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Abstract

How genomic differences contribute to phenotypic differences is a major question in biology. The
recently characterized genomes, isolation environments, and qualitative patterns of growth on
122 sources and conditions of 1,154 strains from 1,049 fungal species (nearly all known) in the
yeast subphylum Saccharomycotina provide a powerful, yet complex, dataset for addressing this
question. We used a random forest algorithm trained on these genomic, metabolic, and
environmental data to predict growth on several carbon sources with high accuracy. Known
structural genes involved in assimilation of these sources and presence/absence patterns of
growth in other sources were important features contributing to prediction accuracy. By further
examining growth on galactose, we found that it can be predicted with high accuracy from either
genomic (92.2%) or growth data (82.6%) but not from isolation environment data (65.6%).
Prediction accuracy was even higher (93.3%) when we combined genomic and growth data. After
the GALactose utilization genes, the most important feature for predicting growth on galactose
was growth on galactitol, raising the hypothesis that several species in two orders, Serinales and
Pichiales (containing the emerging pathogen Candida auris and the genus Ogataea,
respectively), have an alternative galactose utilization pathway because they lack the GAL genes.
Growth and biochemical assays confirmed that several of these species utilize galactose through
an oxidoreductive D-galactose pathway, rather than the canonical GAL pathway. Machine
learning approaches are powerful for investigating the evolution of the yeast genotype-phenotype
map, and their application will uncover novel biology, even in well-studied traits.

Significance Statement

Can we predict which organisms will grow on a particular type of sugar from genetic data or from
knowing on what other sugars they can grow? To answer these and similar questions, we used
an artificial intelligence algorithm on a one-of-a-kind dataset of genomic, metabolic, and
ecological data from more than a thousand yeast species. The algorithm predicted organisms’
growth on different sugars from their genomic data or from patterns of growth on other sugars
with high accuracy. Focusing on galactose, a sugar found in milk and numerous plant products,
our algorithm helped us discover yeast species that grow on galactose through a previously
unknown metabolic pathway, illustrating the potential power of artificial intelligence in biological
discovery from big data.

Main Text

Introduction

Yeasts in the subphylum Saccharomycotina (hereafter referred to as yeasts) are genomically
diverse, geographically widely distributed, found in diverse habitats, and utilized for diverse
purposes by humans — the baker’s yeast Saccharomyces cerevisiae is the cornerstone of the
winemaking, brewing, baking, and biotech industries; Candida albicans is a human commensal
that thrives in the human gut and occasionally becomes a serious pathogen; Candida auris is an
emerging fungal pathogen of great concern because of its innate resistance to available
antifungal drugs; and Lipomyces starkeyi prodigiously produces lipids and has several
biotechnological applications (1-3) .

Yeast ecological diversity is thought to be intimately tied to the vast diversity in their diets, i.e., the
diversity of primary metabolic capabilities that allow them to grow on many different sources of
carbon and nitrogen (4). However, we currently lack a comprehensive understanding of how
variation in yeast gene content or regulation is related to the metabolic diversity and
environmental adaptation of the ~1,200 species found across the subphylum. Recently, the
Y1000+ Project (http://y1000plus.org/) published draft genome sequences of 1,154
representative strains (mostly taxonomic type strains) from 990 described and 61 candidates for

2



http://y1000plus.org/

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

new species of yeasts (5—7). The Y1000+ Project has also systematically recorded (from the
literature) and/or experimentally generated the isolation environments and qualitative and
quantitative patterns of growth on diverse carbon sources, nitrogen sources, and environmental
conditions (e.g., temperature and salinity) for a very large fraction of the same set of strains (4, 6).
The availability of a comprehensive dataset that captures the vast genomic, environmental, and
metabolic diversity of yeasts provides a unique testbed for understanding how adaptation to
unique environments occurs in eukaryotic genomes (7).

Several of the pathways that allow yeasts to grow on certain sources are well-characterized(8)
(Riley et al 2016). For example, sucrose assimilation depends on the invertase Suc2p, and
maltose assimilation depends on the maltose permease Mal31p and maltase (a-D-glucosidase)
Mal32, which can also act on sucrose (9, 10). Arguably the best studied pathway is the Leloir or
GALactose utilization pathway, which has become a model not only for understanding gene
regulation in eukaryotes (11, 12), but also for how evolutionary changes in gene sequences,
arrangement, and regulation contribute to ecological adaptation (13—-19). In the GAL pathway of
the baker’s yeast Saccharomyces cerevisiae, Gal2p or an Hxt transporter protein imports D-
galactose into the cell, where the mutarotase domain of Gal10p acts on the sugar, if necessary.
Then, Gal1p converts it to galactose-1-phosphate, representing the first energy-consuming step
of the pathway (20). Gal7p then converts galactose-1-phosphate to UDP-galactose. Gal10p acts
on UDP-galactose using its epimerase domain, resulting in the production of UDP-glucose.
Finally, Gal7p converts UDP-glucose to glucose-1-phosphate, which Pgm1p/Pgm2p then
converts to glucose-6-phosphate, which enters glycolysis to produce energy for the cell (20).

Galactose abundance varies widely across yeast environments. For example, due to both the
dietary influx of galactose and the synthesis of the sugar, galactose is abundant in the gut,
bloodstream, and urine of most mammals (including humans) in the form of oligosaccharides,
glycoproteins, and glycolipids, as well as in milk and other dairy products in the form of lactose (a
disaccharide composed of galactose and glucose subunits) (21). Galactose is also found in a
variety of fruit, vegetable, and other plant products, such as legumes; levels of galactose in
common fruits and vegetables range from <0.1 mg/100 g to 34 mg/100 g (22—24). Galactose is
also part of oligosaccharides, such as lactose, raffinose, and melibiose, as well as glycoproteins
and glycolipids, that vary in their distribution across environments (23, 24); hydrolysis of these
molecules by microbial enzymes can release free galactose.

