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ABSTRACT

Within the field of elastic metamaterials, topological metamaterials have recently received much attention due to their ability to host
topologically robust edge states. Introducing local resonators to these metamaterials also opens the door for many applications such as
energy harvesting and reconfigurable metamaterials. However, the interactions between phenomena from local resonance and modulation
patterning are currently unknown. This work fills that gap by studying multiple cases of spatially modulated metamaterials with local reso-
nators to reveal the mechanisms behind bandgap formation. Their dispersion relations are determined analytically for infinite chains and
validated numerically using eigenvalue analysis. The inverse method is used to determine the imaginary wavenumber components from
which each bandgap is characterized by its formation mechanism. The topological nature of the bandgaps is also explored through calculat-
ing the Chern number and integrated density of states. The band structures are obtained for various sources of modulation as well as multi-
ple resonator parameters to illustrate how both local resonance and modulation patterning interact together to influence the band structure.
Other unique features of these metamaterials are further demonstrated through the mode shapes obtained using the eigenvectors. The
results reveal a complex band structure that is highly tunable, and the observations given here can be used to guide designers in choosing 3
resonator parameters and patterning to fit a variety of applications.
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I. INTRODUCTION instead, get reflected by the material.'”~'® The frequency of these
bandgaps corresponds to wavelengths near the lattice constant.
This allows for low frequency vibration attenuation and control.
However, limitations of the lattice dimensions limit the application
of this bandgap to larger structures and low frequency vibrations.'
To overcome this requirement, local resonators can be embed-

Man-made structures with specially designed configurations
and constituents, known as metamaterials, have received much
attention recently due to their ability to possess properties not
found in natural homogeneous materials.””> While originally devel-
oped for electromagnetic and optical wave propagation,” the tech- -0 e
nology has since expanded to include acoustic' and mechanical ded inside the structure to form locally resonant metamaterials.
wave propagation.” The unique properties of these metamaterials The local resonators open up a bandgap at wavelengths much
are valuable for a large variety of applications including vibration larger than the lattice constant. These bandgaps are formed as a

and noise control,’ energy harvesting, mechanical computing,® result of Bragg scattering and mode hybridization, and they depend

structural health monitoring,” and cloaking, '’ strongly on the resonator parameters.”’ Note that in the presence
Mechanical metamaterials are commonly arranged in carefully of local resonators, Bragg scattering is not essential because very

designed configurations such as periodic,’ quasiperiodic,’’ or  low frequency resonators can still be excited by long wavelength

random'” patterns. These patterns offer exceptional dynamical waves. Therefore, bandgaps can still be formed in the absence of

properties. For instance, periodic patterning enables the formation periodicity and in metamaterials with random configurations.'

of a bandgap in the frequency response due to Bragg scattering. While locally resonant metamaterials hold many improve-

Within this bandgap, waves are forbidden from propagating and, ments in vibration attenuation over periodic structures, they are

J. Appl. Phys. 135, 203108 (2024); doi: 10.1063/5.0203937 135, 203108-1

© Author(s) 2024



Journal of

Applied Physics

only effective near their design frequency. For this reason, much
work has been done recently to widen the range of operating fre-
quencies. Some studies have included multiple resonators with dif-
ferent resonator frequencies to produce multiple bandgaps at
different frequency ranges.””"”> Others have used different kinds
of resonators to broaden the bandgap such as bistable resonators™
and alternately coupled resonators.”* Introducing patterns into the
spacing or parameters of the resonators has also been shown to be
an effective method for broadening or opening new bandgaps.””*°
In order to produce more adaptable locally resonant metamaterials,
electromechanical elements have also been introduced through pie-
zoelectric resonators. Studies have shown that by shunting these
resonators to circuits, the locally resonant bandgaps can be actively
tailored by the circuit parameters without need for changing the
geometric or material parameters of the resonators.”’ " In addition
to this, nonlinear phenomena have demonstrated great value in
enhancing bandgap control and size. With nonlinear resonators,
nonlinear frequency shifts can occur in all wavelengths allowing for
more broadband use.”' Nonlinear Coriolis and centrifugal forces
have also been utilized to design resonators that can slide to pas-
sively tune themselves to the input wave frequency.”>”’
Metamaterials with spatial modulation patterns, such as quasi-
periodic arrangements, have been shown to greatly enhance vibra-
tion control and energy harvesting through the appearance of
additional bandgaps and topologically protected edge modes.
While periodic and locally resonant metamaterials produce topo-
logically trivial bandgaps, quasiperiodic metamaterials are known
to host multiple robust topologically protected modes that do not
propagate inside the bulk and are localized within lower dimen-
sions.”* These topological modes are manifested passively through
the breaking of spatial inversion symmetry while holding time-
reversal symmetry.”>’ One method to achieve this is through
the quasiperiodic modulation of parameters within the structure
following patterns such as the Aubry-André model™ as seen in
Refs. 11 and 39-45. When plotted, the band structures for these
metamaterials are analogous to the Hofstadter butterfly*® with multi-
ple additional non-trivial topological bandgaps appearing within the
bulk propagation zones of periodic structures. Each of these bandg-
aps is spanned by a topological edge mode, which hosts localized
vibrations in finite chains.’' By introducing a phase variable, these
edge modes can be pumped from one edge to the other.”’~*
Although locally resonant metamaterials have shown superior
dynamical properties over other metamaterials, little work has been
done to explore their arrangement with spatial patterning, thus
revealing their topological features. A locally resonant quasiperiodic
metamaterial is first proposed in Ref. 43 with quasiperiodic pattern-
ing present in the location of identical resonators along a continuous
beam. Due to the combination of effects, the bulk spectrum is analo-
gous to the Hofstadter butterfly with multiple topological bandgaps
along with a single topologically trivial bandgap determined by the
parameters of the resonators. A discrete quasiperiodic chain is
studied in Ref. 50 with quasiperiodic modulation of the main chain
springs and identical electromechanical resonators. It is demon-
strated that weak electromechanical coupling does not impact the
band structure. Quasiperiodic modulation of resonator parameters is
seen in Ref. 51, which experimentally plots the Hofstadter butterfly
and demonstrates localized vibrations. This reveals the possibility to
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introduce topological effects purely in the resonators allowing for
advanced wave control and topological phenomena to be present
in materials that must remain homogeneous for structural, load
bearing, or other reasons. By introducing both spatial and tempo-
ral modulation to local resonator parameters, multiple works’ >’
have even broken reciprocity and demonstrated one-way wave
propagation.

