FIBREWISE STRATIFICATION OF GROUP REPRESENTATIONS

DAVE BENSON, SRIKANTH B. IYENGAR, HENNING KRAUSE, AND JULIA PEVTSOVA

Abstract. Given a nite cocommutative Hopf algebra A over a commutative
regular ring R, the lattice of localising tensor ideals of the stable category of
Gorenstein projective A-modules is described in terms of the corresponding
lattices for the bres of A over the spectrum of R. Under certain natural
conditions on the cohomology of A over R, this yields a stratication of the
stable category. These results apply when A is the group algebra over R of a
nite group, and also when A is the exterior algebra on a nite free R-module.
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1. Introduction

Following the seminal work of Hopkins [24] and Neeman [34] in stable homotopy
theory and commutative algebra, much attention has been paid in the past few
decades to the problem of classifying the thick subcategories of nite dimensional
representations over various families of algebras, and also of the localising subcat-
egories of all representations. In terms of the language and machinery developed in
[11, 12], the goal is to prove stratication theorems. For example, in the case of
modular representations of a nite group, the thick tensor ideal subcategories of the
small stable module category were classied in [8], while the tensor ideal localising
subcategories of the large stable module category were classied in [13]. These results
were generalised to cover all nite group schemes over elds in [16].

In this paper we address the problem of change of coecients, with a focus on
representations of group algebras of nite group schemes, and in particular, of nite
groups. Let A be the group algebra of a nite group scheme over a commutative
noetherian ring R; in other words, A is a cocommutative Hopf algebra that is nitely
generated and projective over R. For example, A could be the group algebra RG of a
nite group G. The appropriate analogue of the stable category of nite dimensional
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representations over a nite group, or group scheme, is the singularity category of A,
in the sense of Buchweitz [18] and Orlov [37]. By a result of Buchweitz, this is
equivalent to the stable category of Gorenstein projective A-modules:

GprojA | Dsg(A) := DP(modA)=DPe'f(A):

An A-module is said to be Gorenstein projective if it occurs as a syzygy in an
acyclic complex of projective A-modules. The Gorenstein projective modules in
mod A form a Frobenius category, with projective-injective objects the projective A-
modules; Gproj A is the corresponding stable category. We also have to consider all
Gorenstein projectives, not only the nitely generated ones, and the corresponding
stable category GProjA. The category GProj A is triangulated and compactly
generated; the subcategory of compact objects is equivalent to GprojA.

From now on assume that R is regular, for example, R = Z. In this case, a nitely
generated A-module is Gorenstein projective precisely when it is projective when
viewed as an R-module. The same holds also for innitely generated A-modules
when in addition dim R is nite, that is to say, when R has nite global dimension; see
Lemma 3.10. Since A is a Hopf algebra over R, the tensor product over R induces
on GprojA the structure of a tensor-triangulated category and also on GProjA.
Moreover GProj A is rigidly compactly generated. Our goal is to classify the thick
tensor ideals of Gproj A and the localising tensor ideals of GProjA.

One approach would be to extend methods developed in the case where R is a
eld to cover more general coecient rings. In this work, we take a dierent tack, by
viewing A as a family of Hopf algebras parameterised by SpecR, the Zariski
spectrum of R. The bre over each point p in SpecR is the nite dimensional Hopf
algebra Ax(p) = A
r k(p), where k(p) is the residue eld at p. The results of [16] apply to yield a
stratication of GProj Ay(p) in terms of the projective spectrum of the cohomology
ring of Ai(p). Then the task becomes one of ‘patching’ these local stratications to
obtain a global stratication of GProj A in terms of the projective spectrum of the
cohomology ring of A.

There are two aspects to this task: one representation theoretic and the other
purely cohomological. The former is completely solved by the result below that
can be viewed as a brewise criterion for detecting membership in localising tensor
ideals. We deduce it from Theorem 4.6 that deals with the full homotopy category
of projective A-modules.

1.1. Theorem. Let R be a regular ring, A a nite cocommutative Hopf R-algebra,
and M; N Gorenstein projective A-modules. The conditions below are equivalent.
(1) M 2 Loc
(N) in GProjA;
(2) Mk(p)z Loc
(Nk(p)) in GProjAy(p) for each p 2 SpecR.

The cohomological aspect concerns the relationship between the bres of the
cohomology algebra S := Ext (/B; R) of A and the cohomology algebra of the bres
of the R-algebra A. Namely, for each p in Spec R there is natural map

p: S
R k(p) 1 Exty, (k(p);k(p))

of k(p)-algebras. The question is when this map induces a bijection on spectra. Its
import is clear from the next result.

1.2. Theorem. Let R be a regular ring and A a nite cocommutative Hopf algebra
over R. If the map , induces a bijection on spectra for each p in SpecR, then
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the tensor-triangulated category GProj A is stratied by the action of S, and the
support of GProj A is ProjS.

This result is proved at the end of Section 4, where we recall what it means
for a tensor-triangulated category to be stratied by an action of a ring. For now it
suces to record that the result above yields the sought after classication of
localising tensor ideals of GProj A and of the thick tensor ideals of GprojA.

The hypothesis on p holds for the group algebra A = RG over a nite group. This
is a result of Benson and Habegger [10]. The proof there is lacking detail, so we
provide a full proof here in greater generality; see Theorem 5.5, and also the recent
work of Lau [33, Section 7]. Putting this together with Theorem 1.2 yields the
following stratication result.

1.3. Theorem. With G a nite group and R a regular ring, the tensor-triangulated
category GProj RG is stratied by the action of the group cohomology ring H(G; R).

In fact we prove this stratication result for the slightly bigger compactly gener-
ated tensor-triangulated category K(Proj RG) consisting of complexes of projective
RG-modules up to homotopy. The subcategory of compact objects identies with the
bounded derived category D®(mod RG). Another case where Theorem 1.2 ap-plies
is when A is an exterior algebra, over a nite free R-module, regarded as a Z=2-
graded Hopf algebra; see Example 4.14.

So far we have focused on Hopf algebras, but in fact an appropriate version of
Theorem 1.1 holds for any nite projective R-algebras A; see Theorem 2.1. In such
contexts the natural cohomology ring to consider, vis-avis stratication, is the
Hochschild cohomology of A over R. It is plausible that the analogue of the map
in that context is the key to patching brewise stratication, when available, to get a
global stratication result for A.

Related works. For G a nite group and R a regular ring, the classication of thick
tensor ideals of DP(mod RG) (which follows from Theorem 1.3) has been obtained
by Lau [33]. Building on Lau’s work in conjunction with developing novel homotopy
theoretic methods Barthel [3, 4] established a classication of localising tensor ideals
of RG-modules that are projective as R-modules, which is closely related to
Theorem 1.3 (see 5.9 for more detail).

Our interest in the subject was propelled by asking a simple minded question:
\Can one deduce the stratication of R-linear representations of G from that of
representations over elds, where it is known?" | which echoes the approach taken

by Lau for the bounded derived category. As already indicated, in this work we
argue that such a reduction is indeed possible and consist of two simple steps.

The rst is the brewise detection of Theorem 1.1 which works in a very general
algebraic setting; and the second is the behaviour of the cohomological bres which
we handle in the case of nite groups as in 5.6 and in the case of exterior algebras.

Hence, for us the main aspects of this work are the general brewise criterion

Theorem 1.1 and the general stratication Theorem 1.2 with the stratication for

nite groups being an application of these general techniques.

Subsequent developments. We are happy to report that the conclusion of The-
orem 1.2 holds unconditionally. Building on recent work of van der Kallen [39],

1see the paragraph on subsequent developments further below.
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in joint work with Barthel [5] we prove that the map , is always a homeomor-
phism, and in particular bijective. One complication that arises is that the tensor-
triangulated category in question is no longer the stable category of Gorenstein
projective modules but a suitable category of lattices, and the arguments needed
to deal with this, and other aspects, are rather more involved.

Acknowledgements. We thank Tobias Barthel and Eike Lau for sharing their
work and their alternative approaches, and for rekindling our interest in this ques-
tion. We are also grateful to the referee for helpful comments and suggestions. SBI
was partly supported by NSF grant DMS-2001368, and JP was partly supported
by NSF grants DMS-1901854 and DMS-2200832, and the Brian and Tinie Pang
faculty fellowship.

