every 24 hours and spun down; 575 
600 µL of supernatant were used for extracellular sugar quantification via high performance liquid 576 
chromatography and refractive index detection (HPLC-RID). OD600 readings were also taken at 577 
each 24-hour timepoint. All samples taken for HPLC-RID were stored at -20 ºC until the end of 578 
the experiment. Extracellular galactose concentrations were determined by HPLC-RID as 579 
previously described using a galactose standard (61, 62). The strain S. cerevisiae gre3∆::loxP-580 
kanMX-loxP (63) served as a positive control for galactose utilization because it has an intact 581 
GAL pathway; the deletion of GRE3, which encodes a promiscuous aldose reductase that could 582 
conceivably have some activity on galactose (64), also allowed this strain to serve as a negative 583 
control for the hypothesized oxidoreductive pathway. Galactose concentrations were expressed 584 
as g/L, and the results correspond to the mean value of biological triplicate timepoints. All 585 
extracellular galactose quantification data visualization was performed using R (v4.1.2) in the 586 
RStudio platform (v2022.07.01+554) and with the package ggplot2 (v3.4.2) (65, 66). 587 
 588 
 Assay for galactose- and NADPH-dependent enzymatic activity 589 
To determine whether galactose utilization in strains lacking the GAL genes but able to grow in 590 
galactose occurred through a hypothesized oxidoreductive D-galactose pathway, we tested 591 
NADPH-dependent enzymatic activity on galactose as a sole carbon source. Yeast cells were 592 
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pregrown in YPD, single colonies were inoculated into 5 mL YP + 2% galactose, cultures were 593 
grown to mid-log phase, and they were inoculated into 50 mL YP + 2% galactose using the same 594 
methods as described above. Candida duobushaemulonii, Candida ruelliae, and Ogataea 595 
methanolica cells were harvested at mid-log phase along with their respective S. cerevisiae 596 
gre3∆::loxP-kanMX-loxP negative controls for whole-cell lysate protein extraction using Y-PER 597 
(Thermo Fisher Scientific). 1 mL of culture was sampled, and cells were centrifuged at 3,000 x g 598 
at 4 ºC for 5 minutes. 250 mg of wet cell pellet were resuspended in 1,250 µL of Y-PER and 599 
homogenized by pipetting. The mixture was left to agitate at room temperature for 50 minutes to 600 
ensure successful cell lysis and soluble protein extraction. Cell debris was pelleted at 14,000 x g 601 
for 10 minutes at room temperature. Finally, 1 mL of supernatant was removed for analysis and 602 
protein concentration determination. Protein concentrations were determined using the Pierce 603 
BCA protein assay kit and protocol (Pierce Biotechnology), and absorbance at 562 nm was 604 
measured using The Infinite M1000 microplate reader (Tecan). Galactose-dependent enzymatic 605 
activity was determined by monitoring the oxidation of the cofactor NADPH to NADP+ by 606 
absorbance measurement at 340 nm at 25 ºC (67). The assay mixture (200 µL) contained 200 607 
mM Tris-HCl (pH 7.5), 5 mM of NADPH, 200 mM of galactose, 200 µg of undefined cell-free 608 
protein extract, and deionized water in 96-well plates (Corning 96 Well Clear Flat Bottom UV-609 
Transparent). In addition, each assay contained a protein extract blank and a substrate (without 610 
galactose) blank to account for protein and substrate noise, cofactor degradation, and off-target 611 
cofactor oxidation. Enzyme assays were performed in biological quadruplicate. Data analyses 612 
and plots were performed and visualized using the methods described above. 613 
 614 
Data availability statement 615 
The supplementary dataset is available at  https://doi.org/10.6084/m9.figshare.24855294. The 616 
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the Figshare+ repository at https://doi.org/10.25452/figshare.plus.c.6714042. 620 
 621 
 622 
Acknowledgments 623 
 624 
We thank Tony Capra, the Hittinger Lab, the Rokas Lab, and Y1000+ Project team members for 625 
helpful discussions throughout the duration of this project; Trey K. Sato for the control strain of S. 626 
cerevisiae; and Mick McGee, Steve Karlen, and the GLBRC Metabolomics Facility for metabolite 627 
quantification. This work was performed using resources contained within the Advanced 628 
Computing Center for research and Education at Vanderbilt University in Nashville, TN.  X.X.S. 629 
was supported by the National Science Foundation for Distinguished Young Scholars of Zhejiang 630 
Province (LR23C140001), the Fundamental Research Funds for the Central Universities (226-631 
2023-00021), and the key research project of Zhejiang Lab (2021PE0AC04). This work was 632 
supported by the National Science Foundation (grants DEB-2110403 to C.T.H. and DEB-633 
2110404 to A.R.). Research in the Hittinger Lab is also supported by the USDA National Institute 634 
of Food and Agriculture (Hatch Projects 1020204 and 7005101), in part by the DOE Great Lakes 635 
Bioenergy Research Center (DOE BER Office of Science DE–SC0018409, and an H. I. Romnes 636 
Faculty Fellowship (Office of the Vice Chancellor for Research and Graduate Education with 637 
funding from the Wisconsin Alumni Research Foundation). Research in the Rokas lab is also 638 
supported by the National Institutes of Health/National Institute of Allergy and Infectious Diseases 639 
(R01 AI153356), and the Burroughs Wellcome Fund. 640 
 641 
 642 
 643 
References 644 

