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ABSTRACT 

The goal of this study is to examine the association between in utero drought exposure and 
epigenetic age acceleration (EAA) in a global climate change hot spot. Calculations of EAA 
in adults using DNA methylation have been found to accurately predict chronic disease and 
longevity. However, fewer studies have examined EAA in children, and drought exposure in 
utero has not been investigated. Additionally, studies of EAA in low-income countries with 
diverse populations are rare. We assess EAA using epigenetic clocks and two DNAm-based 
pace-of-aging measurements from whole saliva samples in 104 drought-exposed children and 
109 same-sex sibling controls in northern Kenya. We find a positive association between in 
utero drought exposure and EAA in two epigenetic clocks (Hannum’s and GrimAge) and a 
negative association in the DNAm based telomere length (DNAmTL) clock. The combined 
impact of drought’s multiple deleterious stressors may reduce overall life expectancy through 
accelerated epigenetic aging.    

Please note: The version of record of this article, first published in Nature Communications, 
is available online at Publisher’s website: https://doi.org/10.1038/s41467-024-48426-7 

  



INTRODUCTION 

 

Climate change will have substantial consequences for human health. Moreover, a 

disproportionate impact is predicted in communities engaging in climate-sensitive livelihoods 

such as pastoralism. This is particularly true in global hot spots such as East Africa and for 

vulnerable groups such as pregnant individuals, young children, and the elderly. Adapting to 

climate change requires enhanced understanding of factors for resilience versus vulnerability, 

and their biological as well as behavioral mechanisms. Numerous studies have linked in utero 

exposure to severe drought to adverse pregnancy outcomes and alterations in offspring 

growth and body composition.1-4 However, drought has multiple, simultaneous impacts on the 

mother, such as exacerbated food and water insecurity (often with accompanying 

dehydration), and psychosocial stress.5-6 Although there is some limited evidence for 

biological mechanisms for individual drought-related stressors, particularly in animal 

studies,7-8 the biological mechanisms and lifelong implications of drought’s combined impact 

for child outcomes are not well understood.9 

 

Accelerated molecular aging as measured through epigenetic “clocks” is emerging as a 

potential mechanism whereby psychosocially and physiologically stressful conditions lead to 

adverse health conditions and mortality.10 Yet there are no human studies to date that measure 

associations between epigenetic aging and early life exposure to the climate change impacts 

of severe drought. Moreover, there are scant studies of epigenetic aging in low-income 

countries with ethnically and racially diverse populations.11 In addition to the importance of 

diversity to understanding biological aging in humans globally, these populations are among 

the most vulnerable to the effects of climate change.12 

 



DNA methylation (DNAm) levels at numerous cytosine-phosphate-guanine sites (CpGs) 

have been found to be accurate biomarkers of molecular aging, more promising than other 

biomarkers of biological aging.13 Utilizing machine learning methods, a number of epigenetic 

clocks have been developed to predict biological age, lifespan, and mortality by regressing 

chronological age, health-related outcomes, or biomarkers on a set of CpGs, selecting the 

most informative ones.14 

 

Previous studies have shown that higher epigenetic age relative to chronological age, i.e., 

epigenetic age acceleration (EAA), predicts poor health outcomes, particularly metabolic 

syndrome and other chronic diseases, and earlier age at death.15-16 Fewer studies assess EAA 

associations in children, although recent studies in children have linked EAA to a variety of 

exposures in utero, including metabolic disorders such as gestational diabetes mellitus, 

maternal tobacco smoking, and indoor particulate matter absorbance.17-18 

 

Our study employs a quasi-experimental same-sex sibling design to examine offspring 

outcomes of exposure in the first trimester of gestation in utero to a 2008-2009 severe 

drought in East Africa. Even with humanitarian support from the World Bank and the 

European Union, the drought brought devastating consequences to pastoralist communities in 

northern Kenya, including the Samburu, who are the focus of our study.19 Drought 

monitoring experts consider the 2008-2009 drought to be severe as measured 

meteorologically, in terms of rangeland, need for food aid, and with respect to livestock 

losses – which were 57% for cattle and 65% for sheep.19 Although our Samburu study 

partners report pregnancy as a stressful time overall, they report substantially more distress 

during pregnancies in the 2008-2009 drought compared to pregnancies with same-sex sibling 

controls conceived after the drought resolved and unexposed to severe drought in utero.20 In 



Figure 1, we draw on CHIRPS data21 to provide rainfall z-scores for drought-exposed versus 

unexposed pregnancies based on the 40-year cumulative mean rainfall during the same 

period. The rainfall period is based on health records and participant reports of the location 

for each of their pregnancies. 

 

We have previously reported that severe drought exposure in utero associated to lower child 

body weight and higher peripheral adiposity independently of microclimate variation.20 

Additionally, we have previously reported differential epigenome-wide DNAm patterns 

based on severe drought exposure, as well as potential CpG sites that mediate the association 

between drought exposure and child body weight and potentially peripheral body fat.22  In the 

present study, we hypothesize an association between drought exposure in utero and EAA. 

