
145

OM3: An Ordered Multi-level Min-Max Representation for

Interactive Progressive Visualization of Time Series

YUNHAI WANG∗, YUCHUN WANG∗, and XIN CHEN∗, Shandong University, China

YUE ZHAO, Shandong University, China

FAN ZHANG, Shandong Technology and Business University, China

EUGENE WU, Columbia University, United States

CHI-WING FU, Chinese University of Hong Kong, China

XIAOHUI YU, York University, Canada

We present a novel multi-level representation of time series called OM3 that facilitates e�cient interactive

progressive visualization of large data stored in a database and supports various interactions such as resizing,

panning, zooming, and visual query. Based on our proposed line-segment aggregation, this representation can

produce error-free line visualizations that preserve the shape of a time series in windows of arbitrary sizes. To

reduce the interaction latency, we develop an incremental tree-based query strategy to support progressive

visualizations, allowing a �ner control on the accuracy-time tradeo�. We quantitatively compare OM3 with

state-of-the-art methods, including a method implemented on a leading time-series database In�uxDB, in

two settings with databases residing either in the local area network or on the cloud. Results show that

OM3 maintains a low latency within 300 ms on the web browser and a high data reduction ratio regardless

of the data size (ranging from millions to billions of records), achieving around 1,000 times faster than the

state-of-the-art methods on the largest dataset experimented with.

CCS Concepts: • Information systems → Query optimization; • Human-centered computing → In-

formation visualization.

Additional Key Words and Phrases: Time series, interactive progressive visualization

ACM Reference Format:

Yunhai Wang, Yuchun Wang, Xin Chen, Yue Zhao, Fan Zhang, Eugene Wu, Chi-Wing Fu, and Xiaohui Yu.

2023. OM3: An Ordered Multi-level Min-Max Representation for Interactive Progressive Visualization of Time

Series. Proc. ACM Manag. Data 1, 2, Article 145 (June 2023), 24 pages. https://doi.org/10.1145/3589290

1 INTRODUCTION

The past decades have witnessed an explosion of time-series data in many applications, from
�nancial engineering tomanufacturing. A large amount of time-series data is collected bymeasuring
variables over time at regular intervals, and usually stored in remote databases on cloud servers for

∗The authors contributed equally to this research.

Authors’ addresses: Yunhai Wang, cloudseawang@gmail.com; Yuchun Wang, iwangyuchun@gmail.com; Xin Chen,

chenxin199634@gmail.com, Shandong University, Qingdao, Shandong, China, 266237; Yue Zhao, jack.zhao9802@gmail.com,

Shandong University, Qingdao, Shandong, China, 266237; Fan Zhang, zhangfan@sdtbu.edu.cn, Shandong Technology and

Business University, Yantai, Shandong, China, 265600; Eugene Wu, ewu@cs.columbia.edu, Columbia University, New York

City, New York, United States, 10027; Chi-Wing Fu, cwfu@cse.cuhk.edu.hk, Chinese University of Hong Kong, Sha Tin,

Hong Kong, China; Xiaohui Yu, xhyu@yorku.ca, York University, Toronto, Ontario, Canada, M3J1P3.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and the

full citation on the �rst page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior speci�c permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

2836-6573/2023/6-ART145 $15.00

https://doi.org/10.1145/3589290

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 145. Publication date: June 2023.

145:2 Yunhai Wang et al.

subsequent analysis via interactive visualizations on the client side. By interacting with time series
displayed as line charts, users can conduct analytical tasks [1], such as peak identi�cation, trend
analysis, and pattern search.
To improve the user exploration e�ciency, a variety of interaction techniques [1] have been

developed, e.g., SignalLens [16], multi-focus zooming [12, 29], Zenvisage [27], and a few visual
query tools [10, 21]. Recently, Siddiqui et al. [28] proposed an expressive shape search algebra,
enabling users to interactively search for various desired patterns. However, almost all existing
techniques require the whole data to be quickly loaded onto the client side for e�cient rendering.
Yet, the latency is often high for large time-series data stored on remote databases. This hinders
smooth interactive exploration of temporal patterns at various resolutions.
A common approach to reducing the latency is data reduction [4], by aggregating the data

to reduce its size before visualization. Various strategies have been proposed to preserve salient
features in the reduction. However, most of them do not account for the perceptual e�ects of, e.g.,
resizing the display, and thus often produce erroneous visualizations that can signi�cantly distort
the shape of the rendered data. This issue is addressed by the visualization-oriented time-series
reduction method M4 [13], which �nds essential records per pixel column (where each pixel column
consists of all pixels with the same x coordinate) in the display window to preserve the exact
rendering of an input time series, referred as error-free line visualizations. Yet, M4 cannot e�ciently
sustain smooth interactions for large time-series data. First, the time complexity of executing
a query is O(n), where n is the time-series length. So, processing data with millions of records
could easily take more than a second, which is beyond the latency limit [17] for interactive visual
analysis. Second, M4 independently issues and fully executes a new query for each user action
on the visualization. For these reasons, it does not support continuous interactions like panning
and zooming, and precludes most interaction techniques that are commonly used for time-series
exploration.

Progressive visualization [33] is a promising direction, where, instead of waiting for slow queries,
the visualization immediately renders intermediate results that the user can potentially interact with.
A prominent approach is based on IncVisage [23], which uses online sampling-based techniques
to progressively reveal salient features. The approach quickly renders approximate visualizations
(on the order of seconds) that update over time and eventually converge to the exact visualization
(though this may take a minute or more). Each update sends a new result set to visualize, so network
costs are linear in the number of updates—on the order of hundreds before convergence. These
characteristics are ill-suited and not widely adopted for interactive visualization of large datasets.

In this paper, we present a new approach to interactive progressive visualization of arbitrarily-sized
time-series. Our approach is designed to satisfy the following desiderata for interactive visualization
of large time-series stored in a remote database: (i) ensuring error-free line visualizations at any
scale; (ii) minimizing query latency and amount of data transfer to the visualization clients; (iii)
supporting progressive re�nement of intermediate visualization with a good trade-o� between
interaction latency and visualization quality; and (iv) o�ering rich interactions for �uid data
exploration.
Our proposal centers around OM3, an ordered multi-level min-max representation of a time-

series dataset, which enables visualizations that preserve the shape of a time series displayed in
any window size. This representation has ⌈logn⌉ levels and maintains minimum and maximum
values at every time interval that is used to rasterize a pixel column in the display window with
the width 2i at the ith (0 < i < ⌈logn⌉) level. In addition, it tracks the temporal ordering of
the paired minimum and maximum values at the leaf level. To do so, we formulate the forward
OM3 transform to recursively aggregate the time series for di�erent time intervals at di�erent
resolutions, constructing a hierarchy of coe�cients obtained by aggregating and di�ering between

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 145. Publication date: June 2023.

