
DIG: The Data Interface Grammar

Yiru Chen
Columbia University
New York, NY, USA

yiru.chen@columbia.edu

Je�rey Tao
Columbia University
New York, NY, USA

jat2164@columbia.edu

Eugene Wu
Columbia University
New York, NY, USA

ewu@cs.columbia.edu

ABSTRACT

Building interactive data interfaces is hard because the design of an

interface depends on the data processing needs for the underlying

analysis task, yet we do not have a good representation for analysis

tasks. To �ll this gap, this paper advocates for a Data Interface

Grammar (DIG) as an intermediate representation of analysis tasks.

We show that DIG is compatible with existing data engineering

practices, compact to represent any analysis, simple to translate into

an interface design, and amenable to o�ine analysis. We further

illustrate the potential bene�ts of this abstraction, such as automatic

interface generation, automatic interface backend optimization,

tutorial generation, and workload generation.

CCS CONCEPTS

• Information systems→Datamanagement systems; •Human-

centered computing → User interface design; Visualization.

KEYWORDS

datase interface, data analytics, interface design, data visualization

ACM Reference Format:

Yiru Chen, Je�rey Tao, and Eugene Wu. 2023. DIG: The Data Interface

Grammar . In Workshop on Human-In-the-Loop Data Analytics (HILDA ’23),

June 18, 2023, Seattle, WA, USA. ACM, New York, NY, USA, 7 pages. https:

//doi.org/10.1145/3597465.3605223

1 INTRODUCTION

Interactive data interfaces are essential for data exploration and

analysis. However, designing a new interface is a multi-step process

that includes determining the queries that are appropriate for the

analysis task, as well as the parts of the queries that users should

be able to change. Once the analysis has been determined, the in-

terface designer can now choose the appropriate visualizations,

interactions, and layouts to design the interface. These two steps

are closely related and need to be kept in sync, yet require distinctly

specialized skill sets: to write complex queries over complex data

sources, and to design and implement a usable and e�ective inter-

face. Further expertise in system optimization is needed to ensure

that the resulting interface is responsive as the data grows.

Is there an intermediate abstraction of an interface’s underlying

data needs that can decouple these tasks, so that data practitioners

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.

HILDA ’23, June 18, 2023, Seattle, WA, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0216-7/23/06. . . $15.00
https://doi.org/10.1145/3597465.3605223

Q = ‘SELECT year, payout1(*), ... ’
‘FROM ’ t
‘WHERE dekad BETWEEN ’ val:$s ‘ AND ’ val:$e

t:rel = ‘chirps’ | ‘evi’
val = { v:int | 1 ≤ v ≤ 36 }

Constraints:
s ≤ e

Figure 1: Subset of the Open Policy Kit interface to design

drought insurance policies for rural farmers [13]. The user

can choose from Chirps and EVI rainfall data sources, tune

the start of the measurement period, and see how di�erent

payout calculations aligns with historical droughts and their

own expectations. The dropdown changes the underlying

query’s FROM clause, and the sliders change a range �lter con-

dition. Each interaction issues a new query to the database,

whose result is rendered in the chart. The DIG code concisely

describes the interface’s data needs.

can focus on expressing complex analysis tasks, visualization de-

signers can focus on interface design, and backend engineers can

focus on optimization?

Let us �rst examine the di�erent ways a developer might build

an interface today. Figure 1 is a simpli�ed subset of a drought in-

surance design tool used to protect rural farmers [13]. The simplest

approach is to prede�ne all possible queries in the application ahead

of time, and when the user interacts with the interface, we identify

which query to execute. Although the queries can be optimized

ahead of time, this requires enumerating a combinatorial number

of possible queries (e.g., 1332 = 2 for the dropdown * 666 for the

slider). Parameterized queries allow literals in the WHERE clause

to be wildcards. This compactly expresses the slider interaction and

can be optimized o�ine [14], but cannot express arbitrary struc-

ture changes in the query (e.g., the dropdown). In short, there exist

tools to create and optimize very simple data interfaces where the

interactions largely correspond to �lters or where the user simply

cannot express very much. Beyond this, the developer must resort

to constructing query strings in the application, which is highly

�exible but not amenable to analysis.

