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Abstract
In this paper, we introduce the numerical strategy for mixed uncertainty propagation
based on probability and Dempster–Shafer theories, and apply it to the computational
model of peristalsis in a heart-pumping system. Specifically, the stochastic uncer-
tainty in the system is represented with random variables while epistemic uncertainty
is represented using non-probabilistic uncertain variables with belief functions. The
mixed uncertainty is propagated through the system, resulting in the uncertainty in
the chosen quantities of interest (QoI, such as flow volume, cost of transport and
work). With the introduced numerical method, the uncertainty in the statistics of QoIs
will be represented using belief functions. With three representative probability dis-
tributions consistent with the belief structure, global sensitivity analysis has also been
implemented to identify important uncertain factors and the results have been com-
pared between different peristalsis models. To reduce the computational cost, physics
constrained generalized polynomial chaos method is adopted to construct cheaper
surrogates as approximations for the full simulation.
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1 Introduction

A key feature in understanding many biological functional systems is how that system
behaves with respect to the variation of parameters (parametric uncertainty). Most
systems in biology are complex and nonlinear, meaning that changes in a parameter,
whether it is amorphological feature or kinematic quantity, could have outsized effects
on the performance of that system (Wainwright et al. 2005; Anderson and Patek 2015).
With the application of detailed computational modeling, such as that found with
computational fluid dynamics (CFD), assessing uncertainty in models becomes highly
important to understanding (1) how the system as a whole functions in real-world
conditions, and (2) how the system has evolved over time (Wainwright 2007;Anderson
and Patek 2015; Polly et al. 2016; Muñoz 2019).

Traditionally, uncertainty has been characterized using random variables/processes
in the framework of probability theory, and various probabilistic uncertainty quantifi-
cation (UQ) methods such as the Monte Carlo (MC) method, generalized polynomial
chaos (gPC) expansion, and the stochastic collocation method (Wiener 1938; Xiu and
Karniadakis 2002; Mathelin and Hussaini 2003; He et al. 2018; Schobi et al. 2015)
have been developed. These methods have been applied to various biological systems.
For example, different variations of Monte Carlo sampling techniques have been used
within Bayesian methods to obtain the posterior distribution of the parameters in
a computational model of molecular mechanisms of signaling (Mitra and Hlavacek
2019). Quarteroni et al. have applied Monte Carlo sampling method to quantify the
uncertainty in model output propagated from uncertain parameters in the cardiovascu-
lar system (Quarteroni et al. 2017). Hu et al. have proposed to use the gPC expansion
to quantify parametric uncertainty in ion channel models of mouse ventricular cell
and further propagate the uncertainty across different organizational levels of cell and
tissue (Hu et al. 2018). Our previous work has also applied gPC method for uncer-
tainty quantification in peristaltic pumping by valveless, tubular heart (Waldrop et al.
2020k).

However, in practice, the systemmay consist of uncertain parameters, whose uncer-
tainty is epistemic (referring to the uncertainty due to the lack of knowledge) rather
than aleatory (referring to the uncertainty due to the random nature). For example,
Regan et al. have provided examples from ecology and conservation biology regard-
ing the uncertainty due to subjective judgment, that occurs as a result of interpretation
of insufficient empirical data (Regan et al. 2002). In such scenario, non-probabilistic
approaches based on the alternative mathematical frameworks (such as interval anal-
ysis, fuzzy set theory (Zadeh 1965; Walley and Cooman 2001), possibility theory
(Dubois and Prade 1988; Dubois 2006), generalized p-boxes (Destercke et al. 2008),
and Dempster–Shafer (DS) theory (Shafer 1976; Dempster 1967)) may provide a bet-
ter representation of the epistemic uncertainty (Oberkampf et al. 2001; Jakeman et al.
2010; Chen et al. 2015; He et al. 2015; Wang et al. 2015; Baudrit et al. 2006; Roy and
Oberkampf 2011; Lockwood et al. 2012). DS theory can be considered as a general-
ization of probability theory and various applications have adopted DS theory based
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epistemic uncertainty propagation techniques in the literature (Talavera et al. 2013;
Tang et al. 2015; Abdallah et al. 2013; Bae et al. 2003). The application of DS theory
to biological field also has a long history. In 1980s, Atkinson and Gammerman had
proposed an application of expert system technology based DS theory to the problem
of biological identification (Atkinson and Gammerman 1987). In the current work, we
will focus on the uses of DS theory for epistemic uncertainty quantification.

As concluded in Regan et al. (2002), uncertainties from different sources in any
application will compound. In other words, mixed types of uncertainties often exist
simultaneously in the underlying physical system and the simulation models. There-
fore the numerical UQ techniques for mixed aleatory and epistemic uncertainty
propagation also need to be explored. There are previous studies in the literature
that have attempted to deal with mixed uncertainty (Roy and Oberkampf 2011; Eldred
et al. 2011; Baudrit et al. 2006; Shah et al. 2015). For example, Roy and Oberkampf
have estimated the predictive uncertainty of scientific computing applications using a
comprehensive framework based on the combination of probability theory and inter-
val analysis to produce a p-box to represent mixed types of uncertainties in the model
output (Roy and Oberkampf 2011). Eldred et al. have discussed the mixed UQ meth-
ods based on the interval-valued probability, second-order probability and DS theory
combined with probability theory where stochastic expansion methods are applied in
stochastic space for the reduction of computational cost (Eldred et al. 2011). Tang et al.
have combined gPC method and DS theory to quantify the mixed types of uncertainty
in synthetic problems, where gPC method deals with aleatory uncertainty and DS
theory is for epistemic uncertainty (Tang et al. 2010). He and Hussaini have defined
a distance measure based on the well-known Hausdorff distance to determine the dif-
ference between two BBAs and provided rigorous error analysis of the mixed UQ
approach based on DS theory (He and Hussaini 2023).

As the development ofmixedUQ techniques, their application to various disciplines
starts to draw attention. For example, Wang et al. have dealt with mixed types of
uncertainty in thermal structure designwith reliability-based optimization (Wang et al.
2017). He et al. have applied mixed UQ tools to quantify the uncertainty in the spatial
location of an isocontour for the electric potential field over a 2D torso slice, obtained
by solving an electrocardiographic forward problem (He et al. 2015). However, the
research onmixed uncertainty propagation through the simulationmodels of biological
systems, especially tubular heart pumping system, is still very limited. Therefore, one
of our objectives is to quantify the mixed types of uncertainty in the computational
models of peristalsis. Specifically, we will adopt a MC sampling method to deal with
the aleatory uncertainty while using DS theory-based approach to deal with epistemic
uncertainty. To reduce the computational cost, we have implemented gPC expansion
method to construct cheaper surrogate to approximate the full simulation.