OM3: An Ordered Multi-level Min-Max Representation for Interactive Progressive Visualization of Time Series 145:3

Technique Vis. Qual. Data Tran. Prog. Vis. Int. Sup.

M4 [13] ✓ ✓ × ×

IncVisage [23] × × ✓ ×

OM3
✓ ✓ ✓ ✓

Table 1. Comparing the design objective of OM3 with prior approximate visualization techniques based on

four considerations: visualization quality, size of data transferred, progressive visualization and interaction

support, where ✓and × indicate whether the technique accounts for a given consideration or not.

the aggregate values of two paired aggregated samples. We store these coe�cients in a database
table, whose size is only three-quarters of the original time series. By default, the procedure is
limited to time-series lengths that are powers of two, and we extend it to support missing data and
arbitrary lengths with the same storage space.

With OM3 interactions issue queries over the hierarchy of coe�cients and render the charts on
the client using the data fetched from the server. A naive implementation would involve traversing
all the coe�cients falling into the speci�c time range for each interaction. This, however, could
be prohibitively expensive for large data. To address this issue, we propose a visualization-aware
incremental query algorithm of time complexityO(w log(n)), wherew is the display-window width
and n is the time-series length. For every time interval corresponding to a pixel column in the
visualization, it �nds four M4 samples [13] and reuses the query results from the previous round
of interaction to attain a substantial speed-up. Since the query evaluation proceeds incrementally
level by level through the hierarchy of coe�cients, the rasterization is progressively performed
with a dynamically changed number of pixels rendered on screen and rapidly converges to exact
visualizations. For example, it takes less than 300 ms to reach the convergence for the dataset
with 1B records. As a further optimization on the cost of traversing OM3, we develop an e�cient

pruning strategy in a breadth-�rst search, which can achieve a pruning ratio of around 45% on most
datasets. In doing so, interactive, progressive visualization of large time series can become feasible,
even for data with billions of records. Table 1 compares the design objectives of OM3 and existing
techniques along four considerations.

OM3 can support a rich variety of interaction techniques such as panning, zooming, resizing, and
TimeBox Search [11]. We implement OM3 using JavaScript with PostgreSQL [20], and quantitatively
compare it with the baseline approaches: M4 on PostgreSQL and a leading time-series database
In�uxDB, and Haar wavelet on PostgreSQL, in two settings, with the database residing either in
the local area network or on the cloud, on several real-world datasets. Evaluation results show that
our method ensures error-free visualizations and o�ers latency under 300 ms (the upper limit of
interactive latency is 500 ms [17]) and high data reduction ratio (99.5%), showing its capability to
support progressive visualization of large time-series data. Besides, we conduct a case study to
demonstrate the e�ectiveness of our provided interaction techniques in the exploration of large
data.
In summary, we make the following main contributions.

• We develop OM3, an ordered multi-level min-max representation that forms the basis for
delivering interactive visualization of large time-series data with one billion records;

• We propose an incremental query algorithm with an e�cient pruning strategy to enable
progressive visualization and rich �uid interactions on the client; and

• We quantitatively compare OM3 with state-of-the-art methods, manifesting the e�ectiveness
of OM3 in supporting interactive exploration of large time-series data.

The rest of this paper is organized as follows. In Section 2, we provide a review of related
work. In Section 3, we revisit min-max aggregation and present an extension to support error-free

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 145. Publication date: June 2023.

145:4 Yunhai Wang et al.

visualization of time series. Section 4 presents our new solution based on OM3. Section 5 reports
the experimental results, and Section 6 concludes this paper.

2 RELATED WORK

Our work is related to the literature on interaction for line visualizations and data reduction of
large time-series data. Below, we discuss these areas one by one.

2.1 Interaction for Line Visualizations

Time-series visualization [1] has been extensively explored for facilitating users to discover trends
and patterns at varying time scales. Line chart is still the most popular vehicle for presenting
time series. However, displaying many time series as line charts on a limited screen inevitably
produces heavy overplot. To address this issue, various lens-based interaction techniques [16] and
overview+detail interaction techniques [12, 29] have been developed for simultaneously showing
the regions of interest in detail with an overview of the whole data. All these techniques are built on
basic interaction operations: resizing, panning, and zooming, with the assumption that the latency
of the data query is low. Yet, very few of them have been used for exploration of very large time-
series data stored in remote databases. In contrast, the proposed OM3 and its associated incremental
query algorithm focus on enabling e�cient interactive visualization of remote time-series data
with billions of records.

As a separate line of research that is concerned with e�ciently identifying patterns of interest,
visual query tools help search for line chart visualizations matching a query pattern speci�ed
through the user interface. Among them, sketch-based queries [18, 27, 28, 32] allow users to sketch
a temporal pattern to select and show the line charts that match the sketch. Yet, this approach does
not provide an overview of the whole data. Instead, Timeboxes [11] and KD-Box [34] act as �lters,
in which users can specify query constraints by manipulating rectangular boxes in the charts with
all time series and then �lter out the time series that do not pass through the boxes. Our multi-level
representation OM3 further extends such queries to explore the detail of lines of interest at �ner
levels.

2.2 Time-series Data Reduction

To reduce the latency for large data query during interactive visualization, a few data reduction
techniques have been proposed for time-series data, which can be grouped into two categories:
point aggregation and line simpli�cation.

Point Aggregation. To ensure a manageable size for the query data, point aggregation methods
often �rst group the entire time series into a few time spans and then compute an aggregated value
and an aggregated timestamp for each interval using aggregation functions such as minimum,
maximum, mean, and median. A common method is the piece-wise aggregate approximation
(PAA) [14], which selects the minimum (�rst) timestamp and computes an average value. Based
on these aggregation functions, a few methods have been proposed to o�er fast approximate
query [2, 6]. Yet, regardless of the aggregation function being used, the line chart of the aggregated
data may distort the original shape of the time series. To address the issue, M4 [13] aims to preserve
the shape by selecting two data points with the minimum and maximum values, and another two
with theminimum andmaximum timestamps in each pixel column, connecting the four data points
in time order with the rest of the time series, and rasterizing the line segments in the pixel column.

WithM4, the number of data points needed to be transferred from the database to the visualization
client can be signi�cantly reduced. However, it cannot facilitate smooth interaction of large time-
series data due to the following two major drawbacks. First, its query execution has high interaction

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 145. Publication date: June 2023.

OM3: An Ordered Multi-level Min-Max Representation for Interactive Progressive Visualization of Time Series 145:5

latency. The most costly operation in the whole query process is the join operation, which has a
computational complexity ofO(n + 4w) for matching n data points with 4w aggregates. Second, M4
cannot reuse previous query results to support incremental update, which is essential to supporting
interactive operations such as zooming and panning. As a result, it requires very frequent data query
and transfer from the remote database during user exploration, thus hindering e�ective exploration
of large data. Although SampleAction [8] and IFOCUS [15] support incremental visualizations by
using online aggregation, they cannot provide error-free visualizations until converging to precise
results. In contrast, OM3 enables users to interactively explore large-scale time-series data with
�exible interactions.