In spite of these works, the interactions between local reso-
nance and spatial patterning remain ambiguous. The mechanisms
behind bandgap formation in metamaterials with modulated reso-
nator parameters are unknown, and, hence, the design and tuning
of these metamaterials remain elusive. In this paper, we examine a
system of topological metamaterials with spatially modulated local
resonators to investigate the interactions between local resonance
and topological effects for bandgap formation. The system consists
of a spring-mass chain with each mass coupled to a local resonator.
Multiple cases are studied in which the modulation patterning is
present in the main chain stiffness, resonator stiffness, resonator
mass, or a combination of those sources. The dispersion relation of
the infinite chain is determined from the analytical solution of a
single unit cell. Results are then validated through the numerical
solution of a finite chain using eigenvalue analysis for band struc-
tures and eigenvectors for mode shapes. The system is compared to
previous metamaterials with modulation in the main chain to
observe the effect of the modulation location. The bandgaps are
characterized by both their formation mechanism and topological
nature through the analysis of the inverse dispersion relations and
Chern number. Furthermore, resonator parameters are varied to
determine their influence on the topological bandgaps.

Il. MATHEMATICAL MODELING OF THE SYSTEM

This work considers one-dimensional locally resonant metama-

terials with spatial modulation in a variety of parameters as shown in
Fig. 1. The metamaterial is represented by a spring-mass chain of
identical masses, m, joined by springs with stiffness, k. Each mass is
also coupled to a local resonator with mass, m, and stiffness, k.
Spatial modulation is included in either the main spring stiffness,
resonator mass, resonator stiffness, or a combination of these loca-
tions. The modulation follows the Aubry-André Model™ such that
the nth modulated parameter, Z,, is defined as

Zy = Zo[1 + Acos(2mné + ¢)], (1)

FIG. 1. Schematic of the metamaterial consisting of a spring-mass chain with
local resonators and with spatial modulation in the main spring stiffness, &y, res-
onator stiffness, k; ,, and resonator mass, m;.,.
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with Z,, being the average value and 1 being the modulation ampli- (=t ® + k)Y — kp Uy = 0. (6)
tude. This pattern is defined by its quasiperiodic parameter, 6, and

phase shift, ¢. Rational and irrational values of 6 produce periodic

and quasiperiodic patterns, respectively. The governing equations of To obtain an analytical expression for the dispersion relations
motion for the nth mass and resonator are of an infinite chain, a single unit cell will be studied. The equations

of motion for the jth unit cell can be expressed in the matrix
mit, + knfl(“n - unfl) + kn(“n - un+1) + kr,n(un _)’n) =0, (2) form as

mr,n“n + kr,n( n un) = 0> (3)
) % (—Mo* + K)u; =0, )
where u, and y, are the displacements of the nth mass and resona-

tor, respectively. We impose a Bloch periodic solution of
where M is the mass matrix, K is the stiffness matrix, and w; is

u, = U, ei(;m—a)t), Yy = v, gltun—ot) (4) the vector of mass and resonator displacements; u = [U; Y]. To

obtain nontrivial solutions to Eq. (7), the coefficient matrix

where U, and Y, are the mass displacement and resonator displace- ~ Must be singular. By setting the determinant equal to zero, the
ment amplitudes, respectively, with o being the frequency, ¢ being characteristic equation can be obtained. From this characteristic
the time, and u being the non-dimensional wavenumber. This will equation, the dispersion relation is determined. For a chain with
yield the new governing equations as N masses in its unit cell, the mass and stiffness matrices are
2N x 2N, and the characteristic equation has 2N roots yielding

(—1m? + k1 + kn + kr) Uy — kot Up_re™™ 2N bands in the dispersion relation. For this study, we will con-

sider a chain with quasiperiodic parameter 8 = 1/3 (N = 3) with

—knUnsr€" —kenYy =0, (5)  stiffness matrix,
|
ki + ks + kr,l —klei" —k3e_i’1 _kr,l 0 0
—kle_i“ ki +ky + kr,z —kzei” 0 —k,,z 0 =
K— —k3e’7‘ —kze_i” ko + ks + ks 0 0 —k, 3 ) ‘g
—ky, 0 0 ke 0 0 ®
0 —k2 0 0 ko O iy
0 0 —kr,3 0 0 kr,_?, %
| w
To validate the analytical dispersion relations, numerical simu- ko =0.3N/m, and A = 0.6. The phase angle, ¢, will be varied
lation is used to obtain the natural frequencies of finite chains from through the full range from 0 to 2z. For the modulated parameters,
the eigenvalues over the full range of the phase variable, ¢. the subscript 0 denotes the average value.
Furthermore, the mode shapes are also determined numerically In this section, we will explore how both the band structure
from the system eigenvectors. and mode shapes of each case are determined by the interactions
between spatial modulation and local resonance. We start by com-
Ill. RESULTS paring the band structures for each case to observe how the loca-
tion of modulation impacts the band structure. From there, further
To best understand the dynamic interactions between local parametric analysis demonstrates how proper tuning of resonator
resonance and spatial modulation, we will consider here four cases parameters can be leveraged alongside modulation to shape the
determined by where the modulation is present in the chain. Case  pand structure. Finally, the mode shapes are displayed to examine
1 will have modulation in the stiffness of the main springs with  how unique properties of the band structure impact the localized
identical (i.e., periodic) resonators. The remaining three will have vibration modes of the systems.
modulation present in the local resonator parameters. Case 2 will
modulate the resonator stiffness, and case 3 will modulate the reso- . . .
nator mass. Case 4 will modulate both the resonator stiffness and Effect of spatial modulation location
mass in such a way that the natural frequency of the local resona- Calculating the roots to the characteristic equation obtained
tors remains constant. Both infinite and finite chains will be from Eq. (7) yields the 3D dispersion surfaces shown in Fig. 2.

studied with 60 cells in the finite chains. A quasiperiodic parameter Here, the frequency is given as the nondimensional frequency,
of 6 = 1/3 will be used, producing a unit cell of three masses and Q = w/wy where wy = \/ko/m, and it is a function of the dimen-

resonators. Except where stated otherwise, the systems will have the sionless wavenumber, u, and phase variable, ¢. The six roots of the
following parameters: m = 1kg, m,o=0.2kg, ko= 1N/m, characteristic equation produce a dispersion relation with six
J. Appl. Phys. 135, 203108 (2024); doi: 10.1063/5.0203937 135, 203108-3
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FIG. 2. Infinite dispersion relations detailing dimensionless wavenumber, €, as a function of dimensionless wavenumber, x, and phase variable, ¢, for (a) case 1, with
modulation in main cell stiffness, k, (b) case 2, with modulation in the resonator stiffness, k-, (c) case 3, with modulation in the resonator mass, m,, and (d) case 4, with

modulation in the resonator stiffness, k;, and mass, m;.

passband surfaces separated by five bandgaps for each case. In
general, there is little difference between cases as the wavenumber
is varied. The one exception to this is that for cases with modula-
tion in one resonator parameter (cases 2 and 3), there are occasion-
ally passbands showing opposite trends with changes in
wavenumber. For example, in case 2, in Fig. 2(b), the fourth (light
blue) passband decreases in frequency as the wavenumber
approaches 7, whereas the fourth passband increases for each other
case. Similarly, the second (green) passband in case 3, shown in
Fig. 2(c), increases as the wavenumber approaches 7, whereas the
second passband decreases for each other case.