2. A fibrewise criterion for localising subcategories

Throughout R is a commutative noetherian ring and A a nite projective R-
algebra; that is to say A is an R-algebra that is nitely generated and projective as an
R-module. In particular, as a ring A is noetherian on the left and on the right. Given
an A-complex X and a point p in SpecR, the Zariski spectrum of R, set

Xk(p) := X
R k(p)
viewed as a complex of Aygp)-modules. The assignment X | Xy (p) is exact on

the homotopy category of A-complexes, and hence also on any of its subcategories, in
particular, on K(ProjA), the homotopy category of projective A-modules. The
latter has a natural structure of a triangulated category, with arbitrary coproducts.
Given an A-complex Y in K(Proj A) we write Loc(Y ) for the localising subcategory of
the homotopy category generated by Y . The main result in this section is the
following brewise criterion for detecting objects in Loc(Y ).

2.1. Theorem. Suppose that R is regular. Let A be a nite projective R-algebra,
and let X; Y be objects in K(ProjA). The following conditions are equivalent.
(1) X 2 Loc(Y) in K(ProjA);
(2) Xk(p) 2 Loc(Yi(p)) in K(ProjAy(p)) for each p 2 SpecR.

The ring R is by denition regular if every nitely generated R-module has nite
projective dimension. An equivalent condition is that the ring Ry has nite global
dimension for each p in SpecR. The global dimension of R is then equal to dimR,
its Krull dimension.

The statement above is inspired by, and extends, an analogous statement for
the derived category of A, established in [23]. It yields also a statement about the
stable category of Gorenstein projective A-modules; see Theorem 3.7.

The proof of the theorem above takes some preparation and is given towards the
end of this section. We start by recalling some properties of the homotopy category
of projective modules.

The homotopy category of projectives. For the moment, A can be any ring
that is noetherian on both sides; that is to say, A is noetherian as a left and as
a right A-module. For us, A-modules mean left A-modules, and A°"-modules are
identied with right A-modules. When A is an R-algebra for some commutative ring
R, then it is convenient to write for any A-module the R-action on the opposite side.
We denote by Mod A the (abelian) category of A-modules and by mod A its
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full subcategory consisting of nitely generated modules. The full subcategory of
Mod A consisting of projective modules is denoted ProjA.

For any additive category A Mod A, like the ones in the last paragraph, K(A)
will denote the associated homotopy category, with its natural structure as a
triangulated category. Morphisms in this category are denoted Homyga)( ; ). An
object X in K(A) is acyclicif H (X) = 0, and the full subcategory of acyclic objects
in K(A) is denoted Kac(A).

Let D(Mod A) denote the derived category of A-modules and D?(mod A) the
bounded derived category of mod A. Let gq: K(Mod A) ! D(ModA) be the local-
isation functor; its kernel is Kac(Mod A). We write q also for its restriction to the
homotopy category of projective modules. This functor has an adjoint:

(2.2) K(ProjA) < D(ModA):
q

Our convention is to write the left adjoint above the corresponding right one. In
what follows it is convenient to conate p with p q. The image of p, denoted
Kproj(A), consists precisely of the K-projective complexes, namely, those complexes
P such that Homya)(P; ) = 0 on acyclic complexes in K(Mod A).

Compact objects. The category K(Proj A) is triangulated, admits arbitrary di-
rect sums, and is compactly generated. As in any triangulated category with arbi-
trary direct sums, an object X in K(Proj A) is compact if Homga)(X; ) commutes
with direct sums. The compact objects in K(Proj A) form a thick subcategory, de-
noted K(ProjA). The assignment M ! Homao (pPM; A) induces an equivalence

(2.3) a:DP(modA°®)°® 1 K°(ProjA):
This result is due to Jrgensen [30, Theorem 3.2]; see also [27].

Regular rings. Recall that the ring R is regular if every nitely generated R-
module has nite projective dimension, that is, every complex in D®(modR) is
perfect. We record a couple of basic facts for later use.

2.4. Lemma. Let R be a commutative noetherian ring.
(1) The ring R is regular if and only if every acyclic complex in K(ProjR) is
null-homotopic.
(2) Suppose that R is regular and local of Krull dimension d with residue eld k.
Then RHomg(k;R) ! dk.

Proof. (1) The functor p in (2.2) restricted to compact objects embeds the perfect
complexes over R into D®(mod R), via (2.3). This embedding is an equivalence if
and only p is an equivalence. Clearly, p is an equivalence if and only if g is an
equivalence. See also [26].

(2) The Koszul complex K on a minimal generating set for the maximal ideal
of R provides a projective resolution K ! k. Since Homg(K; R) = 9K, by [17,
Proposition 1.6.10], the stated assertion follows.

Fibres and the Koszul complex. We return to the context of nite projective
algebras over a commutative ring R and wish to describe the functor

r k(p) for each prime p in SpecR via the Koszul complex for p. We reduce to the
local case. Let (R; m; k) be a local ring, with maximal ideal m and residue eld k.
In this paragraph, we write Ay instead of Agm). Let be the functor from
K(ProjA)
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to K(ProjAg) given by the assignment X ! Xk 1= X
R k. It is clear that preserves coproducts and so has a right adjoint by Brown
representability, say r. Thus there is the adjoint pair

(2.5) K(ProjA) —— K(ProjAx):

The following observation is useful in the sequel.

2.6. Lemma. Consider an adjoint pair of functors T U, between compactly -
generated triangulated categories. Then . preserves afl coproducts if and only if
preserves compact objects. In that case the restriction ¢: T¢ ! U® admits a right
adjoint if and only if . preserves compact objects.

Proof. The rst claim is [36, Theorem 5.1]; the second one is [2, Lemma 2.6(a)].

We need to understand the unit id ! [ and counit ; ! id of the adjunc-tion
(2.5). To that end, consider the Koszul complex, K, on a minimal generating set for
the ideal m. The map R ! K of R-complexes induces a natural map

(2.7) X =X
R R I X
R K for X in K(ProjA).

On the other hand, the augmentation R ! k factors through R | K via a map
K ! k, which induces V := K

R k! k

R k ! k and therefore a natural map
(2.8) \%

rY | k

kY =Y for Y in K(Proj Ag).

The result below is the key to the proof of Theorem 2.1 and also in other compu-
tations that follow.

2.9. Lemma. When R is regular, the following statements hold.
(1) Both and , preserve compact objects and arbitrary direct sums.
(2) Restricting the adjunction (2.5) to compact objects gives the adjunction

d
DP(mod A°P) ¢ D°(mod A}P)

L
R

where corresponds to ; and is induced by restriction along the map A | Ax
and d := dimR. The right adjoint k
L corresponds to .

(3) The maps (2.7) and (2.8) are the unit and the counit, respectively, of the
adjunction (2.5).

(4) For X 2 K(ProjA) andY 2 K(ProjAx), there are natural isomorphisms

r(X) =X
R K and (Y)=V
kY :
In particular, ((Y ) is isomorphic to a nite direct sum of shifts of Y.

Proof. (1) and (2) We have already observed that preserves arbitrary direct sums. We
verify that preserves compacts, equivalently that its right adjoint, ., pre-serves
arbitrary direct sums. Any compact object in K(ProjA) is of the formaM =
Homa(paos M; A) for some M 2 D°(mod A°P). A direct computation gives

Homa(paceM; A) = Homa(pac. M; A)
R k

= Homa, ((pacs M)



R k,'Ak) HomAk(pAop(k
b M); AL
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Since R is regular, k is in Thick(R) in D(Mod R) and hence k
L M is in Thick(M)

in D°(mod A°P). Therefore the A, -module H (k
L M) is nitely generated, that
istosay, k L

x M isin Db(r:qot-:l A°P). Thus the complex
Homa, (pao» (k

R M) AL = a, (k

R M)

in K(Proj Ay) is compact. This justies the claim that preserves compacts. Along
the way we have established that

a(M) = a, (k .

M)

R

for M in D?(mod A°P). In other words, restricted to compacts is the functor k
Y & DP(modA°?) I DP(modA°P),

via the identication in (2.3). The functor ¢ is left adjoint to the functor above:
Homp(a)( “N; M) = Hompa,)( “N;RHomg(k; M))
Homp(a( “N; RHomg(k; R)
L' M) Hompa,( N; %k .
L M)
Hompa,)(N; Kk
L M)
The rst isomorphism is standard adjunction, the second uses the fact that k is
perfect as an R-complex, since R is regular, and the third one follows from the fact
that RHomg(k; R) !  9k; see Lemma 2.4.