Line Simpli�cation. Given a time-series curve, line simpli�cation is another data-reduction
approach that aims to preserve its rough shape with fewer curve segments. One widely-used
method is the top-down Ramer-Douglas-Peucker [7, 9] algorithm, which joins the �rst and last
points in the curve and divides the curve into two segments, if the distance from the farthest point to
the line is larger than a threshold. Then, each curve segment is recursively divided until all points of
the original curve are within the simpli�cation’s tolerance. Fu et al. [5] further attempts to preserve
salient points in the simpli�cation. However, these methods have a high computational complexity,
O(n2) orO(n logn), (n is the number of data points in the time series), so interactive queries cannot
be supported for large data. Instead, INCVISAGE [23] uses online sampling-based algorithms to
incrementally generate curve segments, attaining 46x speedup relative to baselines. Yet, it provides
only approximate visualizations and does not support interactive operations like zooming. Since
the time complexity for constructing the OM3 representation is only O(n) and querying with OM3

is only O(w logn) (w is display-window width), OM3 is able to support progressive interactive
visualization of large time series.

3 LINE-SEGMENT AGGREGATION

In this section, we revisit min-max aggregation and propose a line-segment aggregation of time
series for generating error-free visualizations. As shown in Fig. 1(b), simply using the min-max
aggregation may produce errors in line-chart visualizations with missing pixels (e.g., E1) and false
pixels (e.g., E2). To address this issue, M4 [13] locates the two data points of maximum and minimum
timestamps and the two data points of maximum and minimum data values in each pixel column
and then connects these points to form line segments that represent the line chart. Fig. 1(c) shows
its result, which exactly matches the visualization produced by directly rasterizing the whole data
points shown in Fig. 1(a). However, some inter-column segments formed by M4 are redundant and
unnecessary for yielding error-free visualizations.

De�nition 1. A time series T = {(ti ,vi))}
n
i=1 is an ordered list of uniformly-sampled data points,

where i is the index, ti is the i-th timestamp (ti < ti+1), and vi is the data value at time ti .

De�nition 2. An equidistant grouping of a time series refers to a non-overlapping partition of
T into w groups of same width in time domain: G(T ,w) = {B1,B2, · · · ,Bw }, where each group
Bi contains the data points in time interval [(i − 1) ∗ δ + 1, i ∗ δ], δ is round(n/w), and w is the
display-window width. For each group, its value range is Oi = [Gmin(T ,w, i),Gmax(T ,w, i)] de�ned
by the minimal and maximal values Gmin(T ,w, i) and Gmax(T ,w, i), respectively.

De�nition 3. A line visualization of time series T error-free, if the set of its rendered foreground
pixels is the same as the set rendered by rasterizing all line segments over all data points in T .

De�nition 4. For each group Bi , the intra-column line segment is de�ned by Gmin(T ,w, i) and
Gmax(T ,w, i) of this group, while the inter-column line segment between Bi and the next group Bi+1
is de�ned by connecting the last data record of Bi and the �rst data record of Bi+1. As shown in

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 145. Publication date: June 2023.

OM3: An Ordered Multi-level Min-Max Representation for Interactive Progressive Visualization of Time Series 145:7

������
���
	�������

���������������
��	�

�
	�

��

� ��	
�
��!

��
!!���
���

42/
��
!!���
���

25 4	7
	

>	�

>	�

>	�

C���

C���

C���

DDDDDDDDD

JIH�FE
��
!!���
���

��7
L
�

���	

����

���7��

���
V��

d�
��
�	
�����	����	

hg��

4����
4!!���

��������p
��

��
	�
�

42/
�	
�	��
���	

���v

DDD

Fig. 2. Our OM3-based architecture for interactive progressive error-free visualization of time series stored in

a database.

4 OUR SOLUTION

Based on the line-segment aggregation described in Section 3, we propose the OM3 representation.
Particularly, we shall show how this representation facilitates interactive progressive visualization
of large time series stored in remote databases with low latency. Fig. 2 shows the overall architecture,
which consists of two stages: o�ine preprocessing and online query.

O�line Preprocessing. We apply our OM3 preprocessor (see Section 4.1) to convert each time
series stored in a relational database at a server into our OM3 coe�cients by a forward transform.
This is a one-time pre-processing conducted locally on the server.

Online Query. Once the OM3 coe�cients are available, users can interactively explore the data on
the client by retrieving just the necessary coe�cients from the server to reconstruct the original
data records via an inverse transform. To produce a visualization from scratch, the server can
automatically produce query statements to retrieve coe�cients based on the display-window width
and the visible time range of the time series on the display window. Then, the client receives a
stream of coe�cients from the server to produce the visualization, while maintaining an OM3

coe�cient tree of the reconstructed data as cache to accelerate subsequent visualization generation
during interactive exploration. To support smooth interactions, the server performs incremental
queries to request data on demand, enabling the client to smoothly pan, zoom, resize, and query
the time series by exploiting the tree hierarchy.

OM3 inherently requires the time series to be complete (i.e., without missing values) and have a
power-of-two length. It also requires the window width to be a power of two. However, none of
these can be ensured for general time-series data during the interactive data exploration. Hence,
we further extend OM3 to address these issues. In this section, we will �rst describe the forward
and inverse OM3 transforms and our extensions for the time series with missing data and arbitrary
lengths, incremental tree-based query, acceleration strategies on OM3, and families of interactions
supported by OM3.

4.1 OM3 Transforms

Given a time series T of length n = 2l , we obtain its hierarchical line-segment aggregation via two
operations: (i) hierarchical min-max aggregation, and (ii) the ordering of the min-max aggregation
results at the �nest level. Operation (i) helps build the min-max lines, while operation (ii) facilitates
the construction of the inter-column lines. We refer to such a line-segment aggregation result as
the ordered multi-level min-max representation of the time series, i.e., OM3. So, the OM3 transform
converts time series T from an ordered list of data records to a set of coe�cients that describe T
in di�erent levels of detail. Using these coe�cients, the original data records at any level can be
reconstructed by an inverse transform.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 145. Publication date: June 2023.

OM3: An Ordered Multi-level Min-Max Representation for Interactive Progressive Visualization of Time Series 145:9

Fig. 3(a) shows an example four-level hierarchy produced from 16 data points. We can see that the
eight coe�cient tuples at level 3 are obtained by aggregating and di�ering between two adjacent
aggregate coe�cients at level 4.