The substantial variation in abundance of galactose in different environments is reflected in the
evolution of the GAL pathway and its regulation across the subphylum Saccharomycotina.
Numerous instances of wholesale pathway loss and gain, including by horizontal gene transfer,
have been discovered (13, 15, 16, 19), as well as striking instances of ancient, multi-locus
polymorphisms within species (16—18, 25). Different regulatory systems that lead to different
modes of induction and rates of growth have also evolved in different lineages. For example, C.
albicans exhibits an earlier graded induction in response to galactose, while S. cerevisiae has a
more bimodal expression (14, 26, 27).

The rich genomic, environmental, and metabolic data of the Y1000+ Project, coupled with
extensive genetic and biochemical knowledge of yeast primary metabolism, provide a unique
opportunity to explore the genotype-phenotype map, which models the interaction between the
genes and the traits of an organism, and how it has evolved across a subphylum. However, the
enormity and complexity of the Y1000+ Project’s data make standard statistical analyses less
suitable. In recent years, machine learning algorithms have emerged as powerful tools for
analyzing biological big data (28). Examples include predicting genes involved in specialized
metabolism (29), predicting the bioactivities of specialized metabolites from genomic data (30,
31), predicting protein expression and function from regulatory and protein sequences (32-34),
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and distinguishing fungal ecological lifestyles, such as saprobes from plant pathogens (35) or
generalists from specialists (6).

One of the most successful machine learning algorithms for analyzing biological datasets is the
random forest algorithm, which employs randomized decision trees trained on subsets of the data
to identify the most informative data features (e.g., a gene’s presence / absence, a gene’s
function, a strain’s ability to grow on a given substrate) for predicting a trait of interest (e.g., the
ability to assimilate galactose). The algorithm is known to perform well in biological datasets,
likely because it can handle datasets where the number of variables is larger than that the
number of observations (36), it can be trained on a part of the dataset at a time, and it can
capture interactive effects between features (37). Identification of the most important features that
contribute to the prediction accuracy of the random forest algorithm is straightforward and
efficient, facilitating the exploration of very large datasets for biological meaning and the
generation of testable hypotheses.

In this study, we used a random forest algorithm trained on environmental, metabolic, and/or
genomic data to predict the growth of nearly all known species of Saccharomycotina on different
carbon sources (Figure 1, Tables S1 — S4). Predicting growth on 29 different carbon sources
tended to be highly accurate when the algorithm was trained on gene presence/absence and/or
on presence/absence of growth on other carbon sources, which shows that both metabolic genes
and the structure of the metabolic network are highly informative for understanding the evolution
of yeast primary metabolism; in contrast, the predictive ability of isolation environment data was
weak. Although the most important features associated with prediction accuracy were well-known
genes and carbon sources associated with the source of interest, our machine learning approach
also identified novel features not previously known to be associated with growth on a given
carbon source. To illustrate the predictive ability of our approach, we used growth on galactose
as a test case because our machine learning approach suggested a possible novel alternative
pathway for galactose assimilation in the genus Ogataea and in a clade containing C. auris,
which both lack GAL genes. Growth and biochemical assays validated that these species
assimilate galactose through a hypothesized oxidoreductive D-galactose pathway, demonstrating
the potential power of machine learning analysis for studying the relationship between genomic
and phenotypic variation across vast evolutionary timescales.
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Results

Machine learning accurately predicts growth on 29 different carbon sources from
metabolic and genomic data but not from environmental data

A random forest algorithm (Figure 1) trained on the metabolic data matrix had high balanced
accuracy (on average, 82%) for predicting growth of the 893 strains representing 885 of the
Y1000+ yeast species on 29 different carbon sources. This result indicates that variation in the
content and structure of the primary metabolic network in different strains informs patterns of
growth on these substrates (Figure 2, Table S5). A random forest algorithm trained on the
genomic data matrices (comprised of InterPro and/or KEGG Orthology (KO) annotations) was
similarly accurate for predicting growth on these 29 sources (on average, 80-81% balanced
accuracy). Interestingly, KO annotations were able to predict growth on substrates, such as D-
xylose (~82% accurate) and L-sorbose (~79% accurate), with good accuracy; several previous
studies have noted that the utilization of these substrates cannot be inferred solely from patterns
of gene presence / absence, since the presence of certain genes (e.g., the XYL genes) is
required for growth on these substrates but is not sufficient for predicting the ability to grow on
them (8, 38—40).

In contrast, when the random forest algorithm was trained on environmental datasets, the
balanced accuracy was between 49-60% (on average, 55%), which is only marginally above
random accuracy (Figure 2, Table S5). This result suggests that our environmental dataset does
not provide useful predictors for growth on these sources. Examination of the ROC/AUC curves,
confusion matrices, and most important features for predicting growth on xylose, sucrose, and
galactose supports this hypothesis: accuracy is only marginally above random using
environmental data, and the most important features concern isolation environments not known to
have high amounts of these sugars (Figure S1).

However, the accuracy of predicting growth on 29 carbon sources using a random forest
algorithm trained on isolation environments was on average 60% when only specialists were
included in the analysis, which compared favorably to 54% average accuracy when only
generalists were included and 55% accuracy when all species were included. This result
suggests that isolation environment is more informative for predicting carbon utilization of
specialists (Figure S5, Table S12). Additionally, generalists tended to be better predicted on more
commonly utilized substrates, while specialists were better predicted on more rarely utilized
substrates (Figure S5, Table S12).

Top features for predicting growth on a specific carbon source are related sources and
metabolic genes

The top features for predicting growth on the 29 carbon sources examined were often biologically
relevant (Figure 2, Figure 3, Table S5). For example, for xylose, the most important feature was
growth on xylitol, a metabolic intermediate in the typical xylose-degrading pathway in yeasts and
other fungi (39, 41), while for sucrose, the most important feature was maltose, another
disaccharide containing a glucose moiety (10) (Figure 3). For galactose, the top features included
2-keto-D-gluconate and L-sorbose, which are generated from glucose or galactose, respectively,
by the enzymes acting on an alternative galactose-degrading pathways in some bacteria and
fungi (41-44), as well as lactose and melibiose, disaccharides that contain galactose (Figure 3).
When the top feature from each metabolic trait matrix was removed for xylose, sucrose, and
galactose, and then the random forest was re-ran recursively, accuracy decreased rapidly at first
for sucrose and more slowly for xylose and galactose, even though xylose and galactose were
initially less accurate (~80% accuracy) than sucrose (~90% accurate) (Figure S4, Table S11).
After removing the top feature from the algorithm around 30 times, the accuracy of predicting
growth on xylose, sucrose, and galactose remained around 60%-70% and continued to slowly
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decline (Figure S4, Table S11). At around 90 top features removed, accuracy started declining
more steeply toward 50% or random accuracy (Figure S4, Table S11). This analysis
demonstrates how much connectivity there is between metabolic traits in the random forest
algorithm, as there remains a moderate level of accuracy even while removing top related traits to
each carbon substrate.