https://doi.org/10.6084/m9.figshare.24855294
https://github.com/mcharrison95/RF_for_ML_GAL_paper


 

 

14 

 

1.  C. T. Hittinger, J. L. Steele, D. S. Ryder, Diverse yeasts for diverse fermented beverages 645 
and foods. Curr. Opin. Biotechnol. 49, 199–206 (2018). 646 

2.  A. Yaguchi, D. Rives, M. Blenner, New kids on the block: emerging oleaginous yeast of 647 
biotechnological importance. AIMS Microbiol. 3, 227–247 (2017). 648 

3.  N. T. Case, et al., The future of fungi: threats and opportunities. G3 649 
GenesGenomesGenetics 12, jkac224 (2022). 650 

4.  D. A. Opulente, et al., Factors driving metabolic diversity in the budding yeast subphylum. 651 
BMC Biol. 16, 26 (2018). 652 

5.  X.-X. Shen, et al., Tempo and Mode of Genome Evolution in the Budding Yeast 653 
Subphylum. Cell 175, 1533-1545.e20 (2018). 654 

6.  D. A. Opulente, et al., Genomic and ecological factors shaping specialism and generalism 655 
across an entire subphylum. 2023.06.19.545611 (2023). 656 

7.  C. T. Hittinger, et al., Genomics and the making of yeast biodiversity. Curr. Opin. Genet. 657 
Dev. 35, 100–109 (2015). 658 

8.  R. Riley, et al., Comparative genomics of biotechnologically important yeasts. Proc. Natl. 659 
Acad. Sci. 113, 9882–9887 (2016). 660 

9.  S. Ostergaard, L. Olsson, J. Nielsen, Metabolic Engineering of Saccharomyces cerevisiae. 661 
Microbiol. Mol. Biol. Rev. 64, 34–50 (2000). 662 

10.  C. A. Brown, A. W. Murray, K. J. Verstrepen, Rapid Expansion and Functional 663 
Divergence of Subtelomeric Gene Families in Yeasts. Curr. Biol. 20, 895–903 (2010). 664 

11.  M. Ptashne, A. Gann, Genes and Signals, 1st edition (Cold Spring Harbor Laboratory 665 
Press, 2001). 666 

12.  M. Johnston, A model fungal gene regulatory mechanism: the GAL genes of 667 
Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 51, 458–476 (1987). 668 

13.  M.-C. Harrison, A. L. LaBella, C. T. Hittinger, A. Rokas, The evolution of the GALactose 669 
utilization pathway in budding yeasts. Trends Genet. 38, 97–106 (2022). 670 