At this point we can apply Lemma 2.6 to deduce that ; also preserves compacts

and is isomorphic to the functor 9 when restricted to compact objects. This
settles both (1) and (2).
(3) The canonical map K

R k! k
R k ! kinduces the map
X
R K
Rk 1 X

r k;and this corresponds under the adjunction
isomorphism
Homga,)(X
R K
R k; X
R k) = Homya)(X
R K;r(X
r k)) to a natural map

(2.10) X

R K1 (X):

It suces to prove that this is an isomorphism. We verify this when X is compact;
the general case then follows as and ; preserve arbitrary direct sums, by (1).



Since K is a nite free R-complex, the assignment M | Homg(K; M) is an
endofunctor on D®(mod A°P). Moreover, it is a simple computation to verify that
under the equivalence (2.3), if X corresponds to M in D°(mod A°P), then X
r K corresponds to Homg(K; M), and that the map (2.10) corresponds to the map

d(k R
“'M) I Homg(K;M):

This latter map is obtained by applying L

r M to the isomorphism dk = RHomg(k; R)
= Homg(K; R)

and is hence an isomorphism. Here again we are using the hypothesis that R is
regular. This completes the proof that (2.7) is the unit of the adjunction. The
claim about (2.8) can be veried along the same lines.
(4) The isomorphisms were veried along the way to verifying (3). The last
assertion holds because V is a nite graded k-vector space with zero dierential.
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Local cohomology and support. In the proof of Theorem 2.1, and later on in
the sequel, we require the theory of local cohomology and support from [11], with
respect to the action of the ring R on the homotopy category of projective modules.
The analogue for the homotopy category of injective modules is described in [28, x7].
One could invoke that theory, for the two homotopy categories are equivalent, at
least under certain minor additional constraints on A, but to keep this manuscript
self-contained we develop the needed results for K(Proj A) directly.

For any pair of objects X; Y in K(Proj A) there is a natural R-module structure
on Homya)(X; Y ), so that K(Proj A) is an R-linear triangulated category, in the
sense of [11, x4]. In particular, for each specialisation closed subset V of SpecR
there is an exact triangle

(2.11) vX L X 1 LuX !

such that the object v X is V-torsion and Homyg(a)( ;LvX) = 0 on V-torsion
objects. Here an object Y is by denition V -torsion if for each compact object C in
K(ProjA) the R-module Homya)(C; Y ) is V -torsion.

For any ideal | R we consider the closed set

V(I):=fp 2 SpecRjl pg:

2.12. Lemma. Let | R be an ideal and K the Koszul complex on a nite gener-

ating set for the ideal I. For each X in K(ProjA) one has

Loc( v(i)X) = Loc(X

R K):
Proof. If K is the Koszul complex on a single element r in R, the complex X
r K isisomorphic to the mapping cone of the morphismm X | X; in other words, X

r K is the complex denoted X=r in [12, x2.5]. The Koszul complex K on a sequence

cone, S0 X
r K represents X=I. Thus the stated result is a special case of [12, Proposition
2.11(2)].

Fix a point p in SpecR and consider the specialisation closed subset
Z(p) := SpecR nSpecRy, = fq 2 SpecRjq pg:

The localisation functor X | Lz (,)X models localisation at p in the sense that for
each compact object C in K(ProjA) the map

HomK(A)(C;X) ! HomK(A)(C; Lz(p)X)
of R-modules induces an isomorphism of Rp-modules
HomK(A)(C;X)p ! HomK(A)(C;LZ(p)X):
See [11, Theorem 4.7], and also [12, Proposition 2.3].
The localisation functor Lz(,) admits an alternative description which will be

useful. For a complex X in K(ProjA) set

Xp =X

R Rp
viewed as a complex of Ap-modules, where A, denotes the Rp-algebra A
R Rp. The assignment X ! X, vyields an adjoint pair of functors

(2.13) K(ProjA) = K(ProjAp):

The right adjoint . exists as localisation preserves coproducts.
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2.14. Lemma. The right adjoint , preserves coproducts. Moreover, for each X in
K(ProjA), the unit X ! (X) of the adjunction (2.13) is naturally isomorphic to
the localisation X ! Lz (p)(X), so that

Lz(p)(X) = ¢(X):

Proof. Observe that the functor also preserves compact objects, hence its right
adjoint ; preserves coproducts. As to the second claim, it suces to verify that for
any compact object C in K(Proj A) the map

Homya)(C; X) I Homya)C; (X))
induced by the unit is localisation at p. Adjunction gives an isomorphism
Homy(a)(C; r (X)) = Homya,)N(C; (X)) = Homy(a,)(Cp; Xp)
of R-modules, so the module on the left is p-local. Thus one gets an induced map
Homya)(C; X)p I Homya)(C; r (X))

and the desired result is that this is an isomorphism. Since C is compact, and
localisation at p, and the functors ; and preserve coproducts, it suces to verify the
map above is an isomorphism when X is also compact. Consider again the
adjunction isomorphism

Homya)(C; rX) = Homya,)(Cp; Xp) :

Since Cp and Xp are compact in K(Proj Ap), by the description of compact objects
in K(ProjA), the desired result is that for M; N in D°(mod A°P), the map

HomD(Aop)(M;N)p ! HomD(Asp)(Mp,‘Np)
is an isomorphism. But this is clear.

The local cohomology functor at p is the functor , on K(Proj A) given by
(2.15) p(X) 1= vip)Lz(p)(X) = ¢ v(pr,)(Xp);

where the isomorphism is the one from Lemma 2.14.
The local cohomology functors reduce the description of localising subcategories
to a local problem, because the local-to-global theorem says that

(2.16) Loc(X) = Loc(f pX jp2 SpecRg) for X 2 K(ProjA);
see [12, x3] and also [38, Theorem 6.9].

Proof of Theorem 2.1. The implication (1))(2) is clear since for each p in SpecR
the functor given by X | Xy (p) is exact and preserves all coproducts.

(2))(1) Let X; Y beobjectsin K(ProjA). By the local-to-global theorem (2.16)
it suces to verify for each p 2 SpecR that X(p) 2 Loc(Yk(p)) in K(ProjAg(p))
implies X 2 Loc( pY) in K(ProjA).

We denote by K the Koszul complex on a minimal generating set for the maximal
ideal pRp of Rp. We have

Xk(p) = Xp
R, K(pRp) and therefore Xy (p) 2 Loc(Y(p)) implies
Xp
R, K 2 Loc(Yp
R, K) in K(ProjAp) by Lemma 2.9. This means
Vipry) (Xp) 2 Loc( vipr,)(Yp)) in K(ProjAp)
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by Lemma 2.12. It remains to apply the functor . Thus
r v(pRr,)(Xp) 2 Loc(r v(pr,)(Yp)) in K(ProjA):

2.17. The derived category D(Mod A) identies with a localising subcategory of
K(ProjA) via the left adjoint of the canonical functor K(ProjA) ! D(ModA).
Thus Theorem 2.1 implies the analogous description of localising subcategories of
D(Mod A) from [23]. Here is another noteworthy consequence.

2.18. Corollary. Let R be a regular ring, A a nite projective R-algebra, and M; N
in D°(mod A). The following conditions are equivalent.

(1) M 2 Thick(N) in DP(mod A);

(2) My(p)2 Thick(Nk(p)) in DP(mod Ay(p)) for each p 2 SpecR.

Proof. For compact objects X; Y in any compactly generated triangulated category,
one has X 2 Thick(Y ) if and only if X 2 Loc(Y ); see, for instance, [35, Lemma 2.2].
Thus the desired result is an immediate consequence of Theorem 2.1 and equivalence
2.3, applied to A°P.

The preceding result applied with N = A implies that M is perfect if and only
if it is brewise perfect. Here is a more precise result, for later use.