A random forest algorithm trained on KEGG Orthology (KO) annotations was similarly accurate
for predicting growth on xylose (~82%), sucrose (~87%), and galactose (~91%) to the combined
KO and InterPro genomic dataset (Figure 2, Figure 3). Despite the larger size of the genomic
data matrix (over 5,000 features compared to the metabolic data matrix of 122 features), the top
features of the genomic data matrix were still often related to genetic pathways or enzymes
known to be involved in the utilization of each source. The top features for the highly accurate
prediction of growth on galactose were GAL7 and GAL10 (specifically the mutarotase domain),
which are parts of the yeast GAL pathway (13). Despite the mis-annotation of the yeast GAL1 by
KO (see Methods), the algorithm was still nearly as accurate when trained on the entire genomic
data matrix as when trained on the manually curated GAL gene orthologs (Figure 5). The top
feature for the algorithm predicting growth on sucrose was oligo-1,6-glucosidase (K01182), which
corresponds to the a-glucosidases encoded by MAL32 and MAL12, as well as IMA1-IMAS5, which
indeed do act on sucrose, as well as maltose in some yeasts (9, 10). The distribution of XYL7,
XYL2, and XYL3 does not always correlate with yeast growth on xylose (8, 40). Even though the
XYL genes were present in the KO database (except for XYL3, which was misannotated), they
were not among the top features contributing to the 85% prediction accuracy, but an a-xylosidase
(K01811) was the fifth most important feature (Figure 3). Since galactose metabolism and its
associated genetic pathway has been thoroughly studied in yeasts, the remainder of this paper is
focused on using growth on galactose as a test case for the utility of this machine-learning
pipeline.

The GAL genes are highly predictive of growth on galactose in most, but not all, yeasts
Plotting the presence/absence of the GAL genes jointly with the presence/absence of growth on
galactose on genome-scale phylogeny of 1,154 yeast strains showed that the distributions of the
GAL genes were tightly correlated with the distribution of growth on galactose. Specifically,
526/558 strains that can grow on galactose have the GAL genes, and 277/310 strains that cannot
grow on galactose lack the GAL genes. Notably, there are two lineages in the orders Serinales
and Pichiales that can grow on galactose but lack the GAL genes (Figure 4). One lineage
contains species closely related to the emerging opportunistic pathogen Candida auris in the
order Serinales. The second lineage contains species belonging to the genus Ogataea in the
order Pichiales. Isolation environments, such as isolation from plants, showed no significant
association with growth on galactose (Figure 4).

Using the scores from the sequence similarity searches (from the jackhmmer software) of GAL1,
GAL7, GAL102, and GAL10, the algorithm was even more accurate in its predictions of growth on
galactose (92.2%). When the metabolic dataset was added to the training data, the accuracy
increased even further to 93.1% (Figure 5). This increase in accuracy suggests that there are
strains for which presence or absence of the GAL genes cannot accurately predict growth on
galactose; if that were the case, then the increase in accuracy due to the inclusion of the rest of
the metabolic dataset raises the possibility that there might be an alternative galactose-degrading
pathway in some yeasts. After the GAL genes, the most predictive feature was growth on
galactitol, pointing to a possible role for this metabolite as an intermediate in a potential
alternative pathway (Figure 5). Previous work in filamentous fungi identified a galactose-
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degrading pathway that involves galactitol as an intermediate(42, 45), leading us to hypothesize
that a similar pathway may be present in these yeasts and contribute to the increase in accuracy.

Machine learning predicts an alternative galactose-degrading pathway in two yeast
lineages that lack GAL genes

To further explore the possibility of an alternative galactose utilization pathway that uses galactitol
as an intermediate, we trained our random forest algorithm just on the GAL genes and growth on
galactitol. We found that this algorithm was almost as accurate as when the rest of the metabolic
dataset was added (93.1% versus 93.3%). Examination of the confusion matrices when the
algorithm was trained using just the GAL gene data versus when trained on the GAL gene data
and metabolic data suggested that the increase in accuracy came from 16 species that were
previously classified as false negatives and were now true positives (Figure 6). Since these
species lack the GAL genes, our original algorithm predicted that they could not grow on
galactose; when growth on galactitol was added, however, they were correctly predicted to grow
on galactose, further supporting the hypothesis that they have an alternative galactose-degrading
pathway (Figure 6). These 16 species are all able to grow on galactitol and belong to the two
lineages that lack GAL genes, as noted previously in Figure 4: the lineage of species closely
related to Candida auris in Serinales and the genus Ogataea in Pichiales. Even with this highly
accurate algorithm, there were several species that were still not correctly predicted: 22 false
negatives (strains that are predicted not to grow, but do) (Table S7) and 35 false positives (strains
that are predicted to grow, but do not) remained, plus 3 species with low GAL gene sequence
similarity scores also became false positives with this new algorithm, bringing the total to 38 false
positives (Table S8). These species warrant further investigation as they may contain other
alternative pathways, grow weakly on galactose or only under specific conditions (46), use
galactose in glycosylation but not for assimilation (as the fission yeast Schizosaccharomyces
pombe) (47), or have pseudogenized GAL genes (48). We note that the GAL genes of yeasts that
were false positives in our classification exhibited, on average, lower sequence similarity scores
in our GAL gene searches than the GAL genes of yeasts that were true positives (Table S9),
which is consistent with reduced purifying selection.