14.  X. Sun, et al., Recognition of galactose by a scaffold protein recruits a transcriptional 671 
activator for the GAL regulon induction in Candida albicans. eLife 12, e84155 (2023). 672 

15.  M. A. B. Haase, et al., Repeated horizontal gene transfer of GALactose metabolism 673 
genes violates Dollo’s law of irreversible loss. Genetics 217 (2021). 674 

16.  A. Venkatesh, A. L. Murray, A. Y. Coughlan, K. H. Wolfe, Giant GAL gene clusters for the 675 
melibiose-galactose pathway in Torulaspora. Yeast 38, 117–126 (2021). 676 

17.  J. Boocock, M. J. Sadhu, A. Durvasula, J. S. Bloom, L. Kruglyak, Ancient balancing 677 
selection maintains incompatible versions of the galactose pathway in yeast. Science 678 
371, 415–419 (2021). 679 

18.  C. T. Hittinger, et al., Remarkably ancient balanced polymorphisms in a multi-locus gene 680 
network. Nature 464, 54–58 (2010). 681 

19.  J. C. Slot, A. Rokas, Multiple GAL pathway gene clusters evolved independently and by 682 
different mechanisms in fungi. Proc. Natl. Acad. Sci. 107, 10136–10141 (2010). 683 

20.  C. A. Sellick, R. N. Campbell, R. J. Reece, “Chapter 3 Galactose Metabolism in Yeast—684 
Structure and Regulation of the Leloir Pathway Enzymes and the Genes Encoding Them” 685 
in International Review of Cell and Molecular Biology, (Academic Press, 2008), pp. 111–686 
150. 687 

21.  V. Brown, J. Sabina, M. Johnston, Specialized Sugar Sensing in Diverse Fungi. Curr. 688 
Biol. 19, 436–441 (2009). 689 

22.  K. C. Gross, P. B. Acosta, Fruits and vegetables are a source of galactose: Implications 690 
in planning the diets of patients with Galactosaemia. J. Inherit. Metab. Dis. 14, 253–258 691 
(1991). 692 

23.  P. B. Acosta, K. C. Gross, Hidden sources of galactose in the environment. Eur. J. 693 
Pediatr. 154, S87-92 (1995). 694 

24.  V. Marsilio, C. Campestre, B. Lanza, M. De Angelis, Sugar and polyol compositions of 695 
some European olive fruit varieties (Olea europaea L.) suitable for table olive purposes. 696 
Food Chem. 72, 485–490 (2001). 697 



 

 

15 

 

25.  A. Pontes, et al., Tracking alternative versions of the galactose gene network in the 698 
genus Saccharomyces and their expansion after domestication. iScience, 108987 (2024). 699 

26.  C. K. Dalal, et al., Transcriptional rewiring over evolutionary timescales changes 700 
quantitative and qualitative properties of gene expression. eLife 5, e18981 (2016). 701 

27.  C. Ricci-Tam, et al., Decoupling transcription factor expression and activity enables 702 
dimmer switch gene regulation. Science 372, 292–295 (2021). 703 

28.  J. Zou, et al., A primer on deep learning in genomics. Nat. Genet. 51, 12–18 (2019). 704 
29.  B. M. Moore, et al., Robust predictions of specialized metabolism genes through machine 705 

learning. Proc. Natl. Acad. Sci. 116, 2344–2353 (2019). 706 
30.  A. S. Walker, J. Clardy, A Machine Learning Bioinformatics Method to Predict Biological 707 

Activity from Biosynthetic Gene Clusters. J. Chem. Inf. Model. 61, 2560–2571 (2021). 708 
31.  O. Riedling, A. S. Walker, A. Rokas, Predicting fungal secondary metabolite activity from 709 

biosynthetic gene cluster data using machine learning. Microbiol. Spectr., 710 
2023.09.12.557468 (2023). 711 