With the constructed surrogate, we further analyze the influence of uncertain input
factors on the uncertainty in quantities of our interest using sensitivity analysis (SA).
The SA methods can be broadly categorized into two types: local sensitivity analysis
that investigates the impact on the model output based on the small perturbation
of input variables only very close to a fixed points (such as the nominal values),
and global sensitivity analysis that explores the impact on the model output based
on the uncertainty of the input variables over the whole parameter space (Marino
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et al. 2008). When the parameter space is large where the uncertainty cannot be
considered as the small perturbations around the nominal values, global sensitivity
analysis might be more suitable to identify the “important” parameters. There are
different indices proposed for different mathematical models to measure the global
sensitivity in the literature. For example, standardized regression coefficients (SRC)
can be used for linear functions, and partial rank correlation coefficients (PRCC)
works well for nonlinear but monotonic relationships between outputs and inputs
(Marino et al. 2008). For nonlinear non-monotonic functions, variance-based SA such
as Sobol’ indices can be the best choice (Sobol’ 1993). Here, we adopt Sobol’ indices
to measure the global sensitivity for the complex and nonlinear biological system
under our consideration. Sobol’ indices have been heavily used in the framework of
probability theory (Arachchilage et al. 2023; He et al. 2020; Waldrop et al. 2020k,
2018; Kiparissides et al. 2008; Randall et al. 2021; Jarrett et al. 2015), however, its
application to the systems with epistemic uncertainty is very limited due to the lack
of availability of probability density functions for uncertain parameters. Therefore,
another objective of our current work is to analyze the sensitivity for peristalsis models
involving both aleatory and epistemic uncertainties. Specifically, we will adopt the
exploratory SA method (Helton et al. 2006a), which is an extension in the framework
of DS theory with represented probability distributions assumed for each uncertain
variables associated with belief structures, to study the impact of uncertainty in the
input factors and their interactions on the considered quantifies of our interest.

This paper is organized as follows. We first provide the required background on
peristalsismodel, Dempster–Shafer theory, generalized polynomial chaosmethod, and
sensitivity analysis in the framework of probability theory in Sect. 2. Then we specify
the uncertain input parameters associated with mathematical representations and the
considered quantities of interest from peristalsis model in the problem setup in Sect. 3.
The numerical technique formixed aleatory and epistemic uncertainty propagation and
the exploratory sensitivity analysis in DS theory are provided in detail in Sect. 4. In
Sect. 5, we apply the numerical technique to quantify the mixed types of uncertainty in
the peristalsis models and analyze the sensitivity of flow characteristics and energetic
costs with respect to uncertain input factors.

2 Background

In this section, we will provide the required background: peristalsis as the model
system, the computational model of peristalsis, the basics of DS theory, generalized
polynomial chaos, and sensitivity analysis.

2.1 Peristalsis as themodel system

Avariety of systems in animals drive flowwith valveless, tubular pumps (Griffiths et al.
1987; Gashev 2002; Xavier-Neto et al. 2010). Circulatory flow is driven by tubular,
valveless pumps in many chordates, including tunicates and embryonic vertebrate
hearts (Männer et al. 2010; Waldrop andMiller 2016; Battista et al. 2017a; Baird et al.
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2015; Kozlovsky et al. 2016), providing important transport of oxygen, nutrients, and
waste. In embryonic hearts, the physical forces involved in flow generated by tubular
hearts partially controls the development of all organs (Jones et al. 2004).

Many of these valveless, tubular pumps use peristalsis to drive fluid flow. Peristalsis
is a radial contraction of the walls of the tube which propagates down the length of the
tube. Fluid within the system is driven in the same direction as the propagation of this
wave. Although the system seems simple, the flow produced by a peristalsis-driven
system depends non-linearly on several features: length and width of the pumping
region, the closure of the tube’s radius during pumping (compression ratio), the fre-
quency of compressions traveling down the tube, and the overall scale (size) of the
system (Waldrop and Miller 2016; Waldrop et al. 2020k). As a further complication,
the relative importance of any of these features changes with the performance metric
used for flow produced by the tube (e.g., mean flow speed or energetic cost of driving
a unit of fluid through the circulatory system) (Waldrop et al. 2020k).

Many models have been used to approximate peristaltic flow to learn more about
how these systems work in a biological context, including analytical and computa-
tional models (Pozrikidis 1987; Jaffrin and Shapiro 1971; Fung and Yih 1968; Shapiro
et al. 1969). Analytical models typically make assumptions that limit the more direct
application of their results to biological systems that employ peristalsis (Waldrop and
Miller 2016). Recently, CFDmodels have been used to explore and clarify the mecha-
nisms of pumping for vertebrate embryonic hearts, the presence of trabeculae, and the
presence of blood cells (Waldrop andMiller 2016; Baird et al. 2014, 2015; Kozlovsky
et al. 2016; Taber 2001; Taber et al. 2006; Battista et al. 2017a, b).

2.2 Computational model of peristalsis

The computational models of closed-racetrack peristalsis are fully described in the
following works: (Waldrop and Miller 2016; Waldrop et al. 2020k). For the self-
completeness of current work, we provide the summarized equations here.

Immersed Boundary Method

The computational models were implemented using the immersed boundary method
(IBM). IBM couples the movement of fluid with the movement of flexible boundaries
moving either freely or with preferred motion. This model studied here was imple-
mented in an open-source, parallelized version of the IBM called Immersed Boundary
with Adaptive Mesh Refinement (IBAMR) (Griffith 2014). IBAMR is a C++ library
that allows for direct, numerical simulationof theNavier–Stokes equations of fluidflow
on a Eulerian grid that incorporates adaptive mesh refinement. Thereby, the Eulerian
grid is larger (less resolved) farther away from areas of high vorticity and movement
and more resolved closer to these areas in an effort to save computational resources.

The racetrack-shaped circulatory system consisted of two rigid boundaries tethered
to fixed target points with an inner lumen, two straight sections connected by two
curved regions, and amoving elastic region at the bottom of the racetrack, representing
the heart tube that moved with a preferred motion. The racetrack design is consistent
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Fig. 1 a A cartoon schematic of the circulatory system, highlighting where flow data is analyzed. b
Illustrations showing the b Gaussian-wave and c sine-wave peristalsis models

with past designs, thereby streamlining comparisons to previous studies (Jung and
Peskin 2001; Lee et al. 2012; Baird et al. 2014; Waldrop and Miller 2016; Waldrop
et al. 2020k).

The elastic region of the circulatory system had a 4:1 length:diameter ratio and
created the motion to drive fluid through the circulatory system. The inner 3/4 of
the elastic-tube length consisted of points tethered to target points. The movement
of these tether points drove the preferred peristaltic motion according to the chosen
waveform (either a sine wave or Gaussian-peak wave). The force equation adopted to
drive peristalsis in the model is:

f(r , t) = ktarg(Y(r , t) − X(r , t)) (1)

where X(r , t) and Y(r , t) are the actual and preferred positions of the boundary,
respectively. By differing the preferred motion of the boundary, we consider the fol-
lowing two different models of peristalsis, see Fig. 1 for an illustration of circulatory
system as well as both peristalsis models.

Opposing sine-wave peristalsis model

The sine-wave model defines the motion of the boundary as two opposing sine waves:

ytop,bot = Rtop,bot ± A sin(2π f t + 2πcxt ), (2)
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where f is the compression frequency, c is the compression-wave speed (held constant
throughout the study at a non-dimensional speed of 3.0), A is the amplitude of the
contraction, and xt is the horizontal distance from the beginning of the prescribed
motion section. The compression ratio (CR) gives the ratio of occlusion of the tube
and is equal to 2A. The peristaltic waves created by Eq. 2 drives fluid flow counter-
clockwise in the lumen of the racetrack. The stiffness of the boundary and target points
(ktarg = 30.0) resulted in little independent motion in the elastic region of the tube.