We provide a conceptual diagram for our study in Figure 2.  

 

For assessing EAA, we use the most widely validated first generation clocks for consistency 

with other studies, including those in children. Horvath’s clock is drawn from a variety of 

tissues from individuals representing a broad age range (0 to 100 years), and is accurate in 

young children,23 although racialized group membership for the training data was only 

partially reported (non-Hispanic White; Taiwanese).24 The similarly pan-tissue skin and 

blood clock (trained on ages 0 to 94 years) has been found to have even higher accuracy for 

age estimation than Horvath’s clock.25 Hannum’s single-tissue clock might be less accurate in 

children for age estimation, although it is a more accurate predictor of life expectancy14 and 

several studies have found significant associations in children based on early life adversity.26 

The training data set for Hannum’s clock included 426 White and 230 Hispanic individuals, 

ages 19 to 101 years.27 

 



While first generation clocks were developed to predict chronological age, second generation 

clocks were trained specifically to predict diseases and mortality. We use the PhenoAge28 and 

GrimAge29 clocks for their reported relative precision in predicting disease-related aging and 

mortality, as well as two recent clocks (DunedinPoAm3830 and DunedinPACE31) that were 

developed to measure the pace of aging over time based on adult samples.32-33 DunedinPACE 

provides refinements that increase its precision, while DunedinPoAm has been around longer 

and therefore featured in more studies. Racialized identities of participants for training data 

were not identified for GrimAge or PhenoAge, although, for GrimAge, stratified validation 

testing was performed based on racialized group membership (Black, White, Hispanic) and 

education levels. Dunedin was trained almost entirely on White New Zealanders of a broad 

range of socioeconomic backgrounds. We also test the DNAmTL, which was developed 

based on leukocyte telomere length in adults ages 22 to 93 years (19% European and 81% 

African ancestry) but is applicable to children. DNAmTL was validated in samples derived 

from participants identified as European, African, and Hispanic ancestries. Telomeres (the 

protective caps at the ends of chromosomes) shorten with each cell division, as well as in 

response to oxidative stress; shortened telomere length has been found to associate to 

psychosocial stress, age-related diseases, and mortality.34 The DNAmTL reflects the 

replicative history of cells, negatively correlates with age in different tissues and cell types 

and is a strong predictor of mortality and multiple health outcomes.35 

 

Most clocks were trained on adults, or, in the case of Horvath’s clock, on all ages. Since our 

study is in children, we include two pediatric clocks. The PedBE clock was developed from 

buccal epithelial cells (from predominantly White participants) for use specifically in 

children ages zero to twenty years.36 A very recent pediatric clock, Wu’s clock, was trained 

on children using blood samples of children ages 9 to 212 months of age. Training data 



included participants identified as White, Asian, African-American, and multiple racialized 

identities, although this information was only available for 2 out of 11 data sets. In validation 

tests, gender and ethnicity did not seem to influence epigenetic age acceleration. Based 

predominantly on CpG sites in genes relevant to development and aging, the clock was 

designed to predict age-related diseases at young ages to allow positive interventions.37 

 

RESULTS 

 

Maternal Exposures and Descriptive Statistics 

 

This study aims to examine EAA in children exposed to severe drought in utero (N=104) 

compared to same-sex siblings unexposed to severe drought in utero (N=109). Figure 3 

shows the top self-reported stressors reported for drought pregnancies. We have previously 

reported all stressors: there were significantly higher frequencies of most stressors reported 

for drought compared to typical season pregnancies, indicative of the cumulative, 

exacerbated stress characteristic of drought.22 Descriptive statistics for variables included in 

the model are shown in Table 1. More girls than boys are seen in our study. Exhaustive 

descriptive statistics and additional cultural context for maternal stressors have been provided 

previously.20, 22 

 

Epigenetic Clocks and Epigenetic Age Acceleration 

 

The average chronological age of our study sample is 6.72 years. Based on the same-sex 

sibling design, drought-exposed siblings are, on average, older than same-sex siblings 

conceived after the severe drought resolved. The means of the estimated epigenetic ages are 



7.27 (PedBE), 6.25 (Wu), 8.39 (Horvath), 18.32 (Hannum), 4.02 (skin & blood), -3.32 

(PhenoAge), 32.28 (GrimAge2), 7.19 (DNAmTL), and 4.02 (skin & blood). Age prediction 

accuracy is measured by the Pearson correlation (r) between the epigenetic clocks and child 

chronological age,38 and we found that all estimated biological ages from epigenetic clocks 

are correlated to child chronological age (Table 2, Figure 4a), with the skin & blood clock 

showing the highest accuracy of age prediction (r = 0.86), PedBE the next (r = 0.80), Horvath 

(r = 0.72) and Wu (r = 0.68) slightly lower and DNAmTL the lowest (r = 0.05). Estimated 

epigenetic ages from different clocks are also correlated with each other (Figure 4a), i.e., 