2.19. Lemma. Let R be a commutative noetherian ring, A a nite projective R-
algebra, and M a nitely generated A-module. When M is projective as an R-
module, there is an equality

proj:dim, M = supfproj:dimAk'p) My(p) i P 2 SpecRg:
Moreover, it suces to take the supremum over the maximal ideals in R.
Proof. Even without the hypothesis that M is nite projective over R, one has
proj:dimy M = supfproj:dim, My jp 2 SpecRg
by [6, Corollary I11.6.6]. Thus replacing R, A, and M by their localisations at p we

can assume R is a local ring, say with maximal ideal m and residue eld k. Then the
desired result is that

proj:dim, M = proj:dim,, M:
Since A is semi-local, [1, Proposition A.1.5] yields
proj:dimy M = 1rjnraxfi 2 NjExty(M;L;) = Og
where L1;:::; Ly are the simple A-modules. The L; are modules over A := A=mA
and M is projective over R, so adjunction yields isomorphisms
Exta(M; L) = Exty, (Mi; Lj):
Since the L; are the simple modules over Ak the desired result follows.

3. Gorenstein algebras

Let R be a commutative noetherian ring. Following [23, 28], we say A is a
Gorenstein R-algebra when it is a nite projective R-algebra such that for each pin
supp A;the ring Ap has nite injective dimension on the left and on the right; that is
to say, it is lIwanaga{Gorenstein. When this holds R is Gorenstein for each p in supp
A. Hereiga characterisation of the Gorenstein property that is in the spirit of this
work; see also [23, Theorem 6.8].
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3.1.Proposition. Let R be a commutative Gorenstein ring and A a nite projective R-
algebra. Then A is Gorenstein if and only the nite dimensional algebra Ay(p) is
Iwanaga{Gorenstein for each p in SpecR.

Proof. By [28, Theorem 4.6], the R-algebra A is Gorenstein if and only if the A-

bimodule Homg(A; R) is perfect on both sides. Since the A-module Homg(A; R)

is nitely generated on both sides, it is perfect if and only if the Ay;)-module
Homg(A; R) () = Hom(p)(Ak(p); k(p))

is perfect on both sides, for each p in SpecR; this follows from Corollary 2.18
applied with M := Homg(A; R) and N := A. It remains to observe that this latter
condition is equivalent to Ay(p) being Iwanaga{Gorenstein.

3.2. One consequence of the Gorenstein condition is that complexes in Kac(Proj A)
are totally acyclic, namely each complex X 2 Kac(Proj A) satises

Homya)(X; P) = 0 for any projective A-module P.

See [28, Theorem 5.6] for a proof. The functors

inci

Kac(ProjA) K(ProjA) %!
D(Mod A) induce a recollement of triangulated categories

t p
— —
(3.3) Kac(ProjA) ——inc— K(ProjA) a—> D(ModA)
«—— — X

The functor t, left adjoint to the inclusion of the acyclic complexes of projectives,
associates to each complex its complete resolution.
From [28, Theorem 4.6] one gets an equivalence:

RHoma( ;A): D°(modA)°® | DP(modA°P):
Composing this with the equivalence (2.3) yields a canonical equivalence
(3.4) D°(modA) | KS(ProjA):

Gorenstein projective modules. An A-module M is Gorenstein projective if it
occurs as a syzygy module in an acyclic complex of projective A-modules. Thus,
there is some X 2 Kac(ProjA) such that M = Coker(d, 1). We write GProj A for
the full subcategory of Mod A consisting of the Gorenstein projective modules, and
Gproj A for its subcategory of nitely generated modules. Both these are Frobe-nius
categories, with projective and injective objects the projective modules in the
corresponding categories; see for example [32, Proposition 7.2]. The corresponding
stable categories are denoted GProj A and GprojA, respectively. The rst part of
the result below was proved by Buchweitz [18, Theorem 4.4.1] when A is Iwanaga{
Gorenstein, but the same argument carries over to this context.

3.5. Theorem. The assignment X | Coker(d, 1) induces an equivalence of R-
linear triangulated categories Kac(ProjA) | GProjA. Moreover, these categories
are compactly generated, and Gproj A identies with the full subcategory of compact
objects of GProjA.

Proof. In the dual setting of Gorenstein injectives the rst assertion is [32, Propo-
sition 7.2]. In fact, we have an equivalence K(InjA) ! K(ProjA) by [28, Theo-
rem 5.6] and then the second assertion follows from [28, Theorem 6.5].
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The Gorenstein projectivity of a module is inherited by its bres. Without
further restrictions, the converse need not hold.

3.6. Lemma. Let R be a regular ring and A a Gorenstein R-algebra. If an A-
module M is Gorenstein projective, then so is the Ay)-module My for each p
in suppgrA.

Proof. Let X be an acyclic complex of projective A-modules in which M is a syzygy.
Since R is regular and X is in Kac(ProjR), it is null-homotopic as an R-complex
by Lemma 2.4. Thus Xk(p) = X
r k(p) is also null-homotopic, and in particular acyclic. It consists of projective
Ai(p)-modules and My(p) is a syzygy module in it, so the latter is Gorenstein
projective.

In view of Theorem 3.5 and the preceding result, one gets an analogue of Theo-
rem 2.1 for Gorenstein projective modules.

3.7.Theorem. Let R be a regular ring and A a Gorenstein R-algebra. For Goren-
stein projective R-modules X; Y we have in GProj A

X 2 Loc(Y) () Xk(p) 2 Loc(Yi(p)) for each p 2 SpecR:

In the remainder of this section, we focus on a class of Gorenstein algebras for
which it is easy to describe the Gorenstein projective modules.

Fibrewise self-injective algebras. The dualising bimodule of a nite projective
R-algebra A is the A-bimodule

Ia-r := Homg(A; R):

As noted in the proof of Proposition 3.1, when A is a Gorenstein R-algebra, !a-r is
perfect on either side, though not necessarily as a bimodule. Moreover, this
property characterises the Gorenstein property of A when R is Gorenstein; see [28,
Theorem 4.6]. In the sequel, Gorenstein algebras for which the dualising bimodule
is projective on either side play a prominent role. The result below characterises
these algebras in terms of their bres.

An R-algebra A is brewise self-injective if it is a nite projective R-algebra such that
the nite dimensional algebra Ay p) is self-injective for each p in supp A. Oug primary
example is the group algebra of a nite group scheme over R.

For a module M we denote by add(M) the full subcategory of nite direct sums
of copies of M plus their direct summands.

3.8. Lemma. Let R be a Gorenstein ring and A a nite projective R-algebra. The
conditions below are equivalent.

(1) The R-algebra A is brewise self-injective;
(2) add(!a=gr) = add(A) and add(!acr=gr) = add(A°P);
(3) The dualising bimodule ! A-r is projective on the left and on the right.
If they hold the R-algebra A is Gorenstein, and one has an equivalences of categories

A=R
A( ): ProjA I ProjA
with inverse Homa(!a=r; ), and similarly for Proj A°P.
Proof. In what follows we use the observation that for each p in Spec R one has an
isomorphism of Ay()-bimodules:
Pa=r
R K(p) = a,, =k(p):
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Hence the A-bimodule !5-r is projective on either side if and only if the Ayp)-
bimodule !a, . =k(p) is projective on either side for each p in Spec R; see Lemma 2.19.
(1))(2) It suces to prove that A is in add(!a=r), equivalently that the map

la=r

A Homa(lazg; A) 1A
given by evaluation, is surjective. Since an R-module M is zero if and only if M) is

zero for each p in SpecR, it suces to check the surjectivity of the map on the bres,
that is to say, the map

!Ak(p)=k(p)

A(p) HomAk(p)(!Ak(pJ=k(p); Akp)) !

Ak(p)

is surjective. This holds as the k(p)-algebra Ay (p) is self-injective.

(2))(3) is clear.

(3))(1) Given the isomorphism above, condition (3) yields that the dualising
bimodule of Ay(p) over k(p) is projective, that is to say, A(p) is self-injective.

It remains to verify the last part of the statement. The Gorenstein property
follows from Proposition 3.1. The equivalence follows from the fact that !5o-r is
projective on both sides and the isomorphism

A ! HomA(!A=R;!A=R):

See also [28, Theorem 4.5].

In what follows dimg A denotes the Krull dimension of A viewed as an R-module.

3.9. Proposition. Let R be a Gorenstein ring and A a brewise self-injective R-
algebra. Then

inj:dimy A = dimg A = inj:dim e A°P:
In particular, A is lwanaga{Gorenstein if and only if dimg A is nite.

Proof. It suces to verify the equality for A; the one for A°P holds, by symmetry.