Some Pichiales and Serinales species utilize galactose through an oxidoreductive
galactose utilization pathway

To test the hypothesis that some species lacking GAL pathways can indeed utilize galactose, we
tested three species (Table S10) from two different orders, C. ruelliae and C. duobushaemulonii
from Serinales and O. methanolica from Pichiales (49), for growth on galactose as the sole
carbon source and measured galactose consumption. All three species grew to high cell densities
and accumulated more biomass than the S. cerevisiae positive control (Figure S3A), which
contains an intact GAL pathway. Sugar quantification indicated galactose consumption in all three
species (Figure 7A). The first step of the known oxidoreductive galactose pathway in species of
Aspergillus fungi (outside of Saccharomycotina yeasts) utilizes an aldose reductase, which
reduces galactose to the sugar alcohol galactitol while oxidizing NADPH to NADP~* (50) (Figure
7B). Thus, we developed a biochemical assay for NADPH-dependent enzymatic activity on
galactose as the sole carbon source. In this assay, species that exhibit the hypothesized
enzymatic activity are predicted to show a decrease in NADPH absorbance at 340 nm over time,
while species that do not exhibit enzymatic activity are predicted to show no decrease in NADPH
over time (Figure 7C). All three species displayed decreases in absorbance of NADPH compared
to their respective negative controls with no substrate (Figure 7D) and no extracted protein
(Figure S3B), which indicates that the cells express NADPH-dependent enzymatic activity that is
dependent on the presence of galactose. The S. cerevisiae negative control used for this
experiment possessed an intact GAL pathway and did not show a decrease in NADPH
absorbance over time, indicating a lack of NADPH-dependent enzymatic activity on galactose as
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the sole carbon source. Thus, we conclude that these three species possess at least the first step
of an oxidoreductive pathway.

Discussion

In this study, we employed machine learning on the rich environmental, metabolic, and genomic
data from nearly all known species of an entire eukaryotic subphylum to predict patterns of yeast
growth on different carbon sources. We found that we could accurately predict growth on diverse
sources of carbon from genomic and/or metabolic data but not from environmental data (Figure
2). Previous research showed that many yeast traits are connected in a trait-trait network, likely
due to shared genes in different metabolic pathways (4, 6). These connections and overlap in
gene functions likely explain the high accuracy of prediction from metabolic and/or genomic data.
Interestingly, accuracy of prediction was high, even for carbon sources for which enzyme
specificity was lacking, such as xylose (Figure 3) (40). However, accuracy for xylose growth was
lower than for predicting growth on sources, such as galactose, whose utilization pathways
contain dedicated enzymes (Figure 3).

In contrast, the accuracy of prediction of growth on different carbon sources from isolation
environment data was marginally better than random (Figure 3). There are two possible
explanations for this finding. The first is that isolation environments may be heterogenous in their
carbon sources and thus capable of supporting metabolically diverse yeast species. An
alternative, not necessarily mutually exclusive explanation, is that isolation environments can be
informative with respect to yeast diets, but that our current environmental data are incomplete.
Notably, our isolation environmental data for each yeast included in the data matrix stem from
information present in the taxonomic description of the type strain of each species. A dataset that
contains the range of isolation environments of each yeast species would potentially be much
more informative but is currently unavailable.

We also found that machine learning accuracy for predicting growth on galactose was higher
when both the presence / absence of GAL genes and growth on galactitol were used in training
compared to just the presence / absence of the GAL genes alone (Figure 5), suggesting the
presence of a rare alternative galactose-degrading pathway. We discovered that this alternative
galactose-degrading pathway is found in two distinct lineages that grow in galactose in the
absence of GAL genes; we further proposed that this alternative pathway involves galactitol as a
metabolic intermediate (Figures 4-6). Enzyme assays validated the oxidoreductive activity of
three species in these two lineages when grown on galactose, providing additional support for the
hypothesized mechanism of utilization (Figure 7). We are currently investigating which genes are
involved in this alternative pathway.

This work illustrates the remarkable breadth of yeast metabolic diversity and how machine
learning approaches can help uncover novel biology, even in well-studied traits, such as
galactose assimilation. The potential for additional discoveries using machine learning is further
highlighted by considering the several yeasts that appear as false positives or false negatives in
our machine learning predictions. There are several possible explanations for why we currently
cannot accurately predict growth on galactose for every strain in the subphylum. One explanation
for some of the false positives could be that the GAL pathway is inactivated in some of the strains
examined, but that their genomes contain GAL pseudogenes. Examples of GAL pseudogenes
are known from several different species (16, 18, 48), but strains with pseudogenes would still
give positive hits in our ortholog detection analyses. In support of this hypothesis, the average
sequence similarity scores for the GAL genes in yeasts classified as false positives were lower
than the scores for GAL genes in yeasts classified as true positives (Tables S8 and S9). Another
possible explanation for false positives could be that some yeasts may contain GAL genes that
are used in other processes, such as glycosylation, but not in assimilation; although such
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examples are not currently known from the Saccharomycotina, the fission yeast
Schizosaccharomyces pombe (subphylum Schizosaccharomycotina) is a case in point (51). They
may also be growing very weakly or under specific conditions not tested here. Furthermore, since
growth on galactitol is predictive of this alternative pathway of galactose utilization in the genus
Ogatea and the C. auris lineage, our algorithm now predicts that any strain that grows on
galactitol can also grow on galactose, which may not always true (e.g., some yeasts in these
lineages may be lacking the gene(s) to convert galactose to galactitol). In fact, there are six
yeasts (five from these two lineages, plus one Starmerella species) in the list of false positives
that grow in galactitol but do not grow in galactose. Finally, we note that there are more false
positives in lineages other than the more extensively studied Serinales and Saccharomycetales;
this could be because the availability of fewer strains from other lineages results in less accurate
identification of gene presence/absence. Alternatively, the induction of GAL genes or use of the
pathway may be different in these lineages (Table S8).