Horvath and skin & blood (r = 0.79), PedBE and skin & blood (r = 0.78), Wu and skin & 

blood (r = 0.72), Hannum and GrimAge2 (r = 0.72), Wu and Horvath (r = 0.69), and PedBE 

and Horvath (r = 0.61). DNAmTL is negatively correlated with five of the estimated 

epigenetic ages (Hannum (r = 0.68), GrimAge2(r = 0.67), PhenoAge (r = 0.35), Wu (r = -

0.11), PedBE (r = -0.06)). For DNAm based aging pace measurements, DunedinPACE 

negatively correlates with chronological age (mean = 1.32, r = -0.35,) while DunedinPoAm38 

shows a weak positive correlation with age (mean = 1.16, r = 0.18). For EAA and aging pace 

measurements, the correlation between estimated EAA from GrimAge2 (EAAGrimAge) and 

EAADunedinPACE (r = 0.74), between EAAHannum and EAAGrimAge (r = 0.70), between EAAHannum 

and EAADunedinePACE (r = 0.63), and between EAADNAmTL and EAADunedinePoAm38 (r = 0.52) are 

higher than positive correlations between any other two EAA measures (Figure 4b). EAA 

estimated from DNAmTL clock is negatively correlated with the majority of the age pace and 

acceleration measures (Hannum (r = -0.75), GrimAge2 (r = -0.71), DunedinPACE (r = -0.67), 

PhenoAge (r = -0.44), Wu (r = -0.19), PedBE (r = -0.16)). As expected, none of the EAAs are 

associated with chronological age (r = 0). 

 

Association of Severe Drought Exposure in Utero with EAA 



 

The posterior mean and 95% highest posterior density (HPD) interval of the estimated 

association of maternal exposure to severe drought with EAAs and aging pace measurements 

from our multivariate linear mixed effect model (see Methods) are summarized in Table 3. 

Detailed estimated regression coefficients showing the association between EAA measures 

and maternal exposure to severe drought, child gender, and other covariates are shown in 

Supplementary Table 1. Drought exposure is positively associated with EAA using 

Hannum’s clock (posterior mean = 1.34, 95% HPD = (0.74, 1.96)), and GrimAge2 (posterior 

mean = 1.31, 95% HPD = (0.61,1.97)), but negatively associated with EAA from DNAmTL 

clock (posterior mean = -0.13, 95% HPD = (-0.24, -0.04)). Similar results were obtained 

using the frequentist approach (Supplementary Table 2) as an alternative strategy, with an 

additional significant finding of a negative association with DunedinPACE (with a small 

effect size, estimated regression coefficient is -0.03, adjusted p-value = 0.01). 

 

DISCUSSION 

 

In this study of the association between exposure to severe drought in utero and EAA in 

children, drought exposure associated to multiple clocks. We found a positive association in 

offspring born to mothers exposed to severe drought during pregnancy based on the 

Hannum’s (first generation) and GrimAge (second generation) clocks, potentially indicating 

accelerated biological aging in children exposed to severe drought in utero. Additionally, we 

found a negative association based on DNAmTL. A negative association with DNAmTL is in 

the expected direction, as shorter telomere length is associated with increased morbidity and 

mortality. The significance with Hannum is consistent with other studies in children,26 while 

GrimAge has been found significant in a recent study of in-utero exposure to the Great 



Depression (based on economic fluctuations).39 Results were null for two first generation 

clocks (Horvath’s, SkinBlood), third generation (Dunedin PACE, Dunedin PoAm38), and the 

two pediatric clocks (PedBe, Wu). The association of in utero drought exposure with 

DunedinPACE was statistically significant using the frequentist approach, although we 

approach this finding with caution, as the frequentist method is more susceptible to Type 1 

error (see Methods). 

 

Epigenetic clocks are only in their second decade of development, and much remains to be 

understood about them from a mechanistic perspective.40 The lack of concordance between 

clocks tested on the same exposure has been a common feature of epigenetic aging studies. 

This may partly reflect differences in the way each clock was developed, including 

participant characteristics of the training sets and the tissues used.10,14 

 

Additionally, however, biological aging is a multicausal phenomenon, involving accumulated 

damage, abnormalities, and decline genetically and epigenetically throughout the organism.41-

43 Thus, different epigenetic clocks as well as their DNAm components likely capture distinct 

mechanisms of biological aging.40 There are multiple theories about why aging occurs: Two 

prominent theories point to (a) accumulated damage relevant to tradeoffs that prioritize 

reproduction over expensive maintenance; and (b) programmatic effects of fitness promoting 

genes that have deleterious consequences later in life.43 Either way, consistent with life 

history theory,44 reproduction is prioritized and the developmental period leading to 

reproduction is characterized by molecular precision. In adults, EAA indicates relatively 

more molecular damage (loss of precision) relevant to disease processes that reduce life 

expectancy, although there isn’t agreement concerning EAA’s causal centrality in these 

declines.28 In children, in contrast, a role in development and/or early life programming has 



been proposed, although relating these changes to lifetime health is still not well 

understood.45 

 