32.  J. Zrimec, et al., Deep learning suggests that gene expression is encoded in all parts of a 712 
co-evolving interacting gene regulatory structure. Nat. Commun. 11, 6141 (2020). 713 

33.  J. A. Capra, R. A. Laskowski, J. M. Thornton, M. Singh, T. A. Funkhouser, Predicting 714 
Protein Ligand Binding Sites by Combining Evolutionary Sequence Conservation and 3D 715 
Structure. PLOS Comput. Biol. 5, e1000585 (2009). 716 

34.  W. Ma, et al., A deep convolutional neural network approach for predicting phenotypes 717 
from genotypes. Planta 248, 1307–1318 (2018). 718 

35.  S. Haridas, et al., 101 Dothideomycetes genomes: A test case for predicting lifestyles 719 
and emergence of pathogens. Stud. Mycol. 96, 141–153 (2020). 720 

36.  G. Biau, E. Scornet, A random forest guided tour. TEST 25, 197–227 (2016). 721 
37.  X. Chen, H. Ishwaran, Random Forests for Genomic Data Analysis. Genomics 99, 323–722 

329 (2012). 723 
38.  J. R. Greenberg, N. P. Price, R. P. Oliver, F. Sherman, E. Rustchenko, Candida albicans 724 

SOU1 encodes a sorbose reductase required for L-sorbose utilization. Yeast Chichester 725 
Engl. 22, 957–969 (2005). 726 

39.  D. J. Wohlbach, et al., Comparative genomics of xylose-fermenting fungi for enhanced 727 
biofuel production. Proc. Natl. Acad. Sci. U. S. A. 108, 13212–13217 (2011). 728 

40.  R. L. Nalabothu, et al., Codon Optimization Improves the Prediction of Xylose Metabolism 729 
from Gene Content in Budding Yeasts. Mol. Biol. Evol. 40, msad111 (2023). 730 

41.  J. Meng, et al., GalR, GalX and AraR co-regulate d-galactose and l-arabinose utilization 731 
in Aspergillus nidulans. Microb. Biotechnol. 15, 1839–1851 (2022). 732 

42.  E. Fekete, et al., The alternative D-galactose degrading pathway of Aspergillus nidulans 733 
proceeds via L-sorbose. Arch. Microbiol. 181, 35–44 (2004). 734 

43.  R. Tanimura, A. Hamada, K. Ikehara, R. Iwamoto, Enzymatic synthesis of 2-keto-d-735 
gluconate and 2-keto-d-galactonate from d-glucose and d-galactose with cell culture of 736 
Pseudomonas fluorescens and 2-keto-galactonate from d-galactono 1,4-lactone with 737 
partially purified 2-ketogalactonate reductase. J. Mol. Catal. B Enzym. 23, 291–298 738 
(2003). 739 

44.  L. Sun, et al., Two-Stage Semi-Continuous 2-Keto-Gluconic Acid (2KGA) Production by 740 
Pseudomonas plecoglossicida JUIM01 From Rice Starch Hydrolyzate. Front. Bioeng. 741 
Biotechnol. 8, 120 (2020). 742 

45.  T. Chroumpi, et al., Detailed analysis of the D-galactose catabolic pathways in 743 
Aspergillus niger reveals complexity at both metabolic and regulatory level. Fungal 744 
Genet. Biol. 159, 103670 (2022). 745 

46.  M. C. Kuang, et al., Repeated Cis-Regulatory Tuning of a Metabolic Bottleneck Gene 746 
during Evolution. Mol. Biol. Evol. 35, 1968–1981 (2018). 747 

47.  S. Suzuki, T. Matsuzawa, Y. Nukigi, K. Takegawa, N. Tanaka, Characterization of two 748 
different types of UDP-glucose/-galactose4-epimerase involved in galactosylation in 749 
fission yeast. Microbiology 156, 708–718 (2010). 750 



 

 

16 

 

48.  C. T. Hittinger, A. Rokas, S. B. Carroll, Parallel inactivation of multiple GAL pathway 751 
genes and ecological diversification in yeasts. Proc. Natl. Acad. Sci. 101, 14144–14149 752 
(2004). 753 