Yeasts that appear as false negatives in our analyses, which indicates that they can indeed grow
on galactose but are not predicted to grow, may be growing weakly or they may have other
alternative pathways that do not involve galactitol. These may also lack the appropriate inducing
conditions for growth on galactitol since they are often closely related to our documented
alternative pathway species (Table S7). Additionally, eleven (out of 22) of these have GAL genes
that are highly divergent in their sequences, indicating that they may have homologs that do not
reach the sequence similarity threshold (Table S7). These yeasts could have very divergent, but
still functional, GAL genes; their GAL genes may have been misannotated; or they have
incomplete genomes that are missing the full sequences of the GAL genes. These yeasts may
also require cryptic inducing conditions to test positive for growth on galactitol since they are often
closely related to our documented alternative pathway species (Table S7).

The broader take-home message of our study is that machine learning approaches harbor great
promise for studying the macroevolution of the genotype-phenotype map. The random forest
algorithm used to analyze this dataset was very efficient in finding relevant genes and traits that
predict growth on several carbon substrates with high accuracy, without requiring extensive
manual parameter tuning. Part of its success is likely because we used the one-of-a-kind matrix
of genomic, metabolic, and ecological data of the Y1000+ Project (6). While similar data matrices
for other fungal or eukaryotic lineages are currently lacking, it would be fascinating to apply this
type of analysis in clades with different morphologies, ecologies, or lifestyles than those of
Saccharomycotina. While generation of data matrices equivalent to the one currently available for
Saccharomycotina will undoubtedly require extensive effort and coordination, the potential for
discovery is likely to be greater in lesser studied lineages.

Of course, how successful machine learning or any other genotype-phenotype association
approach (52) will be for bridging genomic and phenotypic variation across macroevolutionary
timescales will depend on numerous factors, including: the genetic architecture of the trait
(oligogenic vs. polygenic); the degree to which the evolution of the trait is correlated with the
evolution of other traits (univariate vs. multivariate); how often the trait has evolved (once vs.
repeatedly); and whether the evolutionary mechanisms that contribute the trait are conserved
(conserved vs. divergent). Oligogenic, univariate, repeatedly evolved traits that arise by the same
evolutionary mechanisms will be the easiest to study. In certain respects, the GAL pathway fits
these descriptions quite well; the ability to grow on galactose is encoded by a few genes (13),
growth on galactose is only weakly correlated with growth on other traits (4), and the trait has
been repeatedly gained and lost (15, 19). We therefore find it striking that machine learning
enabled us to discover novel biology, namely the existence of an alternative pathway not
previously known to be present in Saccharomycotina, in such a well-studied trait. When coupled
with rich data, such as the treasure-trove of genomic, metabolic, and ecological data of the
Y1000+ Project (6), we believe that machine learning approaches hold tremendous power to
elucidate how genomic variation transforms into phenotypic variation across the tree of life.
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Materials and Methods

Genomic data matrix

Using the KEGG (53, 54) and InterProScan (55) gene functional annotations generated by the
Y1000+ Project (6), a data matrix was built with presence and absence of each unique KEGG
Orthology (KO) and counts of each unique InterPro ID number in each genome. Each genome
was its own row, and each unique KO (N = 5,043) or InterPro ID (N = 12,242) present in one or
more of the 1,154 yeast genomes was its own column. A python script recorded the presence
and absence of KO annotations (Table S1), the number of each InterPro ID for each genome
(Table S2), and put them in the appropriate cells of the data matrix. Upon observing that accuracy
was typically similar for predicting growth on 29 carbon sources between a random forest
algorithm trained just on the KO dataset and the combined KO and InterPro dataset, the KO
genomic dataset was used for all subsequent analyses, and the InterPro data was dropped from
the genomic analyses following Figure 2. Comparison of our own GAL gene searches with the
KO dataset revealed that GAL7 was misannotated, and that the mutarotase and epimerase
domains of GAL10 were annotated separately by KEGG.

Metabolic data matrix

Our metabolic data matrix contained 122 traits from 893 yeast strains from 885 species in the
subphylum. The list of traits included growth on different carbon and nitrogen sources, such as
galactose, raffinose, and urea, as well as on environmental conditions, such as growth at different
temperatures and salt concentrations (Table S3). The metabolic data were sourced from
information available for each of the sequenced strains from the CBS strain database. These data
were gathered from strains studied as part of the in the published descriptions of species,
additional data on strains obtained by previous studies done in the Westerdijk Fungal Biodiversity
Institute (CBS), or additional data provided by the depositors of the strains in the CBS culture
collection. The data matrix contained metabolic data for 893/1,154 species. The percentage of
missing data in the data matrix was 37.5% (40,906 missing values out of 108,946 total). Less
thoroughly studied traits tended to have more missing data than more commonly found and/or
thoroughly studied traits. For example, our data matrix included data on melibiose fermentation,
which was estimated to be present in 12% (28/234) of yeasts, but only 26.2% (234/893 of strains
have been tested for growth on this substrate. In contrast, our data matrix included data on
galactose assimilation, which was estimated to be present in 64.2% (558/868), but 97.2%
(868/893) of strains have been tested. Since there were 25 strains for which growth on galactose
was not characterized, the total number of strains for which we have both genomic data and
galactose assimilation data was 868.

Environmental data matrix and ontology

The isolation environments for 1,088 (94%) out of the 1,154 yeasts examined were gathered from
strain databases, species descriptions, or from The Yeasts: A Taxonomic Study (6, 56). Strains
without isolation environments either had been significantly domesticated via crossing or
subculturing or were lacking information in our searches. Written descriptions of the environments
were converted into a hierarchical trait matrix using a controlled vocabulary. The ontology was
built with Web Protégé (https://webprotege.stanford.edu/), with six broader categories: animal,
plant, environmental, fungal, industrial products, and victuals (food or drink). Within these
categories, more specific controlled vocabulary annotations were connected to each strain: for
example, an isolation environment reported as “Drosophila hibisci on Hibiscus heterophyllus” was
associated in our ontology with the animal subclass “Drosophila hibisci’” and the plant subclass
“Hibiscus heterophyllus”. This ontology was converted to a binary trait matrix containing all the
unique environmental descriptors (Table S4). The same ontology was used in the recent Y1000+
manuscript (6), but that manuscript only considered the first subclass in subsequent analyses; our
analyses here used all connections in the ontology for training a random forest algorithm.
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Predicting growth on different carbon sources using machine learning algorithms trained
on genomic, metabolic, and/or environmental data

To test whether we could predict growth on 29 different carbon sources from genomic,
environmental, and/or (the rest of the) metabolic data, we used a random forest algorithm. These
29 traits were selected because they were measured in at least 743 strains and were present in
20%-80% of strains included in this analysis. For each trait, a random forest algorithm was
trained separately on environmental, metabolic, or genomic datasets to evaluate the accuracy of
prediction and identify the most important predictive features (Table S5).