Note also that in our implementation, we directly computeAl−1 from input data without explicitly
replicating the input data points to form Al . As shown in Fig. 3(a), the coe�cients at level 3 can be
obtained by operating on the two adjacent data points. Since Al−1 encodes only the set of original
sample values in the input without information on their order, we further store the ordering
relationship between Al−1

2i and Al−1
2i+1 as the ordering coe�cient O to facilitate the reconstruction of

the input and set Oi to true, if Al−1
2i is less than Al−1

2i+1, and false, otherwise. Meanwhile, the detail

coe�cients at level l − 1 (e.g., Dl−1
2i and Dl−1

2i+1) are redundant, as we do not need to reconstruct Al
2i

and Al
2i+1 during the inverse transform. In Fig. 3(b), the cells highlighted by the blue box mark

the redundant detail coe�cients. For short, we refer these aggregate and detail coe�cients to be
stored as the M3 coe�cients, and the combination of M3 coe�cients and ordering coe�cients as
the OM3 coe�cients. So, only n M3 coe�cients and half of the n Boolean ordering coe�cients
are indispensable. For e�cient storage of the M3 coe�cients in database, we use an ID column to
maintain the ordering of the records, see the left column of Fig. 3(b). Since n Booleans (ordering
coe�cients) take small space, we store them separately. For the input time series of length n,
each data point has two values ti and vi , and thus the total number of required coe�cients is
approximately three-quarters of the input data size.

After removing the redundant detail coe�cients, we can pack the aggregate and detail coe�cients
into a database table with two columns (see the example shown in Fig. 3(b)) and the ordering
coe�cients into a table (see Fig. 3(c)), which stores all the information necessary for reconstructing
the input data points.

Inverse Transform. As the forward transform employs min and max aggregations, we need
di�erent mechanisms to reconstruct the aggregate coe�cients. Given the aggregate and detail
coe�cients at level j − 1, the aggregate coe�cients at level j can be found by reversing Eqs. (1)

& (2). For example, we can reverse Eq. (1) to �nd A
j
4i and A

j
4i+2 based on the sign of D

j−1
2i :

A
j
4i = A

j−1
2i , A

j
4i+2 = A

j−1
2i − D

j−1
2i if D

j−1
2i < 0 (3)

or A
j
4i+2 = A

j−1
2i , A

j
4i = A

j−1
2i − D

j−1
2i otherwise.

Similarly, we can reverse Eq. (2) to �nd A
j
4i+1 and A

j
4i+3.

For a display window with power-of-two widthw = 2j , the inverse transform requires fetching
coe�cients whose ID ranges [0, 2w − 1] from the M3 coe�cient table and then performing the
inverse transform from level 0 to level j − 1 to reconstruct the original data points. Figs. 3(d,e) show
a 16-samples time series reconstructed to �t two- and four-pixel-wide windows, respectively. Yet,
the visualization rendered by the reconstructed min-max aggregate in each pixel column misses
some pixels; see the ones marked by the red boxes. The reason is that some inter-column pixels
cannot be determined using only the min-max aggregation. We will address this issue with our
tree-base query in Section 4.2.

Transformation of Non-canonical Data. To handle time series with missing values and/or of
non-power-of-two length, which we collectively call non-canonical time series, we may simply �ll
the missing values with an estimated value (e.g., simple average) or pad it with zeros to extend its
length to a power of two. However, value �lling and zero padding will in�uence the calculation of
the minimum and maximum values, hindering the OM3 transforms.

Instead, we represent a non-canonical time series as the one with a power-of-two length (see the
bottom in Fig. 4(a)) and pad the null value to the samples without data values. Then we construct a

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 145. Publication date: June 2023.

145:12 Yunhai Wang et al.

groups of the min-max aggregate values at level 2 and render these min-max lines on this window;
we show also the original line chart (grey line) as a reference. Comparing the two charts, we can
see that three pixels (red boxes) are missed in the generated visualization, as the four-pixel-width
line chart does not provide appropriate data samples precisely for the three-pixel-width window,
especially near the pixel-column boundary. Also, when using the correct min-max aggregate
coe�cients, only some pixels are missed (see Figs. 3(d,e)); yet, we can recover these pixels by some
inter-column lines, as explained and shown in Theorem 1 (see Section 3).

To address the issue, we propose a two-step tree-based incremental query scheme for e�ciently
�nding appropriate data points in each pixel column of the target window. Assuming that the
width of the display windoww is in range [2p−1, 2p] for some positive integer p, we �rst retrieve
the coe�cients for the window of width 2p from the server database and reconstruct 2p data
points via an inverse transform. Then, the client can successively retrieve detail coe�cients of
boundary nodes that contain the �rst/last timestamp of each pixel column from the server to
reconstruct the original data points at the �nest level. Before performing this two-step query, we
�rst send the whole ordering coe�cients from the server to the client. By �nding the minimum
and maximum data values in every pixel column of the target window and the indispensable
inter-column samples within a single query, we can then obtain accurate aggregates for producing
error-free visualizations. Yet, extensively visiting the coe�cient tree all the way to the leaf nodes
and transferring all information from server to client would lead to extra costs in computing time
and network bandwidth. Also, some inter-column lines are unnecessary as shown by Theorem 1.
These observations form the basis for reducing the tree traversal cost.

To avoid exhaustive tree traversal, we introduce a breadth-�rst search method with an e�cient
pruning strategy to avoid unnecessary traversal, as outlined in Algorithm 1. When traversing
each level, we initialize an empty list B to store those boundary nodes (line 6) that contain data
points near the boundary between adjacent pixel columns. Then, for each node, we examine its
time range against the time range of the nearby pixel columns in the target window. If the time
range of a node falls entirely inside the time range of a pixel column, the node itself can provide
appropriate information for updating the data value range (i.e., [v_min,v_max]) of the pixel column
(lines 7-11), so we do not need to further visit its child nodes to explore the �ner-level time ranges.
Otherwise, we append it to the list B (line 13). For the boundary node at a level greater than p, we
remove it from B, if its data value range is already covered by the current data ranges of the two
associated pixel columns (lines 17-21). Once all nodes are checked, we load the coe�cients for all
remaining nodes in B and reconstruct the corresponding data points at the next level (lines 25-26).
By recursively visiting only necessary child nodes with our pruning strategy level by level, we
can e�ciently �nd the data value range of each pixel column in the target window and rasterize
all inner-column pixels by the associated pixel column’s data value range (line 29). At the last
level, we rasterize all inner-column pixels and inter-column pixels de�ned by the ordered boundary
samples collected from B and O (line 16). In doing so, progressive visualization is achieved, where
the visualization can be incrementally re�ned during the level-by-level traversal (see Fig. 5(d)).
Taking node [12, 20] in Fig. 5(c) as an example. Its time range [0, 15] falls entirely in the �rst

pixel column’s time range [0, 21] in the target three-pixel-width window, so we do not need to
visit its child nodes and can initialize the data value range (minimum and maximum) of the �rst
pixel column as [12, 20]; see the left column of the level 2 result in Fig. 5(d). For node [6, 28], its
time range [16, 31] overlaps the �rst two pixel columns in the target window, so we append it
to the boundary node list and visit its child nodes [7, 19] (time range [16, 23]) and [6, 28] (time
range [24, 31]) at level 3. Later, for node [14, 17] at level 4, its value range is covered by the value
ranges of the adjacent two pixel columns [7, 20] and [6, 29], so we do not need to visit its child
nodes. For some pixel columns, considering only the minimum and maximum values within each

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 145. Publication date: June 2023.