Since the injective dimension of A is detected by the vanishing of Ext,&( ; A) on
nitely generated A-modules, it suces to verify that

inj:dima Ap = dimg, Ay for each p in suppg A.
We can replace R and A by their localisations at p so that R is local, and hence A
is semi-local, and dimg A = dim R. For any simple A-module L one has
Exta(L; 'a=r) = Exth(L; Homr(A; R)) = Extk(A
R L;R):
Singe the ring R is Gorenstein, hence of injective dimension dim R, we deduce that
Ext's(L; 'a=gr) = Ofori> dimR. Thus Lemma 3.8(3) yields
Exty(L; lazg) = 0 fori> dimR.
Hence inj:dim, A dimR by [18, Lemma B.3.1]. For the converse equality, with k
the residue eld of R, one has Ext® (kzR) = k; see Lemma 2.4. Since A is anon-
zero nite free R-module, one gets
Extd (A d
R k; A) = Extg(k;A) = 0:
Thus inj:dimy A dim R. This justies the stated equalities.

In the result below, the converse statement need not hold for general Gorenstein
algebras, as can be seen by contemplating the case when R is a eld.
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3.10. Lemma. Let A be a Gorenstein R-algebra and M an A-module. When M is
Gorenstein projective, it is Gorenstein projective also as an R-module. The converse
holds when A is brewise self-injective and either M is nitely generated or dimg A is
nite.

Proof. Since A is nite projective as an R-module, any projective A-module is also
projective as an R-module, and hence any acyclic complex of projective A-modules is
an acyclic complex of projective R-modules. It follows that any Gorenstein
projective A-module is Gorenstein projective also as an R-module.

Suppose that A is brewise self-injective and that M is Gorenstein projective
as an R-module. We verify that ExtiA(M; )= O0fori 1andon ProjA. Given
this, if M is nitely generated one can apply [28, Lemma 6.3] to conclude that it is
Gorenstein projective also as an A-module. We can draw the same conclusion from
[19, Corollary 11.5.3] for a general M when we also know dimg A is nite, for then
A is lwanaga{Gorenstein, by Proposition 3.9.

As to the vanishing of Ext, any projective A-module is a direct summand of a
free A-module, and any free A-module is of the form A
r F for some free R-module F. Therefore it suces to verify that

Exth(M; A
R F)=0 fori 1.

Since A is in add(!a-r), by Lemma 3.8, the A-module A
r F is in additive subcategory generated by

Pa=r
R F = Homg(A;R)
R F

= Homg(A; F):

Thus it suces to verify that Ext' (M; Homg(A; F)) = 0 for i 1. This follows
from the adjunction isomorphism

Exth(M; Homg(A; F)) = Extk(M;F)
and the hypothesis that M is Gorenstein projective as an R-module.

3.11. Let R be a regular ring of nite Krull dimension, G a nite group, and RG the
group algebra. As noted earlier the R-algebra RG is brewise self-injective. Let M be
an RG-module that is projective as an R-module. It follows from Lemma 3.10 and
Theorem 3.7 that M is projective as an RG-module if and only if for each p in
SpecR the k(p)G-module k(p)
R M is projective. This result appears to be in conict with the example constructed
by Benson and Goodearl in [9, Section 8]. However there is no conict because the

claim in [9] that the module k
R M is kG-projective is not correct: the image of multiplication by 1 g is
strictly contained in the kernel of the multiplication by 1 g.

Indeed, in the example in question one has R := kt], the ring of power series

in the variable t, over a eld k of characteristic two, and G = Z=2. Thus RG =
R[x]=(x?), with 1+ x representing the generator of G. The module M in question
can be realised as the free R-module R[u] R R[s] with the action of x given by

x (f(u);r;g(u)) = (0;0;f(u) + r)

for f(u); g(u) in R[u], and r 2 R. Evidently the element (1; 1;0) is in the kernel of
multiplication by x but not in its image.

The brewise test for projectivity stated above holds over any noetherian com-
mutative ring R; see [5, Proposition 3.5].
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4. Cocommutative Hopf algebras

Throughout this section R will be a regular commutative noetherian ring and A
a nite cocommutative Hopf algebra over R; this includes the condition that A is
projective as an R-module. Then K(ProjA) has a natural structure of a tensor-
triangulated category, and one has an analogue of the brewise criterion from Sec-
tion 2 that takes into account this additional structure. With some further assump-
tion on the cohomology of A we are then able to stratify the tensor-triangulated
category K(Proj A) via the action of the cohomology ring of A.

Tensor structure. Given A-modules X and Y, there is a natural diagonal A-

module structure on X
R Y , obtained by restricting its A
R A-module structure along the coalgebra map : A ! A
R A.

4.1. Lemma. Let P; Q be A-modules. If P is projective over A and Q is projective
over R, then the A-module P
R Q, with the usual diagonal action, is projective.

Proof. This follows from the standard adjunction isomorphism
Homa(P
R Q )= Homa(P; Homr(Q; )):
The preceding result implies that
R induces a tensor product on K(Proj A).

4.2. Lemma. The triangulated category K(ProjA) is tensor-triangulated, with
product
R and unit the A-complex

1:= Homg(pa.-R; R):
Proof. We have already seen that
R provides a tensor product on K(ProjA), and it remains to verify the assertion
about the unit. Since A°P is noetherian, one can assume that for any M in

D®(mod A°P), its projective resolution pa.s M is nitely generated in each degree
and that (pmos )i = 0 fori 0. This fact will be used multiple times in what follows.

The augmentation ": pa.s R ! R induces the A-linear map
":R ! Homg(pac-R;R):
For each X in K(Proj A) this induces the map

X =X X

R R I X
R HOmR(pAopR;R)

and the desired result is that this map is an isomorphism.

Since K(Proj A) is compactly generated, and the functors involved preserves
coproducts, it suces to verify the claim when X is compact, that is to say, of the form
Homa(pace M; A) for some M in mod A°P; see (2.3). Consider the diagram

Homa(paop M;A)
Homa(pacs M; A) RIEAE Homa(pac. M; A)

R Homg(pacrR; R)

— :

Homa(paoce M
R pAop R; A)
where the vertical map is the natural one; it is an isomorphism because pa., A and

pao» M are degreewise nitely generated. The map is the obvious composition. It
suces to check that is an isomorphism.



One can verify that the map is obtained from the map

pAopM Paop
M
R PaorR !
pAopM
R R =pareM
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by applying Homa( ;A). Since " is a quasi-isomorphism so is the map above.
Since the source and target consist of projective A°°-modules, and are bounded to
the right, they are semi-projective complexes over A°P. Thus the map above is a
homotopy equivalence in K(Proj A°P). Therefore applying Homa( ; A) induces an
isomorphism in K(ProjA). This is the desired result.

Rigidity. The tensor-triangulated category K(Proj A), which is always compactly
generated, is also rigid when R is regular. We recall briey the notion of rigidity in
tensor-triangulated categories and refer to [25, A.2] for details.

Let T be a compactly generated tensor-triangulated category, with product
and unit 1. We assume that 1 is compact and that
preserves coproducts. Being a compactly generated tensor-triangulated category,
T has an internal function object, Hom( ; ), dened by the property that

Homrt (X
Y;Z)= Homt(X; Hom(Y;Z)) for X;Y and Z in T. There is
a natural map

(4.3) Hom (X; 1)
Y | Hom(X;Y)

and X is rigid if this map is an isomorphism for all Y. Since 1 is compact, every
rigid object is compact, and one says that T is rigidly-compactly generated when the
converse holds: compact objects and rigid objects coincide. It is straightforward to
verify that this property holds if and only if the conditions below hold:

(1) the subcategory of compact objects is closed under

;(2) (4.3) is an isomorphism when X; Y are compact.

Back to the tensor-triangulated category K(Proj A) with product
R, Where A is a cocommutative Hopf algebra over R. In this case, the internal
function object can be described quite concretely as

Hom(Y;Z) = jHomg(Y; Z)

where j is the right adjoint to the inclusion of K(Proj A) into the homotopy category
of at A-modules; see [27, Proposition 2.4]. Here is the pertinent result; one can also
prove that K(Proj A) is not rigid when R is not regular.

