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ABSTRACT

Though many compilation and runtime systems have been developed
for DNNs in recent years, the focus has largely been on static DNNs.
Dynamic DNNs, where tensor shapes and sizes and even the set
of operators used are dependent upon the input and/or execution,
are becoming common. This paper presents SoD?, a comprehen-
sive framework for optimizing Dynamic DNNs. The basis of our
approach is a classification of common operators that form DNNss,
and the use of this classification towards a Rank and Dimension
Propagation (RDP) method. This framework statically determines
the shapes of operators as known constants, symbolic constants, or
operations on these. Next, using RDP we enable a series of opti-
mizations, like fused code generation, execution (order) planning,
and even runtime memory allocation plan generation. By evaluating
the framework on 10 emerging Dynamic DNNs and comparing it
against several existing systems, we demonstrate both reductions
in execution latency and memory requirements, with RDP-enabled
key optimizations responsible for much of the gains. Our evaluation
results show that SoD? runs up to 3.9x faster than these systems
while saving up to 88% peak memory consumption.
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1 INTRODUCTION

Deep Neural Networks are enabling several of the most exciting and
innovative applications that are executed on a variety of computing
devices, ranging from servers to edge and mobile devices. From a
systems research viewpoint, this had led to a large set of ongoing
projects on optimizing DNN inference (and training) tasks [1, 21,
23, 26, 32, 34, 61, 66, 69] as well as tensor compilers [31, 33, 54].

Most of the work on optimizing DNN5s considers static models
that are characterized by the following two properties: 1) input
and output shapes and sizes for each layer are known a prior, and
2) the execution path is fixed, i.e., independent of the input. In
dynamic models, in contrast, one or both of the above two properties
are no longer true, and such models are now becoming prevalent.
For example, Skipnet [63] decides, based on the input, whether to
include or exclude certain operators (or layers). A different form of
dynamism seen in transformers for NLP like BERT [13] or cutting-
edge computer vision models [29, 55, 56] can take inputs with
different shapes and/or apply variable portions of filter kernels during
the execution. Consider a commonly used dataset like Wikipedia.
The length of input sequences typically varies from 32 to 512 [71],
creating significant dynamism in text processing. Similarly, neural
networks for image/video processing often deal with images/videos
of varying resolutions that dynamically change based on network
conditions and player settings. At least three factors have contributed
to the popularity of dynamic models and this trend is expected
to continue: the need for adapting to computational capacities of
different devices, the need for supporting different types of input
(e.g. images of different resolutions), and the need for achieving
high accuracy for different scenarios.

Dynamic shapes, sizes, and control flow in these models pose
many challenges for the optimizations that have been key to obtain-
ing high efficiency. For example, loop fusion [19, 42, 46, 59] cannot
be applied [57, 73, 74] if we do not know that the index space of
two loops (which likely is the same as the dimensions of respective
input tensors) is identical. Planning the execution order [2] to reduce
memory requirements or otherwise planning memory allocation [51]
is, similarly, not possible if tensor sizes are not statically known.

While many of the existing systems for DNN execution can sup-
port dynamic models, they do with high overheads due to very
conservative assumptions and/or expensive analyses at the runtime.
For example, TFLite [1] and MNN [26] perform re-initialization
(equivalent of recompilation) when the input shape to the model
changes.

This paper presents the first nuanced approach for optimizing
DNN inference in the presence of dynamic features. Our approach
emphasizes reducing inference latency as well as memory require-
ments — the latter being quite important on the mobile devices we
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Table 1: Inference overhead for shape dynamism w/ execution
re-initialization. SL: shape propagation and layout selection. ST:
schedule and tuning. Alloc: memory allocation. Infer: inference
time. Experiments are conducted on a Samsung Galaxy S21 w/
MNN [26].

CPU latency (ms) GPU latency (ms)

Model SL ST Alloc Infer | SL ST  Alloc Infer
YOLOV6 [36] |69 1155 22 476 [ 08 1678 30605 102
Conformer [20] |38 127 78 926 | 3 1021 73170 1193
CodeBERT[16] | 23 253 28 370 | 1 856 4568 498

target. The foundation of our approach is an in-depth study of op-
erators that form the basis for modern DNNs. These operators are
classified into several groups on the basis of how the output shapes
relate to input shapes and values. Based on such a classification, we
present a data-flow analysis framework, called Rank! and Dimension
Propagation (RDP) that infers shapes and dimensions of interme-
diate tensors. RDP analysis considers known constants, symbolic
constants, and expressions involving these. RDP analysis results are
then used for enabling a number of optimizations, which includes
operator fusion and fused code generation, static execution planning,
runtime memory allocation, and multi-version code generation. This
work integrates RDP and optimizations enabled by it together and
builds a comprehensive framework for optimizing Dynamic DNNs,
called SoD?. SoD? is extensively evaluated on 10 cutting-edge DNN
models with shape dynamism and/or control-flow dynamism. Specit-
ically, these models include the ones for emerging Atrtificial General
Intelligence (AGI) [18] such as StableDiffusion [56] and Segmen-
tAnything [29]. Our evaluation results show that SoD? saves 27%
to 88% memory consumption and results in 1.7 to 3.9x execu-
tion speedup compared with four state-of-the-art product-level DNN
execution frameworks (such as ONNX Runtime [12], MNN [26],
TVM [5] with Nimble extension [57], and TensorFlow Lite [1]) that
support dynamic DNNGs.