OM3: An Ordered Multi-level Min-Max Representation for Interactive Progressive Visualization of Time Series 145:13

pixel column may not be su�cient to accurately rasterize its pixels. For example, the leaf node
[14, 22] (time range [42, 43]) crosses the second pixel column (time range [22, 42]) and the third
pixel column (time range [43, 63]), forming an indispensable inter-column line (see the highlighted
one in Fig. 5(b)). Hence, we put it into the boundary node list and connect its data points to rasterize
the bottom gray pixel in the third column of the level 5 result in Fig. 5(d).

Fig. 5(b) shows the exhaustive tree traversal case that loads all relevant coe�cients of boundary
nodes at one time. Fig. 5(c) shows the nodes in the coe�cient tree that we need to visit with our
pruning strategy, and Fig. 5(d) shows how the data value ranges and rasterization (grey pixels)
are updated progressively for each pixel column. Note that the pruning strategy only searches
necessary values, as we described in Theorem 1, and skips inter-column samples whose value
ranges covered by both corresponding consecutive groups automatically. Since the value ranges of
adjacent pixel columns depend on each other, we sequentially prune nodes and leave the parallel
processing as future work.

Time Complexity. Given a window of width w , in the worst case, we need to traverse all the
boundary nodes, so the time complexity isO(w log(n)). With our method, a large fraction of queries
can be terminated early, irrespective of the length of the time series, so the time complexity is
close to O(w). For the case shown in Fig. 5(b), there are 12 nodes from level 3 to level 5. Yet our
method only needs to visit 10 of the nodes. Experimentally, we found that the pruning ratio is
around or larger than 45% for all tested data (see Section 5.4). For the three-pixel-width window
shown in Fig. 5, directly applying M4 would fetch 12 samples for the three pixel columns, whereas
our tree-based search would issue three database queries to fetch 20 coe�cients from �ve nodes.
Note that as the data gets larger, our method would become faster. It is because our query can be
done with a time complexity ofO(w log(n)). In contrast, M4 has a time complexity ofO(n), and n is
typically much larger thanw , as a time series could contain millions or even billions of samples.

4.3 Additional Acceleration Strategies

The coe�cients are stored in the database table with the schema (id, minc, maxc) as depicted in
Fig. 3(b). For a window of widthw ∈ [2p−1, 2p], where p is a positive integer, we only need to load
coe�cients up to level p − 1 by executing the following query:

select minc, maxc where [id>= start_id and index<= end_id].

To further reduce the query latency, we introduce the following three additional strategies to
accelerate the query.

Coe�cients Prefetching. To better support drill-down operations, we can pre-load the coef-
�cients at levels p and p + 1. As coe�cients are stored contiguously, retrieving them from the
database incurs minimal cost. On the other hand, the number of coe�cients 2p+2 is small compared
to n (thanks to the OM3 transform), so transferring all these coe�cients can be done quickly.

Tree Caching. We can cache the reconstructed coe�cient tree in the past interactions on the
client side at runtime. By storing the tree as a list in the memory, we employ the least recently used
(LRU) strategy for the cache replacement. During the interaction, the coe�cients at the coarser
levels are frequently used but they typically consume a small amount of memory. Hence, a small
cache is enough for supporting �uid interaction (see Section 5.2).

Query Merging. During the interaction based on incremental tree-based query, we need to fetch
also the information on multiple boundary nodes from the database with the following query:

select minc, maxc where [condition1] or ... or [conditionN]

where each condition corresponds to the starting and ending indices of a boundary node. To
improve the query speed, we merge multiple conditions with continuous records together, e.g., the

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 145. Publication date: June 2023.

145:14 Yunhai Wang et al.

queries of nodes [6, 28] and [13, 35] at level 2 in Fig. 5(b) can be merged. In doing so, we can reduce
the overall query time by 40%.
Furthermore, we use two threads: one for analyzing the coe�cients and the other for issuing

queries to the database. Once the analysis is done, the queried coe�cients at the �ner level can be
reused for the analysis at the next level e�ciently.

4.4 Supported Interactions

OM3 enables dynamic data fetching on demand for generating error-free visualizations. By storing
the coe�cients of multiple time series in the same database, we can allow interactive exploration
of multiple large-scale time-series data with smooth interactions by concurrent query processing.
Below, we introduce two families of common interactions that can be supported e�ectively by OM3.

Resizing, Panning, and Zooming. One common feature of these interactions is that they all
involve a new mapping between the time range of the data and the width of the display window.
For instance, resizing shows the same time series on a window of changing sizes (see the example
in Fig. 5), whereas panning and zooming show a di�erent time range of the time series on the same
window.

For a time series shown in a window of widthw ∈ (2p−1, 2p], we can e�ciently zoom into a time
interval [ta , tb] in four steps:

(1) compute node indices µa and µb associated with time stamps ta and tb , respectively, at level
p;

(2) �nd minimal extra level ϵ such that |µb − µa + 1|2
ϵ ≥ w ;

(3) fetch the coe�cients of all nodes within index range [µa , µb] and their children from level
p + 1 up to level p + ϵ ; and

(4) perform the tree-based search to �nd the boundary data points.

With our incremental tree-based search, we can perform this process e�ciently. For zooming in and
out with a scaling factor of two, some boundary data points in the current view can be reused for
the next view, thus further reducing the query cost. For a time series shown on a window of width
w in [2p−1, 2p] and current time interval [ta , tb], panning into a potentially overlapping interval
[tc , td](tb − ta = td − tc) amounts to steps (1) and (4) for zooming.

Timebox Query. Another family of common window query interactions is timebox query [11], in
which users can select lines covered by a user-speci�ed range or by a given rectangle. For multiple
time series shown on the client visualization, timebox query retrieves a subset of lines that satisfy
the user-speci�ed constraints and highlights them in the current display window. However, to
handle a large number of lines, the retrieval process proposed in [11] is ine�cient. Also, users
cannot explore details of the queried lines. Thanks to the OM3 coe�cient tree, we can further
accelerate the retrieval process and support zooming in and out of the queried lines.
Given a box constraint with a certain value range and time range, users want to �nd the set of

time series whose data values are entirely covered by the box in the box’s time range. As each node
in the coe�cient tree stores the minimum and maximum data values for the time range covered by
the node, we can e�ciently perform a BFS search to �nd the nodes whose time range is associated
with the box’s time range. There are three cases in the BFS search:

• Case (i): no intersection between the value range of the node and the value range of the box;
• Case (ii): the value range of the node is fully covered by the value range of the box; and
• Case (iii): the value range of the node is partially covered by the value range of the box, so
we need to further explore the child nodes to check if it is Case (i) or Case (ii).

