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We present a novel multi-level representation of time series called OM3 that facilitates efficient interactive
progressive visualization of large data stored in a database and supports various interactions such as resizing,
panning, zooming, and visual query. Based on our proposed line-segment aggregation, this representation can
produce error-free line visualizations that preserve the shape of a time series in windows of arbitrary sizes. To
reduce the interaction latency, we develop an incremental tree-based query strategy to support progressive
visualizations, allowing a finer control on the accuracy-time tradeoff. We quantitatively compare OM? with
state-of-the-art methods, including a method implemented on a leading time-series database InfluxDB, in
two settings with databases residing either in the local area network or on the cloud. Results show that
OM?3 maintains a low latency within 300 ms on the web browser and a high data reduction ratio regardless
of the data size (ranging from millions to billions of records), achieving around 1,000 times faster than the
state-of-the-art methods on the largest dataset experimented with.
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1 INTRODUCTION

The past decades have witnessed an explosion of time-series data in many applications, from
financial engineering to manufacturing. A large amount of time-series data is collected by measuring
variables over time at regular intervals, and usually stored in remote databases on cloud servers for
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subsequent analysis via interactive visualizations on the client side. By interacting with time series
displayed as line charts, users can conduct analytical tasks [1], such as peak identification, trend
analysis, and pattern search.

To improve the user exploration efficiency, a variety of interaction techniques [1] have been
developed, e.g., SignalLens [16], multi-focus zooming [12, 29], Zenvisage [27], and a few visual
query tools [10, 21]. Recently, Siddiqui et al. [28] proposed an expressive shape search algebra,
enabling users to interactively search for various desired patterns. However, almost all existing
techniques require the whole data to be quickly loaded onto the client side for efficient rendering.
Yet, the latency is often high for large time-series data stored on remote databases. This hinders
smooth interactive exploration of temporal patterns at various resolutions.

A common approach to reducing the latency is data reduction [4], by aggregating the data
to reduce its size before visualization. Various strategies have been proposed to preserve salient
features in the reduction. However, most of them do not account for the perceptual effects of, e.g.,
resizing the display, and thus often produce erroneous visualizations that can significantly distort
the shape of the rendered data. This issue is addressed by the visualization-oriented time-series
reduction method M4 [13], which finds essential records per pixel column (where each pixel column
consists of all pixels with the same x coordinate) in the display window to preserve the exact
rendering of an input time series, referred as error-free line visualizations. Yet, M4 cannot efficiently
sustain smooth interactions for large time-series data. First, the time complexity of executing
a query is O(n), where n is the time-series length. So, processing data with millions of records
could easily take more than a second, which is beyond the latency limit [17] for interactive visual
analysis. Second, M4 independently issues and fully executes a new query for each user action
on the visualization. For these reasons, it does not support continuous interactions like panning
and zooming, and precludes most interaction techniques that are commonly used for time-series
exploration.

Progressive visualization [33] is a promising direction, where, instead of waiting for slow queries,
the visualization immediately renders intermediate results that the user can potentially interact with.
A prominent approach is based on IncVisage [23], which uses online sampling-based techniques
to progressively reveal salient features. The approach quickly renders approximate visualizations
(on the order of seconds) that update over time and eventually converge to the exact visualization
(though this may take a minute or more). Each update sends a new result set to visualize, so network
costs are linear in the number of updates—on the order of hundreds before convergence. These
characteristics are ill-suited and not widely adopted for interactive visualization of large datasets.

In this paper, we present a new approach to interactive progressive visualization of arbitrarily-sized
time-series. Our approach is designed to satisfy the following desiderata for interactive visualization
of large time-series stored in a remote database: (i) ensuring error-free line visualizations at any
scale; (i) minimizing query latency and amount of data transfer to the visualization clients; (iii)
supporting progressive refinement of intermediate visualization with a good trade-off between
interaction latency and visualization quality; and (iv) offering rich interactions for fluid data
exploration.

Our proposal centers around OM?, an ordered multi-level min-max representation of a time-
series dataset, which enables visualizations that preserve the shape of a time series displayed in
any window size. This representation has [log n] levels and maintains minimum and maximum
values at every time interval that is used to rasterize a pixel column in the display window with
the width 27 at the ith (0 < i < [logn]) level. In addition, it tracks the temporal ordering of
the paired minimum and maximum values at the leaf level. To do so, we formulate the forward
OM?® transform to recursively aggregate the time series for different time intervals at different
resolutions, constructing a hierarchy of coeflicients obtained by aggregating and differing between
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Technique ‘Vis. Qual. Data Tran. Prog. Vis. Int. Sup.

M4 [13] v v X X
IncVisage [23] X X v X
oM? v v v v

Table 1. Comparing the design objective of OM3 with prior approximate visualization techniques based on
four considerations: visualization quality, size of data transferred, progressive visualization and interaction
support, where v'and X indicate whether the technique accounts for a given consideration or not.

the aggregate values of two paired aggregated samples. We store these coefficients in a database
table, whose size is only three-quarters of the original time series. By default, the procedure is
limited to time-series lengths that are powers of two, and we extend it to support missing data and
arbitrary lengths with the same storage space.

With OM? interactions issue queries over the hierarchy of coefficients and render the charts on
the client using the data fetched from the server. A naive implementation would involve traversing
all the coefficients falling into the specific time range for each interaction. This, however, could
be prohibitively expensive for large data. To address this issue, we propose a visualization-aware
incremental query algorithm of time complexity O(w log(n)), where w is the display-window width
and n is the time-series length. For every time interval corresponding to a pixel column in the
visualization, it finds four M4 samples [13] and reuses the query results from the previous round
of interaction to attain a substantial speed-up. Since the query evaluation proceeds incrementally
level by level through the hierarchy of coefficients, the rasterization is progressively performed
with a dynamically changed number of pixels rendered on screen and rapidly converges to exact
visualizations. For example, it takes less than 300 ms to reach the convergence for the dataset
with 1B records. As a further optimization on the cost of traversing OM?>, we develop an efficient
pruning strategy in a breadth-first search, which can achieve a pruning ratio of around 45% on most
datasets. In doing so, interactive, progressive visualization of large time series can become feasible,
even for data with billions of records. Table 1 compares the design objectives of OM? and existing
techniques along four considerations.

OM? can support a rich variety of interaction techniques such as panning, zooming, resizing, and
TimeBox Search [11]. We implement OM? using JavaScript with PostgreSQL [20], and quantitatively
compare it with the baseline approaches: M4 on PostgreSQL and a leading time-series database
InfluxDB, and Haar wavelet on PostgreSQL, in two settings, with the database residing either in
the local area network or on the cloud, on several real-world datasets. Evaluation results show that
our method ensures error-free visualizations and offers latency under 300 ms (the upper limit of
interactive latency is 500 ms [17]) and high data reduction ratio (99.5%), showing its capability to
support progressive visualization of large time-series data. Besides, we conduct a case study to
demonstrate the effectiveness of our provided interaction techniques in the exploration of large
data.

In summary, we make the following main contributions.

e We develop OM?, an ordered multi-level min-max representation that forms the basis for
delivering interactive visualization of large time-series data with one billion records;

e We propose an incremental query algorithm with an efficient pruning strategy to enable
progressive visualization and rich fluid interactions on the client; and

e We quantitatively compare OM? with state-of-the-art methods, manifesting the effectiveness
of OM? in supporting interactive exploration of large time-series data.

The rest of this paper is organized as follows. In Section 2, we provide a review of related
work. In Section 3, we revisit min-max aggregation and present an extension to support error-free
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visualization of time series. Section 4 presents our new solution based on OM3. Section 5 reports
the experimental results, and Section 6 concludes this paper.