We trained a machine learning algorithm built by an XGBoost (1.7.3) (57) random forest classifier
(XGBRFClassifier()) with the parameters “ max_depth=12 and n_estimators=100; all other
parameters were in their default settings. The max_depth parameter specifies the depth of each
decision tree, determining how complex the random forest will be to prevent overfitting while
maintaining accuracy. The n_estimators parameter specifies the number of decision trees in the
forest—after testing the increase in accuracy while increasing each of these parameters, we
found that having a higher max_depth or more decision trees per random forest did not further
increase accuracy.

The random forest algorithm was trained on 90% of the data, and used the remaining 10% for
cross-validation, using the RepeatedStratifiedKFold and cross_val_score functions from the
sklearn.model_selection (58) (1.2.1) package. Cross validation is a method for assessing
accuracy involving 10 trials, each of which holds back a random 10% of the training data for
testing (57, 58). The mean accuracy of the algorithm from this test was used for our in-depth
xylose, sucrose, and galactose analyses, as those datasets were relatively balanced; that is,
there were relatively similar numbers of strains that grew in these substrates (growers) and
strains that did not grow in them (non-growers). For the analyses involving all 29 carbon
substrates, we used balanced accuracy, which takes the mean of the true positive rate and the
true negative rate, since there were unequal numbers of growers and non-growers in many of
these substrates. For both measures, an accuracy value of 50% would be equivalent to randomly
guessing.

Receiver Operator Characteristic (ROC) curves, which plot the true positive rate against the false
positive rate, were also generated for each prediction analysis to visualize the accuracy of the
algorithm in predicting growth on a given substrate—values of area under the curve (AUC)
greater than 0.5 in these plots indicate better than random accuracy. We also used the
cross_val_predict() function from Sci-Kit Learn separately to generate the confusion matrices;
these matrices show the numbers of strains correctly predicted to grow or not grow on a specific
carbon source (True Positives and True Negatives, respectively) and incorrectly predicted (False
Positives, predicted to grow but do not; and False Negatives, not predicted to grow but do). This
function also employs a 10-fold cross validation step, but it keeps track of which species are
classified as True/False Positives and True/False Negatives during each of these 10 trials, while
entering the final results into a confusion matrix. Top features were automatically generated by
the XGBRFClassifier function using Gini importance, which uses node impurity (the amount of
variance in growth on a given carbon source for strains that either have or do not have this
trait/feature).

In each prediction analysis, we excluded from each training dataset growth and fermentation data
for each of the 29 carbon sources under investigation. For example, we excluded growth on
galactose and galactose fermentation from the training dataset for predicting growth on
galactose; thus, the final metabolic data matrix used in the training contained data from 120
sources and conditions, instead of the total 122. Similarly, we excluded growth on sucrose and
sucrose fermentation from the training dataset for predicting growth on sucrose; we excluded
xylose and xylose fermentation from the training dataset for predicting growth on xylose. The
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code used for these analyses is available at
https://github.com/mcharrison95/RF for ML GAL paper.

GAL1, GAL7, GAL10, and GAL102 gene searches

To determine presence/absence of genes in the GAL pathway in each of the genomes of the
1,154 strains included in our study, we conducted sequence similarity searches for the GALT,
GAL7, GAL102, and GAL10 genes using the jackhmmer function from the HMMER software,
version 3.3.2 (59). Using the representative GAL gene sequences from the Candida albicans
genome, jackhmmer searched for all hits above a similarity score of 200, which captured genes
from all 12 Saccharomycotina taxonomic orders, and then used these results to build a new
profile to search for the gene throughout the phylogeny. jackhmmer repeated this method until the
results converged, which was three rounds for all genes except GAL 10, which required five
rounds, likely because the mutarotase and epimerase domains are part of the same protein in
some yeast orders (e.g., Saccharomycetales and Serinales) but belong to two separate proteins
(encoded by GALM and GALE, respectively) in others (e.g., Lipomycetales) (15, 19). In analyses
where only the GAL gene dataset was used as genomic data, both the presence/absence and
similarity score produced by jackhammer for GAL1, GAL7, and GAL10 were included in the
dataset; hits with similarity scores below 200 were considered absent and were entered as 0
(Table S6). As noted above, comparison of our own GAL gene searches with the KO dataset
revealed that GAL7 was misannotated, and that the mutarotase and epimerase domains of
GAL10 were annotated separately by KEGG.