What criteria should an intermediate abstraction satisfy? We

believe that it should (C1) compactly represent any analysis task

that a developer may wish to express, (C2) have a well-de�ned cor-

respondence to interactive interfaces composed of charts, widgets,

and interactions, and (C3) be amenable to o�ine analysis for e.g.,

optimization, interface synthesis.

It is easy to see that existing approaches do not satisfy these

criteria. Prede�ning every query is neither compact nor expres-

sive, parameterized queries are compact but only express simple

query transformations, and programmatically constructing SQL is

HILDA ’23, June 18, 2023, Sea�le, WA, USA Yiru Chen et al.

expressive but not analyzable. Other works on interactive data in-

terface benchmarks [4, 10] model the interface in order to generate

query workloads but are limited to SPJA queries and cross-�lter

interactions. Business Intelligence(BI) and visualization tools (e.g.,

Tableau [22], Power BI [5], Vega-lite [20, 21]) are primarily focused

on data cube-like operations.

In this paper, we examine two observations. First, the queries

that an interface expresses can be compactly represented as a gram-

mar. A grammar is a set of production rules that de�ne a valid

program; each production rule de�nes a set of choices that encode

the allowable program variations. That grammar may be a single

production rule that chooses from a small enumeration of prede-

�ned queries, the entire language (e.g., SQL), or a language subset

speci�c to an analysis. Second, the design of a data interface has a

direct correspondence to the grammar: interactions make choices in

the grammar, and when all choices in the grammar have been made,

the grammar is equivalent to a syntactically valid query string that

the database executes. In other words, interactions navigate the

space of syntactically valid queries expressible by the interface.

To this end, we propose DIG, a Data Interface Grammar that

extends Parsing Expression Grammars (PEG) with annotations

speci�c to data programs. For instance, the DIG program for Figure 1

is a query string (gray text) where nonterminals encode program

variations: t chooses the relation name, and val chooses an integer

between 1 and 36. t is annotated to be a relation name, and s ≤e. In

the interface, these choices are respectively bound by the dropdown

and range slider.

DIG satis�es our desired criteria. Since it extends a formal gram-

mar, it compactly express any set of queries useful for a task (C1),

and de�nes a direct correspondence to interactive interface designs

(C2). Finally, since DIG encodes the the entire space of possible

programs, it is amenable to o�ine analysis, and Section 4 outlines

examples such as interface synthesis and physical optimization(C3).

In the rest of this paper, we will �rst introduce Data Interface

Grammar (DIG) and illustrate its correspondence with interactive

interfaces. We further comment on its connections with existing

data pipeline and analysis representations (Section 2). We then

describe how DIG simpli�es interface creation via real-world ex-

amples (Section 3), and �nally highlight the bene�ts of the DIG

representation for solving a number of challenging data interface

problems (Section 4).

2 DATA INTERFACE GRAMMAR

A data interface helps the user navigate a space of useful data pro-

grams (e.g., SQL) through interactive controls. This section �rst

presents DIG, a Data Interface Grammar, to express this set of data

programs in a simple, analyzable manner, and then de�nes the set

of valid interfaces that express a given DIG program. These de�ni-

tions form the basis for useful applications like interface synthesis,

physical visualization optimization that we describe in Section 4.

2.1 DIG De�nition

DIG is aData Interface Grammar that de�nes the syntactic structure

of queries that an interface wishes to express: the set of queries

parsable by the grammar. Given that existing data query languages

such as SQL, PRQL [2], and Pandas have well-established grammar

de�nitions, DIG is a superset of the widely-used Parsing Expression

Grammar (PEG). By extending PEG, we both build on decades of

research and tooling and simplify the ability to port existing PEG-

based languages to DIG.

We formally de�ne DIG = {#, Σ, %, 4(,�} as follows, where the

sub-grammar rooted at each starting rule parses a set of queries:

• a �nite set of nonterminals # ;

• a �nite set of terminals Σ that is disjoint from # ;

• a �nite set of parsing rules % ;

• a �nite set of starting rules 4(, each not referenced by any other

rule;

• a set of constraints C.