49.  M. Groenewald, et al., A genome-informed higher rank classification of the 754 
biotechnologically important fungal subphylum Saccharomycotina. Stud. Mycol. (2023) 755 
https:/doi.org/10.3114/sim.2023.105.01 (July 11, 2023). 756 

50.  B. Seiboth, B. Metz, Fungal arabinan and l-arabinose metabolism. Appl. Microbiol. 757 
Biotechnol. 89, 1665–1673 (2011). 758 

51.  T. Matsuzawa, et al., New insights into galactose metabolism by Schizosaccharomyces 759 
pombe: Isolation and characterization of a galactose-assimilating mutant. J. Biosci. 760 
Bioeng. 111, 158–166 (2011). 761 

52.  S. D. Smith, M. W. Pennell, C. W. Dunn, S. V. Edwards, Phylogenetics is the New 762 
Genetics (for Most of Biodiversity). Trends Ecol. Evol. 35, 415–425 (2020). 763 

53.  M. Kanehisa, S. Goto, KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids 764 
Res. 28, 27–30 (2000). 765 

54.  M. Kanehisa, M. Furumichi, Y. Sato, M. Kawashima, M. Ishiguro-Watanabe, KEGG for 766 
taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 51, D587–D592 767 
(2023). 768 

55.  P. Jones, et al., InterProScan 5: genome-scale protein function classification. 769 
Bioinformatics 30, 1236–1240 (2014). 770 

56.  C. Kurtzman, J. W. Fell, T. Boekhout, The Yeasts: A Taxonomic Study (Elsevier, 2011). 771 
57.  T. Chen, C. Guestrin, XGBoost: A Scalable Tree Boosting System in Proceedings of the 772 

22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 773 
KDD ’16., (Association for Computing Machinery, 2016), pp. 785–794. 774 

58.  F. Pedregosa, et al., Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 12, 775 
2825–2830 (2011). 776 

59.  S. R. Eddy, A new generation of homology search tools based on probabilistic inference. 777 
Genome Inform. Int. Conf. Genome Inform. 23, 205–211 (2009). 778 

60.  F. Sherman, Getting started with yeast. Methods Enzymol. 350, 3–41 (2002). 779 
61.  M. S. Schwalbach, et al., Complex Physiology and Compound Stress Responses during 780 

Fermentation of Alkali-Pretreated Corn Stover Hydrolysate by an Escherichia coli 781 
Ethanologen. Appl. Environ. Microbiol. 78, 3442–3457 (2012). 782 

62.  S.-B. Lee, et al., Crabtree/Warburg-like aerobic xylose fermentation by engineered 783 
Saccharomyces cerevisiae. Metab. Eng. 68, 119–130 (2021). 784 

63.  L. S. Parreiras, et al., Engineering and two-stage evolution of a lignocellulosic 785 
hydrolysate-tolerant Saccharomyces cerevisiae strain for anaerobic fermentation of 786 
xylose from AFEX pretreated corn stover. PloS One 9, e107499 (2014). 787 

64.  N. Masuda, et al., Neoadjuvant anastrozole versus tamoxifen in patients receiving 788 
goserelin for premenopausal breast cancer (STAGE): a double-blind, randomised phase 789 
3 trial. Lancet Oncol. 13, 345–352 (2012). 790 

65.   R: The R Project for Statistical Computing (July 20, 2023). 791 
66.  H. Wickham, ggplot2: Elegant Graphics for Data Analysis (Springer International 792 

Publishing, 2016). 793 
67.  R. M. Cadete, et al., Exploring xylose metabolism in Spathaspora species: XYL1.2 from 794 

Spathaspora passalidarum as the key for efficient anaerobic xylose fermentation in 795 
metabolic engineered Saccharomyces cerevisiae. Biotechnol. Biofuels 9, 167 (2016). 796 

  797 



 

 

17 

 