With variation in the phase angle, ¢, however, there are more
significant changes from case to case. Especially for cases 2 and 3, the
middle passbands show significant periodic oscillations, while the first
and fourth cases do not. Furthermore, a variation in the phase angle
can reveal meaningful trends in topological phenomena in finite
chains such as topological pumping, demonstrated in Sec. III C.

For these reasons, the following analysis will primarily focus on varia-
tion in phase angle ¢ for both the finite and infinite chains.

Although changing the location of parameter modulation
from the main cells (case 1) to the resonator parameters (cases
2-4) does not change the number of bandgaps in the frequency
spectrum, the behavior of the bandgaps can still be significantly
altered. By introducing multiple resonator frequencies in cases 2
and 3, there is the possibility for coupling bandgap formation
mechanisms (i.e., local resonance and Bragg scattering) within
pre-existing bandgaps. Such behavior has been previously
reported in work by Gao and Wang”” in which a hybrid metama-
terial with different multi-resonator unit cells displayed bandgaps
with coupled behavior of both local resonance and Bragg scatter-
ing. To characterize the mechanisms behind bandgap formation,
the inverse method is used on the characteristic equation to
obtain the real and imaginary components of the wavenumber
at a given frequency. From the imaginary component of the
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wavenumbers, the bandgap mechanism can be determined based
on criteria developed by Liu and Hussein.”’

The real and imaginary wavenumber components are given in
Fig. 3 for each case. In this representation, bandgaps produced by
Bragg scattering yield attenuation zones with imaginary wavenum-
bers that are symmetric and roughly semicircular. On the other
hand, locally resonant bandgaps produce asymmetric attenuation
zones with a much stronger peak centered on the natural frequency
of the resonator. The natural frequency for each resonator, defined
as Wy, = \/kpu/Myp, is shown here as a dashed blue line. In case
1, shown in Fig. 3(a), there is only one resonator frequency and
only one locally resonant bandgap corresponding to it. The remain-
ing bandgaps are all due to Bragg scattering. This same behavior is
seen in case 4 [Fig. 3(d)] since this case also only has one resonator
natural frequency. For cases 2 and 3, however, there are three
locally resonant bandgaps with peaks matching the three natural

ARTICLE pubs.aip.org/aip/jap

frequencies of the resonators. Compared to the Bragg scattering
bandgaps, the locally resonant bandgaps show much stronger atten-
uation. Due to this, introducing modulation to the resonator
parameters can produce significant improvements to the vibration
attenuation performance of these metamaterials.

As mentioned previously, changing the modulated parameter
can alter the dispersion relation as it varies with the phase, ¢. To
analyze this further, the finite and infinite band structures are
plotted for all four cases in Fig. 4. The bulk dispersion bands for
the infinite chain are shown in gray with the natural frequencies of
the finite chain overlaid as black lines. The additional topological
edge modes that span the bandgaps are highlighted in red, and the
natural frequencies of the resonators are displayed as dashed blue
lines. The first case studies a chain with identical resonators and
spatial modulation in its main cell stiffnesses. While the primary
focus of this paper is on cases with modulated resonators, a brief

FIG. 3. Real and imaginary wavenumber components as a function of frequency for cases 1-4 [(a)—(d)], respectively, with phase ¢ — ¢y = 0.6z. Nonzero imaginary
components, shown in red, indicate the existence of a bandgap with the formation mechanism labeled for each bandgap. The resonator frequencies are shown by the

dashed blue lines.
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FIG. 4. Band structure for an infinite (gray background) chain and finite (black lines) chain of 60 cells with modulation present in (a) the main spring stiffness (case 1),
with the inset figure zooming in on the third passband, (b) the resonator stiffness (case 2), (c) the resonator mass (case 3), and (d) both the resonator stiffness and mass
(case 4), with the inset figure zooming in on the third and fourth passbands. Edge modes spanning the bandgaps are shown as red lines, and the resonator natural fre-
quencies are shown as dashed blue lines. The Chern number for each bandgap is also labeled. Cases 2—4 are shifted by phase shift ¢.

discussion of case 1 is given to be used as a baseline standard of
comparison for the remaining three cases. A more thorough analy-
sis of this case can be found in Ref. 50. For case 1, we see that the
band structure in Fig. 4(a) consists of six bulk bands split by five
bandgaps. Four of the bandgaps each contain a single topologically
non-trivial edge mode, while the middle bandgap is topologically
trivial, with no edge mode present. This trivial bandgap is centered
on the single natural frequency of the resonators, and it evenly
splits the dispersion bands with three passbands above it and three
below.

After investigating the topological features of modulation in
the stiffness of the main springs, we examine modulation in the
local resonators. Indeed, unlike other metamaterials, locally reso-
nant metamaterials allow us to achieve patterning through modu-
lating the local resonator parameters. This will be investigated in
the remaining three cases. While there are some similarities, there
are also many significant differences to discuss. We can see that for
every case, there are still six passbands and five bandgaps as well as
multiple edge modes spanning the topological bandgaps. However,

one major difference is a shift in the initial placement of the edge
modes at phase ¢ = 0 for cases with modulated resonator parame-
ters (cases 2-4). As seen in Fig. 4, varying the phase angle causes
the topological bandgaps to grow and shrink while also moving the
edge states within the bandgaps. By moving the edge state nearer
or further from the bulk bands, one can improve the degree of
localization in the chain as well as change the localization edge.
This has been used as a primary method to achieve topological
pumping'"***** ‘and nonreciprocal wave propagation.”>">
As such, it is incredibly important to know how the edge states
migrate with the phase value. For previously studied cases with modu-
lation only in the main chain, the movement of the edge states has
been symmetric about the phase ¢ = 7, touching the bulk bands at
¢ =0 or 27 and at ¢ = 7. This is demonstrated in case 1 in Fig. 4(a)
with modulated k. However, when modulation is introduced to the
resonators instead, as in cases 2-4 [Figs. 4(b)-4(d)], the edge states
undergo a phase shift and are no longer symmetric about ¢ = 7. The
results presented in Figs. 4(b)-4(d) are shifted by a phase, ¢, to
maintain symmetry. The original band structures without the phase
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shift are given for cases 2 and 3 in Fig. 5. Without the phase shift, the
points of symmetry, which correspond to the points of contact with
the bulk bands, are found instead to be at ¢ = 27/3 and ¢ = 57z/3.
While they are not included here for brevity, similar results were also
obtained for other values of the quasiperiodic parameter. From these
results, it was determined that the phase shift is directly related to the
quasiperiodic parameter and can be quantified as

¢ = (1 -0 ©)

Since there are two points of symmetry in the edge state, the phase
could be shifted in either direction to a point of symmetry. For the
specific case of 8 = 1/2, symmetry is already achieved, and no phase
shift is necessary. In all figures, the positive phase shift will be
included whenever modulation is present in the resonator parameters.