Terminals. Similar to typical grammars, DIG matches terminals to

valid strings expressible by regular expressions. Although regular

expressions are useful for matching string literals, most interactions

(e.g., sliders, dropdowns, visualization selections) are typed and

limited to a domain of valid values that regular expressions cannot

distinguish. Thus, DIG also supports domain terminals that may

reference the underlying database.

• Predicate Domain: A = {var:type | <predicate>}.

• Query Domain: A = {SELECT QUERY}.

A predicate domain speci�es a typed variable along with a boolean

expression that must evaluate to true for a value to be valid. For

instance, val = {x:int | x∈[1,36]} speci�es the terminal as an inte-

ger between 1 and 36. Note that a regular expression pattern p is

expressible as a predicate domain {s:str | s matches p}.

A query domain speci�es a query over the database; the terminal

must be an element in the query result. For instance, prods = {SELECT

name FROM products} ensures that the terminal is a valid product name.

The data types may be structured as well, for instance X = { SELECT

fname, lname FROM users } would choose from the �rst and last names

of existing users. This formulation serves as hints for the interface

to choose a good interaction for the rule, and as input validation

rules to guarantee syntactically correct programs.
Following second order languages like SchemaSQL [17], we ad-

ditionally support special string types to express relation names
(rel) and attribute of a relation (attr[str:rel]) where it is optionally
parameterized by a relation name. Thus the following restricts name

s to attribute names in two relations:

sources = { s:rel | s in ['usproducts', 'euproducts']}

name = { s:attr[sources] }

Rules. Each rule in % is structured as � = 4 , where � is a non-

terminal and 4 is a parsing expression composed of a reference to a

non-terminal, a terminal (e.g., a string literal), or an expression com-

posed of either a sequence 4142, selection 41 |...|4= , or zero-or-more

4∗ operator1. Selection implicitly has a domain [1, =] that speci�es

which subexpression is selected, and zero-or-more’s domain is the

natural numbers, which speci�es the number of repetitions. Other

patterns, such as 4+ and 4?, are reducible to these operators.

A non-terminal� on the left side of a rule can optionally be typed

by adding the su�x :type. For instance, t:rel in Figure 1 speci�es

that ‘chirps‘ and ‘evi‘ are relation names. Type violations result in

a parsing error.

1PEG operators like AND and NOT can be omitted since DIG is not used for parsing.

DIG: The Data Interface Grammar HILDA ’23, June 18, 2023, Sea�le, WA, USA

Naming.Naming is necessary for de�ning constraints and interface

mappings next, thus we now introduce annotations and choice

variables. An annotation assigns a variable name to a non-terminal

reference by appending :$varname to the reference. For instance,

Figure 1 assigns the two val references to s and e. If a reference is

not annotated, DIG assigns a unique name by appending a unique

number to the non-terminal name (e.g., val1).

Unfortunately, variables alone are not su�cient because the

same non-terminal can be referenced multiple times. Consider the

following rules:

A = B:$v1 B:$v2 B = C:$v3 C = \d+

The variable v3 is ambiguous because both v1 and v2 reference it.

Thus, we de�ne a variable’s fully quali�ed name as the path from

the root of the DIG to the variable, where each element in the path

is a non-terminal reference.

All variability in DIG is expressed by non-terminals that expand

to a predicate or query domain, selection expression, or zero-or-

more expression. We use the term choice variable to refer to the

fully quali�ed reference to such a non-terminal. For instance, v1, v2,

v1/v3, v2/v3 are the choice variables in the above example. Further,

let �2 be the domain of a given choice variable, as de�ned in the

Terminals and Rules paragraphs above.

Constraints. The developer can specify boolean expressions over

choice variables; these constraints are evaluated when the user

performs an interaction to determine validity. For instance s ≤e in

Figure 1 ensures that start should be less than or equal to the end of

the range. Two terms assigned to the same variable name implies

an equality constraint. DIG handles equality constraints between

variables (e.g., s = e) in a special way: if one variable is bound to a

value E , then the other is updated to E as well; if both are updated

then we check if they are equal.