Opposing Gaussian-peak peristalsis model

The pinch model defines the motion of the boundary as two sharp, Gaussian peaks,
with the remainder of the boundary remaining very flexible (ktarg = 0.7) to allow for
elastic interactions between the heart tube and its internal fluid. For the points within
the region of the Gaussian wave, the target point stiffness was chosen to be extremely
stiff (ktarg = 2500) such that the target points matched closely to the prescribed
waveform. The equation that governs the waveform is:

ytop,bot = Rtop,bot ± A exp((−0.5(xt − γ )/σ)2), (3)

where γ is the position of the pinch on the x-axis of the center of the tube and σ is the
width of the pinch. The pinch was driven by altering γ depending on the time step of
the simulation.
Both pumping models drive fluid through the circulatory system: a closure of the tube
restricts flow through that region of the tube while simultaneously moving down the
tube. However, each pumping model does so in a different way. The opposing sine-
wave model dictates a preferred motion along nearly every point on the tube while the
Gaussian-peak model assigns preferred motion to only the opposing peaks, allowing
the rest of the tube to flex to accommodate the displaced volume of the peaks. In terms
of the animal, the Gaussian-peak model is closer to the kinematics of the heart, where
contraction of the myocardium is limited to the compression point and the rest of the
myocardium freely flexes to accommodate locally displaced fluid.

2.3 Basics of DS theory

Let ξ ∈ Z be an input variable of a system, the value of which is unknown due to
incomplete knowledge. We consider the following proposition “the true value of ξ is
in A (A ⊂ Z )”, and adopt belief functions Bel in DS theory to represent the strength
of evidence supporting this proposition A. A belief function is defined as follows.

Definition 1 A belief function assigns a number in [0, 1] to an element A ∈ 2Z (Z is
the universal set and 2Z is its power set), satisfying:

Bel(∅) = 0, Bel(Z) = 1,

Bel(∪k
i=1Ai ) ≥

∑

∅�=I⊆{1,...,k}
(−1)|I |+1Bel(∩i∈I Ai ), for k ≥ 2, A1, . . . , Ak ∈ 2Z .
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Fig. 2 Belief Bel(A) and
plausibility Pl(A)

Note that unlike probability density functions, belief functions do not have con-
straint of additivity. This relaxation makes them more suitable to represent epistemic
uncertainty. Specifically, Bel(A) + Bel(A) ≤ 1, where A is the complement of A.
When the summation is less than one, the remaining part (i.e., 1− Bel(A) − Bel(A))
can not be specified between supporting A or A due to lack of information, therefore,
goes to universal set Z , representing part of the epistemic uncertainty (see Fig. 2).

Adding this uncertain part to Bel(A), the maximum possible strength of evidence
supporting a proposition A, denoted as Pl(A) is obtained. This function Pl : 2Z →
[0, 1] is called plausibility function, defined as Pl(A) = 1 − Bel(A).

Both belief and plausibility can also be defined as

Bel(A) =
∑

B⊆A

m(B), Pl(A) =
∑

B∩A �=∅
m(B), (4)

where the basic belief assignment (BBA)m : 2Z → [0, 1], also calledm-function (we
use BBA and m-function interchangeably in this work), assigns a number between 0
and 1 (called mass or belief mass) to an element A ∈ 2Z , satisfying:

m(∅) = 0,
∑

A⊆Z

m(A) = 1. (5)

The element A with nonzero mass (i.e., m(A) �= 0) is called a focal element. We
assume the number of focal elements is finite in the current work.

The m-function can be interpreted with the concept of random sets (i.e., set-valued
random variables) (Dubois and Prade 1991; Denaeux 2009; Tonon et al. 1991; Good-
man and Nguyen 1985; Nguyen 1978) as follows. Let Z denote a non-empty set, let S
be a finite family of distinct non-empty subsets of Z and m̃ be a mapping S → [0, 1]
such that

∑
A∈S m̃(A) = 1, then the pair (S, m̃) is a finite support random set on Z .

The set S is equivalent to the collection of the focal elements of a belief function, and
m̃(A), which can be viewed as the probability of A, is equivalent to the belief mass
m(A) for all A ∈ S (Dubois and Prade 1991). The extension principle for random sets
through a function is also defined in (Dubois and Prade 1991; Tonon et al. 1991). We
state the definition in the language of DS theory as follows (He and Hussaini 2023).

Definition 2 Let u = f (ξ) be a mapping from the domain Z ⊂ RnZ to a domain U ,
and let m be the BBA associated with input variable ξ , where its focal elements are a
finite number ñ of subdomains A1, A2, . . . , Añ (Ai ⊂ Z ), i.e., for any A ⊂ Z ,

mξ (A) =
{
mξ (Ai ), if A = Ai , i = 1, . . . ñ,

0, otherwise,
(6)
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then the BBA of the output u (denoted as mu) is defined as, for any B ⊂ U

mu(B) =
{∑

i∈S mξ (Ai ), S = {i | f (Ai ) = B}, if S �= ∅,

0, otherwise.
(7)

Cumulative belief function (CBF) and cumulative plausibility function (CPF) in
DS theory, which are analogous to the cumulative distribution function in probability
theory, are defined as follows.

Definition 3 Let Bel be a belief function in DS theory, then its cumulative belief
function and cumulative plausibility function are Oberkampf et al. (2001), Yager
(2004)

CBF(z) = Bel(ξ ∈ (−∞, z])), (8)

CPF(z) = Pl(ξ ∈ (−∞, z])). (9)

2.4 Generalized polynomial chaos

In this work, generalized polynomial chaos expansions will be constructed as compu-
tationally cheaper surrogates to approximate the statistics of quantities of our interest
in the stochastic space. Here are the basics.

Let ξ = {ξ1(ω), ξ2(ω), . . . , ξn(ω)} : � → � ⊆ Rn denote a set of n uncorrelated
random variables representing the uncertainty in the system, where ω is defined in
a probability space (�,F ,P): � is sample space, F ⊂ 2� is the σ -algebra and
P : F → [0, 1] is the probability measure. Let u(ξ(ω)) ∈ L2(�,P) be any second-
order random variables, i.e., < u, u >= ‖u‖2� < ∞). Then u can be represented
using gPC expansions (Cameron andMartin 1947; Ghanem and Spanos 1991; Wiener
1938):

u(ξ(ω)) =
∞∑

i=0

ûi	i (ξ(ω)), (10)

where ûi s are called gPC coefficients, which will be decided from specific simula-
tions;	i are generalizedpolynomial chaos,whichoriginate fromHermite polynomials
corresponding to Gaussian distributed random inputs (Wiener 1938), then include
different types of orthogonal polynomials in the Askey scheme corresponding to dif-
ferent types random variables (Xiu and Karniadakis 2003, 2002). In this work, we
will adopt Legendre polynomials with uniformly distributed input parameters. The
first few one-dimensional Legendre polynomials are:

	0(ξ) = 1, 	1(ξ) = ξ, 	2(ξ) = 1

2
(3ξ2 − 1), . . .

and high-dimensional Legendre polynomials can be obtained by taking the product of
univariate Legendre polynomials. Further details can be found in Xiu (2010).
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For the purposes of numerical computing, truncated gPC expansion up to polyno-
mial order p is used to approximate the exact output u(ξ(ω))

u p(ξ(ω)) =
N−1∑

i=0

ui	i (ξ(ω)), (11)

where N = (n+p)!
n!p! is the number of terms. The gPC coefficients ui can be calculated by

projecting u on each basis (with inner product) due to the orthogonality of polynomial
functions. Here is the formula:

ui = < u,	i >

< 	i ,	i >
= 1

E[	2
i ]

∫

�

u(ξ)	i (ξ)η(ξ)dξ , (12)

where η(ξ) is the probability distribution of the variable ξ . This projection method
leads to the best approximation in the weighted L2 norm (Xiu 2010). However,
the accuracy may be strongly influenced by the limited computational resources for
numerical integration especially over high-dimensional space. Alternatively, the gPC
coefficients can also be estimated by simply solving a Least Squares problem using
a dataset—the quantities of interest extracted from a number of full simulations for
the corresponding inputs {ξ ( j), u( j)}Mj=1. The Least Squares problem for the solution
u = [u0, u2, . . . , uN−1] is stated as

u = argmin
ũ

∥∥∥
N−1∑

i=0

ũi	i (ξ) − u(ξ)

∥∥∥
2
, (13)

where ũ = [ũ0, ũ1, . . . , ũN ] denotes an arbitrary gPC coefficient vector that converges
to the desired coefficient vector u through the minimization.