Quantification of galactose utilization in strains lacking the GAL pathway

To validate galactose utilization by certain strains lacking the GAL genes that were identified in
our qualitative metabolic data matrix, we quantified growth and galactose consumption in liquid
culture. Standard undefined yeast lab media was prepared as previously described (60). YPD
medium for culturing yeasts contained 10 g/L yeast extract, 20 g/L peptone, 20 g/L glucose, and
18 g/L agar (US Biological). Cells were streaked onto YPD plates, and single colonies were
picked. Cells were inoculated into 5 mL of YP (10 g/L yeast extract, 20 g/L peptone) + 2%
galactose (Amresco) and grown to mid-log phase (48 — 55 hours depending on the strain, see
Table S10 for further information) on a tissue culture wheel at room temperature. The optical
density of the cells was measured at 600 nm (ODsoo) using an OD600 DiluPhotometer (Implen).
Cells were inoculated into 50 mL YP + 2% galactose at a starting ODsoo 0.05 for all species
except for the negative control species, Saccharomycopsis malanga, which was inoculated at
starting ODeoo 0.01 due to the low cell density caused by the absence of its GAL pathway. The
cultures were shaken in non-baffled 150-mL Erlenmeyer flasks (Fisher Scientific) at 250 rpm at
room temperature for seven days. 1 mL of culture was collected every 24 hours and spun down;
600 pL of supernatant were used for extracellular sugar quantification via high performance liquid
chromatography and refractive index detection (HPLC-RID). ODeoo readings were also taken at
each 24-hour timepoint. All samples taken for HPLC-RID were stored at -20 °C until the end of
the experiment. Extracellular galactose concentrations were determined by HPLC-RID as
previously described using a galactose standard (61, 62). The strain S. cerevisiae gre3A::loxP-
kanMX-loxP (63) served as a positive control for galactose utilization because it has an intact
GAL pathway; the deletion of GRE3, which encodes a promiscuous aldose reductase that could
conceivably have some activity on galactose (64), also allowed this strain to serve as a negative
control for the hypothesized oxidoreductive pathway. Galactose concentrations were expressed
as g/L, and the results correspond to the mean value of biological triplicate timepoints. All
extracellular galactose quantification data visualization was performed using R (v4.1.2) in the
RStudio platform (v2022.07.01+554) and with the package ggplot2 (v3.4.2) (65, 66).

Assay for galactose- and NADPH-dependent enzymatic activity

To determine whether galactose utilization in strains lacking the GAL genes but able to grow in
galactose occurred through a hypothesized oxidoreductive D-galactose pathway, we tested
NADPH-dependent enzymatic activity on galactose as a sole carbon source. Yeast cells were

12


https://github.com/mcharrison95/RF_for_ML_GAL_paper

593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644

pregrown in YPD, single colonies were inoculated into 5 mL YP + 2% galactose, cultures were
grown to mid-log phase, and they were inoculated into 50 mL YP + 2% galactose using the same
methods as described above. Candida duobushaemulonii, Candida ruelliae, and Ogataea
methanolica cells were harvested at mid-log phase along with their respective S. cerevisiae
gre3A::loxP-kanMX-loxP negative controls for whole-cell lysate protein extraction using Y-PER
(Thermo Fisher Scientific). 1 mL of culture was sampled, and cells were centrifuged at 3,000 x g
at 4 °C for 5 minutes. 250 mg of wet cell pellet were resuspended in 1,250 pL of Y-PER and
homogenized by pipetting. The mixture was left to agitate at room temperature for 50 minutes to
ensure successful cell lysis and soluble protein extraction. Cell debris was pelleted at 14,000 x g
for 10 minutes at room temperature. Finally, 1 mL of supernatant was removed for analysis and
protein concentration determination. Protein concentrations were determined using the Pierce
BCA protein assay kit and protocol (Pierce Biotechnology), and absorbance at 562 nm was
measured using The Infinite M1000 microplate reader (Tecan). Galactose-dependent enzymatic
activity was determined by monitoring the oxidation of the cofactor NADPH to NADP* by
absorbance measurement at 340 nm at 25 °C (67). The assay mixture (200 pL) contained 200
mM Tris-HCI (pH 7.5), 5 mM of NADPH, 200 mM of galactose, 200 pg of undefined cell-free
protein extract, and deionized water in 96-well plates (Corning 96 Well Clear Flat Bottom UV-
Transparent). In addition, each assay contained a protein extract blank and a substrate (without
galactose) blank to account for protein and substrate noise, cofactor degradation, and off-target
cofactor oxidation. Enzyme assays were performed in biological quadruplicate. Data analyses
and plots were performed and visualized using the methods described above.

Data availability statement

The supplementary dataset is available at https://doi.org/10.6084/m9.figshare.24855294. The
code used to run the random forest algorithm is available at
https://github.com/mcharrison95/RF_for ML GAL paper. All Y1000+ Project genome sequence
assemblies and raw sequencing data have been deposited in GenBank (6) and are available at
the Figshare+ repository at https://doi.org/10.25452/figshare.plus.c.6714042.
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798  Figure legends

799
Prediction framework
Model:
[ Random Forest ]
Environmental, metabolic Growth
and/or genetic features Phenotype
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Strain1, 1 0 .. 1 Grows on
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Stra|n 2 0 0 1 Training (90%) Does r?c:t grow
Strainn| T 1 w1 Testing (10%)
800 -

801 Figure 1. Workflow for machine learning prediction of how diet influences the evolution of
802 primary metabolism in the subphylum Saccharomycotina. Using the phenotype of “grows on
803 substrate” or “does not grow on substrate” for each yeast strain, we trained an XGBoost random
804  forest algorithm on 90% of environmental, qualitative trait, and/or genetic features (893 strains
805 containing 885 species). Using the 10% of remaining data, we tested model performance by

806 looking at accuracy, confusion matrices, and ROC-AUC curves, and we repeated this

807 assessment 9 more times using cross-validation. Feature importance was calculated using Gini
808 importance as automatically generated by the XGBoost random forest algorithm. Created with
809 BioRender.com.