4.4. Lemma. If R is regular, the tensor-triangulated category K(Proj A) is rigid.

Proof. As noted above, it suces to verify that for any X;Y in K¢(ProjA), the
complex X
R Y is also in K¢(Proj A) and that (4.3) is an isomorphism. Given the identication
(3.4) of compact objects in K(Proj A), this is tantamount to verifying that for M; N
in DP(mod A), the complex M
L' N isin D?(mod A) and the map

RHomg(M;R) *
R N ! RHomg(M;N)
of A-complexes is an isomorphism. Both properties are clear, since R is regular.

4.5. Remark. The functor: K(ProjA) ! K(ProjAg) from (2.5) is a tensor functor
which ts { together with its adjoints { into the framework discussed in [2].

Fibrewise criterion. Here is the analogue of the brewise criterion for detecting
membership in localising subcategories, Theorem 2.1, in the presence of the tensor
product. In the statement Loc
(Y ) denotes the tensor ideal localising subcategory generated by Y .
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4.6. Theorem. Let R be a regular ring and A a nite cocommutative Hopf R-
algebra. Let X; Y be objects in K(Proj A). The following conditions are equivalent.

(1) X 2 Loc

(Y) in K(ProjA);

(2) Xk(p) 2 Loc

(Yk(p)) in K(Proj Ay(p)) for each p 2 SpecR.

Proof. The argument follows the same lines as that for Theorem 2.1, using in
addition that K(ProjA) is a rigidly generated tensor-triangulated category by
Lemma 4.4. Again it is straightforward to verify (1))(2), once one observes that
the functor from (2.5) respects the tensor products: For X; Y in K(Proj A), thereis a
natural isomorphism

(X
RY) = (X)
k(p) (Y) in K(Proj Ak(p)).

For the implication (2))(1) we use the version of the local-to-global theo-rem
(2.16) for tensor-triangulated categories in [12, Theorem 7.2]. Then the task
reduces to proving for X; Y in K(Proj A) that when (R; m; k) is a local ring and X
is in Loc
(Yk), the complex r(X) is in Loc
(r(Y )). When reducing to the local case, one uses that for each p in SpecR the
category K(Proj Ap) identies with a localising tensor ideal of K(Proj A) via (2.13).
Whilst the functor » need not respect tensor products, the following projec-tion

formula holds. For U in K(ProjA) and V in K(Proj Ag), there is a natural

isomorphism

u =

R rV r((U)

kV):
One can verify this directly, but this is a general fact about tensor functors and their
right adjoints between rigidly-compactly generated tensor-triangulated categories;
see [2, Theorem 1.3]. This formula and the fact that, up to direct summands, is
surjective on objects { see Lemma 2.9 { yield the desired result.

Finite generation. Let R be a commutative noetherian ring and A a nite co-
commutative Hopf algebra over R. Set

S := Exta(R; R):

This is a graded-commutative R-algebra. Van der Kallen [39] has proved that
S is nitely generated as an R-algebra; equivalently, that it is noetherian. This
generalises earlier work of Friedlander and Suslin [22] that dealt with the case
where R is a eld. The ring S can be realised as the graded-ring of morphisms

S = HomK(A)(l, 1) .

Since 1 is the unit of the tensor product on K(ProjA), it has a natural S-linear
action on it. For each p in SpecR one has that Ay(p) is a nite dimensional cocom-
mutative Hopf algebra over k(p). Set

(4.7) S(p) := Exty,  (k(p); k(p)):

Cohomological support. Let R be a commutative noetherian ring, A a nite
cocommutative Hopf algebra over R, and S the cohomology ring introduced above.
We write SpecS for the homogenous prime ideals in S. Following [11, x5], the
action of S on K(Proj A) gives rise to a notion of support for objects in K(Proj A).
Namely for each g in SpecS there is a local cohomology functor functor ¢, dened akin
to (2.15). The support of an object X 2 K(Proj A) is by denition the set

supps X :=fq 2 SpecSj X = 0g;
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and for any class of objects X we set

supps X := supps X :
X2X

Support and bres. Theorem 4.6 yields a stratication { see the discussion fur-

ther below { of K(Proj A) in terms of subsets of the space
G
SpecS(p);

p2SpecR

where to each X in K(Proj A) we associate the subset

SUPPs(p) Xk (p) :
p2SpecR

The task is to relate this to suppg X, viewed as a subset of SpecS.
To that end consider the structure map : R ! S, which induces a map
@: SpecS | SpecR:
The bre of this map over p is

() *(p) = Spec(S
R k(p));

which we identify with a subset of SpecS in the usual way.
The functor L
r k(p) induces a map of R-algebras

S = Exta(R;R) | Exty  (k(p);k(p)) = S(p):

This induces the map of graded k(p)-algebras

p:S

r k(p) ! S(p):
Even in the best of cases, one does not expect this to be an isomorphism. Consider
the induced map on spectra:
(4.8) o’ SpecS(p) ! Spec(S
r k(p)) SpecS:

The result below tracks the behavior of supports as we pass to the bres.

4.9.Lemma. Let R be a regular ring and A a nite cocommutative Hopf R-algebra. Fix
p in SpecR and let @ be the map in (4.8). For each X in K(ProjA) there is an
equality

p{SUPPs(p) Xk(p)) = supps X \ (°) *(p):

Proof. We can reduce to the case where (R; m; k) is a local ring and p = m, the
maximal ideal of R. Set Sk 1= S
R k= S=mS. Via the map m: Sk ! S(m) the S(m)-action on K(ProjAyx) induces
an Sk-action. Applying [14, Corollary 7.8(1)] to the identity functor on K(Proj Ax)
yields an equality

mlSUPPs(m) Xk) = supps, X :

It thus suces to work with the subset on the right.

Consider the adjunction (2.5). For any compact object C in K(Proj A) one has
isomorphisms of graded Sx-modules

Homya,)(C; Xk) = Homyga,)(C; X)

Homya)(C; ¢ X)
omy(a)(C; X
K)

= IIIII
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where the last isomorphism is by Lemma 2.9. Any compact object in K(Proj Ag) is
a direct summand of C for some compact object C in K(Proj A) by Lemma 2.9. By
[11, Theorem 5.2], one can compute supps (Xk) from the support of the Si-

modules Homya,)(C; Xx). This gives the rst équality below

supps, Xk = supps(X
R K) = suppsX \ V
(mS)
= supps X \ (*) *(m):

The second one holds because X
R K represents X=mS; see [12, Lemma 2.6].

Stratication. Let S be a graded commutative noetherian ring and T a rigidly-
compactly generated tensor-triangulated category. We denote by T¢ the full sub-
category of compact objects. We say that T is S-linear to mean that S acts on T via
a map of graded rings
S | Endg(1);

see [12, x7]. In the context above, one says that the tensor-triangulated category
T is stratied by S if for each q in SpecS the category 4T, consisting of the g-local
and g-torsion objects in T, is either zero or minimal, in that, it has no proper
localising tensor ideals; see [12, x7.2]. When this holds one has a bijection

suppg( )

(4.10) Localising tensor ideals of T fSubsets of supps 1g:

When in addition the graded S-module Ex_t1(X; X) is nitely generated for each X
2 T¢, the subset supp )§ of SpecS is closed and, by [12, Theorem 6.1], the
bijection above restricts to a bijection

Specialisation closed
(4.11) Thick tensor ideals of T€ supps () P
subsets of supps 1

Here is a slightly dierent perspective on the stratication property.

4.12. Lemma. Let T be an S-linear tensor-triangulated category as above. Then the
tensor-triangulated category T is stratied by S if and only if for any X; Y in T there
are equivalences

Loc
X) Loc
Y)() X 2Lloc
Y):

supps X suppsY (

)
(
(
(

Proof. We use the fact that for each q in SpecS we have
qT = fX 2 T jsuppsX fagg
by [11, Corollary 5.9]. Evidently when the stated property holds the localising
tensor ideal 4T of T is minimal for each g in SpecS, so T is stratied by S as a
tensor-triangulated category. The converse is equally clear.
We focus on the case
T :=K(ProjA) with T¢ = DP(modA)

for a cocommutative Hopf algebra A over R, and S its cohomology algebra. Here
is one of the main results of our work. When it applies?, one gets a classication

2t always does; see the last paragraph of the introduction.
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of the localising tensor ideals of K(Proj A) and also the thick tensor ideals of its
subcategory of compact objects, which identies with D®(mod A).