2.5 Sensitivity analysis

With the constructed gPC expansions as computationally cheaper surrogates, one can
further analyze the relations between uncertain inputs and outputs efficiently using
sensitivity analysis. In this section, we introduce a variance-based sensitivity analysis
method—Sobol’ indices (SI), to measure the global sensitivity of flow characteristics
and energetic costs (driving the flow) with respect to the uncertainty in input param-
eters. The Sobol’ indices can help to rank the “importance” of the uncertain input
parameters by comparing the impact of their variation on the considered quantities of
our interest. They are calculated based on the analysis of variance (ANOVA) decompo-
sition of a function u(ξ) as (Sobol’ 1993, 2001; Sudret 2008; Sobol’ and Kucherenko
2005):

u(ξ) = u0 +
∑

i

ui (ξi ) +
∑

i< j

ui j (ξi , ξ j ) + · · · + u1,...,n(ξ1, ξ2, . . . , ξn). (14)
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where
∫

u(ξ) dξ = u0,
∫

u(ξ)�k �=i dξk = u0 + ui (ξi ),
∫

u(ξ)�k �=i, j dξk = u0 + ui (ξi ) + u j (ξ j ) + ui, j (ξi , ξ j ),

and so on.
The Sobol’ indices are the partial variances (attributed to one or more uncertain

parameter interactions {ξi1, ξi2 , . . . , ξir }) normalized by the overall model variance.
The partial variance (Vi1,i2,...,ir ) and total variance (V ) can be expressed in the
following manner:

Vi1,i2,...,ir =
∫

u2i1,i2,...,ir dξi1 . . . dξir ,

V =
∫

u2(ξ)dξ − u20 =
n∑

r=1

n∑

i1<···<ir

Vi1,i2,...,ir .

Therefore, the Sobol’ indices are defined as:

Si1,i2,...,ir = Vi1,i2,...,ir /V . (15)

Numerically, Monte Carlo sampling methods can be used to estimate the Sobol’
indices. Below we describe the sampling procedure from Sobol’ work (Sobol’ 2001).
Denote y = (ξi1, ξi2 , . . . , ξir ), I = (i1, i2, . . . , ir ), the variance corresponding to the
set y is the summation of the variance associated with all the subset of y as

Vy =
r∑

s=1

∑

(k1<···<ks )∈I
Vk1,...,ks .

Based on the following equality from Sobol’ (2001),

Vy =
∫

u(ξ)u( y, z′)dξd z′ − u20,

the quantity Vy can be estimated using the following MC method. First, we gener-
ate two independent set of N random samples for ξ based on its specified probability
density function, denoted as x = (τ, ζ ) and x ′ = (τ ′, ζ ′), where τ are the samples cor-
responding to set of variables y. Then we produce the estimations using the following
formulas:

u0 ≈ 1

N

N∑

j=1

u(x j ),
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V ≈ 1

N

N∑

j=1

u2(x j ) − u20,

Vy ≈ 1

N

N∑

j=1

u(x j )u(τ j , ζ
′
j ) − u20.

Note: In the probabilistic framework where the probability density function is spec-
ified for each random input, Sobol’ indices can be estimated more efficiently using
gPC coefficients directly (Sudret 2008). However, in the non-probabilistic setup as in
our current work with uncertain but not random inputs, gPC is constructed to serve as
computational cheaper surrogate.

3 Problem setup

In this section, we specify the uncertain input parameters and the considered quantities
of interest from peristalsis model.

3.1 Flow characteristics and energetic cost

In order to study the fluid motion produced by the pumpingmodel simulations, several
non-dimensional qualities of interest from the fluid flow and pressure were calculated
for each simulation. Raw data from the simulation was imported into VisIt 3.3 (Childs
et al. 2012) and python scripts (Python 2) were used to automate calculations across
the Eulerian grid. Results from these calculations were then imported into R v4.0.2 (R
CoreTeam2021) for calculation of simulation-wide performance values.All code used
to calculate these values can be found in the Github repository: https://github.com/
lindsaywaldrop/peri-gPC-git. All positive flow motion indicates counter-clockwise
movement in the racetrack, the same direction as the traveling peristaltic waves. All
values presented are dimensionless.

The magnitude of the dimensionless fluid velocity was recorded in IBAMR at
each time-reporting step in the simulation (see Fig. 3 for examples of flow profiles of
both pumping models). These values were then spatially averaged in VisIt across the
diameter of the tube in four areas (immediately upstreamof the heart tube, immediately
downstream of the heart tube, in the connecting U perpendicular to the contraction
wave, and in the middle of the still circulatory system parallel to the contraction wave,
see Figs. 1 and 3) to find the mean speeds, (|u′|). The mean speeds (|u′|) were then
temporally averaged to find the average flow speed across each simulation (Uavg). At
each reporting time step, the maximum value of flow speed (u′

m) was taken in VisIt
and the maximum of these values represents peak flow speed (Upeak).

Each reporting time step of the simulation also yielded non-dimensional pressure.
These were spatially averaged at each time step near the immediate upstream and
immediate downstream of the heart tube. For each simulation, both positions were
averaged temporally to find pin and pout , respectively. The difference of these values
represents �P .
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Fig. 3 Flow dynamics in the circulatory system produced by a sine-wave and b Gaussian-peak peristalsis
models for a simulation where f = 1.68Hz, CR=0.888, and Wo=1.216. Dark grey points lines represent
the flow speed in the upper connecting tube (�U in Fig. 1a) averaged across its diameter. Red points and
lines represent the maximum flow value of the averaged profile at �U for that time step

Volume flow rate was calculated with the velocity provide perpendicular to axis
of the heart tube for each simulation, analyzed in VisIt. Each value at each reporting
time step was used to calculate a concentric ring of fluid that passed through the tube
during that time step based on the velocity at that position in the tube. These rings
were summed to find the volume flow rate at that time step, then these values were
averaged temporally to find the average volume flow rate of the simulation, Q.

The cost of transport (COT ) was computed using the mean flow speed, the average
force magnitude at each of the Langrangian points of the tube driving motion, and the
contraction velocity of the tube. For additional details of this calculation, see Waldrop
and Miller (2016), Waldrop et al. (2020k).