2 RELATED WORK

Our work is related to the literature on interaction for line visualizations and data reduction of
large time-series data. Below, we discuss these areas one by one.

2.1 Interaction for Line Visualizations

Time-series visualization [1] has been extensively explored for facilitating users to discover trends
and patterns at varying time scales. Line chart is still the most popular vehicle for presenting
time series. However, displaying many time series as line charts on a limited screen inevitably
produces heavy overplot. To address this issue, various lens-based interaction techniques [16] and
overview-+detail interaction techniques [12, 29] have been developed for simultaneously showing
the regions of interest in detail with an overview of the whole data. All these techniques are built on
basic interaction operations: resizing, panning, and zooming, with the assumption that the latency
of the data query is low. Yet, very few of them have been used for exploration of very large time-
series data stored in remote databases. In contrast, the proposed OM?® and its associated incremental
query algorithm focus on enabling efficient interactive visualization of remote time-series data
with billions of records.

As a separate line of research that is concerned with efficiently identifying patterns of interest,
visual query tools help search for line chart visualizations matching a query pattern specified
through the user interface. Among them, sketch-based queries [18, 27, 28, 32] allow users to sketch
a temporal pattern to select and show the line charts that match the sketch. Yet, this approach does
not provide an overview of the whole data. Instead, Timeboxes [11] and KD-Box [34] act as filters,
in which users can specify query constraints by manipulating rectangular boxes in the charts with
all time series and then filter out the time series that do not pass through the boxes. Our multi-level
representation OM?® further extends such queries to explore the detail of lines of interest at finer
levels.

2.2 Time-series Data Reduction

To reduce the latency for large data query during interactive visualization, a few data reduction
techniques have been proposed for time-series data, which can be grouped into two categories:
point aggregation and line simplification.

Point Aggregation. To ensure a manageable size for the query data, point aggregation methods
often first group the entire time series into a few time spans and then compute an aggregated value
and an aggregated timestamp for each interval using aggregation functions such as minimum,
maximum, mean, and median. A common method is the piece-wise aggregate approximation
(PAA) [14], which selects the minimum (first) timestamp and computes an average value. Based
on these aggregation functions, a few methods have been proposed to offer fast approximate
query [2, 6]. Yet, regardless of the aggregation function being used, the line chart of the aggregated
data may distort the original shape of the time series. To address the issue, M4 [13] aims to preserve
the shape by selecting two data points with the minimum and maximum values, and another two
with the minimum and maximum timestamps in each pixel column, connecting the four data points
in time order with the rest of the time series, and rasterizing the line segments in the pixel column.

With M4, the number of data points needed to be transferred from the database to the visualization
client can be significantly reduced. However, it cannot facilitate smooth interaction of large time-
series data due to the following two major drawbacks. First, its query execution has high interaction
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latency. The most costly operation in the whole query process is the join operation, which has a
computational complexity of O(n + 4w) for matching n data points with 4w aggregates. Second, M4
cannot reuse previous query results to support incremental update, which is essential to supporting
interactive operations such as zooming and panning. As a result, it requires very frequent data query
and transfer from the remote database during user exploration, thus hindering effective exploration
of large data. Although SampleAction [8] and IFOCUS [15] support incremental visualizations by
using online aggregation, they cannot provide error-free visualizations until converging to precise
results. In contrast, OM? enables users to interactively explore large-scale time-series data with
flexible interactions.

Line Simplification. Given a time-series curve, line simplification is another data-reduction
approach that aims to preserve its rough shape with fewer curve segments. One widely-used
method is the top-down Ramer-Douglas-Peucker [7, 9] algorithm, which joins the first and last
points in the curve and divides the curve into two segments, if the distance from the farthest point to
the line is larger than a threshold. Then, each curve segment is recursively divided until all points of
the original curve are within the simplification’s tolerance. Fu et al. [5] further attempts to preserve
salient points in the simplification. However, these methods have a high computational complexity,
O(n?) or O(nlogn), (n is the number of data points in the time series), so interactive queries cannot
be supported for large data. Instead, INCVISAGE [23] uses online sampling-based algorithms to
incrementally generate curve segments, attaining 46x speedup relative to baselines. Yet, it provides
only approximate visualizations and does not support interactive operations like zooming. Since
the time complexity for constructing the OM? representation is only O(n) and querying with OM?
is only O(wlogn) (w is display-window width), OM? is able to support progressive interactive
visualization of large time series.

3 LINE-SEGMENT AGGREGATION

In this section, we revisit min-max aggregation and propose a line-segment aggregation of time
series for generating error-free visualizations. As shown in Fig. 1(b), simply using the min-max
aggregation may produce errors in line-chart visualizations with missing pixels (e.g., E;) and false
pixels (e.g., E;). To address this issue, M4 [13] locates the two data points of maximum and minimum
timestamps and the two data points of maximum and minimum data values in each pixel column
and then connects these points to form line segments that represent the line chart. Fig. 1(c) shows
its result, which exactly matches the visualization produced by directly rasterizing the whole data
points shown in Fig. 1(a). However, some inter-column segments formed by M4 are redundant and
unnecessary for yielding error-free visualizations.

Definition 1. A time series T = {(t;,v;))}!" ; is an ordered list of uniformly-sampled data points,
where i is the index, ¢; is the i-th timestamp (¢; < t;41), and v; is the data value at time ¢;.

Definition 2. An equidistant grouping of a time series refers to a non-overlapping partition of
T into w groups of same width in time domain: G(T,w) = {By, By, - - , B,,}, where each group
B; contains the data points in time interval [(i — 1) * § + 1,i * §], § is round(n/w), and w is the
display-window width. For each group, its value range is O; = [Guyin(T, W, i), Gmax(T, w, i)] defined
by the minimal and maximal values Guin(T, W, i) and Gnax(T, w, i), respectively.

Definition 3. A line visualization of time series T error-free, if the set of its rendered foreground
pixels is the same as the set rendered by rasterizing all line segments over all data points in T.

Definition 4. For each group B;, the intra-column line segment is defined by Gyn(T, w, i) and
Gax (T, w, i) of this group, while the inter-column line segment between B; and the next group B
is defined by connecting the last data record of B; and the first data record of B;.;. As shown in
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Fig. 1. lllustration of Theorem 1. (a) The visualization created by using all data points, where all rasterized
pixels are shown in gray; (b) the visualization of the min-max aggregation yields errors of a missing pixel (E1)
and a false pixel (E2); (c) the visualization of the M4 aggregation yields the same rasterized pixels as the ones
in (a) but the dotted line segments are redundant and unnecessary; and (d) all pixels are correctly set by
first rasterizing the lines defined by the min-max aggregation result in each pixel column (in green) and then
rasterizing the indispensable inter-column lines (L1) between adjacent pixel columns.

Fig. 1(b), only rasterizing all intra-column line segments cannot guarantee error-free visualization,
but on the other hand, the dotted line segments defined by M4 samples in Fig. 1(c) are redundant
and unnecessary.

Definition 5. The line-segment aggregation G;(T, w) of a given w equidistant grouping of T consists
of an intra-column line segment in each group and any inter-column line segment whose contained
pixels are completely covered in the ranges O; and O;,;. For the example in Fig. 1(d), the time
series is shown on a three-pixel display window; the line-segment aggregation consists of the three
green intra-column lines and one inter-column line L.

Theorem 1. The line visualization of a time series T produced by rasterizing its line-segment
aggregation G;(T, w) is error-free.