With modulation in just one of the local resonator parameters,
such as in case 2 [Fig. 4(b)] or 3 [Fig. 4(c)], there is not just one
resonator frequency but multiple. In the systems studied here with
6 = 1/3, there are three. These three resonator frequencies have a
significant impact on the band structure of the system, and it is
crucial to understand how their interactions lead to bandgap for-
mation. Because there are multiple resonator frequencies, we will
discuss not only the individual frequency values but also the reso-
nator frequency range. This range is defined in terms of both its
size and location, where the size is the difference between the
highest and lowest resonator frequencies, and the location is at the
average resonator frequency, ®,9 = \/k,o/myo. This frequency
range highlights the effects of varying the source of modulation,
and it can be visualized in Figs. 4(b) and 4(c) as the area between
the upper and lower dashed blue lines. Even when the resonator
parameters (k.o and m,,) are kept constant, the resonator frequency
range may differ between cases 2 and 3. In this section, we wish to
isolate the effects of the source of modulation, while in Sec. III B, we
will explore how to manipulate the resonator frequency range.
In order to accomplish this and provide a more direct comparison,
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different resonator parameters are used between cases 2 and 3 to
produce the same resonator frequency range in Figs. 4(b) and 4(c).
For case 2, shown in Fig. 4(b) with modulated k,, we use the stan-
dard parameters k,p = 0.3N/m and m,o = 0.2kg. For case 3,
shown in Fig. 4(c) with modulated m,, we change the average stiff-
ness to k.o = 0.192 N/m and keep the mass the same. This pro-
duces a nondimensional resonator frequency range of 0.77-1.55 for
both cases.

When considering how the band structure changes with the
phase angle, ¢, the multiple resonator frequencies of cases 2 and 3
result in a much higher sensitivity to the phase angle. The effects of
this are largely present within the resonator frequency range itself.
In general, the passbands and bandgaps undergo larger variation
with the phase angle as shown in Figs. 4(b) and 4(c). This includes
the middle (trivial) bandgap, which shows no significant variation
for cases 1 and 4 as seen in Figs. 4(a) and 4(d). In addition,
Figs. 4(b) and 4(c) indicate that this middle bandgap still appears
centered near the average natural frequency of the resonators,
oy, but its width is no longer constant and varies periodically
with the phase.

Perhaps, the most significant impact of having multiple reso-
nator frequencies in cases 2 and 3 is that there are multiple points
at which the passbands shrink to zero width and disappear, causing
the two adjacent bandgaps to merge. These occur at points where
the passband is crossed by one of the frequencies of the resonators.
As the resonator frequency approaches the passband, the passband
shrinks until it eventually produces a bandgap where the resonator
frequency crosses the passband. These points are also closely tied
to where two resonator frequency values converge. For example, in
Fig. 4(c), the fourth passband shrinks to zero width as resonator
frequencies cross it at ¢ = 0.617 and 0.727. These points lie on
either side of the crossing of two resonator frequencies at

¢ = 0.67x. This shrinking of passbands indicates, for the first time,

the ability to change the number of bandgaps and passbands in a
spatially modulated system without changing the modulation

FIG. 5. Band structure for an infinite (gray background) chain and finite (black lines) chain of 60 cells with modulation present in the resonator (a) stiffness (case 2) and
(b) mass (case 3) without phase shift, ¢, leading to asymmetric edge modes, highlighted as red lines.
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pattern. A locally resonant system with @ = 1/3 has always been
shown to have six passbands with five bandgaps. But with modula-
tion in the resonators and an appropriate choice of phase variable,
it is possible to, instead, have five passbands with four bandgaps.
This is seen again in Fig. 4(c). At the point ¢ = 0.617, when the
fourth passband closes, the band structure has only five passbands
and four bandgaps.

At these critical transition points, the resonator natural fre-
quency crosses from one bandgap into another, often joining a
second resonator frequency within the same bandgap. As the reso-
nator frequency transitions from one bandgap to the next, it also
changes the nature of the bandgaps it is leaving and entering. This
can be observed through the imaginary components of the wave-
number as the transition is made. One example of this is found in
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the second case, when the middle resonator frequency crosses from
the third bandgap into the second bandgap near ¢ — ¢, = 0.637.
A close-up view of this frequency crossing is shown in Fig. 6(a)
alongside the wavenumber components at the point of crossing in
Fig. 6(b) and the imaginary component of the wavenumbers at
three other critical points in Figs. 6(c)-6(e). At point (I), both reso-
nator frequencies are in separate bandgaps, and both bandgaps are
formed by local resonance, as displayed in Fig. 6(c). At point (II),
in Fig. 6(b), the upper resonator frequency is coincident with the
third passband, causing the passband to disappear and the adjacent
bandgaps to merge. Looking to the real component of the wave-
number, there exist only five passbands instead of six. Furthermore,
from the imaginary component of the wavenumber, it is evident
that the second resonant peak has disappeared. The single merged

FIG. 6. (a) Zoomed-in band structure of case 2 from Fig. 4(b), displaying the intersection of two resonator frequencies within the second bandgap and the crossing of the
third passband by a resonator frequency. Four points of interest are highlighted at ¢ — ¢y = 0.587, 0.63457, 0.647, and 0.667. (b) The real and imaginary wavenumber
components are given as a function of frequency at ¢ — ¢y = 0.6345z when the resonator frequency crosses the third passband. (c)-(e) The imaginary component of
the wavenumber is plotted at ¢ — ¢y = 0.587, 0.64x, and 0.667, respectively, for each point of interest, displaying how the bandgap mechanisms transition with the

phase angle, ¢. The resonator frequencies are shown by the dashed blue lines.
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bandgap displays the width common among Bragg scattering
bandgaps as well as one peak at the frequency of the lower resona-
tor frequency. After the upper resonator frequency crosses the third
passband, the two resonator frequencies coexist within the second
bandgap. An example of this is highlighted by point (III) in
Fig. 6(d). This results in the third bandgap transitioning to a Bragg
scattering bandgap while the second bandgap obtains two attenua-
tion peaks. At point (IV), shown in Fig. 6(e), the two resonator fre-
quencies are identical, causing the lower bandgap to again have a
single peak while the upper bandgap remains as a Bragg scattering
bandgap. This transition reveals further bandgap tuning capability
from modulated resonators, allowing for control over the number
and location of locally resonant bandgaps through a single
parameter.

In a similar fashion, the increased variation in passbands and
bandgaps with the phase angle also makes it possible for two pass-
bands to overlap in their frequency range at different phase angles.
This can be seen for the first bandgap in Fig. 4(b) where the upper
limit of the first passband is 0.81 and the lower limit of the second
passband is 0.78. While the overlap occurs at different phase
angles, it prevents the formation of a complete bandgap across all
phase values, and it can be very problematic in some applications
such as topological pumping. Fortunately, this can be resolved by
carefully selecting resonator parameters that expand the bandgap
size. This will be demonstrated in Sec. III B.