3.2 Uncertain input parameters

As stated in our previous work (Waldrop et al. 2020k), based on potential effects
on functional performance and the ability of the parameter to vary in animals with
valveless, tubular hearts, and their representation in the model, three parameters were
selected: Compression ratio (CR), which measures percent occlusion of the tube dur-
ing a compression event. Compression frequency ( f ), which reflects the number of
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compression events per unit time, andWomersley number (Wo), a ratio of inertia over
viscous forces in flow, which reflects roughly the fluid regime of many tubular hearts.

Each of these parameters affects the system in different ways. CR serves to build
pressure against the resistive circulatory system and drive fluid forward. f determines
the time elapsing between beats. Wo describes the inertial components of flow to
viscosity, determining how much force is needed to overcome the viscous resistance
of the circulatory system to flow.

The value ranges for each parameter were gathered from both observations and
published values of hearts for tunicates (Kalk 1970; Heron 1973; Bone et al. 1997;
Waldrop and Miller 2015; Konrad 2016), the mosquito Anopheles gambiae (Glenn
et al. 2010), an embryonic fish Danio rerio (Forouhar et al. 2006), and embryonic
chickens (Hu and Clark 1989; Midgett et al. 2014).

Based on these values, we make the following assumptions regarding the further
distributions of these three parameters inside the whole ranges: CR varies from 0.4
(reduction of 40% of the tube’s diameter) to 0.95 (reduction of 95% of the tube’s
diameter); f varies between 0.5 and 2.0 beats per second; and Wo varies between 0.1
and 10. Rigorous construction of belief functions from data is out of the scope of the
current work.

1. The frequency f is assumed to be stochastic and uniformly distributed over the
range [0.5, 2].

2. The Womersley number Wo is a non-probabilistic uncertain variable associated
with a BBA (the m-function) as

mWo(D1,1) = 0.4;mWo(D1,2) = 0.4;mWo(D1,3) = 0.2,

where the focal elements Di s are overlapped intervals

D1,1 = [0.1, 1); D1,2 = [1, 10]; D1,3 = [0.1, 10].

3. The compression ratio CR is another non-probabilistic uncertain variable associ-
ated with a BBA as

mCR(D2,1) = 0.3;mCR(D2,2) = 0.2;mCR(D2,3) = 0.3;mCR(D2,4) = 0.2,

where the focal elements Di s are overlapped intervals

D2,1 = [0.4, 0.5); D2,2 = [0.5, 0.8); D2,3 = [0.8, 0.95]; D2,4 = [0.4, 0.95].

4 Methods

In this section, we introduce the numerical strategy for mixed uncertainty propagation
in the computational model of peristalsis, and the calculation of Sobol’ indices in the
framework of Dempster–Shafer theory.
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4.1 Mixed uncertainty propagation

As assumed in the problem setup, both epistemic and aleatory uncertainties exist in the
system. Furthermore, the epistemic uncertainty is characterized by the uncertain non-
probabilistic variables ξ = {Wo, CR} ∈ Z associated with BBAs, while the aleatory
uncertainty is characterized by random variable f ∈ Y associated with a uniform
distribution. The mixed types of uncertainty are propagated through the system, and
the goal is tomathematically represent the uncertainty in the output (using flowvolume
rate Q as an example) Q(ξ, f ) ∈ Z × Y .

Dealingwith aleatory uncertainty usingMonteCarlo simulation.With the available
probability density function (denoted as η( f )) for the random variable f , one can
calculate the statistics of output Q over the stochastic space Y , such as its expectation
(denoted as E) and standard deviation (denoted as S)

E(ξ) = E[Q(ξ, f )|ξ ] =
∫

Y
Q(ξ, f )η( f )d f , ξ ∈ Z . (16)

S(ξ) =
√
E[Q2(ξ, f )|ξ ] − E2(ξ) =

√∫

Y
(Q(ξ, f ) − E(ξ))2η( f )d f . (17)

Numerically, we approximate the integration using Monte Carlo simulations as

E(ξ) ≈ 1

M

M∑

i=1

Q(ξ, f (i)), S(ξ) ≈
√√√√ 1

M

M∑

i=1

(Q(ξ, f (i)) − E(ξ))2, (18)

where f (i) (i = 1, . . . , M) are the samples of random variable f drawn based on its
uniform distribution.

Due to the mixed types of uncertainty, such statistics (e.g., E(ξ), S(ξ )) are not
deterministic, but functions of the non-probabilistic variable ξ over the domain Z .
Since a BBA is associated with the input variable ξ , the goal then becomes to obtain
a BBA for the statistics of model output efficiently.

Dealing with epistemic uncertainty using DS theory. Consider the statistics (with
E(ξ) as an example), where ξ = {Wo,CR} ∈ Z . Uncertainty propagation using DS
theory is to find the BBA (m-function) for the output E given the BBAs for each
elements of input vector ξ .

We first construct two-dimensional belief structure for ξ by taking the Cartesian
product over both the directions of ξ . The universal set will be Z = Z1 × Z2. The
focal elements are Dk = D1k1 × D2k2 for 1 ≤ k ≤ 3 × 4, where Dk is a two-
dimensional hypercube. The focal elements are visualized in the left plot of Fig. 4. The
mass of each focal element is mξ (Dk) = m1(D1k1)m2(D2k2). For example, let Dk =
[0.1, 1]×[0.8, 0.95] as inFig. 4, thenm(Dk) = mWo([0.1, 1])mCR([0.80.95]) = 0.12.
The construction can be easily extended to higher-dimensional belief structure as
described in He and Hussaini (2023).

The uncertainty in ξ , represented by the two-dimensional BBA, is propagated
through the peristalsis heart pumping system and accumulated in the uncertainty of
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Fig. 4 Illustration of epistemic uncertainty propagation

the output flow volume Q(ξ), and consequently its statistics E . The BBA of the output
E (based on Def. 2) can be used to represent the uncertainty in E . For the purpose of
numerical computation, we construct the BBA by first solving a pair of optimization
problems in each hypercube Dk .

Bk,1 = min
ξ∈Dk

E(ξ), Bk,2 = max
ξ∈Dk

E(ξ).

Under the assumption that the output flow volume Q is continuous in Z , the interval
Bk = [Bk,1, Bk,2] becomes one focal element of the BBA for E with belief mass
mξ (Dk). For example, as shown in Fig. 4, two optimizations of E(Q|ξ) for pinch
model over the domain Dk are carried out, and the interval from Bk,1 = 0.0228 to
Bk,2 = 0.0441 forms one output focal element with belief mass 0.12. As stated in He
and Hussaini (2023), the BBA of the output E should have the same number of focal
elements as the BBA of ξ unless there are more than one hypercubes corresponding
to the same focal element for E .

4.2 Physics constrained gPC for surrogates

The introduced approach can be computationally expensive due to the large number of
simulation runs, required by the evaluation of statistics and the optimization algorithm.
To reduce the computational cost, we construct a computationally cheaper surrogate
(e.g., QgPC) using gPC expansion to approximate the full simulation Q so that the
uncertainty in the model output can be represented more efficiently.

QgPC(ξ) =
N−1∑

i=0

qi	i (ξ). (19)

The adoption of efficient gPC method can improve our ability to study complex CFD
models.