Since this query is based on the given visualization, its processing does not require communication
with the server, so it can run very fast solely on the client side. Once the queried lines are available,

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 145. Publication date: June 2023.

OM3: An Ordered Multi-level Min-Max Representation for Interactive Progressive Visualization of Time Series 145:15

users are allowed to further interact with the queried lines by using the panning, zooming and
resizing operations.

5 EVALUATION

We developed our system in a client-server architecture. The client was implemented in JavaScript
running on an 8-core 3.2GHz MacBook Pro with 32GB RAM, whereas the server was implemented
using the PostgreSQL database (v14.2) and In�uxDB (v2.0) running on an 8-core Intel Xeon Platinum
8269CY CPU with 2.5 GHz, 32GB RAM, and 250GB SSD with Ubuntu 22.04 in the Alibaba Cloud.
We chose PostgreSQL because it was used for implementing the original M4 [13]. As shown in
Fig. 2, the system can be con�gured with the coe�cients of any reversible multi-level transform,
and thus we compare the OM3-based system with the one con�gured by Haar wavelet [3], which
applies the average function to compute the aggregate coe�cients. Since the OM3 representation
is slightly di�erent for time series with missing values, our implementation maintains di�erent
functions for preprocessing and reconstructing the time series without and with missing values. We
performed the corresponding forward transforms in the server and stored the result coe�cients in
the PostgreSQL database. Besides comparing with the PostgreSQL-based M4 implementation that
can generate error-free time-series visualizations, we further developed a version of M4 in In�uxDB,
which is a leading time-series database [22] optimized for storing and querying time-series data.
Since In�uxDB requires the data with the column of timestamps, it cannot be used for storing Haar
wavelet and OM3 coe�cients.

To show that OM3 enables error-free time-series visualizations with low latency, we performed
three quantitative comparisons with state-of-the-art methods in static, interactive, and progressive
settings (Sections 5.1, 5.2, and 5.3) and a qualitative case study (Section 5.5). Since OM3 needs
an index while M4 runs immediately, the static setting reports the comparison between M4 and
OM3’s �rst queries (with index cost), while the interactive setting focuses on the comparison on the
subsequent queries. To study the in�uence of the network transmission cost, we further conducted
the same evaluation in an alternative setting with databases residing in the same local area network
as the client, and found that the only di�erence from the cloud setting is the round-trip time
in the network (2 ms vs. 12 ms). Finally, we conducted an ablation study on OM3 to learn the
e�ect of di�erent acceleration strategies on tree-based query and a case study to demonstrate its
e�ectiveness for interactive exploration. Hence, we only show the evaluation results for the cloud
setting here; the full evaluation results, including the screenshots and the corresponding scores of
di�erent measures on each dataset, can be found in the supplemental material.

5.1 Static Visualization

We compare line charts generated by various methods on the same data in terms of visual quality,
data reduction ratio, and runtime.
Procedure. For each dataset, we store it (or its coe�cients) in the server database. Then, the client
requests the server to send the data for generating line charts of six di�erent window widths (200,
400, 600, 800, 1000, 1200) and same window height (600).
Methods. Six methods are included for comparison: two versions of M4 [13], Haar wavelet [30],
our method based on the multi-level min-max representation, and our OM3 with and without the
pruning strategy shown in Algorithm 1. Note that we implemented two versions of M4, namely
M4-P based on PostgreSQL andM4-I based on In�uxDB. Also, we refer OM3 based on the multi-level
min-max representation as M3 and OM3 without pruning as OM3-NP for short. M3 and OM3 use the
same pruning-based incremental query algorithm with the only di�erence being the coe�cients
stored at each node. Since the query results of In�uxDB always contain the timestamp column, we
implement M4 by only using the four extreme operators without the join operation required by the

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 145. Publication date: June 2023.

145:18 Yunhai Wang et al.

M4-P OM3-NPM4-I M3

D
a

ta
 r

e
d

u
c

ti
o

n
 r

a
ti

o
R

e
sp

o
n

se
 t

im
e

 (
m

s)

Synthetic

(b)

(c) (d)

OM3

Stock Price

(a)

200 400 600 800 1,000 1,200

1K

5K

100

200

300

10K

200 400 600 800 1,000 1,200
100

200

300

1K

5K

10K

200 400 600 800 1,000 1,200
0.96

0.97

0.98

0.99

1

200 400 600 800 1,000 1,200
0.995

0.996

0.997

0.998

0.999

1

Fig. 8. Plots showing how data reduction ratio (a,b) and response time (c,d) of the five methods (M4-P, M4-I,

M3, OM3, and OM3-NP) vary with the window width (along the horizontal axis). (a,c) Results on a real

dataset of non-power-of-two length; and (b,d) results on a synthetic dataset of power-of-two length. Both

datasets have around 8M data records.

multiple copies of minima and maxima in each pixel column, where M4-P needs to �nd all these
duplicates from the server. In all methods, the maximum query and response times are caused by
the dataset with ∼1.1 billion records. While our OM3 takes only ∼380 ms, OM3-NP, M4-I, and M4-P
require 800 ms, 9.1 min, and 13.2 min, respectively. So, OM3 is around 1000 times faster than the
state-of-the-art method M4 for error-free line plotting on the largest dataset.
To learn how the measures vary with window widths, we further explore two typical datasets,

both with ∼8M records. The dataset used in Figs. 8(a,c) is a real-world dataset with missing values,
while the one in Figs. 8(b,d) is a complete synthetic dataset with a power-of-two length. Here,
we exclude Haar wavelet, as it cannot produce error-free visualizations. We can see that the data
reduction ratio of all methods decreases as the window width increases, as more data points are
needed for rendering more pixel columns. Among these methods, the decreasing rate of M4-I is
the smallest and the ones of M4-P and M3 on the stock price and synthetic dataset are the largest,
respectively, while the ones of OM3 and OM3-NP are in-between them. Yet, the data reduction ratio
of OM3 for both datasets is always larger than 0.99. Compared to OM3-NP, OM3 takes only half
amount of data points for generating the same visualization.
Regarding the response time, the observations are consistent with those shown in Fig. 7. The

latency of OM3 is consistently less than 200 ms for both datasets as the window width increases,
those of M3 and OM3-NP are both around 300 ms, whereas those of M4-I and M4-P are around 1 s
and 5 s, respectively.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 145. Publication date: June 2023.