Proof. If the value range Q = [v;,vj41] of an inter-column line segment is within O; N O}, the
corresponding inter-column pixels will be covered by the set of intra-column pixels. As a result, the
inter-column lines (see, e.g., line segment L, in Fig. 1(d)) are not required for ensuring error-free
visualization. However, an inter-column line segment is indispensable, if its Q is not within O; NOj;44
(see, e.g., line segment L; in Fig. 1(d)), since L; can be rasterized into pixels out of the intra-column
pixels. Combining all these pixels together, we can then ensure an error-free visualization. For time
series with missing data values between columns B; and B, using the inter-column line segment
between the two columns can help ensure the generation of error-free visualizations.

We can see that the data points used for defining the line-segment aggregations are the subset of
the all line segments formed by connecting all four data points in each group: the data points with
the minimal and maximal values and the data points with the first and last timestamps in M4 [13].
Since the min-max aggregation on a large time interval can be decomposed into an aggregation on
a few sub-intervals, the pre-computed aggregation results of some time intervals can be used to
accelerate the computation. This enables the reuse of the line-segment aggregation results from
the previous round of interaction to support interactive visualization.

As such, we propose to build a hierarchical data representation, which brings two benefits: (i)
avoid explicit identification of required inter-column line segments during interactive query, and
(ii) reuse pre-computed aggregation results of different time intervals to speed up the computation.
We detail the design of this new data representation in Section 4.
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Fig. 2. Our OM3-based architecture for interactive progressive error-free visualization of time series stored in
a database.

4 OUR SOLUTION

Based on the line-segment aggregation described in Section 3, we propose the OM?® representation.
Particularly, we shall show how this representation facilitates interactive progressive visualization
of large time series stored in remote databases with low latency. Fig. 2 shows the overall architecture,
which consists of two stages: offline preprocessing and online query.

Offline Preprocessing. We apply our OM? preprocessor (see Section 4.1) to convert each time
series stored in a relational database at a server into our OM? coefficients by a forward transform.
This is a one-time pre-processing conducted locally on the server.

Online Query. Once the OM? coefficients are available, users can interactively explore the data on
the client by retrieving just the necessary coefficients from the server to reconstruct the original
data records via an inverse transform. To produce a visualization from scratch, the server can
automatically produce query statements to retrieve coefficients based on the display-window width
and the visible time range of the time series on the display window. Then, the client receives a
stream of coefficients from the server to produce the visualization, while maintaining an OM?
coefficient tree of the reconstructed data as cache to accelerate subsequent visualization generation
during interactive exploration. To support smooth interactions, the server performs incremental
queries to request data on demand, enabling the client to smoothly pan, zoom, resize, and query
the time series by exploiting the tree hierarchy.

OM? inherently requires the time series to be complete (i.e., without missing values) and have a
power-of-two length. It also requires the window width to be a power of two. However, none of
these can be ensured for general time-series data during the interactive data exploration. Hence,
we further extend OM? to address these issues. In this section, we will first describe the forward
and inverse OM? transforms and our extensions for the time series with missing data and arbitrary
lengths, incremental tree-based query, acceleration strategies on OM?>, and families of interactions
supported by OM3.

4.1 OM? Transforms

Given a time series T of length n = 2!, we obtain its hierarchical line-segment aggregation via two
operations: (i) hierarchical min-max aggregation, and (ii) the ordering of the min-max aggregation
results at the finest level. Operation (i) helps build the min-max lines, while operation (ii) facilitates
the construction of the inter-column lines. We refer to such a line-segment aggregation result as
the ordered multi-level min-max representation of the time series, i.e., OM>. So, the OM? transform
converts time series T from an ordered list of data records to a set of coefficients that describe T
in different levels of detail. Using these coefficients, the original data records at any level can be
reconstructed by an inverse transform.
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Fig. 3. lllustrating the OM? forward transform and the coefficients stored in the database. (a) The input data
(bottom) with 16 samples is recursively transformed to build the four-level coefficient tree. Each tree node
has two aggregate coefficients and two associated detail coefficients. To start, we replicate the input data
twice to construct the coefficients at level 4, marked by the dotted box. (b) The initial database table stores
the final two aggregate coefficients at the top (level 0) and all detail coefficients from the forward transforms;
detail coefficients that are redundant for reconstructing the original data are marked by the blue box. (c) The
additional database table stores all ordering coefficients. (d,e) Line visualizations (in black) reconstructed by
the inverse transform from the aggregate coefficients on a two-pixel-wide window (d) and a four-pixel-wide
window (e), where the pixels with the red boxes are missed.

Forward Transform. We hierarchically decompose the input time series to transform it into a
hierarchy of aggregate and difference coefficients, and a set of ordering coefficients applied to the
leaf level. Here, we employ the min-max aggregation functions for preserving the shape of the time
series at different levels as well as the ordering relationship between each pair of consecutive data
records. However, directly storing min-max aggregates at every node in the hierarchy requires more
storage overhead than the original data, resulting in high latency (see Section 5.1). Inspired by Haar
wavelet [3], we further apply the difference operations to aggregate values for providing a compact
representation (smaller than the original data) yet with sufficient information to reconstruct the
original data. In doing so, uniformly-sampled time series with 2/ values becomes a complete binary
tree with [ levels of coefficients. Each node in the hierarchy has two pairs of aggregate and detail
coefficients at level j (0 < j < [—1). A

We denote the minimal and maximal aggregate coefficients of the i-th node at j-th level as A},

Aéi 1> and the corresponding detail coefficients as Dgi and Déi 1~ Given an input of 2! data points,
we first replicate each sample twice to form A!, where Al2 ;= Alzi +1 = vi- Then, we can compute two

aggregate coefficients A" and two detail coefficients D/~ for the i-th (i € {0,1,--- ,2/ — 1}) node
at level j — 1 based on the four aggregate coefficients {A},, A, |, A}, A, .} of their two children
nodes at level j:

J=1_ s JooAJ =1 _ 4] _ A
Ay = min(Ay;, Ay ), Déi = Ay~ Aig (1)
j-1 _ J J =1 _ AJ A
Apipr = max(Ay; 5 Ay s), Dy = Ay — Ay (2)
1. . -1 . i . .
where AjZi is min(v); Ajzi ., is max(v); and D/""’s are the differences between corresponding data

points. By successively and recursively repeating this process, we can form a hierarchy of aggregate
and detail coefficients. The intuition in our formulation is that every chunk of two aggregate
coefficients represent min(v), and max(v) specifically for a certain time span in the input time
series, i.e., one timestamp at level [, two timestamps at level [ — 1, four timestamps at level [ — 2, etc.
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Fig. 3(a) shows an example four-level hierarchy produced from 16 data points. We can see that the
eight coefficient tuples at level 3 are obtained by aggregating and differing between two adjacent
aggregate coeflicients at level 4.

Note also that in our implementation, we directly compute A'~! from input data without explicitly
replicating the input data points to form A’. As shown in Fig. 3(a), the coefficients at level 3 can be
obtained by operating on the two adjacent data points. Since A/~! encodes only the set of original
sample values in the input without information on their order, we further store the ordering
relationship between Al-! and Al-1 as the ordering coefficient O to facilitate the reconstruction of
the input and set O; to true, if AIZ;I is less than A%7! | and false, otherwise. Meanwhile, the detail

2i+1°
coefficients at level [ — 1 (e.g., D!-1 and D!7! ) are redundant, as we do not need to reconstruct Alzl.
and Al

2i 2i+1

541 during the inverse transform. In Fig. 3(b), the cells highlighted by the blue box mark
the redundant detail coefficients. For short, we refer these aggregate and detail coefficients to be
stored as the M? coefficients, and the combination of M*® coefficients and ordering coefficients as
the OM? coefficients. So, only n M? coefficients and half of the n Boolean ordering coefficients
are indispensable. For efficient storage of the M* coefficients in database, we use an ID column to
maintain the ordering of the records, see the left column of Fig. 3(b). Since n Booleans (ordering
coefficients) take small space, we store them separately. For the input time series of length n,
each data point has two values t; and v;, and thus the total number of required coefficients is
approximately three-quarters of the input data size.