In this work, we runM = 681 full CFD simulations and extract a set of quantities of
interest corresponding to the inputs ξ . With the data set, we obtain the gPC coefficient
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Fig. 5 Comparison of gPC expansion for COT with respect to CR and f a without positivity constraint,
and b with positivity constraint

using least squares method as in Eqn. 13. However, the obtained surrogates QgPC
purely from data set (simulation outputs) may not satisfy some important physical
properties of the underlying problem, such as the conservation principles expressed
with partial differential equations in fluid dynamics, other physical or biological con-
straints present in the system, or positivity of some quantities of interest. To produce
physically more meaningful surrogates from data-driven approaches, we introduce
the physical constraints into the process of surrogate construction. Specifically, we
enforce positivity for the flow volume Q in the gPC expansion. Since it is challenging
to enforce the constraints over the entire space (Swiler et al. 2020), we relax the global
requirement and enforce the constraints on the surrogate prediction QgPC(ξ) from
gPC over a finite set of “virtual” points ξ ci . Then we can minimize the L2 norm of

the difference between gPC expansion prediction Q( j)
gPC and deterministic simulation

output Q( j) ( j = 1, . . . , M) subject to the physical constraints with respect to the
gPC coefficients q = {q0, . . . , qN−1}.

min
q

‖QgPC(ξ , q) − Q(ξ)‖2,
s.t. QgPC(ξ ci , q) > 0, i = 1, . . . , nc (20)

The constructed surrogate QgPC can serve as efficient yet quantitative regimes within
input parameter spaces, and further be used for model prediction and uncertainty
analysis.

For the purpose of illustration, we provide an example of comparison between gPC
expansion with positivity constraint and the one without the constraint. Specifically,
we consider COT from sine wave model as current QoI and enforce the positivity
constraint during the construction of gPC expansion over three dimensions. For a
better visualization, we have plotted the surfaces with varying CR, f and a fixed
Wo= 5.05 in Fig. 5. One can obverse that gPC expansion constructed from data points
only results in negative COT (below the grey surface with zero values in Fig. 5a), while
gPC expansion with physics constraints satisfies the desired property.
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4.3 Exploratory sensitivity analysis in the framework of DS theory

The variance-based global sensitivity analysis is introduced in the framework of prob-
ability theory. To implement it in DS theory, there are a few challenges as stated in the
work from Helton et al. (2006a): (i) How to specify the probability density function
that are consistent with the belief structure, (ii) How to implement the analysis in a
computationally practicable manner, and (iii) how to display the SA results. Regarding
the first challenge, we adopt the exploratory approach from Helton et al. (2006a) to
select three representative probability density functions: one distribution uniform over
the range of each focal element (uniform), another one emphasizing the smaller val-
ues associated with each focal element (left quadratic), and the third one emphasizing
the larger values associated with each focal elements (right quadratic). For example,
over the j-th focal element [ai, j , bi, j ] associated with uncertain variable ξi , the three
distributions for uniform, left quadratic and right quadratic are provided here as dui j ,
dli j and dri j , respectively:

dui j (ξi ) = 1

(bi, j − ai, j )
, dli j (ξi ) = 3(bi, j − ξi )

2

(bi, j − ai, j )3
, dri j (ξi ) = 3(ξi − ai, j )2

(bi, j − ai, j )3
,

if ξi ∈ [ai, j , bi, j ] and dui j (ξi ) = dli j (ξi ) = dri j (ξi ) = 0 otherwise. In turn, the
uniform, left quadratic and right quadratic distributions for ξi over the universal set
[ai , bi ] is given by

dci (ξi ) =
Ci∑

j=1

mi ([ai, j , bi, j ])dci j (ξi ),

where c = u, l, r , and Ci is the number of focal elements for ξi .
To mitigate the second issue, we construct gPC approximation as surrogate over

the whole domain. The computational cost mainly lies in the construction of gPC sur-
rogate. The estimation of variances and consequently the estimation of Sobol’ indices
with constructed surrogate has relatively negligible computational cost. Regarding the
third issue, similar as in Helton et al. (2006a), we plot a spectrum of sensitivity analysis
results (carried out for each individual probability distribution) together instead of a
single SA result.

5 Numerical examples

In this section, we mathematically represent the uncertainty in flow volume rate, cost
of transport and work for both sine-wave and Gaussian-peak peristalsis models. In
addition, the sensitivity of considered quantities of interestwith respect to the uncertain
inputs are analyzed and the Sobol’ indices are provided.
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Fig. 6 Statistics surfaces of COT averaged over stochastic space: a mean surface, and b standard deviation
surface

5.1 Quantities with sine wave

5.1.1 Surrogate surfaces

The introduced method is applied to quantify the mixed types of uncertainty in the
output quantities of interest propagated from the uncertainty in inputs. In other words,
theQoI statistics are obtained in stochastic space corresponding to aleatory uncertainty
and thenBBAs are constructed to represent the epistemic uncertainty in the conditional
statistics value of the outputQoI. To increase the computational efficiency, gPCmethod
is adopted to construct a surrogate model as an approximation. Take the QoI COT from
sine wave as an example, the two-dimensional gPC expansions of expectation and
standard deviation (over stochastic space) with respect to the two non-probabilistic
uncertain variable Wo and CR are provided in Fig. 6.

5.1.2 Uncertainty representation for COT

Using the constructed surrogate model with approximation order n = 2, the BBA
of the numerical conditional expectation mE(COT) is then constructed. As mentioned
earlier, the m-function of the uncertain inputs have 12 focal elements associated with
different degrees of belief mass. Therefore, the number of focal elements formE(COT)

will also be 12 and the belief masses will be the same as the ones of their corresponding
input focal elements (optimization domains). The focal elements and the belief masses
are:

→ B1 = [1.57, 2.21] · 107, mEn ([B1]) = 0.12,

→ B2 = [1.10, 2.04] · 107, mEn ([B2]) = 0.12,

B3 = [1.10, 2.21] · 107, mEn ([B3]) = 0.06,

B4 = [0.80, 1.74] · 107, mEn ([B4]) = 0.08,

B5 = [0.26, 1.57] · 107, mEn ([B5]) = 0.08,

B6 = [0.26, 1.74] · 107, mEn ([B6]) = 0.04,
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Fig. 7 Sine COT: a focal elements with the highest belief mass; b cumulative functions for the expectation,
and c cumulative functions for the standard deviation

→ B7 = [0.76, 0.98] · 107, mEn ([B7]) = 0.12,

→ B8 = [0.20, 0.80] · 107, mEn ([B8]) = 0.12,

B9 = [0.20, 0.98] · 107, mEn ([B9]) = 0.06,

B10 = [0.76, 2.21] · 107, mEn ([B10]) = 0.08,

B11 = [0.20, 2.04] · 107, mEn ([B11]) = 0.08,

B12 = [0.20, 2.21] · 107, mEn ([B12]) = 0.04.

From the BBA, one can conclude that the expectation of the output solution will
be inside the intervals B1, B2, B7 and B8 with maximum degree of belief 0.12 (see
Fig. 7a), and no preference will be given to any more specific subsets of those intervals
due to the mixed types of uncertainty. With obtained BBA mEn , the CBF and CPF are
calculated and plotted in Fig. 7b, which bound the possible true cumulative distribution
function (CDF) of the expectation of output E(COT|Wo, CR). For example, if it is
assumed thatWo and CR are both random, and furthermore the distribution under each
focal elements are uniform, the CDF can be constructed to represent the uncertainty in
E(COT|Wo, CR) instead of CBF and CPF. As expected, the dashed curve (CDF) falls
between the CBF and the CPF since the CDF with uniform distribution is a special
case of all possible probability distributions consistent with the belief/plausibility
structure. With CBF and CPF, one can make conclusions about the quantity E(COT).
For example, if the proposition E(COT) ≤ 1.2 is considered, one can conclude that
probability of the proposition being true is bounded between 0.3 and 0.88. Similarly,
the BBA of numerical conditional standard deviation mSn is also constructed, and the
corresponding CBF/CPF are plotted in Fig. 7c, which bounds the CDF obtained under
assumption of uniform distribution over each focal elements.