Another significant difference between cases with modulation
in the main chain and in the resonators is the presence of an addi-
tional mode within the middle (third) bandgap. In case 1, the third
bandgap is topologically trivial and contains no modes within it,
but for cases 2-4, there is an additional mode within the third
bandgap. To understand the presence of this additional mode, it is
necessary to discuss the topological nature of this bandgap. The
bulk-boundary correspondence principle can be used to relate the
presence of edge modes within bandgaps to the Chern number.”®
The Chern number is a topological invariant used to define the
topological nature of the bulk bands and bandgaps. For each bulk
band, the Chern number can be evaluated analytically as an integer
over the domain (i, ¢) € D = [0, 2x] x [0, 27] as

C—Lj V x AdD, (10)
D

T 2rmi

where V = (0/9u)e, + (0/d¢)ey and A = u” - Vu with ()" denot-
ing the complex conjugate. The Chern number labeling a gap, C,,
is obtained by summing the Chern numbers for each bulk band
below the gap. A nonzero gap label indicates that the gap is topo-
logical and guarantees the presence of an edge mode spanning the
gap from one bulk band to the other. The value of the gap label,
|G|, is equal to the number of modes spanning the bandgap, and
the sign indicates the direction of mode migration with increasing
phase, ¢. While the Chern number can be evaluated using Eq. (10),
direct computation is often challenging. Instead, the Chern number
is evaluated numerically following the approach found in Ref. 59.
As shown in Fig. 4, the third bandgap has a Chern number of zero
for each case while the remaining bandgaps have gap labels of +1.

The Chern number for the bandgaps can also be approxi-
mated from the computed Integrated Density of States (IDS) over a
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spectrum of the full quasiperiodic parameter, 8. The IDS at fre-
quency, Q, is defined as

< Q

IDS(Q) = lim 220 [%n =@ (1
N—o00 N

where w, is the nth natural frequency, and [ -] are the Iverson

brackets returning a value of 1 when the statement within is true
and a value of 0 otherwise. In other words, the IDS at a frequency,
Q, is a summation of the number of natural frequencies below it,
normalized to the size of the chain, N. The value theoretically con-
verges as the size approaches infinity, but it is practical here to con-
sider a large chain of N = 1000 masses. To best understand how
the Chern number is calculated over a spectrum of the quasiperi-
odic parameter, it is worthwhile to first observe how the frequency
spectrum varies with the quasiperiodic parameter. This bulk spec-
trum, commonly known as the Hofstadter butterfly, is shown in
Fig. 7 for each case. As the name implies, the spectra emulate a but-
terfly shape with major and minor wings representing various
bandgaps. The major “wings” of the butterfly display bandgaps that
change with the quasiperiodic parameter, 0, but are always present,
whereas the minor “wings” are not constant across all 6 values. In
case 1, the trivial bandgap can be clearly seen as the constant fre-
quency bandgap splitting the bulk spectra into two separate butter-
flies. For cases 2 and 3, there are remnants of a significant central
bandgap, but their overall spectra display significant distortion
from case 1. Meanwhile, case 4 does display a constant central
bandgap.

Looking now to the IDS, in Fig. 8, we can see the effects of
these distortions on the topological nature of the bandgaps through
the Chern number. In Fig. 8, the colormap represents the fre-
quency, and the lines of sharp color change indicate the bandgaps.

These jumps in frequency arise because all frequencies within a ¢

bandgap share the same IDS. In this representation, the bandgaps
can be expressed as a line,

IDS(6) = a + bé, (12)

with a being the intercept and b being the slope. Using Streda’s
formula, % =G, the bandgap label is determined to be equal to
the slope of the bandgap line, b. Some of these lines are highlighted
in Fig. 8 as dashed white lines with their equations shown. These
results agree well with the numerical calculations showing Chern
numbers of —1, 0, and 1 for bandgaps with quasiperiodic parame-
ter @ = 1/3. Therefore, a topologically trivial bandgap can be iden-
tified as the horizontal (b = C, = 0) bandgap. Referring back to
the butterfly spectra in Fig. 7, these horizontal trivial bandgaps line
up with the constant central bandgaps splitting the spectra in half.
The bandgaps with slope +1 represent the major “wings” of each
butterfly. Looking at the IDS plots in Fig. 8, every case contains a
horizontal bandgap at IDS = 1 indicating the topologically trivial
nature of this bandgap.

It is made evident that moving the modulation from the main
cell to the resonator parameters does not influence the topological
nature of the bandgaps. However, upon closer inspection, there are
minor variations in the trivial bandgaps with modulated resonator
parameters. The inset figures in Fig. 8 display zoomed-in views of
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FIG. 7. Spectrum of natural frequencies for a chain of 1000 cells with ¢» — ¢py = 0 and variation over the full range of the quasiperiodic parameter, 6 for cases 1-4
(a)—(d), respectively. The standard parameters are used for k.o and myo. The spectra resemble the Hofstadter butterfly with the “wings” representing significant bandgaps.

the trivial bandgap. In case 1, shown in Fig. 8(a), there is a very dis-
tinct horizontal line across all values of the quasiperiodic parame-
ter. However, for the remaining cases in Figs. 8(b)-8(d), this is not
the case. While there is still a jump in color along the line IDS = 1,
the line varies slightly to higher or lower IDS values, and there are
multiple points along the line where the bandgap is crossed by
other colors. These differences can be explained by how the trivial
bandgap varies with parameter changes and by the presence of an
additional mode within the bandgap. In cases 2 and 3 [Figs. 8(b)
and 8(c)], the trivial bandgap does not remain constant for all
values of the quasiperiodic parameter. While these changes can
impact the trivial bandgap, they do not alter its topologically trivial
nature.

With the bandgap determined to be topologically trivial, the
additional mode appearing within the bandgap cannot be identified
as a topological edge mode. However, other types of localized
modes within the bandgaps have been previously reported in the
literature. One kind sharing many similar qualities is the defect

mode reported in Refs. 43 and 60. Reference 43 reports on a con-
tinuous beam with local resonators spaced along the beam follow-
ing a quasiperiodic pattern. In that system, an additional mode
appears that is dependent on the boundary conditions. In the
trivial bandgap, there are no modes under pinned-pinned boun-
dary conditions and one additional mode under clamped-free
boundary conditions. Furthermore, the additional edge mode does
not span the full frequency range of the bandgap. Instead, it sepa-
rates from the upper passband and returns to it without ever touch-
ing the lower passband. The same behavior is observed here in
cases 2-4. The modes within the trivial bandgap do not span the
bandgap. Rather, they separate from the fourth passband and
return to it without touching the third passband. Despite not being
a topological edge mode, these modes still display vibration locali-
zation, which will be demonstrated later.