More understanding is needed about the differences between and within epigenetic clocks as 

they relate to different molecular mechanisms of early life programming, biological aging, 

chronic diseases, and mortality. A recent study that clustered 5,717 CpGs from fifteen of the 

best-known clocks into twelve modules offers intriguing insights.40 The study examined 

seven out of ten of the clocks tested in our study (DunedinPACE, Wu, and PedBE were not 

included). Notably, two of the three clocks that were significant in our study (GrimAge and 

DNAmTL) were found to be similar in composition, together with DunedinPoAm. Since 

DunedinPACE is a refinement of DunedinPoAm, it is possible that that its composition might 

also be similar. These three clocks included higher proportions of modules most predictive of 

mortality risk, two of which also seemed to increase exponentially during development. In 

contrast, Horvath’s, SkinBlood, PhenoAge, and Hannum clocks had higher proportions of 

modules weakly or inversely predictive of mortality risk – seeming to create a counteracting 

effect. However, Hannum was distinctive in that it lacked a module present in the other six of 

these clocks.  

 

As expected in global hot spots for climate change vulnerability, severe drought in our study 

is characterized by a multitude of stressors that individuals experienced during their 

pregnancies.22 Most frequently reported pregnancy stressors relate to livelihood, food and 

water insecurity, and intimate partner violence and control. This suggests possibilities for 

behavioral adaptations that might reduce pregnancy stressors and increase climate resilience. 

Biologically, pregnant individuals’ response to these stressors would be expected to activate 

the hypothalamic-pituitary-adrenal (HPA) axis. The biological mechanisms for the adaptive 



response in offspring as it relates to adverse health outcomes and EAA are not as well 

understood,46 although life history theory predicts a faster reproductive trajectory (also 

involving the HPA axis) as one possibility.44 Earlier age at menarche has been found to 

positively associate to EAA in one study,47 although a subsequent study testing whether 

earlier age at menarche mediated the association between early life stress and adult EAA had 

mixed results.46 Risks for cardiovascular disease and metabolic syndrome have also been 

found to be associated with earlier age at menarche, although causation is not established.48 

Some of the components of the clocks that were significant in our study were found strongly 

associating to cardiovascular outcomes and age at menopause.40 Notably, we have previously 

found DNAm mediators of the association between drought and children’s body composition 

near genes relevant to insulin secretion, cardiac function, and cell metabolism, which 

suggests possible mechanisms for our study’s EAA findings.22 Longitudinal studies are 

needed to better address the EAA and lifetime health implications of early life exposure to 

climate stress.  

 

METHODS 

 

Data Collection Ethics 

 

All data collection and analysis methods conformed to the principles stated in the Declaration 

of Helsinki and were approved by Western Michigan University Human Subjects 

Institutional Review Board [Protocol #17-05-09] and Kenya’s National Commission for 

Science, Technology & Innovation [NACOSTI/P/18/7558/22142; P/19/7558/30004]. All 

recruitment and informed consent materials were translated and back translated by a 

multilingual team that included Samburu community partners. The study was explained in the 



Samburu vernacular at community meetings and to parents and child participants at each data 

collection visit, with consent (and assent for child participants) obtained at each visit. The 

study was initiated prior to 2018 IRB rules and is subject to reconsent based on individual 

subject and Indigenous community agreements. 

 

Data Collection 

 

For this same-sex sibling pair study, we recruited rural Samburu women who had a child 

exposed in the first trimester of gestation to the peak months of the 2008-2009 drought 

(N=104), and one or more children of the same sex unexposed to severe drought in utero 

(N=109). Children’s ages (range: 1.81 - 9.61 years) were documented with vaccination 

records and birth certificates and calculated to age in years (minimum of two decimal points). 

Sex of all participating children as identified by parents and children matched sex reported in 

health records. We conducted qualitative and ethnographically-grounded interviews to elicit 

reproductive histories, lifetime stressors, and stressors for each pregnancy.22 Based on the 

same-sex sibling design, socioeconomic variables status was the same for drought-exposed 

and unexposed siblings. The study’s epigenetic component was based on children’s saliva 

samples obtained using Oragene-500 kits, as saliva is minimally invasive and appropriate for 

field conditions.  