2.2 Valid Interfaces for a DIG

An interface renders query results and lets the user navigate the

space of valid queries. Since choice variables encapsulate all vari-

ability, a valid interface is one whose interactions can bind values

to the set of choice variables. Once they are all bound, the grammar

reduces to an executable query string, and the interface renders its

evaluation result(s). We will �rst de�ne interactions and how they

cover choice variables, and then de�ne the set of valid interfaces

for a DIG grammar. In practice, each starting rule in a grammar

represents a separate query, and the interface will render the results

of each query; this extension is straightforward and we assume a

single root for clarity.

Interfaces and Interactions. An interface * � = (+ , �) consists

of a view + (e.g., a table, a visualization, a paragraph) that renders

the output of the starting rule and a set of interactions � . We model

an interaction 8 = ()8 , �8) ∈ � by the state it can express.)8 is

its type (e.g., dropdown, slider) and �8 (01, ...) is its domain with

schema (01, ...). For instance, the domain for a dropdown with =

options is [0, =]; for a text box is the set of all strings (perhaps up

to a speci�ed length); for a slider is the set of numbers between

the min and max; and for a 2-D brush interaction in a scatter plot

is the set of bounding boxes in the chart. An interaction’s devel-

oper is responsible for de�ning its domain. Note that our interface

model supports arbitrary layout because layout does not a�ect the

interface’s expressiveness2

Let a mapping "8,2 = {08 → 02 |08 ∈ B2ℎ4<0(�8) ∧ 02 ∈

B2ℎ4<0(�2)}map attributes in the interaction’s domain to attributes

in the choice variable’s domain, and the mapping’s projection

c" (�8) be the subset of attributes in the interaction’s domain

that have a mapping. An interaction 8 is said to cover a choice vari-

able 2 if 1) every attribute in �2 is mapped to in "8,2 , and 2) the

interaction’s domain is a superset of the choice variable’s domain:

c� (�8) ⊇ �2 . These ensure that all possible assignments to 2 can

be expressed in the interface. Given these de�nitions, we are now

ready to de�ne a interface validity.

Definition 1 (Valid Interface). An interaction* � is valid for a

DIG grammar� if every choice variable in� is covered by at least of

interaction in* � , and every root rule is rendered by at least one view.

Example 1. Figure 1 contains two interactions and two mappings.

The dropdown maps its selected index to the choice variable t; since

the dropdown is initialized with set of choices in t (e.g., “chirps”, “evi”),

their domains will be identical - [1, 2]. The range slider maps the left

slider handle to s and the right slider handle to e; the slider’s domain is

{(;, A) |; ∈ [1, 36] ∧ A ∈ [1, 36]}, which matches the predicate domain

and constraints over s and e.

Text Inputs and Parsing. Text inputs are a special type of in-

teraction because they can, in principle, produce arbitrary strings

that are interpreted as query substrings rather than string literals.

For instance, Figure 2 is a query builder where the user types in

predicate expressions, and clicks on “add pred” to add additional

conjunctive clauses. The text input is parsed by the pred rule, which

implicitly binds the attribute, operator, and value.

For these reasons, a text input3 can map to any term C in a DIG

grammar. Any input string will �rst be parsed and validated by the

subgrammar rooted at C . The parsing process implicitly binds all

of the choice variables in the subgrammar, and all parsing errors

or constraint violations are passed to the interaction in order to

surface as error messages.

This functionality is helpful for several reasons. First, DIG can

automatically perform parsing and validation such that any text

input is guaranteed to be syntactically correct and naturally pre-

vents issues such as SQL injection. Second, every DIG statement

is guaranteed at least one valid interface: one where a text input

maps to the root of the grammar, which is equivalent to a typical

console-based interface. Third, it enables a progressive interface

design process, where starting from the default text-based interface,

more specialized interactions are added to the interface to “carve

out” more and more choice variables.

Recursive Rules. So far, we have implicitly assumed that the DIG

grammar is hierarchical and non-recursive. However, DIG allows

recursion in the rule set. For instance, SQL allows nested queries

anywhere a value or relation is expected. How does recursion map

to a valid interface? We outline three categories of approaches.