145:20 Yunhai Wang et al.

beginning and then remains stable. The reason is that OM3 dynamically updates the coe�cient
tree on the client side and reuses the stored coe�cients for the follow-up interactions, rather
than performing each query from scratch, like in M4. Thus, even with a small cache, resizing can
be done in 10 ms (see the three extreme points in Figs. 9(a,b)) for the changed window widths
whose corresponding coe�cients have been cached, and our zooming-out interaction takes only 12
ms on average (see Figs. 9(e,f)). Most panning, resizing, zooming-in, and the hybrid interactions
take <250 ms on average; thanks to our e�cient query strategy. In contrast, the zooming-out and
zooming-in operations with M4-P take around 4 seconds and over 6 seconds for the synthetic and
stock price datasets, respectively, while both operations with M4-I take similar time (1 second) for
both datasets. This is as expected, since M4-P requires querying more records in the database, while
In�uxDB is optimized for range queries over the time-series data [26]. Last, M4-P is signi�cantly
slower on the stock price data than the synthetic data because this data has more duplicate values
and the joint operation in M4-P causes more redundant data points. In contrast, our method and
M4-I perform similarly on both datasets.

5.3 Interactive Progressive Visualization

The last experiment focuses on exploring the e�ectiveness of OM3-empowered progressive visual-
ization of very large data. We conducted the evaluation on two large datasets: electrical power with
30M records and a synthetic data with 1B (230) records. After visualizing the data on a 1000 × 600
window, we change this view by applying each of the three types of interactions (resizing, panning,
and zooming-in) 20 times with di�erent parameters. We did not test zooming-out, as it only takes
around 15 ms for any data (see Figs. 9(e,f)) by reusing the cached coe�cients. Once an interaction
begins, we take the �nal visualization as the reference to measure the SSIM value and the response
time for each intermediate result.
Parameters. For resizing and zooming-in, the starting view shows the whole time range. The
widths of the resized windows after 20 successive operations are 64, 128, 192, 256, 320, 384, 448, 512,
576, 640, 600, 1200, 1800, 2400, 3000, 3600, 4200, 4800, 5400, and 6000, while the zoomed relative
time range is generated by [s%, s% + 100% − 4% ∗ r], where s is a random start position and r is a
unique integer in [1,20]. For panning, we only show the data within the �rst 50% time range in the
display window and then pan the view to time range [2r%, (50 + 2r)%], where r is a unique integer
in [1,20].

Results. To show that OM3 can generate meaningful intermediate results at interactive speeds,
we run 20 trials for each interaction according to the above parameters. For each trial, we measured
the response time and the quality of the visualization generated by the results of tree-based query
at each level (in terms of SSIM). The boxplots in Figs. 10(a,b) show that the response time to
achieve 95% SSIM accuracy is less than 100 ms for panning and zooming-in with all parameters.
Regarding resizing, the response time varies signi�cantly with di�erent parameters, but the largest
time duration is still under 300 ms with window width 6000 for both data. To explore how the
visualization quality improves over time, the line charts in Figs. 10(c,d) plot the curves between the
SSIM values and the response time of a randomly-selected trial. We can see that the SSIM value
quickly increases and reaches 0.95 within 75 ms, and then grows slowly to generate error-free
visualizations. Such results indicate that our approach makes a trade-o� between interactivity
(<70-100ms response) and progressive results (SSIM ≥ 0.95).

5.4 Ablation Study

We conduct an ablation study on OM3 to examine the e�ect of the four major acceleration strategies:
node pruning, coe�cients prefetching, tree caching, and query merging. As such, we tested the

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 145. Publication date: June 2023.

OM3: An Ordered Multi-level Min-Max Representation for Interactive Progressive Visualization of Time Series 145:23

produces error-free line charts. We thus formulate the forward and inverse OM3 transforms to
convert between a time series and a hierarchy of coe�cients. This supports progressive error-free
interactive visualization at any scale. We then extend OM3 to time-series with missing values or
non-power-of-two lengths. OM3 only needs ≈3/4 space of the original time series.
To adopt OM3 for smooth interactions, we design an incremental tree-based query method

with time complexity O(w log(n)) (for display widthw and time-series length n), and an e�cient
pruning strategy. We combine prefetching, caching, and merging query ranges to further reduce
latency. These e�ciently support the common time-series interactions, including resize, pan, and
zoom. Both quantitative and qualitative evaluations show how OM3 e�ciently helps users explore
billion-record datasets on remote cloud databases with ≈300ms latencies.
Future work can further reduce query times by adding lossless compression [24] and using

a predictive prefetching framework [19]. When applying OM3 to charts with multivariate time
series, we can leverage line-based density representations, e.g., [34], to manage heavy visual clutter.
We can also incorporate other types of visualizations such as trendlines [23] to better support
interactive exploration, since OM3 faithfully recovers the original input data. We can also extend
to streaming data via partial updates to the coe�cient tree; most updates are likely local and do
not change the min/max aggregates in higher levels of the tree (which would propagate to their
descendants).

7 ACKNOWLEDGMENTS

The authors would like to thank the fruitful discussions with Dominik Moritz and André Kohn. This
work was supported by the grants of the National Key R&D Program of China (2022ZD0160805),
NSFC (No. 62132017, 62141217), NSERC, and NSF (No. 1845638, 2008295, 2106197, 2103794), as well
as Amazon and Adobe.

REFERENCES

[1] Wolfgang Aigner, Silvia Miksch, Heidrun Schumann, and Christian Tominski. 2011. Visualization of Time-Oriented

Data. Springer Science & Business Media.

[2] Kaushik Chakrabarti, Minos Garofalakis, Rajeev Rastogi, and Kyuseok Shim. 2001. Approximate Query Processing

Using Wavelets. The VLDB Journal 10, 2 (01 Sep 2001), 199–223.

[3] Chang Chiann and Pedro A. Morettin. 1998. A Wavelet Analysis for Time Series. Journal of Nonparametric Statistics

10, 1 (1998), 1–46.

[4] Tak chung Fu. 2011. A Review on Time Series Data Mining. Engineering Applications of Arti�cial Intelligence 24, 1

(2011), 164–181.

[5] Tak chung Fu, Fu lai Chung, Robert Luk, and Chak man Ng. 2008. Representing Financial Time Series Based on Data

Point Importance. Engineering Applications of Arti�cial Intelligence 21, 2 (2008), 277–300.

[6] Graham Cormode, Minos Garofalakis, and Dimitris Sacharidis. 2006. Fast Approximate Wavelet Tracking on Streams.

In Advances in Database Technology - EDBT 2006. Springer Berlin Heidelberg, Berlin, Heidelberg, 4–22.

[7] David H. Douglas and Thomas K. Peucker. 1973. Algorithms for the Reduction of the Number of Points Required to

Represent a Digitized Line or its Caricature. Cartographica: the international journal for geographic information and

geovisualization 10, 2 (1973), 112–122.

[8] Danyel Fisher, Igor Popov, Steven Drucker, and MC Schraefel. 2012. Trust me, I’m partially right: incremental

visualization lets analysts explore large datasets faster. In Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems. 1673–1682.