While cases 2 and 3 are very similar to one another and
display many differences from case 1, case 4 shares some character-
istics with each of the other cases. Since case 4 includes equal
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FIG. 8. Integrated density of states for cases 1-4 [(a)—(d)], respectively, with ¢ — ¢, = 0. Select bandgaps are highlighted by dashed white lines, and inset figures zoom

in on the trivial bandgap highlighted by the black rectangle.

modulation in both the resonator mass and stiffness, the resonators
have a single constant natural frequency as in case 1 rather than a
resonator frequency range as in cases 2 and 3. Because of this, the
band structure for case 4 [Fig. 4(d)] is closest to that of case 1
[Fig. 4(a)]. In general, the bandgaps and passbands for case 4 show
significantly lower variation than we see in any of the other cases.
Due to these nearly flat bandgaps, we do not find any overlapping
passbands as can be seen in cases 2 and 3. There are also no points
at which any passbands close since the resonator frequency
remains within the middle bandgap and never crosses a passband.
Although case 4 lacks a resonator frequency range, it does still
share some characteristics with cases 2 and 3. For example, case 4
experiences the same phase shift in its edge modes due to the mod-
ulation in its resonators. Case 4 also hosts an additional edge mode
within its third bandgap, shown in Fig. 4(d). Like in cases 2 and 3,
this edge mode does not span the entire bandgap but remains near
the fourth passband.

B. Effect of modulated resonator parameters

As previously mentioned, in cases with a single modulated
resonator parameter (cases 2 and 3), the band structure and
bandgap formation are strongly determined by the frequency range
of the resonators. As such, it is important to know the effect of
manipulating this frequency range. Because the natural frequencies
of the resonators are directly influenced by the resonator stiffnesses
and masses, we will now study how changes in the average values
and in the modulation of these parameters can be used to control
the location and size of this frequency range. It is worth noting
here that while changing the resonator parameters can alter the
bandgap properties, they cannot change the topological nature of
the bandgaps as the Chern number remains invariant under these
perturbations.

Figure 9 shows the band structure for case 2 with modulated
resonator stiffness for varying values of average resonator stiffness,
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FIG. 9. Finite and infinite band structures for case 2 with variations in either the average resonator stiffness, ko, or average resonator mass, m,. Resonator parameters
are (a) standard average mass, m.y = 0.2 kg and one-third of the standard average stiffness ko = 0.1 N/m, (b) standard average mass, m,y = 0.2kg and friple the
standard average stiffness ko = 0.9 N/m, (c) standard average stiffness, ko = 0.3 N/m and triple the standard average mass m,, = 0.6 kg, and (d) standard average

stiffness, k.o = 0.3 N/m and one-third of the standard average mass m,o = 1/15kg.

krp, and mass m, . Similar results are shown in Fig. 10 for case 3
with modulated resonator mass. To vary the mass and stiffness of
the resonators, the average values are increased or decreased by a
factor of three. This results in low and high mass values of
myy = 0.067 kg and m,o = 0.6 kg as well as low and high stiffness
values of k.o = 0.1 N/m and k,y = 0.9 N/m. As mentioned before,
case 3 uses different stiffness values resulting in low and high
values of ko = 0.064 N/m and k.o = 0.576 N/m. As expected, the
resonator frequency range can be shifted up or down by manipulat-
ing the resonator parameters. In Figs. 9(a), 9(c), and 10(a), 10(c),
the resonator frequency range is moved to a lower frequency than
in Figs. 4(b) and 4(c) by either decreasing the average resonator
stiffness or increasing the average resonator mass. Likewise, in
Figs. 9(b), 9(d) and 10(b), 10(d), the resonator frequency range is
moved to a higher frequency by either increasing the average reso-
nator stiffness or decreasing the average resonator mass. When

shifting this range to lower frequencies, there is not a significant
decrease in the upper limit of the uppermost passband. As such,
with more bandgaps shifted to lower frequencies, there are fewer
bandgaps in the upper frequency range, and the space is dominated
by just one or two passbands. Rather than the bandgaps growing to
fill this spectral region, the passbands, instead, grow very wide
causing the upper bandgaps to shrink significantly. For example, in
Fig. 4(b), the two uppermost passbands cover a frequency range of
0.31 at ¢ — ¢y = 0, while in Fig. 9(a), the same passbands cover a
much larger frequency range of 0.86. In some more extreme cases,
like that found in Fig. 10(a), the upper bandgap may effectively dis-
appear altogether leading to a merge in the upper two passbands.
Furthermore, as these upper passbands shrink, they also oscillate
less with the phase angle.

On the other hand, shifting the resonator frequency range
upward [shown in Figs. 9(b), 9(d) and 10(b), 10(d)] produces an

€1:6€:LL 2oz dunr L1

J. Appl. Phys. 135, 203108 (2024); doi: 10.1063/5.0203937
© Author(s) 2024

135, 203108-12



Journal of
Applied Physics

ARTICLE pubs.aip.org/aip/jap

FIG. 10. Finite and infinite band structures for case 3 with variations in either the average resonator stiffness, ko, or average resonator mass, m; . Resonator parameters
are (a) standard average mass, m.o = 0.2 kg and one-third of the standard average stiffness k.o = 0.064 N/m, (b) standard average mass, mo = 0.2 kg and triple the
standard average stiffness ko = 0.576 N/m, (c) standard average stiffness, k.o = 0.192N/m and triple the standard average mass m,o = 0.6 kg, and (d) standard
average stiffness, ko = 0.192 N/m and one-third of the standard average mass m.o = 1/15 kg.

opposite result. As the resonator frequency range shifts upward,
more bandgaps are brought into the higher frequency regime.
This produces significantly wider passbands in the low frequency
region with thin bandgaps disappearing in extreme cases such as in
Fig. 9(d). Shifting the range upward does have a more significant
impact on the upper limit of the uppermost passband though. As
the resonator frequencies approach the upper limit of the band
structure, the limit is pushed upward and begins to vary more dra-
matically to match the variation in the resonator frequencies.
Despite the upper frequency limit of the band structure increasing,
the upper passbands shrink drastically as the bandgaps become
much wider. This results in multiple very thin passbands that oscil-
late significantly with changes in the phase angle. For example, in
Fig. 10(d), the upper limit of the sixth passband oscillates between
Q =222 and Q = 2.74, while the upper limit of the same pass-
band in Fig. 10(c) remains nearly constant at Q = 2.05.