In all, this paper makes the following contributions. DNN Op-
erator Classification. We classify the operators used for modern
DNNs (specifically 150 operators used in ONNX (Open Neural
Network Exchange)) into 4 categories, which are Input Shape Deter-
mined Output, Input Shape Determined Output Shape, Input Shape
& Value Determined Output Shape, Execution Determined Output.
We formally define these operators and explain their significance for
inferring ranks and dimensions for the DNNs where the input can
be of different sizes and the execution is data dependent.
Data-Flow Analysis for Rank and Dimension Propagation. Build-
ing on the operator classification, we have developed a static analysis
framework for propagating shape and size information through a
computational graph. This framework, called RDP, considers both
known and symbolic constants as well as expressions involving
these values. Though somewhat similar to the well-known constant
propagation analysis [4], our work is different in having transfer
functions specific to the operator (types), supporting both backward
and forward analyses, and considering not only known and symbolic
constants but also expressions involving them.

IRank denotes the number of dimensions in a tensor.
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Comprehensive Set of Static and Dynamic Optimizations. Using
results from RDP analysis, we enable a series of optimizations.
First, we enable code fusion, including generating multiple versions
when sufficient static information is not available. Next, we perform
execution planning, using the results of RDP to partition the original
graph, and further using several heuristics based on RDP output.
Finally, we enable runtime plan generation for memory allocation
and also generate multiple versions of optimized implementations
for individual operators.

2 EXISTING FRAMEWORKS AND
LIMITATIONS

Existing DNN inference engines on mobile devices use two common
approaches when handling dynamic DNNs.

Static Solutions. Many existing DNN inference engines for mobile
platforms (specifically, TFLite [1] and MNN [26]) support dynamic
features by extending their static model execution. For handling
dynamic input shapes, this involves either execution re-initialization
when the input shape changes or, alternatively, conservative (maxi-
mum) memory allocation when the input shapes are unknown. To
handle dynamic control flow, it typically requires the execution of
all possible paths, and stripping out invalid results. Not surpris-
ingly, such simplistic handling of dynamic features incurs significant
execution and/or memory overhead. To further illustrate, Table 1
shows a performance study of three models (YOLO-V6 [36], Con-
former [20], and CodeBERT [16]) that can take input with dynamic
shapes. MNN [26] runs these models on a Samsung Galaxy S21
with execution re-initialization to handle varied input shapes. These
results show that the re-initialization usually takes even significantly
longer time than the inference itself. This approach might be ac-
ceptable for cases where the overhead of re-initialization can be
amortized over a number of inference tasks (e.g., certain video pro-
cessing scenarios). However, many application scenarios (across
the image, audio, and language processing) involve continuously
changing inputs. An alternative way, as also indicated above, is to
conservatively allocate large memory spaces. However, it incurs
significant memory wastage, which can limit the ability to execute
large models or to do so efficiently, especially on mobile (or edge)
devices with limited memory.

Runtime Solutions. TVM (with Nimble extension) [5, 57] improves
on the limitations of static solutions by providing a set of optimiza-
tions within a virtual machine. An example of this functionality is a
shape function to infer the output tensor shape and use this informa-
tion for dynamic memory allocation. However, such functions and
the subsequent dynamic memory allocation introduces significant
execution overhead.

3 OPERATOR CLASSIFICATION BASED ON
DYNAMISM

Our observation is that DNN operators have different dynamism
degrees, leading to distinct levels of challenges and opportunities
in optimizing them. More specifically, this work categorizes DNN
operators into four types: Input Shape Determined Output, Input
Shape Determined Output Shape, Input Shape & Value Determined
Output Shape, and Execution Determined Output. This section gives
a formal definition.
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Figure 1: Different degrees of dynamism. Each node is a DNN operator. Yellow, blue, red, and purple mean Input Shape Determined
Output, Input Shape Determined Output Shape, Input Shape & Value Determined Output Shape, and Execution Determined Output,
respectively. In (d), Switch’s execution path is decided dynamically during runtime and red dot edges represent both the computation

dependency and control flow.

Background and Notation. It is common to represent a DNN as

a Computational Graph, which happens to be a Directed Acyclic

Graph (DAG). Each tensor (which can be an input and/or output) can

be categorized by a shape (including dimensions) and the contents

or values. Each operator is denoted as L', where [ is the operator
index. Assume L! has m input tensors (of which, 1,k are constant

tensors while k,m are output tensors from previous operators) and n

output tensors. The shape of the input tensor i for the " operator is

denoted as ISf and the corresponding tensor value can be denoted
as IVl-l , Similarly, each output tensor’s shape and value are OSf and

OVZ-I, respectively. Now, intuitively, a class of functions relates the

output shapes and values to the input shapes and values — F/5 for

the shapes and F" for the values.

e Input Shape Determined Output: The output (tensor), which
is characterized by both its shape and value, has the following
dependence on the input. The output tensor shapes are dependent
on the input tensor shapes, whereas the output tensor values are
determined by the input tensor shapes and possibly some of the
constant tensors — input values do not impact the output. Examples
include Shape and Eyel ike. Formally, there is a pair of functions
F7S_FV, such that:

fs
ost £ gst st
[T ! ! !
ovi &—1st, .. sk vl v,

where 1 <k <m.