[9] John E. Hershberger and Jack Snoeyink. 1992. Speeding Up the Douglas-Peucker Line-Simpli�cation Algorithm. Technical

Report. University of British Columbia, 1992.

[10] Harry Hochheiser and Ben Shneiderman. 2003. Interactive Graphical Querying of Time Series and Linear Sequence Data

Sets. Ph. D. Dissertation. USA. AAI3094494.

[11] Harry Hochheiser and Ben Shneiderman. 2004. Dynamic Query Tools for Time Series Data Sets: Timebox Widgets for

Interactive Exploration. Information Visualization 3, 1 (2004), 1–18.

[12] Waqas Javed and Niklas Elmqvist. 2010. Stack Zooming for Multi-Focus Interaction in Time-Series Data Visualization.

In 2010 IEEE Paci�c Visualization Symposium (Paci�cVis). 33–40.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 145. Publication date: June 2023.

145:24 Yunhai Wang et al.

[13] Uwe Jugel, Zbigniew Jerzak, Gregor Hackenbroich, and Volker Markl. 2014. M4: A Visualization-Oriented Time Series

Data Aggregation. Proc. VLDB Endow. 7, 10, 797–808.

[14] Eamonn J. Keogh and Michael J. Pazzani. 2000. A Simple Dimensionality Reduction Technique for Fast Similarity

Search in Large Time Series Databases. In Knowledge Discovery and Data Mining. Current Issues and New Applications,

Takao Terano, Huan Liu, and Arbee L. P. Chen (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 122–133.

[15] Albert Kim, Eric Blais, Aditya Parameswaran, Piotr Indyk, Sam Madden, and Ronitt Rubinfeld. 2015. Rapid sampling

for visualizations with ordering guarantees. In Proceedings of the vldb endowment international conference on very large

data bases, Vol. 8. NIH Public Access, 521.

[16] Robert Kincaid. 2010. SignalLens: Focus+Context Applied to Electronic Time Series. IEEE Transactions on Visualization

and Computer Graphics 16, 6 (2010), 900–907.

[17] Zhicheng Liu and Je�rey Heer. 2014. The E�ects of Interactive Latency on Exploratory Visual Analysis. IEEE

Transactions on Visualization and Computer Graphics 20, 12 (2014), 2122–2131.

[18] Miro Mannino and Azza Abouzied. 2018. Expressive Time Series Querying with Hand-Drawn Scale-Free Sketches. In

Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems. Association for Computing Machinery,

New York, NY, USA, 1–13.

[19] Haneen Mohammed. 2020. Continuous prefetch for interactive data applications. In SIGMOD. 2841–2843.

[20] Bruce Momjian. 2001. PostgreSQL: Introduction and Concepts. Vol. 192. Addison-Wesley New York.

[21] Prithiviraj K. Muthumanickam, Katerina Vrotsou, Matthew Cooper, and Jimmy Johansson. 2016. Shape Grammar

Extraction for E�cient Query-by-Sketch Pattern Matching in Long Time Series. IEEE, 121–130.

[22] Syeda Noor Zehra Naqvi, So�a Yfantidou, and Esteban Zimányi. 2017. Time Series Databases and In�uxDB. Studienar-

beit, Université Libre de Bruxelles 12 (2017).

[23] Sajjadur Rahman, Maryam Aliakbarpour, Ha Kyung Kong, Eric Blais, Karrie Karahalios, Aditya Parameswaran, and

Ronitt Rubin�eld. 2017. I’ve seen “enough” incrementally improving visualizations to support rapid decision making.

Proceedings of the VLDB Endowment 10, 11 (2017), 1262–1273.

[24] Paruj Ratanaworabhan, Jian Ke, and Martin Burtscher. 2006. Fast Lossless Compression of Scienti�c Floating-Point

Data. In Data Compression Conference (DCC’06). IEEE, 133–142.

[25] Debashis Sahoo. 2022. Stock Market Data. https://www.kaggle.com/datasets/debashis74017/stock-market-data-nifty-

50-stocks-1-min-data

[26] John Shahid. 2019. In�uxDB documentation.

[27] Tarique Siddiqui, Albert Kim, John Lee, Karrie Karahalios, and Aditya Parameswaran. 2016. E�ortless Data Exploration

with zenvisage: An Expressive and Interactive Visual Analytics System. Proceedings of the VLDB Endowment 10, 4

(2016).

[28] Tarique Siddiqui, Paul Luh, Zesheng Wang, Karrie Karahalios, and Aditya Parameswaran. 2020. ShapeSearch: A

Flexible and E�cient System for Shape-based Exploration of Trendlines. In Proceedings of the 2020 ACM SIGMOD

International Conference on Management of Data. 51–65.

[29] James Walker, Rita Borgo, and Mark W. Jones. 2016. TimeNotes: A Study on E�ective Chart Visualization and

Interaction Techniques for Time-Series Data. IEEE Transactions on Visualization and Computer Graphics 22, 1 (2016),

549–558.

[30] David F. Walnut. 2002. An Introduction to Wavelet Analysis. Springer Science & Business Media.

[31] Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. 2004. Image Quality Assessment: From Error Visibility to

Structural Similarity. IEEE Transactions on Image Processing 13, 4 (2004), 600–612.

[32] Martin Wattenberg. 2001. Sketching a Graph to Query a Time-Series Database. In CHI ’01 Extended Abstracts on Human

Factors in Computing Systems (Seattle, Washington) (CHI EA ’01). Association for Computing Machinery, New York,

NY, USA, 381–382.

[33] Emanuel Zgraggen, Alex Galakatos, Andrew Crotty, Jean-Daniel Fekete, and Tim Kraska. 2016. How Progressive

Visualizations A�ect Exploratory Analysis. IEEE transactions on visualization and computer graphics 23, 8 (2016),

1977–1987.

[34] Yue Zhao, Yunhai Wang, Jian Zhang, Chi-Wing Fu, Mingliang Xu, and Dominik Moritz. 2022. KD-Box: Line-segment-

based KD-tree for Interactive Exploration of Large-scale Time-Series Data. IEEE Transactions on Visualization and

Computer Graphics 28, 1 (2022), 890–900.

Received October 2022; revised January 2023; accepted February 2023

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 145. Publication date: June 2023.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Interaction for Line Visualizations
	2.2 Time-series Data Reduction

	3 Line-Segment Aggregation
	4 Our Solution
	4.1 OM3 Transforms
	4.2 Incremental Tree-based Query
	4.3 blackAdditional Acceleration Strategies
	4.4 Supported Interactions

	5 Evaluation
	5.1 Static Visualization
	5.2 Interactive Visualization
	5.3 Interactive Progressive Visualization
	5.4 Ablation Study
	5.5 Case Study
	5.6 Limitations

	6 Conclusions and Future Work
	7 Acknowledgments
	References