4.13. Theorem. Let R be a regular ring and A a nite cocommutative Hopf algebra
over R. Let S denote the nitely generated R-algebra Ext,(R; R). If the map ,in
(4.8) is bijective for each p in SpecR, then the tensor-triangulated category
K(Proj A) is stratied by the action of S, and supps K(ProjA) = SpecS.

Proof. The main task is to verify that when X; Y are objects in K(ProjA) with
supp, X s supp Y , the complex X is in o Loc
(Y); see Lemma 4.12. Since @ is a homeomorphism for each p in SpecR, Lemma 4.9
yields an inclusion

SUPPs(p) Xk(p) SUPPs(p) Y(p)

Since Ay(p) is a nite dimensional cocommutative Hopf algebra over k(p), the trian-
gulated category K(Proj Ay(p)) is stratied by the action of it cohomology algebra,
S(p); this is the main result of [16]. Thus the inclusion above implies

Xk(p) 2 Loc
(Yp)) :

This holds for each p in SpecR, so we can apply Theorem 4.6 to deduce that X is
in Loc
(Y ) as desired.
It remains to observe that supp; 1 = SpecS, as follows, from example, from
Lemma 4.9, for 1y(p) is the unit of K(Proj A (p)) and its support is SpecS(p).

In Section 5 we prove that group algebras of nite groups satisfy the hypotheses
of the preceding result. Here is one more family of examples to which it applies.

4.14. Example. Let R be a regular ring. Set A := AgF, the exterior algebra on a

nite free R-module F. We view it as a Z=2-graded Hopf algebra, with coalgebra

structure dened by (x) = X
A

1 + 1

x for x 2 F. In this case Ext (R; R) is the symmetric algebra on Homg(F; R).

Given this it is clear that the hypotheses of Theorem 4.13 are satised in this case.

Here is another family of examples: Suppose k is eld, R a k-algebra, and that the

Hopf algebra A is of the form R
A% where A° is a nite dimensional cocommutative Hopf algebra over k. Then Ext
(R;R) = R

k Extao(k; k) as graded R-algebras. With this, it is easy to verify that A falls under
the purview of Theorem 4.13.

Next we prepare to prove Theorem 1.2 stated in the introduction.

Gorenstein projective modules. Let R be a regular ring and A a nite cocom-
mutative Hopf R-algebra. The bres Ay(p) are nite dimensional cocommutative Hopf
algebras over k(p), hence self-injective [29, Lemma 1.8.7]. Thus the R-algebra A is
brewise self-injective and therefore Gorenstein, by Proposition 3.1. As R is
regular, Gorenstein projective R-modules are projective by Lemma 2.4. Hence a
Gorenstein projective A-module is projective as an R-module, and the converse
holds if the module is nitely generated or dim R is nite; see Lemma 3.10.

4.15. Lemma. Let R be a regular ring and A a nite cocommutative Hopf algebra. The
tensor product
R Wwith diagonal A-action endows GProj A with a struc-ture of a rigidly-compactly
generated tensor-triangulated category. This structure is compatible with the
equivalence in Theorem 3.5.
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Proof. If X is an acyclic complex of projective A-modules and N is a Gorenstein
projective A-module, then the complex X
r N of projective modules is also acyclic, for N is projective as an R-module. It
follows that if M is a Gorenstein projective A-module, so is M
R N. Thus the category of Gorenstein projective A-modules is closed under
R , and R, viewed as an A-module via the augmentation A ! R is the unit of
this product. Observe that as an A-module R is Gorenstein projective, for it is
nitely generated, and projective as an R-module. Since the A-module P
r N is projective when P is projective, this tensor product induces one on the stable
category, GProjA, making it a tensor-triangulated category, with unit R. The
function object on GProj A is Homg(" ; ), and given this it is easy to verify the
rigid objects in it are precisely the compact objects, that is to say, isomorphism
classes of the nitely generated Gorenstein projective modules. In summary,

GProj A is rigidly compactly generated.
A straightforward computation shows that the assignment in Theorem 3.5 is
compatible with the tensor structures.

Let S := Ext LR; R) be the cohomology algebra as before. We write Proj S for
the projective spectrum of S, namely, those prime ideals in SpecS that do not
contain the ideal S>! of positive degree elements.

4.16. Lemma. With the assumptions from Theorem 4.13, the full subcategory
Kac(ProjA) of K(ProjA) is a localising tensor ideal with support ProjS.

Proof. For each p in SpecR the functor X ! Xy(p) maps the recollement (3.3)
for A to the corresponding recollement for Ay(,). To see this, observe that the
recollement (3.3) is determined by functorial exact trianglespX ! X | tX | for
each X in K(ProjA) such pX is K-projective and tX is acyclic. These properties
are preserved by ( )¢(p) since the functor is exact and preserves all coproducts.
For K-projectives this is clear, since they are generated by perfect complexes which

are preserved by ( )i(p). For acyclic complexes, see Lemma 3.6.
The assertion of the lemma now follows since Kac(ProjAy(p)) is a localising
tensor ideal of K(Proj Ay(p)) with support ProjS(p); see [16, x10].

We are now ready to prove our stratication result for representations of nite
cocommutative Hopf algebras.

Proof of Theorem 1.2. We use the triangle equivalence GProjA | Kac(ProjA)
from Theorem 3.5, which preserves the tensor structure and the S-action thanks to
Lemma 4.15. Now the stratication of GProj A via S follows from Theorem 4.13,
since Kac(ProjA) is a localising tensor ideal of K(ProjA) by Lemma 4.16. In
particular, the support of GProj A is precisely ProjS.

5. Finite groups

Let G be a nite group. The main result of this section is that for A = RG, the
group algebra of G over any commutative noetherian ring R, the map (4.8) is a
homeomorphism for all primes in the spectrum of R. As a consequence we get a
stratication theorem when R is regular; see Theorem 5.7. In this case the
cohomology algebra Ext (R; R) is the group cohomology algebra. This is usually
denoted H(G; R), and w¥ follow suit.
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Cup products. Let R be a commutative ring, not necessarily noetherian, and
M an R-module, both viewed as G-modules with trivial action. The cup product
makes H(G; R) an R-algebra and H(G; M) a module over H(G; R). These are
dened as follows: Let P be a projective resolution of the trivial ZG-module Z and
: P ! P
z P a diagonal approximation. Given classes x 2 H(G;R) andy 2 H(G; M),
represented by cocycles X 2 Homzg(P; R) and ¥ 2 Homzg(P; M) the cup product x
[ y is represented by the class of the composition of maps
X

P I P V-
R

zP
M I M:

If I R is an ideal, [ denes a product on H(G; ). It is clear from the
denition that if | is nilpotent of order n, then so is H(G; I).

Innitesimal deformations of coecients. Let R | R? be a surjective map of
commutative rings whose kernel, say |, satises 12 = 0; thus | is an R°>-module. One
thinks of R as an innitesimal deformation of R°. The exact sequence

(5.1) o !1 ! R ! RO
0 induces a connecting homomorphism
:H(G;R%) ! H(G;I):

Since | is an R%-module H(G; |) is a module over H(G; R®), via the cup product. The
statement of the result below, and its proof, are a variation on [7, Lemma 4.3.3].

5.2. Lemma. In the context above, for x;y 2 H(G; R®) one has
(x[y)= (x)[ y+ ( 1)¥x[ (y):

Proof. As in the proof of [7, Lemma 4.3.3], let P be the projective resolution of the
trivial ZG-module Z, and : P | P
z P a diagonal approximation. The exact sequence (5.1) induces the exact sequence
of complexes

0 ! Homzs(P;1) ! Homzs(P;R) ! Homgz(P;R%) | 0:

Represent x and y by cocycles X and ¢ on the right hand side of this sequence.
Then x [ y is represented by the composite

. | X
X[ ¢:P ! P0 y~
7P I R
z RO I RO

where is the multiplication map. To compute the eect of the connecting ho-
momorphism, we rst lift X and ¢ to cochains & and ¢ in Homzg(P; R). Sincedx =
0 = dy, the elements d& and dy lie in I. The element X [ ¢ liftsto &8 [ ¢, and

d(R[ ¢)= d&[ ¢+ ( 1)X&[ dy
di [ g+ ( 1)XMx[ dy

The second equality holds as d& and dy lie in I. This gives the stated equality.

In what follows, we say that an abelian group M is p-local, for a prime number
p, if the natural map M | My, is an isomorphism.