After removing the redundant detail coefficients, we can pack the aggregate and detail coefficients
into a database table with two columns (see the example shown in Fig. 3(b)) and the ordering
coefficients into a table (see Fig. 3(c)), which stores all the information necessary for reconstructing
the input data points.

Inverse Transform. As the forward transform employs min and max aggregations, we need
different mechanisms to reconstruct the aggregate coefficients. Given the aggregate and detail
coefficients at level j — 1, the aggregate coefficients at level j can be found by reversing Egs. (1)

& (2). For example, we can reverse Eq. (1) to find A{u‘ and A{le based on the sign of D12;1:

TN = Y S i1 e el
Ay = Ay Ay, = Ay =Dy D) <0 (3)

VARV oo UV ARV s WA A .
or A=A A, =A_—-D]  otherwise.

Similarly, we can reverse Eq. (2) to find A{;i +; and Aﬂi Y

For a display window with power-of-two width w = 2/, the inverse transform requires fetching
coefficients whose ID ranges [0, 2w — 1] from the M® coefficient table and then performing the
inverse transform from level 0 to level j — 1 to reconstruct the original data points. Figs. 3(d,e) show
a 16-samples time series reconstructed to fit two- and four-pixel-wide windows, respectively. Yet,
the visualization rendered by the reconstructed min-max aggregate in each pixel column misses
some pixels; see the ones marked by the red boxes. The reason is that some inter-column pixels
cannot be determined using only the min-max aggregation. We will address this issue with our

tree-base query in Section 4.2.

Transformation of Non-canonical Data. To handle time series with missing values and/or of
non-power-of-two length, which we collectively call non-canonical time series, we may simply fill
the missing values with an estimated value (e.g., simple average) or pad it with zeros to extend its
length to a power of two. However, value filling and zero padding will influence the calculation of
the minimum and maximum values, hindering the OM3 transforms.

Instead, we represent a non-canonical time series as the one with a power-of-two length (see the
bottom in Fig. 4(a)) and pad the null value to the samples without data values. Then we construct a
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(a) (b) (d)
Fig. 4. Handling a ten-samples time series with missing data values. (a) An OM3 coefficients tree with null
nodes (in pink). (b) Coefficients in the three-column format, where the blue box and pink background mark
the coefficients that do not need to be stored in the database. (c) The three-column M3 coefficient table stores
all required aggregate and detail coefficients in the database. (d) The ordering coefficient table stores the
2-bit ordering coefficients.

complete binary tree and assign an ID to each node based on its location in the tree (see the number
on top of each node in Fig. 4(a)). In the forward transform, we take the nodes corresponding to the
samples with missing data values as null. When there is one null child node, we assign its detail
coefficients as [0, null] or [null, 0], where the position of the null indicates which (left or right)
child node is null. If both children are null, we assume this node is also null and do not store it in
the database. So, the M? coefficient table may have discontinuous ID column for storing only the
coeflicients of the data points actually from the input time series.

After performing the forward transform, we store the node index and detail coefficients into
the M? coefficient table with three columns. As shown in Fig. 4(b), we do not save the redundant
detail coefficients shown in the blue box. For the ordering coefficients, we store them as a two-bit
ordering coefficient table to handle all missing values related cases. When neither of the paired
samples is missing, we set the corresponding ordering coefficient O; to (0, 0) if AL ! is less than
AlZ1 and (1,1) if AL is greater. Otherwise, we set O; to (0, 1) if AL7! is missing and (1,0) if AL},
is missing, and null for both are missing. For the example in Fig. 4(a), such coefficients are shown in
Fig. 4(d). Since this table takes little space, we store the indices and detail coefficients contiguously
in the M? coefficient table, which takes only around three-quarters of the input data size. Although
this storage overhead is smaller than the input, OM? is able to faithfully recover the original input
data.

During the inverse transform, we can still visit the children nodes of the i-th node from the
coefficients tree using the indices 2i and 2i + 1. When the detail coefficients of the i-th node have a
null value, we directly assign its min-max aggregate coefficients to its non-null child node and do
not reconstruct the other node. For ensuring an accurate reconstruction of the input samples, we
still need to use the coefficients from the ordering coefficient table to identify the samples with
missing values at the finest level.

Time Complexity. For a time series of n samples, the time complexity of the forward transform
is O(n), while using O(n) space. The inverse transform shares the same complexity.
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Algorithm 1 Incremental Tree-based Query

Input: Coefficient tree T, ordering coefficients O, window width w, data size n
Output: The rasterized result

1: function BFS(T, O, w, n)

2: 'V = nodes of the current level in T

3 M = initialize w groups for recording min-max values

4 p = the number of current levelin T, [ = ceil(logz(n)), j = p

5: while j < [ do

6: B =0 // store boundary nodes at level j

7: for v in V do

8 tmin, tmax = ComputeNodeTimeRange(v.index, j, n)

9 colmin = floor(w s tpyin /n), cOlmax = floor(w * tax /1)

10: if colyin == colpmax then

11: update the values in M[col,, ]

12: else

13: B.append(v)

14: end if

15: end for

16: if j == [ — 1 then return Rasterization(M, B, O)

17: else if j > p then

18: for v in B do

19: tmin> tmax = ComputeNodeTimeRange(v.index, j, n)

20: colmin = floor(w * tin/n), cOlmax = floor(w * tpax /1)

21: if v.min > M| col,,;p, | min && v.max < M| col, i, |- max && v.min > M| colp, qx |- min && v.max < M| col, 4 |- max
then // pruning

22: B.remove(v)

23: end if

24: end for

25: end if

26: C = LoadDetailCoefficients(B) // query from the server

27: V = InverseTransform(C, T) // reconstruct child nodes

28: J++

29: yield Rasterization(IM)

30: end while
31: end function

v_min v_max ===1st column ===2nd column === 3rd column = boundary

Database

151\

R
P}

inter-column
points

level 2 level 3 level 4

(@ (b) © (d)
Fig. 5. lllustrating how incremental tree-based query supports for accurately visualizing a time series on
a three-pixel-width window. (a) Simply generating the visualization by using four groups of the aggregate
values at the level 2 could easily miss pixels (red boxes). (b,c) Our query method with pruning can efficiently
visit necessary nodes in the OM? coefficient tree to locate the minimum and maximum aggregates for each
pixel column in the target window level by level and uses these value ranges to rasterize the pixel columns in
(c). (d) The final visualization produced by our method (grey pixels) is error-free; its rasterization precisely
matches the data points in the original line chart. Here, the detail coefficients of the node [14,17] do not need
to be loaded, since its value range is covered by the value ranges of the adjacent two pixel columns [7,20] and
[6,29], while the inter-column line highlighted in (d) corresponds to the node [14,22].

4.2 Incremental Tree-based Query

To adapt OM? to arbitrary-sized windows, one simple way is to first reconstruct the min-max
aggregate at a level finer than the display window and then render the reconstructed min-max lines
to the given window. This approach, however, could miss some pixels in the generated visualizations.
Fig. 5(a) illustrates an example three-pixel-width target window, in which we reconstruct four
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groups of the min-max aggregate values at level 2 and render these min-max lines on this window;
we show also the original line chart (grey line) as a reference. Comparing the two charts, we can
see that three pixels (red boxes) are missed in the generated visualization, as the four-pixel-width
line chart does not provide appropriate data samples precisely for the three-pixel-width window,
especially near the pixel-column boundary. Also, when using the correct min-max aggregate
coefficients, only some pixels are missed (see Figs. 3(d,e)); yet, we can recover these pixels by some
inter-column lines, as explained and shown in Theorem 1 (see Section 3).

