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Introduction of Local Resonators
to a Nonlinear Metamaterial With
Topological Features

Recent work in nonlinear topological metamaterials has revealed many useful properties
such as amplitude dependent localized vibration modes and nonreciprocal wave
propagation. However, thus far, there have not been any studies to include the use of
local resonators in these systems. This work seeks to fill that gap through investigating a
nonlinear quasi-periodic metamaterial with periodic local resonator attachments. We
model a one-dimensional metamaterial lattice as a spring-mass chain with coupled local
resonators. Quasi-periodic modulation in the nonlinear connecting springs is utilized to
achieve topological features. For comparison, a similar system without local resonators is
also modeled. Both analytical and numerical methods are used to study this system. The
dispersion relation of the infinite chain of the proposed system is determined analytically
through the perturbation method of multiple scales. This analytical solution is compared to
the finite chain response, estimated using the method of harmonic balance and solved
numerically. The resulting band structures and mode shapes are used to study the effects of
quasi-periodic parameters and excitation amplitude on the system behavior both with and
without the presence of local resonators. Specifically, the impact of local resonators on
topological features such as edge modes is established, demonstrating the appearance of a
trivial bandgap and multiple localized edge states for both main cells and local resonators.
These results highlight the interplay between local resonance and nonlinearity in a
topological metamaterial demonstrating for the first time the presence of an amplitude
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invariant bandgap alongside amplitude dependent topological bandgaps.
[DOLI: 10.1115/1.4064726]
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1 Introduction

Metamaterials are artificial engineered structures that are
patterned with special configurations and material constituents
[1-3]. These structures possess properties not found in naturally
occurring materials, ranging from zero or negative values of
standard engineering parameters (such as density and Poisson’s ratio
[1]), to nonlinear phenomena (such as gap solitons [4] and
asymmetric wave propagation [5]). Metamaterials have a founda-
tion in optics and electromagnetics, exploiting elastic and wave
properties such as motion, deformations, stresses and mechanical
energy [6,7]. These concepts were later extended for elastic wave
propagation [2] and acoustics [8]. The unusual features of
metamaterials make them beneficial for numerous applications
including vibration and noise control [9], energy harvesting [10],
structural health monitoring [11], and acoustic diodes or rectifiers
[12]. Within elastic media, metamaterials are usually patterned in
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periodic (phononic), quasi-periodic, or random structural config-
urations [13]. It was observed that periodic structures prevent waves
from propagating through the structure at certain frequency ranges,
known as bandgaps, through a phenomenon known as Bragg
scattering. Therefore, low frequency waves can be banned from
propagating through the structure, thus achieving significant
vibration attenuation [2,14]. However, since the Bragg scattering
is restricted to certain lattice constants, only large structures can be
controlled.

This large structure requirement can be counteracted by
introducing local resonators into metamaterials [15].

Thus, applications of vibration attenuation can be extended to
much smaller structures and applications. Local resonators are also
capable of widening the original bandgap developed by Bragg
scattering, as the bandgap is directly influenced by the resonator
parameters [16]. Furthermore, by introducing multiple resonators,
additional multifrequency bandgaps can be obtained [9,17].

In addition, nonlinear elements can also be included in a
metamaterial [18]. On top of the potential for improved bandgap
performance, the introduction of nonlinearity also results in other
interesting wave propagation phenomena such as gap solitons [4],
dark and enveloped solitons [19], nonlinear cloaking [20-22], and
wave nonreciprocity [23-25]. These phenomena can be applied for a
host of applications. One option for the addition of nonlinearity to
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the metamaterial system is the use of nonlinear springs. These
springs can have a combined linear and nonlinear stiffness or be
essentially nonlinear, with nonlinear stiffness only. In the literature,
study of nonlinear metamaterials is often focused on obtaining the
band structure analytically or numerically [26,27]. The former uses
perturbation techniques (such as Lindstedt—Poincare [28], multiple
scales [29], and homotopy analysis [30]), while the latter applies
frequency and spectro-spatial analysis [31-34].

Quasi-periodic arrangements have also been shown to improve
energy harvesting and vibration control through topologically
protected modes. The investigation of topological phases of matter
in metamaterials has shown the presence of robust topologically
protected modes that do not propagate inside the bulk and are
localized within lower dimensions [35]. One passive method for
manifesting these topological modes is the breaking of spatial
inversion symmetry while maintaining time-reversal symmetry
[36-38]. This can be achieved by introducing quasi-periodic
modulation into a structure using patterns such as the Aubry-
André model as seen in Refs. [39—42]. This results in a spectrum that
is analogous to the Hofstadter butterfly [43] with additional
nontrivial topological bandgaps inside the bulk of propagating
waves in periodic structures. These topological bandgaps host
localized modes that can be beneficial in vibration mitigation [44]
showing high displacement in a few cells while preventing wave
propagation to other cells. Localization can also be moved along the
metamaterial by topological pumping [45].