 

DNA Methylation 

 

To generate an epigenome-wide dataset of DNAm, we utilized the Illumina MethylationEPIC 

(EPIC) BeadChip array-based platform. This platform enabled us to gather molecular data 

comprising over 850,000 methylation marks per individual. To perform the Illumina 



MethylationEPIC BeadChip array analysis, saliva samples were sent to The University of 

Michigan’s Epigenomics Core for DNA extraction, quality control, and processing. DNA was 

extracted from saliva using the PureGene Cell and Tissue Kit, according to the protocol 

suggested for Oragene collection kits (DNA Genotek document PD-PR-00212). Samples 

were quantified using the Qubit high sensitivity dsDNA assay, and their high molecular 

weight quality assessed with the TapeStation genomic DNA kit. For each sample, 250ng 

were bisulfite converted with Zymo’s EZ DNA Methylation kit and using the manufacturer’s 

incubation parameters specific for Illumina MethylationEPIC arrays. Cleaned up samples 

were then sent to the UM DNA Sequencing core for hybridization to the Infinium 

MethylationEPIC BeadChip array, washing, and scanning, according to the manufacturer’s 

instructions (Illumina EPIC Datasheet).  

 

Epigenetic Clocks and Epigenetic Age Acceleration 

 

Epigenetic Clocks. Horvath’s pan-tissue clock and Horvath’s skin and blood clock are tissue 

independent clocks and the PedBE is derived from buccal epithelial cells. In contrast, 

Hannum’s single-tissue clock, based on adult blood samples, has higher accuracy for 

predicting lifespan,27 and accuracy using saliva samples is improved with cell type 

deconvolution.50-51 Based on beta-value of DNAm, the PedBE, Horvath, Hannum,  skin & 

blood clocks, PhenoAge, and DunedinPACE were obtained using the R package 

methylCIPHER from MorganLevineLab52,  and DNAmTl  and DunedinPoAm38 were 

estimated using R package dnaMethyAge from Github.53 Wu’s clock was trained on 

children’s blood samples, and it was estimated by using the coefficients provided in Wu’s 

original paper.37 GrimAge2 was estimated using the algorithm provided by the authors of 



DNA methylation GrimAge version 2.54 More than 80% of the required CpGs are present for 

all clocks, and missing CpGs are filled with median values from reference dataset.54 

 

Epigenetic Age Acceleration From these biological age estimates obtained using the 

epigenetic clocks, we calculated EAA to measure whether the individuals are biologically 

younger or older than their chronological age. The PedBE EAA response variable was 

calculated by using the residuals from a linear model that regresses PedBE clock on the 

child's chronological age.55 Similarly, we computed the other EAA response variables using 

the Wu, Horvath, Hannum, skin & blood, PhenoAge, GrimAge2, and DNAmTL clocks by 

taking residuals after regressing the corresponding clock on the child’s chronological age.10,55 

The DunedinPACE  and DunedinPoAm38 directly measure the pace of aging, and therefore 

could serve as the response variables as EAAs. 

 

Maternal Exposure 

 

Our study focused on first trimester exposure to the 2008-2009 drought as a critical 

developmental window. We restricted our early gestational drought exposure window to peak 

months of the drought to capture the highest possible contrast to same-sex siblings not 

exposed to the 2008-2009 or another severe drought in utero. While this was the most 

rigorous design to avoid confounding based on early life exposure to the 2008-2009 severe 

drought, it meant that drought-exposed children were older than same-sex sibling controls. 

One child was excluded from the models due to the mother moving outside the drought-

catchment area throughout the pregnancy.  

 

Covariates 



 

Maternal parity, birth season, sex, cellular heterogeneity, socioeconomic and demographic 

variables Gravida indicates the number of pregnancies a woman had prior to the target 

pregnancy. The child’s birth season is a binary variable measuring whether the child was 

born in the dry or wet season. Child’s sex is male or female. Our study is based on whole 

saliva. We adjusted for cell-type effects, the fractions of a priori known cell subtypes, 

Epithelial (Epi), Fibroblast (Fib), and Immune cells (ICs, as reference) calculated using the R 

package, “EpiDISH.”50 The methods have been described in detail previously.22 Based on the 

same-sex sibling pair design, household demographic variables were the same for drought-

exposed and unexposed siblings and therefore not included in models.  

 

Statistical Analysis 

 

Due to the same-sex sibling study design and correlation among the eight EAAs (estimated 

from the PedBE, the Wu, the Horvath, the Hannum, the skin & blood, the PhenoAge, the 

GrimAge2 and the DNAmTl clocks) and two aging pace response variables (DunedinPACE 

and DunedinPoAm38), we employed a multivariate linear mixed effect model (MLME) with 

sibling identifier as random effect to investigate the association between in utero drought 

exposure and EAA.  