To address the issue, we propose a two-step tree-based incremental query scheme for efficiently
finding appropriate data points in each pixel column of the target window. Assuming that the
width of the display window w is in range [2P7!, 2?] for some positive integer p, we first retrieve
the coeflicients for the window of width 2? from the server database and reconstruct 2” data
points via an inverse transform. Then, the client can successively retrieve detail coefficients of
boundary nodes that contain the first/last timestamp of each pixel column from the server to
reconstruct the original data points at the finest level. Before performing this two-step query, we
first send the whole ordering coefficients from the server to the client. By finding the minimum
and maximum data values in every pixel column of the target window and the indispensable
inter-column samples within a single query, we can then obtain accurate aggregates for producing
error-free visualizations. Yet, extensively visiting the coefficient tree all the way to the leaf nodes
and transferring all information from server to client would lead to extra costs in computing time
and network bandwidth. Also, some inter-column lines are unnecessary as shown by Theorem 1.
These observations form the basis for reducing the tree traversal cost.

To avoid exhaustive tree traversal, we introduce a breadth-first search method with an efficient
pruning strategy to avoid unnecessary traversal, as outlined in Algorithm 1. When traversing
each level, we initialize an empty list B to store those boundary nodes (line 6) that contain data
points near the boundary between adjacent pixel columns. Then, for each node, we examine its
time range against the time range of the nearby pixel columns in the target window. If the time
range of a node falls entirely inside the time range of a pixel column, the node itself can provide
appropriate information for updating the data value range (i.e., [v_min,v_max]) of the pixel column
(lines 7-11), so we do not need to further visit its child nodes to explore the finer-level time ranges.
Otherwise, we append it to the list B (line 13). For the boundary node at a level greater than p, we
remove it from B, if its data value range is already covered by the current data ranges of the two
associated pixel columns (lines 17-21). Once all nodes are checked, we load the coefficients for all
remaining nodes in B and reconstruct the corresponding data points at the next level (lines 25-26).
By recursively visiting only necessary child nodes with our pruning strategy level by level, we
can efficiently find the data value range of each pixel column in the target window and rasterize
all inner-column pixels by the associated pixel column’s data value range (line 29). At the last
level, we rasterize all inner-column pixels and inter-column pixels defined by the ordered boundary
samples collected from B and O (line 16). In doing so, progressive visualization is achieved, where
the visualization can be incrementally refined during the level-by-level traversal (see Fig. 5(d)).

Taking node [12, 20] in Fig. 5(c) as an example. Its time range [0, 15] falls entirely in the first
pixel column’s time range [0, 21] in the target three-pixel-width window, so we do not need to
visit its child nodes and can initialize the data value range (minimum and maximum) of the first
pixel column as [12, 20]; see the left column of the level 2 result in Fig. 5(d). For node [6, 28], its
time range [16,31] overlaps the first two pixel columns in the target window, so we append it
to the boundary node list and visit its child nodes [7, 19] (time range [16, 23]) and [6, 28] (time
range [24,31]) at level 3. Later, for node [14, 17] at level 4, its value range is covered by the value
ranges of the adjacent two pixel columns [7,20] and [6, 29], so we do not need to visit its child
nodes. For some pixel columns, considering only the minimum and maximum values within each
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pixel column may not be sufficient to accurately rasterize its pixels. For example, the leaf node
[14, 22] (time range [42, 43]) crosses the second pixel column (time range [22, 42]) and the third
pixel column (time range [43, 63]), forming an indispensable inter-column line (see the highlighted
one in Fig. 5(b)). Hence, we put it into the boundary node list and connect its data points to rasterize
the bottom gray pixel in the third column of the level 5 result in Fig. 5(d).

Fig. 5(b) shows the exhaustive tree traversal case that loads all relevant coefficients of boundary
nodes at one time. Fig. 5(c) shows the nodes in the coefficient tree that we need to visit with our
pruning strategy, and Fig. 5(d) shows how the data value ranges and rasterization (grey pixels)
are updated progressively for each pixel column. Note that the pruning strategy only searches
necessary values, as we described in Theorem 1, and skips inter-column samples whose value
ranges covered by both corresponding consecutive groups automatically. Since the value ranges of
adjacent pixel columns depend on each other, we sequentially prune nodes and leave the parallel
processing as future work.

Time Complexity. Given a window of width w, in the worst case, we need to traverse all the
boundary nodes, so the time complexity is O(w log(n)). With our method, a large fraction of queries
can be terminated early, irrespective of the length of the time series, so the time complexity is
close to O(w). For the case shown in Fig. 5(b), there are 12 nodes from level 3 to level 5. Yet our
method only needs to visit 10 of the nodes. Experimentally, we found that the pruning ratio is
around or larger than 45% for all tested data (see Section 5.4). For the three-pixel-width window
shown in Fig. 5, directly applying M4 would fetch 12 samples for the three pixel columns, whereas
our tree-based search would issue three database queries to fetch 20 coefficients from five nodes.
Note that as the data gets larger, our method would become faster. It is because our query can be
done with a time complexity of O(w log(n)). In contrast, M4 has a time complexity of O(n), and n is
typically much larger than w, as a time series could contain millions or even billions of samples.

4.3 Additional Acceleration Strategies

The coefficients are stored in the database table with the schema (id, minc, maxc) as depicted in
Fig. 3(b). For a window of width w € [2P71, 2], where p is a positive integer, we only need to load
coefficients up to level p — 1 by executing the following query:

select minc, maxc where [id>= start_id and index<= end_id].

To further reduce the query latency, we introduce the following three additional strategies to
accelerate the query.

Coefficients Prefetching. To better support drill-down operations, we can pre-load the coef-
ficients at levels p and p + 1. As coeflicients are stored contiguously, retrieving them from the
database incurs minimal cost. On the other hand, the number of coefficients 2P*2 is small compared
to n (thanks to the OM?® transform), so transferring all these coefficients can be done quickly.

Tree Caching. We can cache the reconstructed coefficient tree in the past interactions on the
client side at runtime. By storing the tree as a list in the memory, we employ the least recently used
(LRU) strategy for the cache replacement. During the interaction, the coefficients at the coarser
levels are frequently used but they typically consume a small amount of memory. Hence, a small
cache is enough for supporting fluid interaction (see Section 5.2).

Query Merging. During the interaction based on incremental tree-based query, we need to fetch
also the information on multiple boundary nodes from the database with the following query:
select minc, maxc where [condition1] or ... or [conditionN]

where each condition corresponds to the starting and ending indices of a boundary node. To
improve the query speed, we merge multiple conditions with continuous records together, e.g., the
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queries of nodes [6, 28] and [13, 35] at level 2 in Fig. 5(b) can be merged. In doing so, we can reduce
the overall query time by 40%.

Furthermore, we use two threads: one for analyzing the coefficients and the other for issuing
queries to the database. Once the analysis is done, the queried coefficients at the finer level can be
reused for the analysis at the next level efficiently.

4.4 Supported Interactions

OM? enables dynamic data fetching on demand for generating error-free visualizations. By storing
the coefficients of multiple time series in the same database, we can allow interactive exploration
of multiple large-scale time-series data with smooth interactions by concurrent query processing.
Below, we introduce two families of common interactions that can be supported effectively by OM>.

Resizing, Panning, and Zooming. One common feature of these interactions is that they all
involve a new mapping between the time range of the data and the width of the display window.
For instance, resizing shows the same time series on a window of changing sizes (see the example
in Fig. 5), whereas panning and zooming show a different time range of the time series on the same
window.