Further investigations have been made studying the effects of
nonlinearity on topological metamaterials. The majority of these
studies generally fall into one of two paths. The first path observes
the effect of nonlinearity on a metamaterial that is topological in the
linear regime. The second uses nonlinearity to strategically design
metamaterials to induce topological properties in the metamaterial.
In both cases, the amplitude dependence of the nonlinear response
has led to studies in the frequency shift [46—48] and stability [49,50]
of topological edge states. One most common result of combining
topological and nonlinear effects is the existence of solitons that are
topologically robust [51-53].

Recent efforts in metamaterials have revealed interesting
dynamical properties of locally resonant meta- materials with a
wide variety of applications. Foremost among these is simultaneous
vibration suppression and energy harvesting through the use of
electromechanical resonators [34]. Modulating resonator parame-
ters in quadratic [54] or quasi-periodic [42] patterns can even
produce far superior energy harvesting performance over other
metamaterials. In addition to enhanced harvesting energy, modu-
lated resonators can be utilized to produce topological effects in
metamaterials with simpler, nontopological host structures [39,41].
Furthermore, local resonators have also proven useful in controlling
waves through the design of two-dimensional waveguides [55] and
electromechanical diodes [12]. Other applications in the nonlinear
regime include control over breather propagation [56], and the
strengthening of nonlinear phenomena such as frequency shifts and
wave localization [57].

While the many valuable properties of local resonators have been
widely studied, local resonators have not yet been introduced to
nonlinear topological metamaterials. The aim of this work is to
investigate the interactions between local resonance, nonlinear, and
topological phenomena. In particular, we investigate a system that
consists of a spring-mass chain with coupled local resonators and
quasi-periodicity in the nonlinear connecting springs. The infinite
chain model is solved analytically using the method of multiple
scales, providing a closed form solution for the slow flow equations
and nonlinear frequency correction factor. The method of harmonic
balance is used to numerically estimate the behavior of a finite chain,
providing insight into the natural frequencies and mode shapes of
both main cells and local resonators. Both of these methods are used
to study the effects of quasi-periodic parameters and excitation
amplitude on the system behavior, focusing on the potential for
vibration localization and control. The system is compared to a
previously studied system lacking resonators [58], and the effect of
local resonators on topological edge states and the behavior of local
resonators in the proposed nonlinear quasi-periodic system is
examined.

2 Modeling and Solution Methods

This work considers a one-dimensional nonlinear locally resonant
metamaterial with stiffness modulation in the main springs as shown
in Fig. 1. The metamaterial is represented by a spring mass chain of
identical masses, m, joined by modulated springs with linear and
cubic nonlinear components. Each mass is coupled to a local
resonator with mass, m, and stiffness, k.. Modulation in the main
springs follows the Aubry—André model such that the stiffness
constant between mass n and mass n + 1 is defined as

kn = ko[l + Acos(2mn0 + ¢)] (1)

with average stiffness, ko, and modulation amplitude, A. This pattern
is defined by its quasi-periodic parameter, 0, and phase shift, ¢. It
should be noted that |4| < 1 in order to avoid negative values of
stiffness k,. Rational and irrational values of § produce periodic and
quasi-periodic patterns, respectively. The governing equations of
motion for the nth mass and resonator are

n“;{.n + kn—l (Mn - unfl) + kn(”n - un+1) + kr(un - yn)

(@)
+ 6/{,1_1(1,{,7 - un—1)3 + Ekﬂ(“n - Mn-%—l)3 =0

my ).}.n + kl‘(yn - un) =0 (3)

where u,, and y, are the displacements of the nth mass and resonator,
respectively, and € is a small dimensionless parameter defining the
strength of the nonlinearity. These equations can be expressed
compactly in matrix form for the jth unit cell as

Miy; + K qyu; + K (w1 + Kpyujon + oM =0 4)

Yn-1 Yn Yn+1
my- my my
ky ky ky
kn_], E kn, E kn+], E
Up-1 Up Up+]

Fig. 1 Schematic of nonlinear, quasi-periodic chain with local resonators
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where for a system with g masses in its unit cell, M, K, K_;), and
K1) are 2¢g x 2q mass and stiffness matrices, u; is the 2¢ x 1 vector
of mass and resonator displacements, and f\" is the 2¢ x 1 nonlinear
forcing vector.

2.1 The Method of Multiple Scales. To derive the dispersion
relation for an infinite chain, the perturbation method of multiple
scales (MMS) is utilized with the fast time scale, Ty = ¢, and the slow
time scale, T = et. This method provides the simplest algebraic
method for determining an analytical amplitude-wavenumber
relationship. While using a first order approximation is accurate
for weak nonlinearity, its accuracy will decrease with strong
nonlinearity. At high amplitudes, a first order approximation is
insufficient to detect higher order harmonics present in the response
or to determine the stability of solutions. However, higher order
harmonics and stability analysis are outside of the scope of this work
and will be left for future work.