5.1.3 Uncertainty representation for volume flow rate Q

We are also interested in the output volume flow rate. Again, the mixed types of uncer-
tainty in Q is represented using the BBA of the conditional expectation E(Q|Wo, CR)

and conditional standard deviation S(Q|Wo, CR). The CBF and CPF are then calcu-
lated from BBA and the figures (see Fig. 8) are provided here for a better visualization.
From the curves of CBF and CPF, one can observe the lower and upper bounds of how
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Fig. 8 CBF, CDF and CPF for statistics of Sine volume flow rate: a expectation, and b standard deviation

Fig. 9 CBF, CDF and CPF for statistics of Sine work: a expectation, and b standard deviation

likely that the conditional expectation and conditional standard deviation is below a
fixed value. For example, the true probability of E(Q|Wo, CR) ≤ 0.02 is bounded by
0.3 and 0.7, and the true probability of S(Q|Wo, CR) ≤ 0.0035 would be bounded
by 0.5 and 1. Similarly, one example of CDF (under the assumption that Wo and CR
are uniform under focal elements) is provided for both expectation E(Q) and stan-
dard deviation S(Q), and plotted in Fig. 8. As expected, the CDFs are bounded by the
corresponding CBFs and CPFs.

5.1.4 Uncertainty representation for work

Work is another output quantity of our interest that we investigate the mixed types
of uncertainty. Similarly, from the constructed BBA for conditional expectation
E(work|Wo, CR) and conditional standard deviation S(work|Wo, CR), we calculate
the corresponding CBF and CPF and plot the curves in Fig. 9. We also provide the
same example of one CDF under the assumption of uniform distribution in each focal
elements, which are bounded by the corresponding CBF and CPF as expected.
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Fig. 10 CBF, CDF and CPF for statistics of Pinch wave model: a expectation for COT pinch, b expectation
for Q pinch, c expectation for work pinch, d standard deviation for COT pinch, e standard deviation for Q
pinch, and f standard deviation for work pinch

5.2 Quantities with pinch wave

We also study the mixed types of uncertainties in the output of pinch model, where
the motion of the boundary is defined as two sharp, Gaussian peaks. Similarly, we
consider the cost of transport (COT), flow volume rate (Q) and the work.

The CBF and CPF (lower and upper bounds of possible true CDF) and one exam-
ple of CDF (under the assumption of uniform distribution within each focal elements)
are calculated for the conditional expectation and conditional standard deviation of
the QoIs from the pinch model. The curves are plotted in Fig. 10. For the cost of
transport, one can observe that P(E(COT|Wo, CR) ≤ 2.22e + 7) is below 0.62 for
pinch wave model, compared to P(E(COT|Wo, CR) ≤ 2.22e + 7) = 1 for sine
wave model. For flow volume rate, the plot shows that the possible true probability
of E(Q|Wo, CR) ≤ 0.01 is bounded by 0.3 and 0.7 (for both sine wave and pinch
model), and 0.5 ≤ P(E(Q|Wo, CR) ≤ 0.03) ≤ 1 for the pinch model (compared to
0.38 ≤ P(E(Q|Wo, CR) ≤ 0.03) ≤ 1 for the sine wave model). For work, we have
0 ≤ P(E(work|Wo, CR) ≤ 1000) ≤ 0.3 (compare to 0.12 ≤ P(E(work|Wo, CR) ≤
1000) ≤ 0.88 from sine wave model) and P(E(work|Wo, CR) ≤ 14000) = 1 (com-
pare to 0.38 ≤ P(E(work|Wo, CR) ≤ 14000) ≤ 1 from sine wave model). Similarly,
the bounds of the probability of conditional standard deviation of QoIs less than any
fixed value can also be read from the bottom row of Fig. 10. If one is interested in
a fixed probability number instead of the bounds, under the assumption of a special
case (e.g., uniform distribution within focal elements), the probability of conditional
statistics less than a fixed value can be found from the middle dashed curves in each
plot.
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Fig. 11 Conditional expectation E(Q|Wo, CR): a surface—sine-wave model, b surface—pinch model,
c focal elements with highest belief mass—sine-wave model, and d focal elements with highest belief
mass—pinch model

5.3 Flow characteristics comparison between peristalsis models

For the comparison purposes, we have provided the surfaces and m-functions (focal
elements with the highest belief mass) for the expectation of flow volume rate from
the two peristalsis models with sine-wave and Gaussian pinch wave, respectively (See
Fig. 11). The left side figures are for sine-wave model while the right side figures are
for pinch model. From the top surface plots, one can observe that flow volume rate
from both models varies more along the CR direction compare to the Wo direction.
Another observation is that when CR ∈ [0.4, 0.5), the changing rate of E(Q|Wo, CR)

for sine-wave model is relatively larger than the one for pinch model, which indicates
the larger span in the corresponding output ranges. This observation is reflected in
the two focal elements (corresponding to CR ∈ [0.4, 0.5)) of the m-functions (bottom
plots), i.e., the focal elements (towards to “0” side) for sine-wave model have larger
size than the ones for pinch model. In addition, for a fixed CR ∈ [0.8, 0.95), one can
also observe from the surface plots that flow volume rate varies slightly more along
Wo direction in sine-wave model compared to that in pinch model. This is reflected
by the deviation of purple color focal elements from the blue color focal elements
(toward to “0.06” side), i.e., the focal elements (in blue and purple color) overlaps less
for sine-wave model compared to pinch model. Based on the observations (heuristic
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Fig. 12 Boxplot of 100 trials Sobol’ indices for pinch cost of transport with the assumptions of: a uniform
distribution, b left quadratic distribution, and c right quadratic distribution over each focal elements

analysis), one may have some expectations regarding sensitivity: for both models, Q is
very likely to be more sensitivity to CR compared to Wo; between these two models,
it is possible for Wo to have a slightly more impact on Q from sine-wave model than
the one from pinch model.

5.4 Sensitivity analysis

To further investigate the relation between QoIs and the input factors, and study the
impact of uncertainty in input parameters on themodel output,we implement the global
sensitivity analysis with the method introduced in Sect. 4.3. Specifically, we calculate
the Sobol’ indices under three assumption of uniform, left quadratic and right quadratic
distribution for uncertain variables in each focal element. For each of the three assumed
distributions, MC method has been implemented with 1,000,000 sample size. We ran
100 experimental trials, and the boxplots of the obtained Sobol’ indices are plotted
in Fig. 12 for COT from pinch wave model as an example. Figure12a illustrates the
Sobol’ indices under assumption of uniform distribution. Inside the figure, the center
mark (red color) in each box is the median, the edges of the box are the 25th and 75th
percentiles, the whiskers extend to the most extreme datapoints under consideration,
and the excluded outliers are plotted individually. The results under assumptions of
left quadratic and right quadratic distributions are provided in Fig. 12b, c, respectively.
From the figures, one can conclude that the variation of CR has the most impact on the
cost of transport for the pinch wave model for all the considered density distributions.
In the remaining of this section, we will provide the bar graph representation of the
median Sobol’ indices from all three distributions together in one plot.