For a time series shown in a window of width w € (2771, 2P], we can efficiently zoom into a time
interval [t,, t;] in four steps:

(1) compute node indices p, and pyp, associated with time stamps ¢, and tp, respectively, at level
p;

(2) find minimal extra level € such that |y, — g + 1|2¢ > w;

(3) fetch the coefficients of all nodes within index range [y, 5] and their children from level
p+ 1uptolevel p + ¢; and

(4) perform the tree-based search to find the boundary data points.

With our incremental tree-based search, we can perform this process efficiently. For zooming in and
out with a scaling factor of two, some boundary data points in the current view can be reused for
the next view, thus further reducing the query cost. For a time series shown on a window of width
w in [2P71, 2] and current time interval [t,, ], panning into a potentially overlapping interval
[te, ta](tp — t, = tg — t.) amounts to steps (1) and (4) for zooming.

Timebox Query. Another family of common window query interactions is timebox query [11], in
which users can select lines covered by a user-specified range or by a given rectangle. For multiple
time series shown on the client visualization, timebox query retrieves a subset of lines that satisfy
the user-specified constraints and highlights them in the current display window. However, to
handle a large number of lines, the retrieval process proposed in [11] is inefficient. Also, users
cannot explore details of the queried lines. Thanks to the OM? coefficient tree, we can further
accelerate the retrieval process and support zooming in and out of the queried lines.

Given a box constraint with a certain value range and time range, users want to find the set of
time series whose data values are entirely covered by the box in the box’s time range. As each node
in the coefficient tree stores the minimum and maximum data values for the time range covered by
the node, we can efficiently perform a BFS search to find the nodes whose time range is associated
with the box’s time range. There are three cases in the BFS search:

e Case (i): no intersection between the value range of the node and the value range of the box;
e Case (ii): the value range of the node is fully covered by the value range of the box; and
o Case (iii): the value range of the node is partially covered by the value range of the box, so

we need to further explore the child nodes to check if it is Case (i) or Case (ii).
Since this query is based on the given visualization, its processing does not require communication

with the server, so it can run very fast solely on the client side. Once the queried lines are available,
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users are allowed to further interact with the queried lines by using the panning, zooming and
resizing operations.

5 EVALUATION

We developed our system in a client-server architecture. The client was implemented in JavaScript
running on an 8-core 3.2GHz MacBook Pro with 32GB RAM, whereas the server was implemented
using the PostgreSQL database (v14.2) and InfluxDB (v2.0) running on an 8-core Intel Xeon Platinum
8269CY CPU with 2.5 GHz, 32GB RAM, and 250GB SSD with Ubuntu 22.04 in the Alibaba Cloud.
We chose PostgreSQL because it was used for implementing the original M4 [13]. As shown in
Fig. 2, the system can be configured with the coefficients of any reversible multi-level transform,
and thus we compare the OM3-based system with the one configured by Haar wavelet [3], which
applies the average function to compute the aggregate coefficients. Since the OM? representation
is slightly different for time series with missing values, our implementation maintains different
functions for preprocessing and reconstructing the time series without and with missing values. We
performed the corresponding forward transforms in the server and stored the result coefficients in
the PostgreSQL database. Besides comparing with the PostgreSQL-based M4 implementation that
can generate error-free time-series visualizations, we further developed a version of M4 in InfluxDB,
which is a leading time-series database [22] optimized for storing and querying time-series data.
Since InfluxDB requires the data with the column of timestamps, it cannot be used for storing Haar
wavelet and OM? coefficients.

To show that OM? enables error-free time-series visualizations with low latency, we performed
three quantitative comparisons with state-of-the-art methods in static, interactive, and progressive
settings (Sections 5.1, 5.2, and 5.3) and a qualitative case study (Section 5.5). Since OM? needs
an index while M4 runs immediately, the static setting reports the comparison between M4 and
OM3’s first queries (with index cost), while the interactive setting focuses on the comparison on the
subsequent queries. To study the influence of the network transmission cost, we further conducted
the same evaluation in an alternative setting with databases residing in the same local area network
as the client, and found that the only difference from the cloud setting is the round-trip time
in the network (2 ms vs. 12 ms). Finally, we conducted an ablation study on OM?® to learn the
effect of different acceleration strategies on tree-based query and a case study to demonstrate its
effectiveness for interactive exploration. Hence, we only show the evaluation results for the cloud
setting here; the full evaluation results, including the screenshots and the corresponding scores of
different measures on each dataset, can be found in the supplemental material.

5.1 Static Visualization

We compare line charts generated by various methods on the same data in terms of visual quality,
data reduction ratio, and runtime.

Procedure. For each dataset, we store it (or its coefficients) in the server database. Then, the client
requests the server to send the data for generating line charts of six different window widths (200,
400, 600, 800, 1000, 1200) and same window height (600).

Methods. Six methods are included for comparison: two versions of M4 [13], Haar wavelet [30],
our method based on the multi-level min-max representation, and our OM3 with and without the
pruning strategy shown in Algorithm 1. Note that we implemented two versions of M4, namely
M4-P based on PostgreSQL and M4-I based on InfluxDB. Also, we refer OM? based on the multi-level
min-max representation as M> and OM?® without pruning as OM3-NP for short. M®> and OM? use the
same pruning-based incremental query algorithm with the only difference being the coefficients
stored at each node. Since the query results of InfluxDB always contain the timestamp column, we
implement M4 by only using the four extreme operators without the join operation required by the
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Fig. 6. (a) The curve shows the relationship between the pre-processing time and the number of data points.
(b) The curves show how different cache sizes influence the response time for four datasets of different sizes.
M4 in PostgreSQL. The detailed database query statements for both methods can be found in the
supplemental material. For Haar wavelet, as it only works for display windows of power-of-two
widths, we fetch coefficients at a level finer than the window width, reconstruct the chart, and then
compress it to fit the window.

Datasets. For a comprehensive evaluation, we employed 13 datasets of varied sizes and distribu-
tions, having 1 million to 1.1 billion data records. Among them, three are real datasets (stock price,
ball speed, and electrical power, with 8M, 7M, and 32M data records, respectively) employed in
the evaluation of M4 [13]. The other 10 are synthetic datasets generated with three components:
ft = T + aS; + pW,, where f; is the data value at time step ¢, T, is the major trend component, S;
is defined by the sine function, W, is white noise, and «, f are parameters. The trend component
T, randomly selects a trend distribution from a given list of three trend distributions, i.e., constant,
linear, and quadratic functions, and white noise W, is randomly generated.

Measures. We quantitatively evaluate the quality and performance of visualization generation
using the following four measures.

o Visual quality. We follow M4 [13] to use structural similarity index (SSIM) [31] to measure
the similarity between line visualizations generated by the five tested methods and directly
yielded from the original data. The final score is normalized to range [0, 1]; a larger value
indicates better quality.

e Data reduction ratio is the percentage of data (over the size of the whole dataset) that is
reduced by different methods, while the rest is transferred from server to client for generating
the line chart. A higher value is better, indicating a smaller portion of data that has to be
transferred.

e Query time is the total query execution time on the server.

e Response time measures the total time from issuing the query to rendering the line chart on
the client.

Pre-processing. Fig. 6(a) shows the pre-processing time of OM? for all tested datasets. We can
see that the runtime is almost proportional to the data size. The dataset with 1M records requires
only 7s. For 1M, 100M, and 1B data records, the storage requirements for the original data (and
corresponding OM? coefficients) are 43M (25M), 5.54G (3.26G), and 44.3G (26.1G), respectively. So,
OM? coefficients require only 60% the storage of the input. In contrast, those of M* coefficients are
55.2M, 6.5G and 52.2G, almost twice those of OM?3.