We consider the following MLME model:  

𝐘𝐢𝐣 =	𝛃𝟎 + 𝛃𝟏𝑇%& + 𝛃𝟐𝐗𝐢𝐣 + 𝐛𝐣 + 𝛜𝐢𝐣							(1) 

𝐛𝐣	~	MVN(𝟎, 𝚺𝐛) 

𝛜𝐢𝐣	~	MVN(𝟎, 𝚺𝐞) 

where 𝐘𝐢𝐣 = 4𝑌%&,+, 𝑌%&,,, 𝑌%&,-, 𝑌%&,., 𝑌%&,/, 𝑌%&,0, 𝑌%&,1, 𝑌%&,2, 𝑌%&,3, 𝑌%&,+46
5is a 10 by 1 vector of EAA 

measures and aging pace outcomes of 𝑖67child of 𝑗67 mother, and 𝑌%&,+ denotes the EAA 



estimated from PedBE clock, 𝑌%&,, from Horvath clock, 𝑌%&,- from Hannum clock, and so on. 𝑇% 

represents binary exposure of drought, and 𝐗𝐢𝐣 is a vector of adjusted covariates: maternal 

parity, child sex, child birth season, and estimated cell composition variability. In addition, 𝛜𝐢𝐣 

and 𝐛𝐣 are 10 by 1 vectors of error terms and random intercept, and we assume they are 

identically and independently distributed (i.i.d.) from multivariate normal (MVN) distribution 

of mean 0 and variance-covariance matrix of 𝚺𝐞 and 𝚺𝐛. Moreover, we assume that 𝛜𝐢𝐣 and 𝐛𝐣 

are independent.  Let  𝛃𝟏 = 4𝛽+,+, 𝛽+,,, 𝛽+,-, 𝛽+,., 𝛽+,/, 𝛽+,0, 𝛽+,1, 𝛽+,2, 𝛽+,3, 𝛽+,+46
5  be a 10 by 1 

coefficient vector representing the association of EAAs and drought exposure, i.e., 𝛽+,+ 

measures the association of EAA estimated from PedBE clock and early gestational drought 

exposure. The proposed MLME model in Equation (1) can be fitted for all EAA measures 

simultaneously, and it can incorporate not only the correlation of children within mother, but 

also the association of multiple EAA measures by utilizing the random effects. Since the 

EAA measures are highly correlated as shown in Figure 4a, the multivariate modelling 

approach is more powerful than univariate approach.56     

 

Moreover, the MLME provides a solution to the multiplicity issue by summarizing 

simultaneously all EAA measures of interest instead of fitting many separate univariate linear 

mixed effects models for each EAA. For frequentist approach, a maximum likelihood (ML) 

approach based on the joint marginal likelihood of EAA measures can be used for estimating 

the fixed and random effects parameters in MLME model. However, the ML approach 

requires numerical integration techniques with respect to the random effects and the large 

number of parameters included in the models. To overcome the computational burden, we 

utilize the Bayesian approach in conjunction with Markov chain Monte Carto (MCMC) 

methods, i.e., Gibbs sampling, to obtain the posterior distribution of the parameters of interest 

for parameter estimation and inference. We use the standard conjugate prior distribution for 



the parameters of interest, that is non-informative multivariate normal distribution for 

regression coefficients in (1), i.e., 𝛃𝟏	~	MVN(𝟎, 103𝐈𝟏𝟎), where 𝐈𝟏𝟎 is the 10 by 10 identity 

matrix, and inverse-Wishart distribution for variance and covariance matrix of random effect 

𝐛𝐣 and error terms 𝛜𝐢𝐣, 𝚺𝐛, 𝚺𝐞~	IW(10, 𝐈𝟏𝟎).	 Under this setting, we assumed the independent 

prior information on 𝛃𝟏, 𝐛𝐣, 𝚺𝐛 and 𝚺𝐞. The number of interactions of Gibbs sampling was 

20,000 with the first 5000 samples discarded as burn in. Using the R package MCMCglmm, 

we obtained the marginal posterior distribution, and computed the posterior mean and 95% 

highest posterior density (HPD) interval of regression coefficients.57 The convergence in 

MCMC for each parameter in the MLME model was further inspected using the trace plots. 

Our statistical analyses were performed using R Version 4.1.2, and we used 0.05 to be a 

significance threshold.  

 

Strengths and Limitations 

 

Our study contributes to ethnic diversity of EAA research and adds much needed climate 

exposure findings. Also, it contributes findings from a population engaged in a climate-

vulnerable livelihood, based on findings from an underrepresented ethnic group in northern 

Kenya living in a global hot spot for climate change vulnerability. Our same-sex sibling study 

design is an additional strength. Also, by analyzing the EAA response variables 

simultaneously using a multivariate approach, we account for the correlations between EAA 

measures, thus decreasing the likelihood of a Type 1 error without requiring any additional 

multiple testing adjustment. Limitations of our study include the fact that drought-exposed 

siblings are older than unexposed siblings. However, the EAA measures do not associate 

significantly to chronological age, and all children (both drought-exposed and unexposed) 

were under ten years old and pre-pubertal based on observed Tanner stage. Another limitation 



is that it is possible that our models are biased towards the null for some clocks, based on 

differences between participant characteristics of our study sample and those of participants 

used to develop the clocks.24 Watkins and colleagues have recently pointed out a lack of 

attention given to participant characteristics for samples on which clocks are based in spite of 

the recognized problem raised by a tendency to use unrepresentative sociodemographic 

samples. These authors suggest that researchers working with existing clocks should compare 

participant characteristics of their study to characteristics of participants used in the 

development of the clocks to the extent that information is available.24 We have described 

available information for each clock in the main text for this reason. 