While the band structure is strongly tied to the resonator fre-
quency range, there are multiple methods to achieve the same fre-
quency range, and it is valuable to distinguish between the
additional effects of these methods. For example, the same resona-
tor frequency range is achieved in Figs. 9(b), 9(d) and 10(b), 10(d),
but the band structures are not the same. The range can be
increased or decreased by changing either k.o or m,p, but the
choice of parameters can determine other features such as bandgap
size. A major trend to note is the effect that the resonator mass has
on the bandgap sizes. When comparing band structures with the
same resonator frequency range, like Figs. 10(a) and 10(c), for
example, the system with a larger average resonator mass, m,, will
have larger bandgaps within its resonator frequency range.
The parameter being modulated can also impact the band struc-
ture further. When modulation is found in the resonator mass,
my,, the bulk bands remain closer to the resonator frequencies at
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higher frequency ranges than when modulation is found in
the resonator stiffness, k,. This can be seen when comparing
Figs. 9(b) and 10(b). Both cases share the same resonator fre-
quency range, and both experience an increase in the upper limit
of their uppermost passband. However, in the case of modulation
in the resonator stiffness [Fig. 9(b)], the upper band is pushed
much further upward by the maximum resonator frequency. On
the other hand, when modulation is in the resonator mass
[Fig. 10(b)], the upper band clings tightly to the maximum reso-
nator frequency and does not shift to as high of a frequency as in
the previous case. This is seen most clearly in Fig. 10(d) where
the uppermost passband is nearly identical to the maximum reso-
nator frequency.

While changing a single parameter can shift the resonator fre-
quency range to higher or lower frequencies, it also changes the
size of the frequency range. By increasing (decreasing) the average
resonator frequency, the resonator frequency range also increases
(decreases) in size. It is not possible to shift the resonator frequency
range without also changing its size. However, it is possible instead
to change the size of the resonator frequency range without chang-
ing its location. As long as the average resonator frequency, .,
remains constant, the range will not change in location. This can
be achieved by changing the amplitude of modulation, A. Figure 11
shows the band structures for cases 2-4 with higher and lower
modulation amplitudes. The plots in the left column show that for
lower modulation amplitude, the size of the resonator frequency
range is greatly reduced. Similarly, for higher modulation ampli-
tude, the range is increased. By changing the amplitude of modula-
tion, the resonator frequency range changes size, but its location,
defined by the average resonator frequency, w,,, remains constant.
As the modulation amplitude increases, the passbands and bandg-
aps experience significantly greater variation with the phase angle.
Despite the bandgap sizes changing more dramatically with the
phase, the total combined width of the bandgaps also increases as
the modulation amplitude increases. This trend can even be found
in case 4 in Figs. 11(e) and 11(f) with a single constant resonator
frequency. Even though the resonator frequency remains constant,
the increase in the variation in the resonator parameters leads to an
increase in bandgap size and variation.

While increasing the bandgap size in this way can be benefi-
cial, the increase in the variation can actually be more detrimental
to the system dynamics. As mentioned before, we can sometimes
see the existence of multiple passbands that overlap in frequency
range at different phase variables. In these instances, there is no
complete bandgap across all phase angles. When the variation in
the bandgap and passbands increases, these instances occur
more commonly and display larger areas of overlap. This can be
seen most strongly in Fig. 11(b). When compared to the stan-
dard case with lower 4 in Fig. 4(b), the overlap originally found
in the first bandgap increases significantly to account for almost
the entire second passband, and the third bandgap goes from
having no overlap to having substantial overlap from its adjacent
passbands. It is possible to remediate the overlap of passbands
by increasing the bandgap width through careful selection of the
average resonator parameters, which is detailed below. However,
at higher modulation amplitudes, this becomes a much greater
challenge.

ARTICLE pubs.aip.org/aip/jap

Although the resonator frequency range is strongly influential
to the band structure, it is not the only determining factor in
bandgap formation. Even without changing the resonator frequency
range, the individual resonator parameters can significantly alter
the band structure. Figure 12 shows the band structures for cases
2-4 with the same resonator frequency range but different resona-
tor parameters. Since the resonator frequency range is directly tied
to the average resonator frequency, changes made to both the reso-
nator mass and stiffness that do not change the ratio between
them, k,o/m,o, will have no impact on the resonator frequency
range. As seen in Fig. 12, increasing both the mass and the stiffness
will increase the bandgap size in all three cases without changing
the resonator frequency range. This observation demonstrates
strong alignment with findings previously documented in the liter-
ature regarding the impact of the local resonator’s mass on the
bandgap’s size.”’ More specifically, the change in bandgap size
effects of the middle bandgap most strongly with effects diminish-
ing as you move to further bandgaps above or below it. If the reso-
nator parameters are lowered enough, we can observe, as before,
significantly overlapping passbands due to the bandgaps still oscil-
lating with the phase despite being very thin. However, through
increasing the parameters, this overlap disappears. These trends
also hold true for case 4 in Fig. 12(e) and 12(f) showing larger
bandgaps with larger resonator parameters even with a single reso-
nator frequency.

C. Mode shapes

The pronounced effect that comes from modulating the reso-
nator parameters appears not only in changes to the band structure
but also in the mode shapes. From the band structure, we observed
the presence of an additional mode spanning the middle bandgap

as well as changes to the other edge modes. These changes are ¢

reflected here in the mode shapes. When a finite chain is excited at
a frequency within a topological bandgap, edge localized vibration
modes arise. These edge modes have been well documented in pre-
vious studies, so an in-depth discussion of most of the edge modes
will be withheld. Instead, greater attention will be given to two
major differences in the mode shapes that are caused by modulat-
ing the resonator parameters rather than the main chain
parameters.

The first major difference is the existence of an additional
edge mode in the topologically trivial (third) bandgap, which does
not appear in the case with periodic resonators. To validate the
existence of this edge mode, the mode shapes of main mass dis-
placement are plotted in Fig. 13 for cases 2-4 when excited within
the third bandgap. Case 1 is excluded here because in this case,
there is no additional mode present within the third bandgap. As
such, there is no vibration mode to display. Here, the system con-
sists of a finite chain with 60 cells, and the mode shapes are shown
to vary over a full range of the phase variable. For better visualiza-
tion, the mode shapes are normalized to the maximum value of
mass displacement within that mode. In each case, vibrations are
localized to one edge of the chain or the other. Even though the
additional edge mode does not span the entire width of the
bandgap, the mode follows the same behavior of other edge modes.
At one end of the phase spectrum, with ¢ — ¢, = 0, the edge
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FIG. 11. Effect of changing modulation amplitude, 1, on the band structures of cases 2 (first row), 3 (second row), and 4 (third row) with low modulation amplitude,

A = 0.3 (left columns), and high modulation amplitude, 2 = 0.9 (right columns). Standard resonator parameters of k.o = 0.3 N/m and m,o = 0.2 kg are used in cases 2

and 4 [(a), (b), (e), and (f)], and standard resonator parameters of ko = 0.192 N/m and m,o = 0.2kg are used in case 2 [(c) and (d)]. The inset figures in (e) and