Results. Since generating line charts of different window widths requires different number of data
points, we analyze the results separately for different window widths. We found results of different
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Fig. 7. Boxplots showing thecperformance of the six methods (see the legend on top) on all test data for a
window of width 1000 in terms of the four measures: (a) SSIM; (b) data reduction ratio; (c) query time; and (d)
response time. For the outliers with values out of the plot range (see, e.g., query time), we indicate them by a
dark transparent shadow.

window widths have similar summary statistics on the four measures, so we only show those for
window width 1000 in Fig. 7. For the complete results, please refer to the supplemental material.

We have four observations from Fig. 7. First, M4-P, M4-1, M®, OM?, and OM3-NP all produce
error-free visualizations, whereas Haar wavelet cannot preserve the original shape of the time
series. Second, all methods have high data reduction ratios larger than 0.98 on average, while M4-P
performs relatively poorly with a data reduction ratio of only around 0.77 for some data caused by
the join operation. Third, Haar wavelet, M®, and OM? are all able to support interactive exploration
with the average response time around 100 ms, 280 ms, and 210 ms, respectively. In contrast, the
average response time of M4-P is larger than 500 ms for all the test data, while the one of M4-1 is
more than 1 minute for 16M data and it quickly grows as the dataset size increases. For the query
time, Haar wavelet, M®, OM?, and OM>-NP all take less than 100 ms, whereas the other methods
take more than 1 second for most data. Fourth, M3 requires more coefficients to load and transfer,
resulting in a slightly smaller data reduction ratio than OM? (0.996 vs. 0.998) and higher query time
(45 ms vs. 30 ms) and response time (280 ms vs. 210 ms) on average. Last, our pruning strategy
helps avoid around half of the data points in the OM? search, contributing to a reduction of query
time by around 200 ms.

After carefully checking the outliers in Fig. 7 (b), we find that the lowest data reduction ratios of
M3, OM?, and OM3-NP are caused by the smallest synthetic data with 1M samples. The reason is
that the number of data points required by M* and OM? is almost constant for the same window
width, regardless of the data size, while the other datasets have at least 8M records and the number
of coefficients loaded by OM?3is only around 20K due to the tree-based search. In contrast, the
lowest data reduction ratios of M4-P are caused by the three real datasets. These datasets have
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Fig. 8. Plots showing how data reduction ratio (a,b) and response time (c,d) of the five methods (M4-P, M4-1,
M3, OM3, and OM3-NP) vary with the window width (along the horizontal axis). (a,c) Results on a real
dataset of non-power-of-two length; and (b,d) results on a synthetic dataset of power-of-two length. Both
datasets have around 8M data records.

multiple copies of minima and maxima in each pixel column, where M4-P needs to find all these
duplicates from the server. In all methods, the maximum query and response times are caused by
the dataset with ~1.1 billion records. While our OM? takes only ~380 ms, OM3-NP, M4-1, and M4-P
require 800 ms, 9.1 min, and 13.2 min, respectively. So, OM3 is around 1000 times faster than the
state-of-the-art method M4 for error-free line plotting on the largest dataset.

To learn how the measures vary with window widths, we further explore two typical datasets,
both with ~8M records. The dataset used in Figs. 8(a,c) is a real-world dataset with missing values,
while the one in Figs. 8(b,d) is a complete synthetic dataset with a power-of-two length. Here,
we exclude Haar wavelet, as it cannot produce error-free visualizations. We can see that the data
reduction ratio of all methods decreases as the window width increases, as more data points are
needed for rendering more pixel columns. Among these methods, the decreasing rate of M4-1 is
the smallest and the ones of M4-P and M on the stock price and synthetic dataset are the largest,
respectively, while the ones of OM® and OM3-NP are in-between them. Yet, the data reduction ratio
of OM? for both datasets is always larger than 0.99. Compared to OM3-NP, OM? takes only half
amount of data points for generating the same visualization.

Regarding the response time, the observations are consistent with those shown in Fig. 7. The
latency of OM3 is consistently less than 200 ms for both datasets as the window width increases,
those of M®> and OM3-NP are both around 300 ms, whereas those of M4-1 and M4-P are around 1 s
and 5 s, respectively.
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Fig. 9. The curves show how the response time varies within 50 trials of applying four types of interactions:
resizing (a,b), panning (c,d), zooming (e,f), and hybrid of resizing, panning, and zooming (g,h) to two datasets.
(a,c,e,g) Results on a synthetic data and (b,d,f,h) results on a real data.
Overall, these quantitative results show that our OM? is able to produce error-free static visu-
alizations in less than 300 ms for datasets ranged from millions to a billion of records, which is
clearly not achievable by the state-of-the-art method, M4.

5.2 Interactive Visualization
Since OM?® and M4 are error-free (above), we now study latency.

Data. As OM? and M4 show different performance on synthetic and real data, we further consider
the following two datasets (see also Fig. 8): a real stock price dataset with 8M records and a synthetic
dataset with 8M records, which have very different characteristics. We render both data on the
same window width 1000.

Procedure. The 4 interactions below are run 50X each:

e Resize the display width to w € [500, 1200], uniformly drawn.

e Pan the time range to random offset. Fixed range size |n/2] and display width of 1000.

e Zoom from a random initial scale to random zoomed-in scale. After each zoom-in, we zoom-

out to return to the initial scale.
e Hybrid makes 50 sequential interactions: first zoom-in, then randomly pick from resize, pan,
zoom-in/out as above. Zoom-out returns to the previous rather than initial scale.

Each interaction is immediately applied after the previous finishes.
Measures. We measure each interaction’s latency from initiation to the client obtaining the
updated chart. We don’t include time to render the initial static chart since it was studied in
Section 5.1.
Cache Size. To explore how the cache size influences the response time so that we can set it
properly, we applied OM? to four synthetic datasets (1M, 10M, 100M, and 1 billion points) with
varying cache sizes. For each setting, we performed 100 interactions (resizing, panning, and zooming)
with random parameters and the average response time. From Fig. 6(b), we can see that the response
time rapidly decreases as the cache size increases and then plateaus after a certain cache size. So,
we empirically set the cache size to 3MB.
Results. Due to the space limit, we only show the response time of 50 trials of the resizing, panning
and zooming-in/out interactions in Fig. 9 and refer readers to the supplemental material for the
query time and data reduction ratio. From Fig. 9, we have three observations. First, OM? is always
significantly faster than M4. Its latency for all interactions is always <300 ms on average for both
datasets. In contrast, the response times of M4-I and M4-P are at least 500 ms and 2 seconds for both
datasets, respectively. Second, the response time of OM? for all interactions is slightly longer at the
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beginning and then remains stable. The reason is that OM? dynamically updates the coefficient
tree on the client side and reuses the stored coefficients for the follow-up interactions, rather
than performing each query from scratch, like in M4. Thus, even with a small cache, resizing can
be done in 10 ms (see the three extreme points in Figs. 9(a,b)) for the changed window widths
whose corresponding coefficients have been cached, and our zooming-out interaction takes only 12
ms on average (see Figs. 9(e,f)). Most panning, resizing, zooming-in, and the hybrid interactions
take <250 ms on average; thanks to our efficient query strategy. In contrast, the zooming-out and
zooming-in operations with M4-P take around 4 seconds and over 6 seconds for the synthetic and
stock price datasets, respectively, while both operations with M4-I take similar time (1 second) for
both datasets. This is as expected, since M4-P requires querying more records in the database, while
InfluxDB is optimized for range queries over the time-series data [26]. Last, M4-P is significantly
slower on the stock price data than the synthetic data because this data has more duplicate values
and the joint operation in M4-P causes more redundant data points. In contrast, our method and
M4-1 perform similarly on both datasets.