Using the MMS, we can assume expansions for the displacements
in the form of

uj = u)(To.T)) + eu} (To. Ty) + O(€) 5)
and the time derivative can be expressed as

62

57 = Djj() +2€DoDs () + O(e) (6)

where D,, = 9/9T,. Using these expansions, the equation of motion
can be broken into linear and nonlinear components by order of e
yielding order ¢”

DMu” + Ku'” +K_pu®, +Kyu® =0 %)

order €'

1 1 1 1
DM+ Ko+ Ky + Koyl

= —2DoD\Mu” — ®

J

Atorder ¢, the problem is linear, so the solution can be expressed as
1 e
uf = AT e, ©)

where A is the amplitude, \ is the mode shape, 1 is the dimensionless
wavenumber, ) is the linear natural frequency, and c.c. denotes the
complex conjugate. Substituting the solution into the linear equation
yields the linear eigenvalue problem

oMy = K(u)y (10

where

K(N) = K(O) +K(7l>€7[ll +K(l)€i” (11)

the solution of which obtains the linear dispersion relation and
eigenvectors of the system.

Looking now to the nonlinear problem (i.e., the order ¢! problem),
Eq. (8) is decoupled through the use of modal coordinates, then
nonsecular terms are isolated to derive the slow flow equations.
Next, we introduce the polar form of the displacement amplitude

Ay = o, (T, )efiﬁ,, (Ty) (12)

For a trimer lattice with 0 = 1/3, the slow flow equations are then
solved to yield

o, =0 (13)
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B 3azca (1)

— 14
SmwO,n My ( )

n

where

n(i) = ~2ksthitrs ([0 + s ) e+ ke
+ ksyivie®™ — 2kaia W [P+ %)
+ (k)Y [ + (ke + K)o
+ (4l + Ahslys = 2k (Do + B) ) W P
+ (ka k) s + (ko] — 2k,
— 2k + 2kalis )Wy — 2oy
— 2k (Va3 + Usha) s + kv

+ (k0 + ko2 )92 + ko203
(15)

= W s (e s+ )

with i, being the nth element of the eigenvector associated with
wavenumber, i, and i, being its complex conjugate. It can be shown
that ¢, is a purely real quantity.

The solution further allows us to express the nonlinear frequency
in terms of the frequency correction factor, f3, as

Wy = Wo,n + Eﬁ; (17)

It is worth noting here that the frequency correction factor for this
system is nearly identical to that presented in Ref. [58] for a system
without local resonators. The primary distinction here is in the
presence of the mass ratio term, 1, indicating that the frequency shift
is directly influenced by the ratio of main cell mass to resonator
mass.

2.2 The Method of Harmonic Balance. While the method of
multiple scales provides the dispersion relations for an infinite chain,
this solution does not capture the edge modes present in the system.
For this, an analysis of a finite chain is required. Although the
method of multiple scales provides a simple algebraic approach to
analyzing a single unit cell, it quickly becomes unruly when
analyzing an entire chain of significant length. Instead, the harmonic
balance method is used here following the procedures outlined in
Refs. [47] and [58]. This method also allows us to estimate the mode
shapes for varying excitation amplitude. To examine these modes, a
finite chain of N = 42 cells with free boundary conditions at each
end is studied.

Beginning with the equations of motions in Egs. (2) and (3),
periodic solution forms for the displacement of the main cell and
resonator masses are assumed as

u, = a,cos(wt) + b, sin(wt) (18)

yu = cycos(wt) + d, sin(wt) (19)

where a,, by, ¢,, d, are unknown displacement coefficients, and
® = 2n/T is the unknown assumed angular frequency with period
T, resulting in 4N + 1 unknowns.

A corresponding set of 4N + 1 nonlinear equations are obtained
by substituting Egs. (18) and (19) into the governing equations of
motion, then setting the coefficient terms of cos(wt) and sin(wr) to
0. The final equation is provided by setting the L, norm of the
displacement coefficients, x = {ay, by, cy,dy, ..., an, by, ¢y, dN}T,
equal to the total chain amplitude A.

JULY 2024, Vol. 19 / 071007-3

PUO/OTE L ¥EL/2001 L0/2/6 L /4Pd-Bj0iME/IEaUNUOU BUONEINdWO0/BIO0 B WISE" UOHOS||00[eNBIpaLISE//:d)y WO} PapEOjUMOQ

0 0 610 |

$20Z Ae|N 62 uo spuein3 enysor ‘AsisAlun 81els pue siniisu| oluyosikiod eulbiiA Aq ypd 2001 L



P, =4 20)

For comparison to the infinite chain in the MMS solution, chain
amplitude A is also used to define the Bloch wave amplitude, o,,, by
oy =A/ \/W . This is to ensure that when the wave solution is
extended to a finite lattice with N masses, the resulting L, norm is
equal to A [58].