Using the same pinch model COT as an example, we provide the convergence of
Sobol’ indices calculated with all three representative distributions with respect to
the sample size (see Fig. 13). The curves with different colors in all figures represent
three uncertain inputs and their four interactions. One can observe that the ranking of
“important” input factors (or their interactions) becomes reliable with a few thousands
of samples, and the Sobol’ indices (precise numbers) are converged before reaching
our implementation sample size 1,000,000.

The Sobol’ indices for volume flow rate from both sine-wave and pinch models are
plotted in Fig. 14. In each plot, the indices with assumption of uniform distribution
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Fig. 13 Convergence of Sobol’s indices for pinch COT with respect to sample size: a uniform distribution,
b left quadratic distribution, and c right quadratic distribution over each focal elements
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Fig. 14 Sobol’ indices for volume flow rate: a with sine-wave model, and b with pinch model

(in each focal element) are visualized in blue color (left) bars, the ones with assump-
tion of left quadratic distribution are shown in red color (middle) bars, while right
quadratic distribution is corresponding to the orange bars (right). The conclusion that
compression ratio CR has the most impact on the volume flow rate can be drawn
regardless of the assumption of distributions inside focal elements and of the models.
This is consistent with the previous study on experimental and analytical studies of
peristalsis where the wave speed is decoupled from the compression frequency (Wal-
drop and Miller 2016). It also matches our expectation from the heuristic analysis in
Sect. 5.3. The impact of other variables (or the combination of variables) on the flow
is negligible compared to compression ratio.

The Sobol’ indices for the energetic costs (work and COT) from both sine-wave
and pinch models are plotted in Fig. 15. The top row of the figure shows that the
work done on the tube during pumping is strongly influenced by Wo and f . For the
sine-wave model of peristalsis, work is relatively more sensitive to f . While for pinch
model, work is slightly more sensitive to Wo. For both models, work is also sensitive
to the interaction ofWo and f . The afore-mentioned conclusions are consistent for the
assumptions of all three distributions. The bottom row shows the sensitivity analysis
of COT with respect to the three individual factors and their interactions. One can
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Fig. 15 Sobol’ indices for energetic costs of driving the flow: a work sine, b work pinch, c COT sine, and
d COT pinch

observe that COT is most sensitive to CR in pinch model while more sensitive to both
CR and f in sine wave model.

This difference in sensitivity patterns in COT between the two pumping models
is likely due to difference in mechanism. The sine-wave peristalsis assigns pre-
ferred motion to the majority of the active region of the tube, spreading the force
required to compress the tube along a greater region. In comparison, the Gaussian-
wave model assigns preferred motion to only the peak region, likely making this type
of compression more expensive relative to compression ratio than the other method.

5.5 Model reduction with SA

In our current work, we have first constructed gPC expansions as surrogates, and then
implement uncertainty propagation and sensitivity analysis separately (can be in any
order or simultaneously). However, when the dimension of uncertain input space is
large, sensitivity analysis can be implemented first to identify “important” uncertain
parameters. The remaining ones can then become deterministicwith a fixed value since
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Fig. 16 CBF and CPF for pinch model: a volume flow rate Q, and b COT

their variations do not contribute as much to the uncertainty in outputs. Consequently,
the dimension of uncertain input space an be reduced as well as the complexity of the
problem. Asmentioned in Sect. 4.1, the mixed UQ algorithm requires to solve a pair of
optimization problems over each focal element (hypercube) of high-dimensional belief
structure. Not only the dimension of each optimization space increases along with the
number of uncertain input associated with belief functions, but also the number of
focal elements over whole epistemic uncertain space (consequently, the number of
optimization problems) increases exponentially along with it. Therefore, it is possible
to reduce the computational cost exponentially with the help of sensitivity analysis.

For the purposes of illustration, we have taken pinch model as examples and ana-
lyzed the uncertainty in volume flow rate Q and cost of transport COT. From the
sensitivity analysis results (Figs. 14b and 15d), the uncertainty in CR has the most
impact on both Q and COT, where the latter one also has certain level of dependence
onWo and frequency. In this numerical experiment, we consider CR as the only uncer-
tain variable, and fixedWo= 1, f = 1.25. The propagated uncertainties in Q and COT
are represented with the CBFs/CPFs (Fig. 16 blue curves), compared to the ones with
full dimension of original uncertain space (Fig. 16 black curves). The left figure is for
volume flow rate Q while the fight figure is for cost of transport. As expected, the one
for flow volume rate Q almost represents the full uncertainty, while the one for COT
requires some compromise in accuracy.

6 Discussion and conclusions

In this work, we introduce the theoretical basics fromDS theory, present the numerical
approach based on DS theory combined with MC sampling for mixed types of uncer-
tainty propagation, and apply the approach to the computational model of peristalsis
heart pumping system. To reduce the computational cost of MC method in stochastic
uncertainty propagation process and the cost of the sampling method based optimiza-
tions in epistemic uncertainty propagation, gPC method is adopted to construct a
cheaper surrogate to approximate the full simulations. With the approach, the mixed
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uncertainty in QoIs of computational model of peristalsis has been represented using
belief structures (CBFs/CPFs) for the conditional expectation and standard deviation,
which help to provide more information on QoIs such as the lower/upper bounds for
the true possible probability of any propositions on QoIs. To further analyze the rela-
tion between the QoIs and uncertain input factors, we have implemented exploratory
global sensitivity analysis in the framework of DS theory. The impact of the uncer-
tainty in each individual input factors and their interactions on the QoIs are studied
and compared between two peristalsis models.

The introducedmixedUQmethod is comprehensive since it dealswith both stochas-
tic and epistemic uncertainties with different types. Thus, it is capable of uncertainty
analysis for general biological models involving different types of uncertainties. In
addition, the method considers the simulation of heart tube flow as a black box, the
non-intrusive nature makes it ready to be applied to a more general simulation-based
setting from various fields of applications. However, it can become computational
expensive for complex problems with high-dimensional uncertain input space since
the number of optimization problems increases exponentially along with the dimen-
sion as mentioned in Sect. 5.5. To reduce the computational cost, one may implement
the sensitivity analysis for model reduction first, explore more efficient global opti-
mization algorithms, and/or adopt efficient surrogate methods for high-dimensional
problems. In addition, the exploratory global sensitivity analysis uses three represen-
tative probability density functions that are compatible with the belief structure and
calculate the Sobol’ indices using Monte Carlo method in the framework of proba-
bility theory. This extension (in the framework of Dempster–Shafer theory) is easy
to understand and implement, which makes it convenient to be applied to systems
involving epistemic uncertainty to identify “important” uncertain (both probabilistic
and non-probabilistic) input factors.

In terms of the animal system, the current results suggest that the physical mech-
anism of driving flow is very important for understanding the underlying pattern of
parameter sensitivity. While both pumping models produced similar patterns of sensi-
tivity in terms of volume flow rate, these patterns were different for cost of transport.
The physical mechanism of pumping for many tunicates and other tubular hearts is
likelymuch closer to theGaussian-wave peristalsis, having a sharp point of contraction
that travels down an otherwise flexible heart tube. In this case, the cost of transport was
much more sensitive to compression ratio than for the sine-wave model. The physical
mechanism of pumping, therefore, is critically important to the overall conclusions of
a parameter study and should be chosen carefully.
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