o Input Shape Determined Output Shape: Similar to the previous
category, the output shapes depend on the input shapes. However,
what is different is that the output values rely on all the input val-
ues (including intermediate and constant input values). Examples
include Conv, Add, and Pooling. The significance of this category,
as compared to the next set of categories, is that if the input shape
of this operator is known, compiler optimizations (e.g., operator
fusion, execution/memory optimizations) are enabled. Formally,
there is a pair of functions F f $_FY, such that:

fs
ost £ ust st

ovi E gt st vl v,

e Input Shape & Value Determined Output Shape: Similar to
the previous category, the output values rely on the input shapes
and all the input values. The difference is that the output shapes
also rely on partial set of input values. Examples include Extend
and Range). Formally, there is a pair of functions F/5, F¥ and a

subset of input tensors (p, . ..,q) whose values specify the output
shape, such that:

os! il IS}y, 18}, IV}, ... 1V}

ovi Eogst s v v

,where 1 <p<gqg<mlIf p<q <k, which is identical to

Input Shape Determined Output Shape, and all the dependent
input tensors are constant. In such cases, the input shapes can
be calculated without knowing other intermediate input tensors.
If only the input shape of this operator is known, only partial
compiler optimizations with conservative analysis can be applied
to it, and full optimizations need dynamic execution results.

e Execution Determined Output: Similar to the previous two
categories, the output values rely on the input shapes and all the
input values. Examples include Nonzero and If. Formally, there
is a function F", such that:

ovi Egsh, st vl v
, and the shape of i-th output tensor can only be measured after
materializing its value:
0S! « SHAPE_OF 0V}

, which means it is not able to know the output shapes until mate-
rializing the output tensors (i.e., after executing the layer). Only
partial optimization with conservative analysis can be applied
to this operator, and full optimizations need dynamic execution
results.

Although these operator types are defined according to forward
transfer , i.e. an output tensor shape and value are related to the
input tensor shape and/or value. In practice, Backward transfer is
also used, i.e., we can (and need to) backward propagate the known
output shapes (either rank or dimension or both) to the unknown
input shapes. For instance, if we know the output shape of Add,
its input dimension might be 1 or identical to the corresponding
output dimension due to broadcasting rules [11]. We define backward
transfer functions as:

bs
188 £ o8t os.

Table 2 shows typical operators in ONNX [48] categorized by
the above classification. As further illustration, Figure 1 shows four
sub-graphs that represent operators with different dynamism degrees
(marked with red boundary) and their connections. Figure 1 (a)
shows an Input Shape Determined Output operator Shape. Once its
input shape is known, its value result can be directly inferred (and in
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Table 2: Classification of DNN operators based on dynamism degrees. Operators are from ONNX (Open Neural Network Ex-

change) [48].

Operator type

Operators

Representative

Input Shape Determined Output

Shape, ConstantOfShape, Eyelike

Shape

Input Shape Determined Output Shape

Add, AveragePool, Cast, Concat, Conv, Elementwise w/ broadcast,
Gather, MatMul, MaxPool, Reduce, Relu, Round, Sigmoid, Softmax

Conv, MatMul

Expand, GroupNormalization, MaxUnpool, Onehot, Range, Reshape,

Input Shape & Value Determined Output Shape

Resize, Slice, TopK, Upsample

Reshape, Range

Execution Determined Output

If, Loop, NMS, Nonzero, <Switch, Combine>"

If, Loop

T <switch, Combine>isa pair of customized operators for dynamic control flow that is not defined in ONNX.

fact, this value can be propagated from Shape to BiasAdd because
all following operators belong to the Input Shape Determined Output
Shape group). Similarly, Figure 1 (b) implies that if the input shape
to Conv is known, this shape information could be propagated to
the entire sub-graph because all operators in this sub-graph belong
to the Input Shape Determined Output Shape group. For the cases
represented in both (a) and (b), even if the exact shape is unknown,
it is still possible for us to perform compiler optimizations such as
operator fusion and fused code generation, execution order optimiza-
tion, and memory optimization, which will be elaborated in the next
Section. In Figure 1 (c), the output shape of TopK depends on its
input value (which is the left predecessor’s branch in the example),
i.e., the output shape of TopK (and its successors) is unknown until
its left predecessor branch is executed. Figure 1 (d) represents a
sub-graph involving a dynamic control flow. Switch results decide
if path @, @, and/or ® will be taken, and Combine merges the results
from executed paths. Both (c) and (d) require dynamic execution,
thus is more difficult to optimize statically.

Discussion. Although the examples in Table 2 and Figure 1 men-
tioned above simply classify each operator into one category, there
are additional considerations. For example, an Upsample operator
may belong to either Input Shape Determined Output Shape or Input
Shape & Value Determined Output Shape depending on whether
some of the input tensors are constant or not. Therefore, with con-
stant propagation, an operator may transform from a more dynamic
classification to a less dynamic one, offering us more aggressive op-
timization opportunities. This has motivated certain aspects of SoD?.
In addition, because our operator classification essentially models
the dynamism degree of an operator by studying its computation
logic and input/output tensor shapes and values, it is possible to
create an automatic and generic tool based on existing intermediate
representations like tensor expression (e.g., TVM expression) to
categorize operators into different classifications.