The described set of 4N + 1 algebraic nonlinear equations is
solved numerically using a trust-region algorithm through MATLAB’s
“fsolve” function. To investigate the amplitude dependent effects of
nonlinearity, the amplitude is first set to a small value, A = 1073,
The initial guess for this case is the solution to the linear problem.
Following this, A is increased in small increments, with each
increase using the previous solution as the initial guess. Thus, the
displacements and frequencies of the finite chain are calculated for a
range of A.

3 Results and Discussions

Using the previously described solution methods, we examine
selected variations of the proposed metamaterial. In this study, we
consider a trimer lattice (0 = 1/3) with the following parameters:
m = 1kg, ko = 1 N/m, 2 =0.6, m, = 0.2kg, k, = 0.3N/m, and
€ = 0.1. Although the system is only quasi-periodic for irrational 0
values and periodic for rational 0values, the dispersion relations
depend continuously on 0 and can be accurately represented through
sampling over rational values of . Several cases are studied,
specifically a chain with linear springs or nonlinear springs, and with
resonators or without resonators. While the linear dispersion relation
will be given for a full range of phase variable, ¢, the nonlinear
dispersion relation will be given only for ¢ = 0.357 as more
attention is given to its amplitude dependence than its phase
dependence. Thus, the nonlinear dispersion relation is determined
for varying displacement amplitudes, A, with set ¢.

3.1 Band Structure. The dispersion relations are shown in
Fig. 2 for linear systems with and without resonators. The bulk
passbands for an infinite chain, modeled from the unit cell and
solved via MMS, are shown in blue. The natural frequencies of a
finite chain, modeled with 42 masses and solved by harmonic
balance, are overlaid as black lines. Comparing Figs. 2(a) and 2(b),
the presence of the resonators in the linear chain has expected effects
on the band structure as seen in previous studies [41,42]. The
dispersion band is split in two by a topologically trivial bandgap
centered on the resonant frequency of the resonators. Above and
below this bandgap, both passbands are split into additional
passbands by topologically nontrivial bandgaps, resulting in a total

of six passbands compared to the three passbands of the non-
resonator case. The location and number of these nontrivial
bandgaps are determined by the quasi-periodic parameter. Both
with and without resonators, the frequencies of the finite chain reveal
the presence of edge states that span the bandgaps. The frequency of
these edge states is dependent on ¢ for the linear chain. Observing
the case with resonators in Fig. 2(b) confirms that these edge states
are present for nontrivial bandgaps only as there is no edge state
present in the topologically trivial bandgap.

To observe the amplitude dependence, the nonlinear dispersion is
plotted with increasing amplitude for the chains without and with
resonators in Fig. 3. As in the linear case, the presence of resonators
introduces a trivial bandgap, with nontrivial bandgaps on either side.
In the nonlinear regime, frequencies shift upward with increasing
amplitude for a positive (hardening) nonlinearity with e = 0.1
shown in Fig. 3(b). This affects several bandgap boundaries;
however, the upper limit of the trivial bandgap shows no dependence
on the amplitude, remaining constant as the amplitude increases.
Edge mode frequencies also increase with amplitude, some
approaching the neighboring bulk passbands at higher amplitudes.
As they approach, edge modes eventually run tangent to the
passband. While the majority of the finite chain modes remain
within the infinite chain bulk passbands, the highest modes in each
passband enter the bandgaps as amplitude increases and they are
shifted to higher frequency. Previous works have shown that these
modes, as well as the previously mentioned edge states, may display
vibration localization [58]. Thus, the behavior of these modes is
further investigated through the finite chain mode shapes acquired
through harmonic balance.

When considering negative (softening) nonlinearity with
e = —0.1, similar trends are identified except that frequencies are
shifted downward instead of upward as depicted in Fig. 3(c). The
bulk passbands shift downward in frequency, but the upper limit of
the trivial bandgap remains unchanged. The edge modes shift
downward causing some to enter or leave the bandgaps. For the
fourth edge mode, we again see the edge mode shift in frequency
until it approaches the adjacent passband. This time however, the
edge mode approaches the lower passband rather than the upper
passband with hardening nonlinearity. Since the frequency shift is
downward, the edge modes starting at the lower frequency end of
their bandgaps remain close to the lower passband and do not enter
the bandgap. For example, the first edge mode is seen to move
further into the bandgap with increasing amplitude in Fig. 3(b) under
the influence of positive nonlinearity. However, for negative
nonlinearity in Fig. 3(c), it remains close to the passband and never
enters the bandgap as the amplitude increases. A significant
difference to note is in the behavior of the modes that separate
from the sixth passband. For positive nonlinearity, these are the