The �rst approach is to simply map the �rst external reference

of the recursive rule set to a text input. However, this may reduce

2Chart layout (e.g., faceting/small multiples) may a�ect the set of interactions the
chart can express, but is encapsulated by the chart.
3In general, this can be any interaction whose domain is all strings.

DIG: The Data Interface Grammar HILDA ’23, June 18, 2023, Sea�le, WA, USA

For instance, the above model translates into the following,

where we assume usa and eur are the starting rules for their re-

spective DBT models.
q = 'SELECT cty, sum(profit) FROM ' t ' WHERE age > ' age

t = usa | eur usa = ... eur = ...

age = { n:int | n > 0 }

3 VISION: DIG-BASED INTERFACE CREATION

So far, we have described DIG as a compact and expressive abstrac-

tion that naturally maps to interactive interfaces. How can such

an abstraction change how we design, implement, and use new

data-oriented interfaces? Here, we sketch a potential development

cycle that DIG can enable. The next section sketches our progress

towards this vision.

Design. Barb wants to create a new data interface to analyze user

signup �ows, and decides to use DIG. One option is to manually

write a DIG grammar. Alternatively, she might induce a grammar

from existing user signup analyses by extracting queries from e.g.,

Jupyter notebooks, DBMS query logs, or other database-backed

applications, or by translating a natural language description of her

analysis goals into a DIG grammar.

Her design tool then automatically synthesizes a custom interac-

tive interface. She likes the overall design, but resizes the canvas to

�t a smaller screen, and speci�es that the interface should be more

expressive. The synthesized interface updates, and she re-positions

the charts and widgets to �ne-tune the layout.

Implementation. Barb now connects the design tool to the the

user signups database. If her dataset is small, the design tool can

load the database into memory and either run the interface, or

export to a web application. However, if the dataset might grow

over time or if it resides in a cloud database (which optimizes for

throughput rather than query latency), then Barb potentially needs

to engineer an entire client-server system. However, Barb does not

have the time, desire, nor expertise to make all of the decisions

about which DBMS, data structures, and optimization techniques

to employ so that the interface is responsive.

Instead, Barb gives the design tool her budget, and speci�es her

desired responsiveness for the di�erent interactions. The tool uses

metadata about the underlying database to estimate how much

resources are needed to meet her responsiveness goals. The pro-

posed architecture requires materializing and caching 7GB of data

structures [12, 19] in server-side memory, which costs $35/month.

Barb thinks it’s too expensive, and moves part of the interface re-

lated to post-signup actions to a separate page; this relaxes some

of the interactivity constraints, and reduces the sizes of the data

structures to 2GB and costs to $15/month. When she accepts the

recommendation, and the design tool allocates a cloud server, in-

stantiates the data structures and execution plans, and hosts an end

point for the new interface.

Use. Barb knows that learning to use the new interface can be hard

for users, so she records herself performing some example analyses.

A new user plays with the interface for a bit, gets confused, and

then watches a recording. Half way through, he wonders how he

can get to that point without reloading the interface and starting

from scratch. He clicks a “show me how” button, and the interface

dynamically creates a tutorial from where he currently is to the

a=1

b=1c
o
u
n
t

p

a b

1 2

(a) (b)

Q = ‘SELECT p, count FROM T

WHERE ’ filter
filter:str = ‘a=1’|‘b=1’|‘a=2’|

‘b=2’

Q = ‘SELECT p, count FROM T

WHERE ’ attr ‘=’ var
attr:str = ‘a’|‘b’

var:num = ‘1’|‘2’

c
o
u
n
t

p

a=2

b=2

Figure 4: Transforming the DIG grammar changes the set of

valid interfaces.

point in the recording. After following the tutorial, he asks “show

user �ows for only adults above 50” in natural language; it automati-

cally aligns this with the grammar’s structure, translates the natural

language input into the appropriate choice variable bindings, and

the interface walks through the interactions needed to perform this

request.

4 PROGRESS SO FAR

DIG introduces novel problems to improve how interfaces are cre-

ated, optimized, and used. We now outline for example problems

that we have explored in current or prior work.