(f) display zoomed-in views of the third and fourth passbands.
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FIG. 12. Effect of changing both resonator stiffness and mass simultaneously on band structures with identical resonator frequency range for cases 2 [(a) and (b)], 3 [(c)

and (d)], and 4 [(e) and (f)] with low parameters (left column figures), and high parameters (right column figures). Low parameters are one-third of the standard resonator

parameters, and high parameters are triple the standard values. This yields low resonator parameters of k.o = 0.1 N/m and m,o = 1/15 kg for cases 2 (a) and 4 (e) and

ko = 0.064 N/m and m,o = 1/15kg for case 3 (c). High parameters are k.o = 0.9N/m and m.o = 0.6 kg for cases 2 (b) and 4 (f) and k.o = 0.576 N/m and

mro = 0.6 kg for case 3 (d). Inset figures zoom in on the fourth bandgap in (b), third and fourth, bandgap in (e), and third bandgap in (f).
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FIG. 13. Displacement mode shapes varying with phase angle, ¢, for cases 2—4 [(a)-(c)], respectively, with standard parameters and excited along the additional mode

within the third bandgap.

mode frequencies are joined to a bulk passband as shown in Fig. 4,
and the localization is focused on one end of the chain. As the
phase increases, the edge mode frequency separates from the pass-
band, increasing the degree of localization before momentarily
returning to the passband again at ¢ — ¢y = z. The effect of this
on the mode shapes is evident in Fig. 13. In each case, the vibration
is localized to one end of the chain, and at the point ¢ — ¢, = 7,
as the mode frequency touches the passband, the location of vibra-
tion localization switches to the opposite end.

The other major difference is found in how the edge modes
approach and touch their adjacent bulk bands. When modulation
is found in the main chain stiffness, the frequency of an edge mode
will span its bandgap a number of times corresponding to the mag-
nitude of the bandgap’s Chern number, |C,|. For example, in a
bandgap with |C,| = 1, the edge mode frequency will approach one
passband, touch it once, then turn to approach the other passband,
and touch it once all within a full 27 phase cycle. This results in

the edge mode migrating from one edge to the other when the fre-
quency touches a passband. This is also the case when both the res-
onator mass and stiffness are modulated together, as in case 4.
However, there are exceptions to this trend when a single resonator
parameter is modulated. For some bandgaps with |C,| = 1, rather
than only touching each passband once, the edge mode frequency
will sometimes touch one passband, remain close to it, and touch
the same passband two more times before crossing the bandgap to
touch the other passband. This can be seen in Figs. 4(b) and 4(c)
for case 2 within the fourth bandgap and case 3 within the second
bandgap, respectively. The mode shapes are given in Fig. 14 for the
two bandgaps mentioned above. For instances such as these, the
edge mode frequency comes into contact with the adjacent pass-

bands not twice, but four times. Each time it does so, the vibration :
localization switches from one edge to the other. This can be vali- ;

dated in Fig. 14(a) by noting that it switches localization at phase
angles of ¢ — ¢y = 0.57, 17, and1.57. These correspond directly to

FIG. 14. Displacement mode shapes varying with phase angle for case 2 in the fourth bandgap (a) and case 3 in the second bandgap showing two topological pumping

cycles in a full phase cycle.
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the points in Fig. 4(b) where the edge mode frequency touches the
passband. Because |C,| = 1 for these bandgaps, the edge mode fre-
quency only fully spans its bandgap once, but despite this, the
mode migration resembles the migration of mode shapes with
Chern numbers greater than one, such as those reported by Liao
and Zhou.” For purposes where the phase angle is actively being
cycled, such as for topological pumping, this faster migration of
edge modes can be quite valuable. In traditional cases, the phase
angle would need to be modulated by an entire half cycle from
0 — 7 to pump a localized wave from one end of the chain to the
other. Within these bandgaps, however, localization switches
direction more times within one cycle. This allows for pumping
of the wave from one edge to the other in half of the previous
phase cycle. For systems with time varying phase, this can lead to
faster transportation of mechanical energy along the chain.

IV. CONCLUSIONS

In this paper, we investigated the mechanisms behind
bandgap formation in metamaterials due to combined effects from
local resonance and spatial modulation of resonator parameters.
The metamaterial studied was modeled as a one-dimensional
lattice of masses connected by springs with each mass coupled to a
local resonator modeled as a spring-mass system. Spatial modula-
tion of parameters was present for different cases consisting of
modulation in the main chain stiffness, resonator stiffness, resona-
tor mass, or combinations of those sources. The dispersion rela-
tions for infinite chains were obtained analytically through the
analysis of the unit cell. These results were validated numerically
for finite chains using eigenvalue analysis. The mode shapes were
also determined for finite chains from the eigenvectors. Both the
formation mechanism and topological nature of each bandgap were
revealed. Furthermore, the band structures were plotted for a
variety of sources of modulation as well as for a variety of resonator
parameters to determine how the patterning and local resonance
interact to form bandgaps.

The results indicate that moving parameter modulation from
the main chain stiffness to the resonator parameters significantly
alters the band structure. With the presence of modulated resona-
tors, multiple locally resonant bandgaps form from bandgaps previ-
ously opened by Bragg scattering. By changing these bandgaps to
locally resonant bandgaps, the vibration attenuation performance
was improved. The topologically trivial bandgap hosted an addi-
tional edge mode while remaining topologically trivial. The phase
of the edge states was also shifted asymmetrically. Due to having
multiple unique resonators, the local resonance phenomena were
not defined by a single resonator frequency but by a resonator fre-
quency range, which holds significant influence over the band
structure. Within this range, there occurs multiple points in the
band structure at which some passbands disappear and the adjacent
bandgaps merge. As the passband closes and reopens, the adjacent
bandgaps also undergo transitions between locally resonant and
Bragg scattering bandgaps. These points reveal a new method for
determining the number and type of bandgaps in a system that is
independent of the modulation parameter. It has also been demon-
strated that both the size and location of the resonator frequency
range can be tuned through a judicious choice of the resonator
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parameters and modulation amplitude. By changing one parameter
to increase the average resonator frequency, the range can be
shifted upward and grow. Changing the modulation amplitude can
also change the size of the range without altering its location. From
the mode shapes, we validated that the additional edge mode
present in the middle bandgap hosts localized vibrations.
Furthermore, we observed the presence of edge states with faster
pumping of the vibration localization from edge to edge. Rather
than taking a full 27 to pump the wave from one edge to the next
and back, these edge states can pump the wave back and forth in
half the phase.

In conclusion, for metamaterials with spatially modulated res-
onators, the band structure is strongly determined by both the reso-
nator parameters and the location and strength of modulation.
Methods of tuning these complex band structures have been out-
lined through careful selection of resonator parameters. A study of
the mode shapes revealed the presence of an additional edge mode
as well as vibration localization that switches the direction with
greater frequency. Because of their dependence on resonator
parameters and patterning, these phenomena have the potential to
be introduced to many non-resonant materials with any kind of
structure. This paves the way for strongly adaptable metamaterials
with features valuable for a variety of applications including wave
guiding, energy harvesting, topological pumping, and wave
nonreciprocity.
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