(b)

Fig.2 Effect of phase variable ¢ on the dispersion relations of a linear chain (a) without resonators and (b) with

resonators
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Fig. 3 Effect of excitation amplitude A on the dispersion relations of a nonlinear chain at phase ¢ =0.35z
(a) without resonators, (b) with resonators and hardening nonlinearity, ¢ = 0.1, and (c¢) with resonators and

softening nonlinearity, e = —0.1

highest frequency modes in the passband, and as the amplitude
increases, they enter a bandgap and never return to the passband. But
with negative nonlinearity, these are the lowest frequency modes in
the passband, and because they shift downward, they enter the fifth
bandgap and eventually join with the fifth passband. The effects of
this behavior on the mode shapes will be detailed in the next section.

To further investigate the effect of the excitation amplitude on the
band structure, we plot the natural frequencies in Fig. 4 over a range
of quasi-periodic parameters at low amplitude (A =0) in Fig. 4(a)
and high (A =35) amplitude with hardening and softening non-
linearity in Figs. 4(b) and 4(c), respectively. For each case, we
observe that the bulk spectrum takes the expected form of the
Hofstadter butterfly. At low amplitude, there is good agreement with
previous studies [42]. The trivial bandgap is clearly displayed
showing no dependence on the quasi-periodic parameter and no
edge modes within it. Meanwhile, the topological bandgaps show
great dependence on the quasi-periodic parameter. Looking to the
higher amplitude cases, the previously noted effects of amplitude are
confirmed. There is a slight but noticeable increase in frequency of
the passbands for hardening nonlinearity and a decrease in
frequency of the passbands for softening nonlinearity. These shifts
are more significant for higher frequency modes. At the higher
amplitude, the quasi-periodic parameter has a stronger impact on the
location of the higher frequency bandgaps for hardening non-
linearity but a weaker impact for softening nonlinearity. For
example, the uppermost “wing” of the butterfly with hardening
nonlinearity in Fig. 4(b) has a maximum frequency of Q = 3.94 at
0 = 0 and drops down to Q = 1.85 at 6 = 0.5. When compared to

Journal of Computational and Nonlinear Dynamics

the linear regime in Fig. 4(a), we see a range of Q =2.56 — 1.77
over the same variation in quasi-periodic parameter. Furthermore,
with softening nonlinearity in Fig. 4(c), the upper “wing” spans from
Q = 2.05 — 1.72. The additional higher frequency modes entering
the bandgaps can also be seen here. Figures 4(b) and 4(c) shows that
for high amplitude, the upper “wings” representing the bandgaps
become less distinctive as more modes split from the bulk passbands
and span the bandgaps. Additional curves also appear above the
butterfly image in Fig. 4(b) indicating the modes that separated
upward from the uppermost passband.

3.2 Mode Shapes. The effect of amplitude on the mode shapes
of a nonlinear quasi-periodic chain without resonators is shown in
Fig. 5. Mode shapes are normalized to the maximum displacement
value for each amplitude, and the mode shapes forA = 0.1, 2.5, and
5 are outlined in black for clarity. Three selected mode branches are
shown here: two edge states in Figs. 5(a) and 5(b), respectively, and
the 41st mode in (c). The former two show that the edge modes result
in localization to the ends of the chain. This localization is most
pronounced at lower displacement amplitudes, where the effects of
nonlinearity are negligible. However, as amplitude increases, the
localization is affected to varying degrees. For the first edge mode in
Fig. 5(a), increasing amplitude results in a more localized shape;
while for the second edge mode in Fig. 5(b), higher amplitude results
in a less localized shape. This can be explained through the band
structure in Fig. 3(a) where the corresponding modes are highlighted
with dotted curves and Roman numerals (I)—(III). Here, it is clear

JULY 2024, Vol. 19 / 071007-5
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Fig. 4 Natural frequency spectrum plotted over a range of quasi-periodic parameters, 6, with hardening
nonlinearity, e = 0.1, at (a) low amplitude, A = 0 and (b) high amplitude, A=5