4.1 Automatic Interface generation

Section 2 de�ned the set of valid interfaces that can be mapped

from a Data Interface Grammar , and enables the potential to au-

tomatically explore and generate valid interfaces for a given DIG

grammar. It is also possible to transform the grammar to induce

new sets of valid interfaces. Consider the following example based

on our recent work called Precision Interfaces 2 (PI2) [8]:

Example 2 (Interface Generation). Figure 4(a) is an initial

DIG grammar and a corresponding valid interface. The grammar

expresses four queries that each di�ers in the �lter predicate string;

the interface simply selects one of the predicate strings using radio

buttons. We can rewrite the grammar to the equivalent grammar in

Figure 4(b) by factoring out the “ =” character from each predicate and

creating separate rules for the left and right sides. The corresponding

interface has two sets of radio buttons, one to choose the attribute

and one to choose the value. Although this appears trivially similar,

we might now apply generalization rules to e.g., let var match any

number, or to lift attr to an attribute type. These rules increase the

expressiveness of the resulting grammar, and consequently, the set of

valid interfaces that a cost model might pick from.

Where Do DIGs Come From? There are many ways to generate

a DIG grammar. In our prior work, we have explored a sequence

of SQL queries from database logs [7, 8], analyses in notebooks

[23], or query models in DBT [9]. Alternatively, it can also be

generated from a large language model [6], as LLMs are pro�cient at

generating text. For instance, in Figure 4, theDIG could be generated

from a natural language query such as "How is the total count for

di�erent p when a is one versus when b is two?"

4.2 Automatic Backend Optimization

Users care about interactivity, and can detect even milliseconds of

interaction delay [15]. As a result, designers must make complex

HILDA ’23, June 18, 2023, Sea�le, WA, USA Yiru Chen et al.

trade-o�s between the interface design, levels of responsiveness for

di�erent interactions, and the systems and resource implications

to guarantee those levels of responsiveness.

Ideally, a designer can label di�erent interactions with their

latency constraints and allow an automated tool to check their

feasibility and resource requirements. This is not straightforward

today. Physical database advisors [3] take a sample of queries as

input, but individual nor sets of queries do not map directly to

interactions because, as we have shown, interactions transform

targeted portions of a query.

In contrast, DIG naturally models interactions based on the non-

terminals they bind; annotating each interaction with latency ex-

pectations is now straightforward. This further o�ers a complete

picture of the interface’s data processing requirements, as this anno-

tatedDIG grammar expresses the universe of possible queries along

with their latency requirements. Given this annotated grammar, we

can identify visualization-speci�c physical data structures to mate-

rialize and maintain, along with a placement and query execution

plan that spans the client, server, and cloud DBMS, that guaran-

tees these latency requirements. We term this problem Physical

Visualization Design (PVD).

Example 3 (Physical Visualization Design). Consider the in-

terface in Figure 1. The designer speci�es that the slider shold respond

in 10ms and dropdown in 100ms, and that the client and server mem-

ory constraints are set to 5GB and 50GB, respectively.

Figure 5 shows two potential physical designs. The �rst suggestion

(a) might be to materialize BTree data structures over the chirps and

evi datasets on the client in order to execute the slider range interac-

tions as index lookups. If the estimated data structure sizes are less

than 5GB, then this option is desirable. If their sizes grow too large,

then moving their placement to the server may be preferable (b). This

incurs network communication latencies, but the index lookups may

be faster due to a faster server CPU.

(b)(a)

client

Btree(chirps, key=dekad)

Btree(evi, key=dekad)

server

Btree(chirps, key=dekad)

Btree(evi, key=dekad)

bindingsresults

Figure 5: Two physical designs for the interface in Figure 1.

4.3 Tutorial Generation

When encountering a new interface, the user must both learn how

the interface works and use it to achieve di�erent tasks [11, 16,

18]. DIG o�ers the potential to automatically generate interactive

tutorial walkthroughs because it manages all of the interface state

and explicitly represents its correspondence to interactions in the

UI. Thus, given a start and end interface state—expressed as the

states of the UI interactions and their corresponding set of bindings

in the DIG grammar—we can automatically identify the sequence

of user interactions necessary to go from start to end state, and use

this sequence to generate an interactive, static, or video tutorial.