 

DATA AVAILABILITY 

 

The source data for all Figures and Tables, including data used to support the findings of this 

study are supplied with this paper in the Source Data file. Rainfall variables for Figure 1 were 

calculated from high resolution publicly available historical data (CHIRPS) on the Famine 

Early Warning Systems Network (FEWSNET: https://earlywarning.usgs.gov/fews). DNA 

methylation data are based on the Illumina MethylationEPIC (EPIC) BeadChip array-based 

platform. The individual-level DNA methylation data and the CHIRPS individual-level 

location and pregnancy-timed data (used for illustration purposes in Figure 1, not for data 

analyses) are available under restricted access due to privacy and ethical restrictions because 

the research partners of this study are a vulnerable group of African indigenous peoples. 

Access can be obtained by contacting the corresponding author (bilinda.straight@wmich.edu) 

as follows: Queries for access for validation of results will receive a response within 2 weeks, 

and access will be granted as immediately as possible after approval from the Western 

Michigan University IRB, but in no more than 2 weeks from approval. Access for new 



studies will receive a response within 2 weeks and will be subject to restrictions imposed by 

Kenya's National Commission for Science, Technology, and Innovation (NACOSTI) and the 

Indigenous community. 

 

Data Availability 

• Epigenetic clocks were derived using R package methylCIPHER from 

MorganLevineLab, R package dnaMethyAge from Github, R function derived from 

original clock paper, and R code provided by the authors of “DNA methylation 

GrimAge version 2” 

• Cell type proportions were estimated using R package EpiDISH. 

• Figures 1 and 3 were generated using Microsoft Excel for Mac Version 16.83. 

• Figure 4 was generated using R packages ggcorrplot and patchwork.  

• All code is run in R version 4.1.2 

• Statistical analyses were conducted using the following packages: MCMCglmm, 

lmerTest and lme4.  

 

Code Availability 

R Code used for analyses can be found at: https://github.com/DuyNgoStats/BayesianEAA 

and at the following DOI: https://zenodo.org/doi/10.5281/zenodo.10854895 

 

Code Detailed Description 

Step 1: Missing Values and Imputation 

• Check methylation sites missing value percentage and fill the missing value with 

median value from the reference dataset. 

Step 2: Epigenetic Clock and Age Acceleration Estimation 

https://github.com/DuyNgoStats/BayesianEAA
https://zenodo.org/doi/10.5281/zenodo.10854895


• Calculate Epigenetic clocks using R package methylCIPHER and dnaMethyAge. 

• Regress each clock on chronological age and take the corresponding residual as 

the Epigenetic age acceleration measure. 

Step 3: Cell Type Estimation 

• Estimate the cell type proportion (Epithelial, Fibroblast, with Immune cells as 

reference) with beta values of CpG sites using R package EpiDISH. 

Step 4: Multivariate Linear Mixed Effect Model (MLME) and MCMC Diagnostics. 

• Set up prior distributions for MLME model parameters. 

• For the MLME model, age acceleration measures serve as the multivariate 

dependent variables, with drought as the exposure variable and cell type, maternal 

parity, child’s sex, and child’s birth season as covariates. 

• Inspect MCMC samples with trace plots and density plots. 
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TABLES 
 
Table 1: Descriptive Statistics for Drought Exposure and Covariates 
 Mean (SD) N (%) 

Maternal Exposure   

Drought Exposed  104/213 (49%) 

Unexposed  109/213 (51%) 

Child’s Sex   

Female  115/213 (54%) 

Male  98/213 (46%) 

Gravida 3.08 (2.21)  

Child Birth Season   

Wet  126/213 (59%) 

Dry  87/213 (41%) 

Epithelial cell proportion 0.24 (0.12)  

Fibroblast cell proportion 0.02 (0.01)  

Source data are provided as a source data file. 

 
  



Table 2: Descriptive Statistics for Chronological Age, Epigenetic Clocks, Aging Pace Measures, 
and Age Acceleration Measures, with Pearson Correlation Coefficients for Associations with 
Chronological Age 

 
  

 Mean SD Maximum Minimum 

Pearson Correlation 
Coefficients with 
Chronological Age 

Child Chronological Age 
(years) 