that while the first edge mode frequency increases with amplitude, it
does not approach the second passband, remaining within the
bandgap even at the highest value of A. On the other hand, the second
edge mode does approach the third passband, running tangent to the
passband at increased amplitude. Thus, its behavior is more similar
to the bulk passband modes with less prominent localization. It can
be concluded that localization is most significant when the mode
frequency is within a bandgap and not approaching the edges. The
phase ¢ will therefore have a significant impact on the effect of
nonlinearity on mode shape localization, as it dictates the edge mode
frequencies at low amplitude, and thus whether or not an edge mode
will approach the next passband with increasing amplitude.
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Meanwhile, the 41st edge mode, shown in Fig. 5(¢), begins within
the third passband, then increases with amplitude to enter the
bandgap. Thus, its mode shape becomes more localized, similar to
the first edge mode. This case also illustrates the localization of
modes that begin at the upper edge of the passbands and enter the
bandgaps at higher amplitude. The resulting mode shapes are
localized to various points in the chain, forming discrete breathers.
Breathers, which are solutions localized in space and periodic with
time, have been established in prior work to emerge as modes at the
edge of the passbands enter the nonlinear regime [58—60]. This is of
particular interest in the second bandgap, where localized edge
states and discrete breathers are both present. Overall, these

W
"1/,

JJJ////I

Mass Number Mass Number

(b) (©)

Fig. 5 Effect of excitation amplitude A on selected mode shapes of a hardening nonlinear chain (e = 0.1) with N =42 masses,
without resonators, and ¢ = 0.35xz. (a) mode 15 (1st edge mode); (b) mode 29 (2nd edge mode); and (¢) mode 41.
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observations for the chain without resonators are consistent with the
previous work by Rosa et al. [58].

With the addition of resonators, many of the previous observa-
tions are still applicable. Though the band structure is split into six
passbands rather than three, the behavior of the three passbands
above and below the trivial bandgap is observed to follow similar
patterns, with each set of passbands corresponding to the three
passbands of the nonresonator case. However, there are some
notable differences in the presence of resonators. To compare and
contrast the effect of resonators and the behavior of passbands 1-3
and 4-6, the mode shapes of selected modes with varying
displacement amplitude are shown in Fig. 6. Displacements of the
main cells are marked with red circles, while the resonator
displacements are marked with blue squares. All displacements
are normalized to the maximum displacement of the main cells at
each amplitude.

The response for passbands 1-3 with resonators is shown in
Figs. 6(a)-6(c). The first and second edge modes are shown in
(a) and (b), respectively, while the 41st mode is shown in (c). In all
modes, it is clear that the resonators have larger displacement
amplitude relative to the main cells, and that the relative resonator
amplitude increases slightly for higher amplitude. The resonator
amplitude can also be observed to increase as the mode frequencies
approach the trivial bandgap and thus the resonator natural
frequency. The first edge mode is very similar to the case without
resonator, with displacement localized to one end of the chain. The
second edge mode, shown in Fig. 6(b), is similar to the nonresonator
case at low amplitude, however, localization does not decrease as
amplitude increases. The continued localization even at high
amplitude may be explained by the band structure in Fig. 3(b)
which also highlights the selected modes with dotted curves and
Roman numerals (I)—(VI). Looking closely at the second edge mode,
it can be seen that while the frequency does increase with amplitude,
it remains away from the bandgap boundary and does not reach the
point where it approaches and runs tangent to the third passband as in
the nonresonator case. Thus, its behavior does not shift toward the
passband behavior, and remains localized. The 41st mode in
Fig. 6(c) also displays differences from the case with no resonator.

While there are two clear peaks in the displacement, localization
does not intensify as amplitude increases. This is due to the fact that,
unlike the nonresonator case, the 41st mode frequency does not
separate from the bulk passband, and the mode shape is unaffected.

For passbands 4-6, the third and fourth edge modes are shown in
Figs. 6(d) and 6(e), while the 83rd mode is shown in (f). Here, the
displacement response is extremely similar to the case without
resonator, including the formation of breathers in mode 83. Unlike
passbands 1-3, the displacement of resonators relative to the main
cells varies. For the third edge mode, resonator displacement is
greater than main cell displacement, while for the other two modes,
it is significantly less. This indicates that the resonator displacement
decreases as we look at modes further from the trivial bandgap,
matching the behavior in the lower three passbands.

One major difference between passbands 1-3 and 4-6 is that the
edge modes for the lower three passbands have the resonators
moving in phase with the main cells, while the resonators are out of
phase for the upper three passbands. This is illustrated by Fig. 7,
which shows mode shapes for the first and third edge modes with low
displacement amplitude. Further exploration of the chain with
resonators confirms that all modes below the trivial bandgap, and
thus below the resonator natural frequency, have resonators in phase
with the main cells, while above the trivial bandgap, resonators are
out of phase. This matches observations of a similar system studied
by LeGrande et al. [61].