Example 4 (Tutorial Generation). Consider again the interface

in Figure 1 as the starting state and the following end state:
SELECT year, payout1(*), ... FROM evi WHERE dekad BETWEEN 1 AND 2

To transition to the end state, we simply need to re-bind the choice

variables t (using the dropdown) and s,e (using the slider). The order

of interactions may be determined by e.g., a user cost model that

estimates the amount of e�ort to perform di�erent sequences.

More complex interface may contain data dependencies—where

one choice variable E3 may be a descendant of another E0 . Given

the DIG grammar, we can easily infer that the user must interact

with E0 before E3 .

4.4 Workload Generation

Visualization benchmarks [4, 10] are designed to help evaluate data

processing systems that power interactive data interfaces by se-

quences of query workloads that simulate what an interface would

produce during a user’s analysis process. However, existing bench-

marks are limited in expressiveness—to SPJA query structures and

parameterized �lters. Even simple transforms like changing the

input relation (Figure 1) are not supported.

In contrast, DIG can express arbitrary query structures, arbitrary

transformations, and models a direct correspondence between user

interactions and their query transformations. As such, simply de-

veloping di�erent user models—say, training a markov model or

using a large language model to simulate an agent—can easily gen-

erate diverse query workloads and timings that re�ect real data

interfaces, queries, and user needs.

5 CONCLUSIONS

In this paper, we propose DIG, a Data Interface Grammar that ex-

tends Parsing Expression Grammars (PEG) with annotations spe-

ci�c to data programs. DIG satis�es all three desired criteria: (C1) it

can compactly express any set of queries useful for a task; (C2) it has

a well-de�ned correspondence to interactive interfaces composed

of charts, widgets, and interactions; (C3) it is amenable to o�ine

analysis. We also demonstrate the compatibility with existing data

engineering practices - DBT [9]. We further illustrate the potential

bene�ts of this abstraction, such as automatic interface generation,

automatic interface backend optimization, tutorial generation, and

workload generation. Addtionally, we describe how DIG simpli�es

interface creation via real-world examples.

ACKNOWLEDGMENTS

Thanks to Miles Hong for helpful feedback. This material is based

upon work supported by NSF grants 1845638, 2008295, 2106197,

2103794; Amazon and Adobe. Any opinions, �ndings, and conclu-

sions or recommendations expressed in this material are those of

the author(s) and do not necessarily re�ect the views of the funders.

DIG: The Data Interface Grammar HILDA ’23, June 18, 2023, Sea�le, WA, USA

REFERENCES
[1] 2023. Cross�lter: Fast Multidimensional Filtering for Coordinated Views. http:

//cross�lter.github.io/cross�lter/.
[2] 2023. Pipelined Relational Query Language. https://prql-lang.org/.
[3] Sanjay Agrawal, Nicolas Bruno, Surajit Chaudhuri, and Vivek R Narasayya. 2006.

AutoAdmin: Self-Tuning Database SystemsTechnology. IEEE Data Eng. Bull. 29,
3 (2006), 7–15.

[4] Leilani Battle, Philipp Eichmann, Marco Angelini, Tiziana Catarci, Giuseppe
Santucci, Yukun Zheng, Carsten Binnig, Jean-Daniel Fekete, and Dominik Moritz.
2020. Database benchmarking for supporting real-time interactive querying of
large data. In Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data. 1571–1587.

[5] Power BI. 2023. Turn your data into immediate impact. https://powerbi.microsoft.
com/en-us/.

[6] Yiru Chen, Ryan Li, Austin Mac, Tianbao Xie, Tao Yu, and Eugene Wu. 2022.
NL2INTERFACE: Interactive Visualization Interface Generation from Natural
Language Queries. IEEE Visualization Conference NLVIZ Workshop (2022).

[7] Yiru Chen and Eugene Wu. 2020. Monte Carlo Tree Search for Generating
Interactive Data Analysis Interfaces. In the AAAI-20 Workshop on Intelligent
Process Automation (IPA-20).