4 DESIGN OF SOD?

Based on the DNN operator classification introduced above, SoD?
introduces a new static data-flow analysis framework to infer the
intermediate result tensor shape. Such an analysis is the enabler
of several optimizations, which are dynamic DNN operator fusion,
execution path planning, memory planning, and multi-version code
generation. All of these optimizations ensure a deterministic running
sequence and a consistent output, given a particular input. At a high
level, our approach does not require conservative static assumptions
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undef (T)

known constant

iy symbolic constant
{x|x € uint}

{x|x € symbol set}

op-inferred constant
{x3lx3 = op(x1, x2),x1, x, € other constant}

nac(l)

Figure 2: Domain of RDP dataflow analysis. It includes known,
symbolic, and operation-inferred constants that form a lattice.

or runtime overheads, thus providing significant improvement over
the existing state-of-the-art.

4.1 Pre-Deployment Data-Flow Analysis

To facilitate static optimizations for dynamic DNNS, a critical re-
quirement is knowing (possibly symbolically) the intermediate result
tensor shape (i.e., rank and dimension). Our key observation is that
for many operators and operator combinations (e.g., an Input Shape
Determined Output operator and an Input Shape Determined Output
Shape operator), even without knowing the input tensor shape, it is
still possible to infer the shape of the intermediate result tensor to
a certain degree. Our framework is based on this observation and
is called operator Rank and Dimension Propagation, or RDP. While
RDP has certain similarities with the classical (symbolic) constant
propagation frameworks [4], it needs to deal with nuances of the
DNN operations and the computational graph. RDP also considers
operations over multiple (symbolic) constants as a possibility in its
lattice and requires iterative forward and backward analysis.

Formal Definition of Operator Rank and Dimension Propagation
(RDP).. The entire RDP algorithm is expressed as a four-tuple <
G,D,L' |F >.

e G is an extended computational graph (a DAG), with control-
flow operators <Switch, Combine>). If this extended compu-
tational graph involves multiple branches that all need to be
executed, we assume the execution order is always from left
to right. It is easy to prove that G is equivalent to a control-
flow graph on operators, which serves as the foundation of
this data-flow analysis.

e D is the direction of the data flow, which can be FORWARD
and BACKWARD. Unlike most classic data-flow formula-
tions, e.g., constant propagation or reaching definitions, RDP
iteratively processes G in forward and backward directions
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Inferred by
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Output shape Symbolic value
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(a) An example of forward transfer

(b) An example of backward transfer

Figure 3: Examples of forward and backward transfer. Each node is an operator. Yellow, blue, and red mean Input Shape Determined
Output, Input Shape Determined Output Shape, and Input Shape & Value Determined Output Shape, respectively. Ids (e.g., @) indicate
the location where transfer functions apply and their applying orders for a forward transfer (a backward transfer reverses this order).
S and V equations map values in the RDP domain to the shape and value of each tensor, in which, F denotes the transfer function. fs
and bs of F denote forward and backward, and F’s subscript is a short form of its type (e.g., ISDOS means Input Shape Determined

Output Shape).

until the results converge. This is because the shape of a
tensor could be inferred from its producing operator and/or
consuming operator, and their inference results should be the
same to guarantee the correctness of this DNN execution.

L’ itself is a three-tuple < V', A,m >. V' is the domain of
values (also shown in Figure 2) and includes known con-
stants, symbolic constants, and operation-inferred constants
that form a lattice. The lattice also includes undefined (undef)
as the top (T) of the lattice and Bottom (L) which is not-
a-constant (nac). A is a meet operator, which follows the
common definition for product lattice. m is a map function
mapping values in lattice to two variables, Shape (S) and
Value (V), representing these for the intermediate tensor.
More specifically, RDP is a type of data-flow analysis, where
L’ describes its analysis scope, i.e., how to map each shape
and value property to a kind of constant that forms a lat-
tice structure (in Figure 2). This lattice guarantees that the
analyzed properties of RDP follow lattice theory, so RDP
analysis will converge with a unique solution.

F : V' — V' is the domain for transfer functions. F is de-
signed for each operator (type) and transfers the Shape (S)
and Value (V) from the input tensor to the output tensor based
on the operator type. Similar to data-flow analysis for con-
stant propagation RDP has two kinds of transfer functions,
Update, and Merge. Update transfers from the input tensor to
the output tensor for an individual operator; while Merge oper-
ates on branch control flow and merges (output) tensors from
multiple possible execution paths. Because RDP has both
FORWARD and BACKWARD directions, F also contains
transfer functions for both directions.

Transfer Function Examples. SoD? contains 16 types of Update
transfer functions. These functions are based on the classification of
the operator’s dynamism degree, as detailed in Table 3. The table
includes four dynamic degrees, covering two directions (forward and
backward) and two types of propagation (shape and value). During
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Table 3: Illustration of forward and backward transfer functions
for different operator types.

Tye Forward Backward
My Shape  Value | Shape Value
Input Shape Determined Output F,é;w F,é;w Flo  Fivo
Input Shape Determined Output Shape FI@)OS F{g)os Flos  Fhnos
o X

Input Shape & Value Determined Output Shape Fj?\;m}s F,S‘;DOS FEnos F3vpos
] v ;

Execution Determined Output Flro  Firo | FBo  FBo

Table 4: Definition of Rank and Dimensions Propagation (RDP).