For comparison, the response of some of these modes are also
plotted for negative nonlinearity in Fig. 8. Shown here are the first
and fourth edge modes in Figs. 8(a) and 8(b), respectively, and mode
72 in (c). These modes correspond to those in Fig. 3(c¢) that are
highlighted with dotted curves and Roman numerals (I)—-(III). Like
with positive nonlinearity, the edge modes here show strong
localization at low amplitudes. However, their response at high
amplitudes varies. For the first edge mode, the influence of negative
nonlinearity pushes the frequency into the bulk passband rather than
into the bandgap. This leads to a decrease in localization at high
amplitudes shown in Fig. 8(a). Looking to the fourth edge mode, it
also significantly decreases in localization just as it did with positive
nonlinearity. However, the edge mode reaches the lower passband at

—e—Main Cells
—a—Resonators

Mass Number

Mass Number

Fig.6 Effect of excitation amplitude A on selected mode shapes of a hardening nonlinear chain (e = 0.1) with N = 42 masses, with
resonators, and ¢ = 0.35z. (a) mode 15 (1stedge mode); (b) mode 29 (2nd edge mode); (¢) mode 41; (d) mode 57 (3rd edge mode); (e)

mode 71 (4th edge mode); and (f) mode 83.
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resonators, and ¢ = 0.35x. (a) mode 15 (1st edge mode); (b) mode 71 (4th edge mode); and (c) mode 72.

an amplitude near A =2.5 whereas for the case of positive
nonlinearity, the edge mode reaches the upper passband at a lower
amplitude near A = 2. This causes the edge mode to remain
localized at a higher amplitude for negative nonlinearity. This can be
seen when comparing the response at amplitude A = 2.5 for positive
nonlinearity in Fig. 6(e) and negative nonlinearity in Fig. 8(b). At
this amplitude, there is a higher degree of localization for negative
nonlinearity than for positive nonlinearity.

Another significant difference can be found in the response of the
higher frequency modes that start in the bulk passband but show
significant frequency shift. Figure 8(c) displays the mode shape
associated with the 72nd mode which is the lowest frequency mode
in the sixth passband. As previously mentioned, this mode
undergoes a significant decrease in frequency separating from the
bulk passband and entering into the bandgap. As it does, a centrally
localized breather solution emerges in the mode shape. However,
unlike with the case of positive nonlinearity, as the amplitude
increases, the mode frequency eventually approaches the fifth
passband. As it does so, the degree of localization decreases and the
wave begins to be dispersive again. This can be seen in Fig. 8(c)
where the wave is more localized at amplitude A = 2.5 than it is at
amplitude A = 5. This effectively produces an amplitude window
within which breather solutions exist. At midlevel amplitudes,
breathers will propagate with strong localization, but at lower or
higher amplitudes, the wave will be dispersed along the chain. This
demonstrates nonlinear mode pumping similar to topological
pumping and driven mainly by the softening nonlinearity instead
of patterning. This differs from the response with positive

071007-8 / Vol. 19, JULY 2024

nonlinearity which produces breather solutions at all amplitudes
above a set value.

4 Conclusion

This work investigated the effect of local resonators in a nonlinear
metamaterial with quasi-periodic stiffness modulation. The pro-
posed system was modeled as a one-dimensional lattice of masses
connected by cubic nonlinear springs. Linear and nonlinear stiffness
of the connecting springs was modulated following the
Aubry—André Model. Each main mass was coupled to a local
resonator also modeled as a spring-mass system. Multiple
techniques were applied to study this nonlinear system, with the
response of an infinite chain model solved analytically through the
method of multiple scales and the response of a finite chain
estimated through the method of harmonic balance. The resulting
frequency band structure and displacement mode shapes were
compared to a similar system lacking local resonators to determine
their effects.

In studying the proposed system, linear and nonlinear band
structures were examined to determine the effects of phase variable
and displacement amplitude. The results lacking resonators were
found to be consistent with previous works, including the presence
of nontrivial bandgaps, topological edge modes and amplitude
dependence due to nonlinearity. With the addition of resonators, an
additional trivial bandgap was observed, with nontrivial bandgaps
appearing both below and above. Unlike the topological bandgaps,
this trivial bandgap appeared to be invariant with excitation
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amplitude. The resulting passbands below and above the trivial
bandgap were shown to align closely with the passbands of the
system without resonators. The presence of topological edge modes
in nontrivial bandgaps was demonstrated, but as expected, no edge
mode appeared within the trivial bandgap. It was also observed that
some modes near the upper edge of the passbands shifted into the
bandgaps as they entered the nonlinear regime.

The mode shapes of the system with and without resonators were
also studied. Both with and without resonators, edge modes were
shown to localize displacements to the ends of the chain. This
localization was shown to change as edge modes entered the
nonlinear regime. Modes that shifted de-eper into the bandgaps
showed increased localization, while edge modes that approached
the edge of the passbands showed decreased localization. Mean-
while, some nonedge modes shifted into the bandgaps as they
entered the nonlinear regime, resulting in discrete breathers.
Examining mode shapes also confirmed that in the presence of
resonators, the passbands above the trivial bandgap behaved almost
identically to the passbands of the nonresonator system. While also
similar, the behavior of modes below the trivial bandgap showed
some differences to the nonresonator system. The displacement
amplitude of resonators relative to the main cells was found to vary,
with lower modes having resonator displacement greater than the
main cells, while higher modes were the opposite. The phase of the
local resonators was also found to be affected, with resonators being
in phase with the main cells when below the trivial bandgap, and out
of phase when above.