5.3 Interactive Progressive Visualization

The last experiment focuses on exploring the effectiveness of OM3*-empowered progressive visual-
ization of very large data. We conducted the evaluation on two large datasets: electrical power with
30M records and a synthetic data with 1B (2*°) records. After visualizing the data on a 1000 X 600
window, we change this view by applying each of the three types of interactions (resizing, panning,
and zooming-in) 20 times with different parameters. We did not test zooming-out, as it only takes
around 15 ms for any data (see Figs. 9(e,f)) by reusing the cached coefficients. Once an interaction
begins, we take the final visualization as the reference to measure the SSIM value and the response
time for each intermediate result.

Parameters. For resizing and zooming-in, the starting view shows the whole time range. The
widths of the resized windows after 20 successive operations are 64, 128, 192, 256, 320, 384, 448, 512,
576, 640, 600, 1200, 1800, 2400, 3000, 3600, 4200, 4800, 5400, and 6000, while the zoomed relative
time range is generated by [s%, s% + 100% — 4% * r], where s is a random start position and r is a
unique integer in [1,20]. For panning, we only show the data within the first 50% time range in the
display window and then pan the view to time range [2r%, (50 + 2r)%], where r is a unique integer
in [1,20].

Results. To show that OM?® can generate meaningful intermediate results at interactive speeds,
we run 20 trials for each interaction according to the above parameters. For each trial, we measured
the response time and the quality of the visualization generated by the results of tree-based query
at each level (in terms of SSIM). The boxplots in Figs. 10(a,b) show that the response time to
achieve 95% SSIM accuracy is less than 100 ms for panning and zooming-in with all parameters.
Regarding resizing, the response time varies significantly with different parameters, but the largest
time duration is still under 300 ms with window width 6000 for both data. To explore how the
visualization quality improves over time, the line charts in Figs. 10(c,d) plot the curves between the
SSIM values and the response time of a randomly-selected trial. We can see that the SSIM value
quickly increases and reaches 0.95 within 75 ms, and then grows slowly to generate error-free
visualizations. Such results indicate that our approach makes a trade-off between interactivity
(<70-100ms response) and progressive results (SSIM > 0.95).

5.4 Ablation Study

We conduct an ablation study on OM? to examine the effect of the four major acceleration strategies:
node pruning, coefficients prefetching, tree caching, and query merging. As such, we tested the
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Fig. 10. (a,b) Boxplots summarize the response time of 20 trials for producing visualizations with SSIM
values larger than 0.95 after performing three interactions on the two datasets. (c,d) The line charts show
how SSIM-based visualization quality evolve over the response time for a randomly-selected trial for each
interaction on the two datasets.

five settings shown in Fig. 11(a), where tree-based query without any acceleration is the baseline.
For each setting, we perform hybrid interactions 50 times as described in Section 5.2. As all the
strategies do not influence the visualization quality, we only measure the response time and number
of nodes accessed for each interaction.

Setting Tree-based  Node  Coefficients Tree Query
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Fig. 11. An ablation study of our approach with various acceleration strategies on the 8M Stock Price dataset
by performing hybrid interactions 50 times. (a) Five studied settings, (b,c) the curves show the response time
and the number of nodes accessed evolve over 50 interactions.

As Fig. 11(b) shows, directly performing tree-based queries requires at least around 450 ms
for each interaction and accessing around 9K nodes. The node pruning strategy helps reduce the
response time and number of accessed nodes to <300 ms and 5K for most interactions, bringing
1.71x speedup on average and pruning around 45% nodes in the query. Coefficients prefetching leads
only to slight changes to the query performance (from 278 ms to 260 ms on average) and number
of nodes accessed except for the first several interactions. This is reasonable, since prefetching
only takes effect for the first query when constructing the static visualizations, so it might not be
very helpful for the later interactions. Next, tree caching further helps reduce the response time
and number of accessed nodes, from 260 ms and 4k nodes to 195 ms and 0.7k nodes on average,
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respectively. So, it brings 1.33x speedup and reduces the number of nodes accessed to 18%. Query
merging barely changes the number of nodes accessed but it further helps reduce the response time
from 195 ms to 160 ms on average, a 1.22x speedup. Combining all these acceleration strategies
together brings around 3.0x speedup and reduces the number of nodes accessed to only 8%.

5.5 Case Study

We ran a case study using the Kaggle [25] stock market data: per-minute prices of 44 stocks from 8
sectors, from 2015 to 2022. To analyze the relative change, we normalized each stock’s time series to
the starting day price. We forward OM? transform each stock and store its coefficients in a separate
table. Then, we explore via a JavaScript-based browser application.

We load the data into a 700 X 600 display window and generate the visualization shown in
Fig. 12(a). We can see that almost all stock prices decreased largely around 2020 and speculate
that COVID-19 was the cause. However, it is difficult to see the details due to the visual clutter. By
creating a timebox covering a few stocks with similar prices in the range [0, 70%], we can clearly
observe the minimum and maximum values of a few stocks from the information technology,
financial, and energy sectors. To explore the details, we zoom into the time interval from Jan. 2019
to Feb. 2022 and further apply a time box. The visualization in Fig. 12(c) shows that the stocks from
the information technology sector show the best recovery and their prices even exceed the peaks
before COVID-19, whereas those from the financial sector grow the slowest and fail to recover
to the prices before COVID-19. Since the response time of the timebox query and the zoom-in
operation (1 ms and 286 ms) is below the required limit of interactive latency 500 ms [17], we can
smoothly explore how the stock prices develop for varying time intervals and compare them on

demand at interactive speed.
. Consumer Staples . Industrials . Healthcare - Energy . Financials -Consumer Discretionary - Information Technology . Materials

,‘*’m :

(a) (b ()
Fig. 12. (a) A line visualization of 44 stock prices, exhibiting heavy visual clutter. Hence, we put the timebox

marked by the blue box to filter out the stocks with different behaviors and produce the visualization shown
in (b). (c) Further, we zoom into a specific time interval between 2019 and 2022 and then use a timebox to
further filter the stocks.

5.6 Limitations

OM? does not yet maintain coefficients under streaming data nor updates. Second, OM?* focuses on
data whose sampling rate (x-axis) is uniform. The coefficients could potentially encode timestamps
to support non-uniform sampling. Third, error-free visualization might not be necessary nor desired
for noisy data, particularly when exploring trends [23] rather than details. One possibility is super-
sampling to anti-alias the line charts, studying their effects on users for different visual analysis
tasks.

6 CONCLUSIONS AND FUTURE WORK

OM? is a novel multi-level encoding for progressive error-free interactive visualizations of large
time-series. We revisit min-max time series aggregation and prove that a line-segment aggregation
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produces error-free line charts. We thus formulate the forward and inverse OM? transforms to
convert between a time series and a hierarchy of coefficients. This supports progressive error-free
interactive visualization at any scale. We then extend OM? to time-series with missing values or
non-power-of-two lengths. OM> only needs ~3/4 space of the original time series.

To adopt OM? for smooth interactions, we design an incremental tree-based query method
with time complexity O(w log(n)) (for display width w and time-series length n), and an efficient
pruning strategy. We combine prefetching, caching, and merging query ranges to further reduce
latency. These efficiently support the common time-series interactions, including resize, pan, and
zoom. Both quantitative and qualitative evaluations show how OM? efficiently helps users explore
billion-record datasets on remote cloud databases with ~300ms latencies.

Future work can further reduce query times by adding lossless compression [24] and using
a predictive prefetching framework [19]. When applying OM? to charts with multivariate time
series, we can leverage line-based density representations, e.g., [34], to manage heavy visual clutter.
We can also incorporate other types of visualizations such as trendlines [23] to better support
interactive exploration, since OM? faithfully recovers the original input data. We can also extend
to streaming data via partial updates to the coefficient tree; most updates are likely local and do
not change the min/max aggregates in higher levels of the tree (which would propagate to their
descendants).
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