Notation ‘ Definition ‘ ‘ Notation ‘ Definition

Domain Tensor Rank and Dimensions Direction | Forward, Backward

Forward OUTL= FF{éplrdLP Backward INL := F»0OUTL
Initial OUTL =undef Terminate No more changes

forward transfer, each operator employs its shape and value transfer
functions in accordance with its associated dynamism degree to infer
the shape (e.g., F/;XDO) and value (e.g., FIJ;VDO) of its output tensor,
respectively. Similarly, FI@XDO and FI@VDO serve as two examples of a
backward transfer function for shape and value during the backward
transfer process. Figure 3 illustrates several common ones. The
left-hand side (Figure 3 (a)) shows an example with four forward
transfers that employ three types of Update transfer functions. Simi-
larly, the right-hand side (Figure 3 (b)) shows an example with two
backward transfer functions that belong to the same type. A point
worth noting is that the appropriate transfer function to apply to
an operator depends not only on the computational graph but also
on the constants inferred during the RDP analysis process, which
determines the dynamism classification of the operator. The Merge
transfer function is straightforward — it merges the S-map and V-map
from multiple control-flow branches based on the lattice in Figure 2.
Table 4 summarizes the key components of RDP.
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Algorithm 1: RDP’s Optimized Chaos Algorithm

1 foreach node in ecg.sorted_node do
2 L mark_as_undef(node) /* Initialize as undef */

3 set_model_input_shape(ecg)

4 do
5 changed < false
/* Traverse the Depth-first sorted nodes */
6 foreach node in ecg.sorted_node do
7 predecessors <— predecessor_of(node)
8 successors <— successor_of(node)
9 if node.type is Combine then
/* Merge the rank and dims for Combine %/

10 L changed |= node.merge(predecessors)
1 if node.type is Switch or Combine then
12 L continue /* Transit to all successors */

/* 1 Forward transfer to current node */
13 changed |= forward_transfer(node, predecessors)

/* 2 Backward transfer to predecessors */
14 foreach pred in predecessors do
15 L changed |= backward_transfer(node, pred)

/* 3 Update for Input Shape Determined Output */
16 if node.type € Input Shape Determined Output then
17 if node.shape ¢ undef,nac then
18 L L node.value < get_symbolic_value(node.shape)

19 while changed

Func forward_transfer: node, preds
if all(node.outputs.shape ¢ undef) then
L return False /* Outputs are not in undef */

2
2

= S

2

[N

pred_shapes, pred_values < shape_of(preds), value_of(preds) switch
node.op_type do

23 case ‘Input Shape Determined Output’ do

L /* Only depends on the first input shape */

24 return FT_ISDO(node, pred_values[0])

25 case ‘Input Shape Determined Output Shape’ do

26 L return FT_ISDOS(node, pred_shapes)

27 case ‘Input Shape & Value Dependent Output Shape’ do
28 L return FT_ISVDOS(node, pred_shapes, pred_values)
29 case ‘Execution-Determined’ do

L /* Assign nac */

30 return False

&

Func backward_transfer: node, pred
31 if all(pred.outputs.shape ¢ undef) then
32 L return False /* Outputs are not in undef */

=

/* Similar to forward_transfer =/

RDP Solution. The method is shown as Alg. 1 and involves
applying the transfer functions (F) to the extended computational
graph (G) along the two directions iteratively. Elaborating on Alg. 1,
it first sorts the nodes (i.e., operators) in the computational graph G
with the dept-first order and initializes the output shape- and value-
maps of each node as undef (Line 1 to Line 2). It next processes each
node (n) by applying forward transfer functions to n’s predecessors’
output shape- and value-maps (i.e., n’s input shape- and value-maps)
(Line 13). Moreover, it propagates n’s output shape- and value-maps
to n’s predecessors’ output shape- and value-maps by backward
transfer functions if any predecessors have undef analysis results
(Line 14 to Line 15). These forward and backward transfer functions
are defined based on the dynamism classification of DNN operators
(as shown in Line 20 to Line 32). Alg. 1 needs to process two specific
types of nodes (operators): i) control-flow nodes (like Combine or

Niu et al.

General cases: for 1’ in [0, I'):
I'=lorl, I'=lor], K'=lorK:{ for j" in [0, 3'):

[A[I',J',K'],B[I,J,K],C[I,J,K]N for k' in [0, K):

tmp_arr = Sigmoid(A[i', j'

>
i//Broadcast shape of tmp_arr to [I,J,K]
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for k in [0, K):
C[i, j, k1 = ia + B[i, j, k]

Figure 4: Operator fusion with dynamic shapes. The top code
snippet shows that fusion is not feasible because of broadcast-
ing [11]. Specifically, Add requires A’s indices /', J/, and K’ to be
either 1 or /, J, and K, resulting in 8 fusion scenarios. With RDP,
such fusion is feasible (shown in the below code snippet). This
fusion significantly reduces intermediate result materialization
requirements.

Switch), for which, it needs to call the Merge function to merge
analysis results from multiple control-flow paths (Line 9 to Line
10), and ii) Input Shape Determined Output nodes, for which, it
assigns a symbolic constant to the value map to facilitate subsequent
analysis (Lines 16 to 18). Alg. 1 continues processing nodes in G
until no updates happen on any node’s shape-/value-maps. Similarly
to other data-flow analysis, RDP follows Lattice Theory [28], so an
optimized chaos implementation (based on worklist) is guaranteed
to converge.