Figure legends 798 
 799 

 800 
Figure 1. Workflow for machine learning prediction of how diet influences the evolution of 801 
primary metabolism in the subphylum Saccharomycotina. Using the phenotype of “grows on 802 
substrate” or “does not grow on substrate” for each yeast strain, we trained an XGBoost random 803 
forest algorithm on 90% of environmental, qualitative trait, and/or genetic features (893 strains 804 
containing 885 species). Using the 10% of remaining data, we tested model performance by 805 
looking at accuracy, confusion matrices, and ROC-AUC curves, and we repeated this 806 
assessment 9 more times using cross-validation. Feature importance was calculated using Gini 807 
importance as automatically generated by the XGBoost random forest algorithm. Created with 808 
BioRender.com.  809 
 810 
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 811 
Figure 2. Prediction accuracy of growth on different substrates was high when the random 812 
forest algorithm was trained on metabolic data (blue) or genomic data (orange and grey) 813 
but low when the algorithm was trained on isolation environment data (yellow).  Note that 814 
data on growth (and, where applicable, on fermentation) of the condition tested were removed 815 
prior to each analysis (e.g., prediction of growth on xylose from metabolic data was conducted 816 
using data for growth on all other substrates, but it excluded data for growth on xylose and xylose 817 
fermentation). Balanced accuracy was assessed by RepeatedStratifiedKFold (n_splits=10, 818 
n_repeats=3) after training the random forest algorithm on either the remainder of the metabolic 819 
data, the InterPro and/or KEGG genomic data matrices, or the environmental data. Traits are 820 
ordered from most frequent to least frequent in the dataset from left to right. The most important 821 
feature for each random forest algorithm, as well as the precision of the algorithm, is shown in the 822 
supplementary dataset (Supplementary Table 1).  823 
 824 
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 825 
Figure 3. Prediction accuracy of growth on different sugars was high when the random 826 
forest algorithm was trained on genomic data (A, C, E), and similarly high when the 827 
algorithm was trained on metabolic data (B, D, F). Panels A and B: prediction of growth on 828 
xylose from genomic (A) or metabolic data (B). Panels C and D: prediction of growth on sucrose 829 
from genomic (C) or metabolic (D) data. Panels E and F: prediction of growth on galactose from 830 
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genomic (E) or metabolic (F) data. Note that data on growth (and, where applicable, on 831 
fermentation) of the carbon source tested were removed prior to each analysis (e.g., prediction of 832 
growth on xylose from metabolic data was conducted using data for growth on all other 833 
substrates and conditions, but it excluded data for growth on xylose and xylose fermentation). 834 
Also note that KEGG Orthology misannotated GAL1, likely leading GAL1 to not be in the top 835 
features, and that the epimerase and mutarotase domains encoded by GAL10 were annotated 836 
separately by this program. Accuracy is shown in the form of confusion matrices, which show 837 
strains predicted correctly to not grow on the sugar (true negatives, top left), strains predicted to 838 
grow on the sugar that do not (false positives, top right), strains correctly predicted to grow on the 839 
sugar (true positives, bottom right), and strains predicted to not grow on the sugar that do (false 840 
negatives, bottom left), as well as Receiver Operating Characteristic (ROC) curves, which show 841 
the true positive rate over false positive rate with changing classification thresholds. Feature 842 
importance graphs are also included to show the input features that are most useful for predicting 843 
growth on this sugar. XGBoost random forest was used to generate feature importance, and 844 
cross_val_predict() from sklearn.model_selection was used to generate confusion matrices. ROC 845 
curves were generated using the roc_curve function from sklearn.metrics. The prediction 846 
accuracies of growth on xylose, sucrose, and galactose from isolation environment data are 847 
shown in Supplemental Figure 1.    848 
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 849 