810
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Figure 2. Prediction accuracy of growth on different substrates was high when the random
forest algorithm was trained on metabolic data (blue) or genomic data (orange and grey)
but low when the algorithm was trained on isolation environment data (yellow). Note that
data on growth (and, where applicable, on fermentation) of the condition tested were removed
prior to each analysis (e.g., prediction of growth on xylose from metabolic data was conducted
using data for growth on all other substrates, but it excluded data for growth on xylose and xylose
fermentation). Balanced accuracy was assessed by RepeatedStratifiedKFold (n_splits=10,
n_repeats=3) after training the random forest algorithm on either the remainder of the metabolic
data, the InterPro and/or KEGG genomic data matrices, or the environmental data. Traits are
ordered from most frequent to least frequent in the dataset from left to right. The most important
feature for each random forest algorithm, as well as the precision of the algorithm, is shown in the
supplementary dataset (Supplementary Table 1).
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Figure 3. Prediction accuracy of growth on different sugars was high when the random
forest algorithm was trained on genomic data (A, C, E), and similarly high when the
algorithm was trained on metabolic data (B, D, F). Panels A and B: prediction of growth on
xylose from genomic (A) or metabolic data (B). Panels C and D: prediction of growth on sucrose
from genomic (C) or metabolic (D) data. Panels E and F: prediction of growth on galactose from
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genomic (E) or metabolic (F) data. Note that data on growth (and, where applicable, on
fermentation) of the carbon source tested were removed prior to each analysis (e.g., prediction of
growth on xylose from metabolic data was conducted using data for growth on all other
substrates and conditions, but it excluded data for growth on xylose and xylose fermentation).
Also note that KEGG Orthology misannotated GAL1, likely leading GAL17 to not be in the top
features, and that the epimerase and mutarotase domains encoded by GAL 10 were annotated
separately by this program. Accuracy is shown in the form of confusion matrices, which show
strains predicted correctly to not grow on the sugar (true negatives, top left), strains predicted to
grow on the sugar that do not (false positives, top right), strains correctly predicted to grow on the
sugar (true positives, bottom right), and strains predicted to not grow on the sugar that do (false
negatives, bottom left), as well as Receiver Operating Characteristic (ROC) curves, which show
the true positive rate over false positive rate with changing classification thresholds. Feature
importance graphs are also included to show the input features that are most useful for predicting
growth on this sugar. XGBoost random forest was used to generate feature importance, and
cross_val_predict() from sklearn.model_selection was used to generate confusion matrices. ROC
curves were generated using the roc_curve function from sklearn.metrics. The prediction
accuracies of growth on xylose, sucrose, and galactose from isolation environment data are
shown in Supplemental Figure 1.
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Figure 4. Distribution of GAL genes and plant isolation environments across the yeast
phylogeny. The ability of the different strains to grow on galactose, the presence of genes GAL1,
GAL7, GAL10, and GAL102, and whether they were isolated from plant environments are plotted
as circles around the yeast phylogeny. Strain names are omitted for easier visualization, but they
can be found in Figure S2. The colors of the different branches of the phylogeny correspond to
the 12 taxonomic orders (49).
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Figure 5. GAL gene presence / absence and ability to grow on galactitol are highly
predictive of growth on galactose across the subphylum Saccharomycotina. A. Using the
presence / absence patterns of the genes GAL1, GAL7, GAL10, and GAL102 as input data, the
XGBoost random forest algorithm predicted growth on galactose with high accuracy, as shown by
the confusion matrix, the ROC/AUC curve, and the individual feature importance. B. Using both
the presence / absence patterns of GAL genes (from panel A) and metabolic data, the algorithm
predicted growth on galactose with even higher accuracy, shown by the confusion matrix, the
ROC/AUC curve, and the individual feature importance. Note that, after GAL1, GAL7, and
GAL102 genes, growth on galactitol is the next most important feature for predicting growth on
galactose.

GAL Genes . GAL genes and galactitol
. i 500 Species name Order Galactose Galactitol i . 00
° Confusion matrix Candida heveicola Serinales 0.211 Yes @ Confusion matrix
é 400 Candida ruelliae Serinales 0.303 Yes é 400
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Saccharomycopsis babjevae Ascoideales NA Yes
Kazachstania bovina Saccharomycetales NA Yes
Nakazawaea siamensis Alaninales 0.218 Yes

Figure 6. Adding the galactitol growth data to presence / absence of the GAL genes
increased prediction accuracy by correctly classifying several false negatives as true
positives. On the left is the confusion matrix for predicting growth on galactose using just GAL1,
GAL7, GAL10, and GAL102 presence / absence. Note the presence of 35 false negatives; the
algorithm predicted that these 35 species would be unable to grow on galactose because they
lack the GAL genes, but they are known to grow on galactose. When the metabolic trait “Growth
on Galactitol” was added to the training data, 16 of these species were then correctly predicted to
grow on galactose and were moved to the “True Positive” category, while 19 remained false
negatives. Three additional species that have low sequence similarity scores for the presence of
GAL genes in its genome (Metschnikowia kofuensis, Kuraishia piskuri, and Wickerhamomyces
subpelliculosus) also became new false negatives, bringing the total up to 22 false negatives and
536 true positives, as shown in the confusion matrix on the right. The taxonomy (order)
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883 (Groenewald et al. 2023), quantitative growth on galactose (which is normalized to growth on
884  glucose), and qualitative ability to grow on galactitol for these 15 species are listed in the table.
885  Additionally, it is worth noting that one of the species (Nakazawaea siamensis) that was a false
886 negative and became a true positive has GAL genes with low sequence homology—with the
887 addition of galactitol data, on which it does grow, it was then correctly predicted to grow on
888 galactose.
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891 Figure 7. All three species showed galactose consumption and enzymatic activity on

892 galactose. A. Average and standard deviation across three biological replicates of galactose
893 concentrations present in medium with galactose as the sole carbon source (blue) and ODsoo
894  growth measurements (orange) for C. ruelliae (i), O. methanolica (ii), and C. duobushaemulonii
895 (iii) over 168 hours. B. Schematic diagram of the first step of a hypothesized oxidoreductive

896  galactose pathway using an aldose reductase to reduce galactose to galactitol by oxidizing

897  NADPH to NADP*. C. lllustration of the expected results for different levels of enzymatic activity.
898 As the amount of NADPH present in the assay mixture decreases, absorbance at 340 nm

899  decreases. D. Average and standard deviation across four biological replicates of NADPH

900 absorbance at 340 nm over time comparing the complete assay mixture (red) to a substrate blank
901  with no galactose added (blue) for C. ruelliae (i), O. methanolica (ii), C. duobushaemulonii (iii),
902 and S. cerevisiae (iv). The same protein blanks (yellow) were used for all species included in the
903 enzyme assay since each replicate of the enzyme assay included all four species on one 96-well
904 plate, and the protein blank possessed reagents that were the same across all species (Tris-HCI,
905 galactose, NADPH, and deionized water).

906

23