4.2 Operator Fusion for Dynamic DNN based on
RDP

Though fusion has been a successful optimization on DNNs [46], it
is also known to be very hard to implement on dynamic DNNs [57].
A frequent issue is that without knowing the tensor shape of two
operators, the DNN compiler either cannot fuse them at all or has
to generate a large number of code versions, each for a possible
combination of shapes for the two operators. In fact, as often more
than two operators are merged, the possible combinations for which
separate code should be generated increase rapidly. Our proposed
RDP analysis can address this issue by using (possibly symbolic)
shape information. Information such as the two operators having
tensors of the same shape can enable and/or simplify fusion, even if
the exact dimensions are not known till runtime.

Figure 4 shows a simplified example with two common DNN
operators (Sigmod and Add) on tensors with shapes not known till
runtime. Sigmod takes an input tensor A with a dynamic shape of [I’,
J’, K’]. Add performs an element-wise addition on Sigmod’s output
and another input tensor B, whose shape happens to be [I, J, K]. Now,
if A and B are of different shapes, a shape broadcast operation on the
output tensor of Sigmod needs to be conducted immediately before
the element-wise addition. Without our RDP analysis, the dynamic
shape of A and B (and the possible shape broadcast operation)
prevents the DNN compiler from fusing these two operators in an
efficient way, i.e., the compiler either generates code without fusion
(as shown in the blue box of Figure 4), or generates multiple code
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versions (8 versions for this example) and selects a version during
the runtime. Assuming our RDP analysis resultis I’ =1, J’ = 1, and
K’ =1, i.e., a mix of symbolic constant (I) and known constant, the
DNN compiler can further generate a unique version of fused code
(as shown in the green box of Figure 4). SoD? incorporates RDP
and the above operator fusion based on RDP into a state-of-the-art
operator fusion for static DNNs (DNNFusion [46] ) to generate the
fusion plan and optimized fused code.

4.3 Static Execution Planning based on RDP

A computational graph (DAG) typically allows for several different
orderings for the execution of operators. The choice of ordering
has an impact on the peak memory usage (for intermediate results),
which further has consequences for cache performance and the exe-
cution latency. There has been previous work on this problem, which
has in fact shown that generating an optimal execution plan (by a
metric like memory consumption) is an NP-complete problem [2].
Thus, choosing an optimal plan can be difficult for modern large
DNNs with hundreds or even thousands of operators.

The dynamic properties (e.g., dynamic shapes and control flow)
further complicate this problem. In SoD?, we develop a series of
heuristics driven by the use of proposed RDP analysis. The overall
idea is that since a globally optimal solution is almost infeasible,
an approach based on graph partitioning is justified. It turns out
that the results of RDP are able to guide both graph partitioning and
choice of solution within each sub-graph. Particularly, we observe
that known constants, symbolic constants, op-inferred constants, and
L or nac progressively increase the impediment on the generation
of an optimal execution plan. More specifically, for a sub-graph sg
with a limited number of operators:

First, if the shape of all tensors in sg are known constants, the
optimal execution plan for sg can be obtained statically by an ex-
haustive search — a limited size of sg can further make such a search
feasible. Second, if the shape of tensors in sg are mixed known
constants, symbolic constants, and op-inferred constants, it is still
possible to compare the memory requirements and thus generate
a (close to) optimal execution plan. This is especially true if these
shapes are derived from the same set of symbolic constants. Third,
if an operator has an nac output tensor shape, it disables further anal-
ysis and execution planning. Such operators, it turns out, provide an
opportunity to partition the original graph into sub-graphs that can
be independently analyzed.

4.4 Other Optimizations

4.4.1  Memory Allocation Plan. Besides execution (order) planning,
memory planning of DNNS is also a critical step [2, 51]. A memory
allocation plan, which decides where in a linear memory space
each intermediate tensor is allocated, and when it is deallocated,
can restrict peak memory usage and improve execution performance
— the latter by reducing memory fragmentation, avoiding memory
movement, and limiting memory allocation/de-allocation. In contrast
to execution planning that (even for dynamic DNNs) can be carried
out at compilation time, memory planning for dynamic DNNs can
only be performed at execution time when all tensor sizes are known.
Memory planning of static DNN execution has also been proved
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NP-complete [2], while DNN model dynamism further complicates
memory planning.

Existing memory planning methods for dynamic DNN execution
(e.g., Nimble [57]) have addressed this. Without knowing the exact
tensor shapes, the methods usually rely on a greedy strategy [51],
(e.g., finding the minimal memory slot currently available that can
hold the new tensor). In comparison, we use RDP results and the
following two key insights. First, we base our approach on sub-
graphs generated by our static execution planning method. It turns
out that for sub-graphs with known constant shapes, as well as those
with symbolic/op-inferred constant shapes that are defined solely
by the input tensor of the sub-graph, the peak memory requirement
can be inferred from static RDP analysis results and subsequent
execution plan generation.

Second, we have observed that for most sub-graphs, the memory
requirement decreases monotonically in both forward and backward
directions from the location in the graph with peak memory us-
age. Therefore, initiating memory planning from the peak memory
consumption location and traversing in the forward and backward
directions, and picking the available memory slots for reuse works
as a good strategy, and does not lead to the need for extra memory
space.