 850 
Figure 4. Distribution of GAL genes and plant isolation environments across the yeast 851 
phylogeny. The ability of the different strains to grow on galactose, the presence of genes GAL1, 852 
GAL7, GAL10, and GAL102, and whether they were isolated from plant environments are plotted 853 
as circles around the yeast phylogeny. Strain names are omitted for easier visualization, but they 854 
can be found in Figure S2. The colors of the different branches of the phylogeny correspond to 855 
the 12 taxonomic orders (49). 856 
 857 
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 858 
Figure 5.  GAL gene presence / absence and ability to grow on galactitol are highly 859 
predictive of growth on galactose across the subphylum Saccharomycotina.  A. Using the 860 
presence / absence patterns of the genes GAL1, GAL7, GAL10, and GAL102 as input data, the 861 
XGBoost random forest algorithm predicted growth on galactose with high accuracy, as shown by 862 
the confusion matrix, the ROC/AUC curve, and the individual feature importance. B. Using both 863 
the presence / absence patterns of GAL genes (from panel A) and metabolic data, the algorithm 864 
predicted growth on galactose with even higher accuracy, shown by the confusion matrix, the 865 
ROC/AUC curve, and the individual feature importance. Note that, after GAL1, GAL7, and 866 
GAL102 genes, growth on galactitol is the next most important feature for predicting growth on 867 
galactose.  868 
 869 

 870 
Figure 6. Adding the galactitol growth data to presence / absence of the GAL genes 871 
increased prediction accuracy by correctly classifying several false negatives as true 872 
positives. On the left is the confusion matrix for predicting growth on galactose using just GAL1, 873 
GAL7, GAL10, and GAL102 presence / absence. Note the presence of 35 false negatives; the 874 
algorithm predicted that these 35 species would be unable to grow on galactose because they 875 
lack the GAL genes, but they are known to grow on galactose. When the metabolic trait “Growth 876 
on Galactitol” was added to the training data, 16 of these species were then correctly predicted to 877 
grow on galactose and were moved to the “True Positive” category, while 19 remained false 878 
negatives. Three additional species that have low sequence similarity scores for the presence of 879 
GAL genes in its genome (Metschnikowia kofuensis, Kuraishia piskuri, and Wickerhamomyces 880 
subpelliculosus) also became new false negatives, bringing the total up to 22 false negatives and 881 
536 true positives, as shown in the confusion matrix on the right. The taxonomy (order) 882 
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(Groenewald et al. 2023), quantitative growth on galactose (which is normalized to growth on 883 
glucose), and qualitative ability to grow on galactitol for these 15 species are listed in the table. 884 
Additionally, it is worth noting that one of the species (Nakazawaea siamensis) that was a false 885 
negative and became a true positive has GAL genes with low sequence homology—with the 886 
addition of galactitol data, on which it does grow, it was then correctly predicted to grow on 887 
galactose.   888 
 889 

 890 
Figure 7. All three species showed galactose consumption and enzymatic activity on 891 
galactose. A. Average and standard deviation across three biological replicates of galactose 892 
concentrations present in medium with galactose as the sole carbon source (blue) and OD600 893 
growth measurements (orange) for C. ruelliae (i), O. methanolica (ii), and C. duobushaemulonii 894 
(iii) over 168 hours. B. Schematic diagram of the first step of a hypothesized oxidoreductive 895 
galactose pathway using an aldose reductase to reduce galactose to galactitol by oxidizing 896 
NADPH to NADP+. C. Illustration of the expected results for different levels of enzymatic activity. 897 
As the amount of NADPH present in the assay mixture decreases, absorbance at 340 nm 898 
decreases. D. Average and standard deviation across four biological replicates of NADPH 899 
absorbance at 340 nm over time comparing the complete assay mixture (red) to a substrate blank 900 
with no galactose added (blue) for C. ruelliae (i), O. methanolica (ii), C. duobushaemulonii (iii), 901 
and S. cerevisiae (iv). The same protein blanks (yellow) were used for all species included in the 902 
enzyme assay since each replicate of the enzyme assay included all four species on one 96-well 903 
plate, and the protein blank possessed reagents that were the same across all species (Tris-HCl, 904 
galactose, NADPH, and deionized water). 905 
 906 