In conclusion, this work investigates the impact of local
resonators on a nonlinear topological metamaterial and demon-
strates that they can be seamlessly introduced to a nonlinear
topological metamaterial. The proposed metamaterial was shown to
combine the effects of nonlinearity, stiffness modulation and local
resonators with little conflict. Traits such as amplitude dependence
and localized topological edge modes continued to manifest, and
new bandgaps were added by the resonators. The resulting increase
in number of edge modes, passbands, and the presence of a trivial
bandgap all serve to increase the versatility of the proposed
metamaterial in both the linear and nonlinear regimes.
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Appendix: A Method of Multiple Scales

To derive the dispersion relation for an infinite chain, the
perturbation method of multiple scales (MMS) is utilized with the
fast time scale, Ty = ¢, and the slow time scale, T = . We can
assume expansions for the displacements in the form of

uj = u)(To,T1) + eu} (T, T1) + O(*) (A1)

and the time derivative can be expressed as

o 2 2
57 = D() +2eDoD1() + o(&) (A2)
where D,, = 9/9T,,.

Using these expansions, the equation of motion can be broken into
linear and nonlinear components by order of ¢ yielding order €’
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DM + Kol + K pul® + Kl =0 (A3)

order €'

DiMu” + Ko + K yuy + Kyl

= —2DoD\Mu” — M (A4)

At order ¢°, the problem is linear, so the solution can be expressed as
1 o

u = ZAT )T e (A5)

where A is the amplitude, \ is the mode shape, p is the dimensionless
wavenumber, @ is the linear natural frequency, and c.c. Denotes the
complex conjugate. Substituting the solution into the linear equation
yields the linear eigenvalue problem

oMy = K(u)p (A6)
where
K(i) = Ko + K(_pje ™" + Kp)e™ (A7)
the solution of which obtains the linear dispersion relation and
eigenvectors of the system.
Looking now to the nonlinear equation, it is helpful to use modal

analysis to decouple our system. We introduce new modal
coordinates

7 = O'M'y; (A8)

0 _

(@ M/ 2| A= enTo) (A9)

N =

where @ is the Hermitian transpose of the matrix of eigenvectors.
After making this transformation, we are left with the decoupled
equations of motion

D(z)zj(-,ln> + (ug,nzm = —DyD; [(I)HMl/zw] ,7A,,e"<“’-7”“"’T”>

Jin

— [@"M12fM (A10)

where [], denotes the nth element in a vector.

To help identify non-secular terms, the nonlinear forcing term can
be decomposed as

fNL _ (Fll\/Lefiu)o_,,To + FIZVLe73iw0_,,TU 4 c.c.)ei“j (All)

Introducing this along with the polar form of the displacement
amplitude

A, = o, (T} )e P (A12)

allows us to remove the secular terms from the RHS of Eq. (A10).
Separating into real and imaginary components yields the slow flow
equations:

(@M, w0 B e P — [(DHM”/ZF?’LL —0 (A3
(@M 2y, o uole P =0 (Al14)

where’ denotes a derivative with respect to T4. Evaluation of the
matrix components gives

(@M Py], = m'y, (A15)

3 ; s
[(DHM”/ZFIIVLL = gaieﬂ/i”mficn(u) (Al6)
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where for a trimer lattice with 0 = 1 / 3,

= WP+ W+ WP o (il + s+ 0P
(A17)

and

en(st) = ~2ksif (W1 2+ 19 ) e + ke 2
+ ks%l//?ez"” - 2k3l/73‘//1 2 |2 + “//32)€m
+ (ky + k)Wt + (ki + ko) ||
(4 0a -+ Al = 2k (Dhs + Gy ) 9
+ (ko + K3)|Ws|* + 4kl — 2k0y, 4,
—(2knpy + 2k )W, — 2kt 3) o
— 2k (Y3 + Ws¥r) “//3\2 + kipivs

(K + g2 )3 + o203
(A18)

with y,, being the nth element of the eigenvector associated with
wavenumber, i, and i, being its complex conjugate. It can be shown
symbolically that ¢, is a purely real quantity.

The slow flow equations are then solved to yield solutions

o, =0 (A19)

. 305%0,1(/1)

i (A20)
8mawo 1,

The solution further allows us to express the nonlinear frequency
in terms of the frequency correction factor, f3, as

W, = Wy, + €, (A21)
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