Based on these insights, a lightweight greedy approach that starts
from the peak memory requirement location can help to find optimal
memory usage for many/most sub-graphs. Our evaluation (details
omitted because of space limits) on ConvNet-AlIG [62] shows that
our RDP-based memory allocation plan requires 1.05x of optimal
peak memory consumption (that results from an exhaustive search);
while the one based on the greedy strategy mentioned above (MNN)
requires 1.16x of optimal peak memory consumption.

4.4.2 RDP-based Multi-Version Code Generation. As we discussed
in Section 4.2, RDP analysis enables and/or simplifies operator fu-
sion by revealing (possibly symbolically) tensor shapes. In cases
where a single (fused) version is not feasible, one of the advan-
tages of the information obtained through RDP is that the number
of different versions of the fused code generated can be reduced
significantly.

SoD? further benefits from this property of RDP by generating
multi-version code to optimize hotspot operators (e.g., CONV and
GEMM) that dominate the DNN execution. Prior efforts [1, 26] have
shown that the optimization opportunities for these operators depend
on the shapes and sizes of the input/output tensors. Therefore, for
static DNN executions, existing frameworks (such as TensorFlow
Lite [1] and MNN [26]) usually employ multi-version codes that
involve different optimizations (e.g., tiling, unrolling, choice of
the number of thread blocks, etc.). However, this optimization is
challenging for dynamic DNNs because an unknown tensor shape
and/or tensor size implies that too many versions will be needed. The
tensor shape (or shape relations) provided by RDP help to generate
code for more specific tensor shapes only, thus resulting in fewer
code versions.

More specifically, SoD? relies on an auto-tuner based on Genetic
Algorithm to generate the exploration space (e.g., tiling shapes, loop
permutation, and unrolling settings) for kernel code generation as
DNNFusion [46]. One feature of this auto-tuner is the more effec-
tive exploitation of parallelism available in the hardware. To tackle
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Table 5: Memory consumption (allocated for intermediate results) for ONNX Runtime, MNN, TVM with Nimble extension (TVM-N),
and SoD? on a mobile CPU. “-” means this model is not supported by the framework yet. “S” stands for shape dynamism, and “C”

represents for control-flow dynamism.

Model . ORT (MB) MNN (MB) TVM-N(MB) SoD? (MB)
Model FLayers g0 gy | DYRAMISM | InputType o T Min Max | Min Max | Min Max
StableDiffusion [56] 407 137 S Text + Image 186 342 124 376 - - 92 271
SegmentAnything [29] 857 17 S Text + Image - - - - - - 16 22
Conformer [20] 1,703 303 S Audio - - 61 78 - - 49 58
CodeBERT [16] 985 502 S Text 32 75 25 54 - - 21 41
YOLO-V6 [36] 599 239 S Image 288 430 148 404 964 1,103 89 206
SkipNet [63] 549 103 S+C Image 168 597 27 124 522 700 18 86
DGNet [37] 847 91 C Image 37 37 76 76 - - 23 29
ConvNet-AIG [62] 282 104 S+C Image 168 423 33 109 557 646 26 77
RaNet [68] 2,617 525 S+C Image 675 1275 166 675 - - 86 452
BlockDrop [65] 439 179 S+C Image 242 460 35 105 523 723 24 69

Geo-mean memory consumption normalized by SoD? * 3.64x 1.37x 8.62x 1

* This normalized geo-mean memory consumption is calculated by 1) averaging the memory usage of runs with all input samples for each model, 2) calculating the geo-mean

of the average memory usage of all models, and 3) normalizing with SoD?’s geo-mean memory usage.

the challenge of dynamic shapes, SoD? employs a multi-version
approach, where the versions are chosen based on empirical evi-
dence relating to the impact of different shapes on performance. For
instance, our auto-tuner considers fat, regular, and skinny matrices
for both GEMM and CONV kernels.

5 EVALUATION

SoD? is implemented by extending an existing DNN execution
framework (DNNFusion [46]) that supports static DNN execution
only. This section evaluates the performance of SoD? by compar-
ing it with four state-of-the-art frameworks. These frameworks are
ONNX Runtime (ORT) [12] (V1.14.1), MNN [26] (Vdcb080c),
TVM [5] w/ Nimble extension (TVM-N) [57] (V7831a79), and
TFLite [1] (V2.11.1). ORT, MNN, and TVM-N support shape dy-
namism, while for DNNs with control flow, they execute all pos-
sible branches and strip out invalid ones. For fairness, this section
also shows a performance comparison between SoD? and MNN
by disabling SoD?’s <Combine, Switch> control-flow support and
adopting the same “execute-all, strip-out-invalid” strategy. TFLite
supports dynamic input shapes with memory re-initialization; how-
ever, it cannot run most of our dynamic models properly because
it usually fails on some input shapes. It does not support dynamic
control flow either as required by most of the models we target. Thus,
we use TFLite as a baseline for comparing DNN executions with
fixed inputs and paths only.

Our evaluation has four objectives: 1) demonstrating that SoD?
outperforms other frameworks with respect to both memory require-
ments and execution latency (Section 5.2), 2) studying the perfor-
mance effect of our key optimizations based on RDP (Section 5.3),
3) further confirming the performance advantage of SoD? by evalu-
ating it under different situations (Section 5.4), and 4) showing that
SoD? performs well on different mobile platforms (i.e., SoD? has
good portability).