[8] Yiru Chen and Eugene Wu. 2022. PI2: End-to-End Interactive Visualization
Interface Generation from Queries. In Proceedings of the 2022 International Con-
ference on Management of Data (Philadelphia, PA, USA) (SIGMOD ’22). Asso-
ciation for Computing Machinery, New York, NY, USA, 1711–1725. https:
//doi.org/10.1145/3514221.3526166

[9] DBT. 2023. Transforming data. Transforming teams. https://www.getdbt.com/.
[10] Philipp Eichmann, Carsten Binnig, Tim Kraska, and Emanuel Zgraggen. 2018.

IDEBench: A Benchmark for Interactive Data Exploration. Proceedings of the
2020 ACM SIGMOD International Conference on Management of Data (2018).

[11] Floraine Grabler, Maneesh Agrawala, Wilmot Li, Mira Dontcheva, and Takeo
Igarashi. 2009. Generating photo manipulation tutorials by demonstration. ACM
Trans. Graph. 28 (2009), 66.

[12] Goetz Graefe et al. 2011. Modern B-tree techniques. Foundations and Trends® in
Databases 3, 4 (2011), 203–402.

[13] Helen Greatrex, James Hansen, Samantha Garvin, Rahel Diro, Margot Le Guen,
Sari Blakeley, Kolli Rao, and Daniel Osgood. 2015. Scaling up index insurance
for smallholder farmers: Recent evidence and insights. CCAFS Report (2015).

[14] Yannis E Ioannidis, Raymond T Ng, Kyuseok Shim, and Timos K Sellis. 1997.
Parametric query optimization. The VLDB Journal 6 (1997), 132–151.

[15] Ricardo Jota, Albert Ng, Paul Dietz, and Daniel Wigdor. 2013. How fast is
fast enough? a study of the e�ects of latency in direct-touch pointing tasks.
In Proceedings of the sigchi conference on human factors in computing systems.
2291–2300.

[16] Caitlin L. Kelleher and Randy F. Pausch. 2005. Stencils-based tutorials: design and
evaluation. Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (2005).

[17] Laks VS Lakshmanan, Fereidoon Sadri, and Iyer N Subramanian. 1996.
SchemaSQL-a language for interoperability in relational multi-database systems.
In VLDB, Vol. 96. Citeseer, 239–250.

[18] Wei Li, Yuanlin Zhang, andGeorgeW. Fitzmaurice. 2013. TutorialPlan: Automated
Tutorial Generation from CAD Drawings. In International Joint Conference on
Arti�cial Intelligence.

[19] Cicero AL Pahins, Sean A Stephens, Carlos Scheidegger, and Joao LD Comba.
2016. Hashedcubes: Simple, low memory, real-time visual exploration of big data.
IEEE transactions on visualization and computer graphics 23, 1 (2016), 671–680.

[20] Arvind Satyanarayan, Dominik Moritz, Kanit Wongsuphasawat, and Je�rey Heer.
2018. Vega-Lite: A Grammar of Interactive Graphics. IEEE Transactions on
Visualization and Computer Graphics 23 (2018), 341–350.

[21] Arvind Satyanarayan, Ryan Russell, Jane Ho�swell, and Je�rey Heer. 2016. Reac-
tive Vega: A Streaming Data�ow Architecture for Declarative Interactive Visu-
alization. IEEE Transactions on Visualization and Computer Graphics 22 (2016),
659–668.

[22] Tableau. 2023. Theworld’s leading analytics platform. https://www.tableau.com/.
[23] Je�rey Tao, Yiru Chen, and Eugene Wu. 2022. Demonstration of PI2: Interactive

Visualization Interface Generation for SQL Analysis in Notebook. In Proceedings
of the 2022 International Conference on Management of Data (Philadelphia, PA,
USA) (SIGMOD ’22). Association for Computing Machinery, New York, NY, USA,
2365–2368. https://doi.org/10.1145/3514221.3520153

	Abstract
	1 Introduction
	2 Data Interface Grammar
	2.1 DIG Definition
	2.2 Valid Interfaces for a DIG
	2.3 Cross-filter Example
	2.4 Tool Compatibility

	3 Vision: DIG-based Interface Creation
	4 Progress So Far
	4.1 Automatic Interface generation
	4.2 Automatic Backend Optimization
	4.3 Tutorial Generation
	4.4 Workload Generation

	5 Conclusions
	Acknowledgments
	References