5.3.Lemma. Let p be a prime dividing jGj and : R ! R® a map of p-local rings, with
Ker() nilpotent. Then the map H(G; ) has nilpotent kernel, and there exists an integer

n such that for any element x 2 H>1(G; R?), the element xP" is in the image of the
map H(G;).
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Proof. Set | := Ker(). Since this ideal is nilpotent, so is H(G; 1), under cup
products. The claim about nilpotence is clear because, by the exact sequence in
cohomology arising from (5.1), the kernel of H(G; ) is the image of the map

H(G;1) ! H(G;R)

which respects cup products.

As to the second part of the statement, it suces to consider the case where |2
= 0. Let n be the largest integer such that p" divides jGj. Since jGj annihilates
H>1(G; R?), and the ring R® and hence also H(G; R®) is p-local, one gets that

p" H>'(G;R%) = 0:

If jxj is odd, then 2 x? = 0, since H(G; R?) is graded-commutative. Thus if also p
is odd, then x?> = 0, since we are in the p-local situation. Thus we can suppose
either jxj is even or p = 2. In either case, a repeated application of Lemma 5.2

yields (x') = ix' 1(x) for each i 1. In particular (x?") = 0. It then follows from

the exact sequence in group cohomology arising from (5.1) that xP" is in the image
of the map H(G; R) ! H(G;RO°).

Modules with bounded torsion. Let M is an abelian group such that its torsion-
subgroup, denoted tors(M) is bounded; that is to say, there exists an integer n such
that ntors(M) = 0. Fomin [21] proved that inclusion tors(M) M splits; see also [31,
Corollary pp. 134]. This result will be used below.

5.4. Lemma. Let p be a prime dividing jGj and M a p-local abelian group such
that tors(M) is bounded. For all integers s 0 the map

H>'(G; M) | H>Y(G;M=p°M)

induced by the surjection M | M=p*M, is one-to-one.

Proof. Since M is p-local, the only torsion is p-torsion. Choose s 0 such that p®
tors(M) = 0= p*H>'(G; M) :

The equality on the left means that the sequence below, where the map M | pM
is given by m ! p°m, is exact:

0 ! torsgtM) ' M | p°M | O:
This is split-exact, by Fomin’s result recalled above, so the induced map

H(G; M) | H(G;p°M)

is surjective. The map M Pl M factors as M ! p*M | M where the one on
the right is inclusion. By the choice of p*, the composition of the induced maps
H(G; M) | H(G;p*M) | H(G; M)

is zero in degrees 1. Since the map on the left is surjective, it follows that the one on
the right is zero in degrees 1. Then the cohomology exact sequence arising from
the exact sequence

o !'pM I' M | M=pM | 0

yields the desired statement.
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Noetherian ring of coecients. The result below was proved by Benson and
Habegger [10] when R = Z; the argument given here is modeled on their proof. A
general result, allowing non-trivial G-action on R, was proved by Lau [33, Section 7].

Recall that a map of ringsf : S | T containing a eld of positive characteristic
p is an F-isomorphism if ker(f) is nilpotent, and for each t 2 T there exists an n
such that tP" is the image of f.

5.5. Theorem. Let G be a nite group and R a commutative noetherian ring. For
each prime number p, the map

H(G;R)
R R=pR ! H(G; R=pR) is an F-isomorphism.

Proof. Set R(p) i= Z(p)
z R. As R=pR is p-local, the map R ! R=pR factors through Rp). As
localisation is an exact functor, there are natural isomorphisms
H(G; R)
R R=pR = H(G; Rp))
R(,) R=pR H(G; R=pR)
H(G; R(p)=pRp)):

Thus replacing R by R(,) we can assume R is p-local.

For any nitely generated R-module M, the (additive) torsion submodule tors(M)
is an R-submodule of M, and hence nitely generated as an R-module, as R is noe-
therian. It follows that tors(M) is bounded, so Lemma 5.4 applies.

Choose an integer-sslarge -enough-that the—conclusion of op—eits applies to the

R-modules R and pR. Consider the commutative diagram of coecients

0 pR i R=FR 0
l R=p**'R —— R=pR —— 0
0 —— pR=p°**IR
This induces a commutative diagram
H(G;R) ' H(G; R=pR) ' H(G; pR)

|

H(G; R=p®*lR) _* H(G;FLpR) _® , H(G; pR=p°**R)

where 1 and , are the connecting maps. The choice of s ensures that and are
injective in positive degrees; see Lemma 5.4. Since >? is injective and the kernel of
is nilpotent, by Lemma 5.3, so is the kernel of 1 in positive degrees. This map
factors through the map

H(G; R)
R R=pR ! H(G; R=pR)
so the latter is one-to-one up to nilpotence.
Fix x 2 H>1(G; R=pR). Applying Lemma 5.3 to the map R=p*R | R=pR yields
that for some n 1 the element xP" is in the image of . §o in the diagram above,
we have 2(xP") = 0. Since >! is injective we have 1(x?") = 0. It follows from the

exactness of the top row of the diagram that xP is in the image of 1. This implies
that the map in the statement of the theorem is F-onto.

Here is a consequence of the preceding theorem.
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5.6. Corollary. Let G be a nite group and R a commutative noetherian ring. For
any map of rings R | k with k a eld of positive characteristic, the natural map

H(G; R)
R k ! H(G;k)

is an F-isomorphism, and hence the induced map on spectra
SpecH(G; k) ! Spec(H(G;R)
R k)

is @ homeomorphism.

Proof. Let p be the characteristic of k. The map R ! k factors through R=pR.
Applying
R k to the F-isomorphism in Theorem 5.5 yields the F-isomorphism

H(G;R)

R k ! H(G;R=pR)

R=pr K:

It remains to observe that the right hand side is isomorphic to H(G; k).

5.7. Theorem. With G a nite group and R a regular ring, the tensor-triangulated
category K(Proj RG) is stratied by the action of H(G; R).

Proof. The R-algebra H(G; R) is nitely generated by a result of Evens [20] and
Venkov [40]. Thus the result follows from Theorem 4.13 and Corollary 5.6.

An immediate, and standard, consequence of the stratication is a classication of
thick tensor ideals in the bounded derived category (and also the small stable
module category) of RG-modules. An analogous classication with Proj holds for
Gproj.

5.8. Corollary. Let G be a nite group and R be a regular local ring. There is a one-
to-one correspondence between thick tensor ideal subcategories in D°(mod RG) and
specialisation closed subsets in Spec(H(G; R)), the spectrum of homogeneous prime
ideals in H(G; R).

5.9. Theorem 5.7 yields classications of thick and localising tensor ideals which
have recent predecessors. Corollary 5.8 is established as a main theorem in Lau’s
work [33] where algebraic techniques similar to ours are used. Lau only works
with nitely generated modules computing the Balmer spectrum of the category of
perfect complexes on the Deligne Mumford stack [(Spec R)=G], that is the derived
category of bounded complexes of G-equivariant nitely generated projective R-
modules. In the case of a regular ring R this is precisely the derived category
DP(mod RG). Though Lau stays in the realms of small categories, he allows for
non-trivial action of G on the ring R so his result is more general in that setting.

In the series of papers [3, 4], Barthel takes a very dierent approach to the
stratication of representations of a nite group G over a ring R, by developing
powerful homotopy theory machinery, with an eye towards applications to many
other topological situations. In particular, in contrast to our brewise approach,
Quillen’s philosophy of reducing the question to elementary abelian groups enters
into Barthel’s homotopy theoretic methods. To make a direct comparison of our
specic applications, Barthel’s [4, Theorem C], which classies localising tensor
ideals in the (exact) category of R-linear representations of a nite group G whose
underlying R-module is projective, can be seen as a direct consequence of Theo-
rem 5.7, under the assumption that R is regular. We arrive to this application
though through entirely dierent routes.
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5.10. For a group algebra RG there are other possible versions of a stable module
category. For instance, one can endow the category of RG-modules with the exact
structure given by those short exact sequences which are split exact when restricted
to the trivial subgroup. Then the category mod RG of nitely presented RG-
modules is a Frobenius category, and the corresponding stable category stmod RG
is in fact a tensor triangulated category [15]. For general R this category is dierent
from Gproj RG, as can be seen from the discussion in [15, x7] for R = Z.
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