6.72 1.96 9.61 1.81 1 

Epigenetic Clocks      

PedBE  7.25 1.15 10.16 3.99 0.80 

Wu 6.25 1.66 10.17 0.51 0.68 

Horvath 8.39 2.77 15.40 2.72 0.72 

Hannum 18.32 3.62 31.02 8.71 0.38 

Skin & blood 4.02 1.44 8.13 0.73 0.86 

PhenoAge -3.32 6.49 17.39 -21.04 0.51 

GrimAge2 32.28 3.93 48.24 23.66 0.25 

DNAmTL 7.19 0.28 7.78 6.13 0.05 

Aging Pace Measures      

DunedinPACE 1.32 0.14 1.78 1.01 -0.35 

DunedinPoAm38 1.16 0.07 1.32 0.99 0.18 

Age Acceleration Measures      

EAAaPedBE 0.00 0.69 1.95 -1.98 0 

EAAWu 0.00 1.21 2.67 -3.39 0 

EAAHorvath 0.00 1.92 5.59 -3.89 0 

EAAHannum 0.00 3.35 11.50 -7.48 0 

EAASkin&Blood 0.00 0.73 2.62 -2.14 0 

EAAPhenoAge 0.00 0.69 1.96 -1.98 0 

EAAGrimAge2 0.00 1.77 5.14 -3.58 0 

EAADNAmTL 0.00 3.35 11.50 -7.48 0 
a EAA denotes the epigenetic age acceleration, which is calculated as the resulting residuals of 
regressing epigenetic clock on child’s chronological age. For example, EAAPedBE is the epigenetic 
age acceleration derived by taking the residuals after regressing PedBE clock on child’s 
chronological age. Source data are provided as a source data file. 



 
Table 3: Regression Coefficients and 95% Highest Posterior Density (HPD) of Drought 
Exposure from the Multivariate Linear Mixed Effect Model 

 Posterior Mean Lower 95% HPD Upper 95% HPD 

EAAPedBEa 0.11 -0.17  0.31 

EAAWu -0.02 -0.37  0.33 

EAAHorvath -0.31 -0.81 0.18 

EAASkin&Blood -0.09 -0.33 0.21 

EAAHannum 1.34 0.74* 1.96* 

EAAPhenoAge 0.78 -0.59 2.15 

EAAGrimAge2 1.31 0.61* 1.97* 

EAADNAmTl -0.12 -0.24* -0.04* 

DunedinPACE -0.03 -0.13 0.07 

DunedinPoAm38 0.01 -0.09 0.10 
aEAAPedBE denotes the epigenetic age acceleration of PedBE clock. *95% HPD interval not 
containing zero will be considered as significant association. Bold indicates significant associations. 
Source data are provided as a source data file. 

 



FIGURES 
 
Figure 1. Rainfall Comparison by Pregnancy. Rainfall z-scores in comparison to 40-year 
mean for 3-month period leading to conception (indicative of pasture quality in first 
trimester) by pregnancy and mother’s reported residence, using CHIRPS rainfall data. Figure 
shows mean z-scores by pregnancy and location for drought-exposed and unexposed 
pregnancies in dry (blue columns) and wet (orange columns) seasons. Source data are 
provided as a Source Data file. 
 

 
 



Figure 2. Conceptual Model for Study. Drought exposure during pregnancy indicated (gold 
sun and red thermometer weather symbols and brown diagram of pregnant woman) 
hypothesized to predict child outcomes (brown infant diagram) through biological 
mechanisms of aging and phenotypic plasticity (blue DNA symbol), tested in this study with 
epigenetic age acceleration (blue forward arrows) using multiple epigenetic clocks, as labeled 
in Figure as follows: 1st generation clocks (blue clock) – Horvath, Hannum, SkinBlood, 
identified as lifespan predictors; 2nd generation clocks (green clock) – PhenoAge, GrimAge2, 
DNAmTL, identified as disease and mortality predictors; 3rd generation pace of aging 
predictors (yellow clock) – DunedinPACE, DunedinPoAm38; and pediatric clocks (orange 
clock) – PedBe and Wu, identified as child health and disease predictors. 
 

 
 
 



Figure 3. Frequently reported pregnancy stressors by percentage reported. Top stressors 
reported as experienced during drought pregnancy shown in comparison to reporting of those 
same stressors during drought-unexposed pregnancy (N reporting = 104 Drought-exposed, N 
reporting = 109 Drought-unexposed), based on percentage of women reporting the stressor by 
pregnancy. Stressors as indicated in figure columns are livestock deaths (blue), food 
insecurity (orange), feared husband (gray), hazardous livestock work (yellow), intimate 
partner violence (light blue), water insecurity (green), too weak to work (navy), forced to 
work too hard by husband during the pregnancy (brown), denied food by husband during 
pregnancy (husband refusing to provide food) (dark gray). Source data are provided as a 
Source Data file. 

 
 



Figure 4. Correlation Matrices of Epigenetic Clocks and Epigenetic Age Accelerations 
(EAAs). Figure 4a illustrates the correlation matrix for various epigenetic clocks, while 
Figure 4b displays the matrix for correlations between epigenetic age acceleration (EAA) and 
aging pace metrics. The term "EAAPedBE" refers to the EAA estimated using the PedBE 
clock, a naming convention consistent across other EAA measurements presented. Positive 
correlations are denoted by red shades, whereas negative correlations are indicated in blue, 
with darker shades signifying stronger absolute correlation values. Source data are provided 
as a Source Data file. 
 

 