5.1 Evaluation Setup

Dynamic Models and Datasets. Our evaluation is conducted on
three types of dynamic models: 1) models with shape dynamism,
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2) models with control-flow dynamism, and 3) models with both
shape and control-flow dynamism. The first category comprises five
cutting-edge DNN models, which are StableDiffusion [56] (cover-
ing the Encoder part, referred to as SDE), SegmentAnything [29],
Conformer [20], CodeBERT [16], and YOLO-V6 [36] (referred to
as YL-V6). The second category includes DGNet [37]. The third
category consists of four models, including SkipNet [63] (referred
to as SNet), ConvNet-AIG [62] (referred to as CNet), RaNet [68],
and BlockDrop [65] (referred to as BDrop).

Table 5 characterizes these models by showing the nature of dy-

namism, target input types, model size, and the total number of layers.
Because the choice of training datasets has a negligible impact on
the final inference latency or memory consumption (since the model
size and structure are the same), this section reports results from one
training dataset for each model. StableDiffusion-Encoder, SkipNet,
DGNet, ConvNet-AIG, RaNet, and BlockDrop are trained on Ima-
geNet dataset [9]; YOLO-V6 is trained on MS COCO dataset [40];
SegmentAnything is trained on SA-1B dataset [29]; CodeBERT is
pre-trained on [10]; and finally, Conformer is trained on Librispeech
dataset [49]. Since the model accuracy is the same across all frame-
works, our evaluation focuses only on execution time and memory
consumption.
Test Samples and Setup. Our inference performance evaluation ran-
domly selects 50 input samples from the corresponding validation
dataset for each model. Specifically, for models that take images as
input, i.e., YOLO-V6, SkipNet, ConvNet-AIG, RaNet, and Block-
Drop, our evaluation randomly selects 50 input images from the
ImageNet dataset, with the size of dimensions ranging from 224
to 640. DGNet does not support dynamic input shapes, but it does
support dynamic control flow. Therefore, we only tested images with
a dimension of 224 for DGNet. As YOLO-V6 only accepts images
with dimensions that are multiples of 32, only a subset of inputs
could be used. For StableDiffusion-Encoder and SegmentAnything,
the 50 randomly selected input images have dimensions ranging
from 64 to 224. For CodeBERT and Conformer, our evaluation ran-
domly selects 50 input samples with sequential lengths ranging from
32 to 384.
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Table 6: End-to-end execution latency comparison among ONNX Runtime, MNN, TVM-N, and SoD? on mobile CPU and mobile GPU.

“.

means this model is not supported by the framework yet.
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ORT (ms) MNN (ms) TVM-N (ms) SoD? (ms)

Model CPU GPU CPU GPU CPU GPU CPU GPU

Min Max | Min Max | Min Max | Min Max | Min Max | Min Max | Min Max | Min Max
StableDiffusion [56] 179 2,115 | 217 2,076 | 189 1,287 | 159 1,252 - - - 152 733 105 530
SegmentAnything [29] - - - - - - - - - - - 66 108 42 71
Conformer [20] - - - - 51 300 265 498 - - - 40 225 35 150
CodeBERT [16] 141 752 - - 125 1,265 - - - - - 102 452 72 366
YOLO-V6 [36] 174 1,386 | 155 733 168 925 47 287 251 2,108 - 118 546 33 178
SkipNet [63] 111 841 - - 92 789 116 363 109 974 - 41 633 29 253
DGNet [37] 122 122 127 127 67 67 211 211 - - - 32 56 23 42
ConvNet-AIG [62] 90 693 - - 88 731 96 305 98 947 - 46 526 22 203
RaNet [68] 102 641 - - 139 663 114 208 - - - 63 403 31 150
BlockDrop [65] 153 1,199 - - 145 1,421 | 139 468 185 1,622 - 79 668 42 295
Geo-mean latency* 2.5x% 3.9%x 1.7x 2.3x 2.7 % - 1 1

* This normalized geo-mean execution latency is calculated by 1) averaging the execution latency of runs with all input samples for each model, 2) calculating the geo-mean

of the average execution latency of all models, and 3) normalizing with SoD?’s geo-mean execution latency.

The experiments are performed on a Samsung Galaxy S21 smart-
phone powered by a Snapdragon 888 processor [53]. This processor
features an octa-core Kryo 680 CPU, comprising one large core,
three middle cores, and four small cores, and a Qualcomm Adreno
660 GPU with 1024 ALUs. Additionally, to demonstrate the porta-
bility of our approach, SoD? is also tested on an earlier generation
of Snapdragon platform with more constrained resources, specifi-
cally the Snapdragon 835 [52] equipped with a Qualcomm Kryo
280 octa-core CPU, consisting of four middle cores and four small
cores, and a Qualcomm Adreno 540 GPU with 384 ALUs. Our eval-
uation employs 8 threads on mobile CPUs and pipelined execution
on mobile GPUs. The GPU execution uses a 16-bit floating-point
representation, while the CPU execution uses a 32-bit floating-point
representation. Each experiment is executed 50 times and only the
average numbers are reported — as the variance was negligible, it is
not reported for readability.

5.2 Overall Comparison

This section focuses on the end-to-end memory reduction and exe-
cution latency gains of SoD2.

Overall Memory Consumption Comparison. Table 5 presents a
comparison of end-to-end memory consumption on a mobile CPU
using SoD?, ONNX Runtime (ORT), MNN, and TVM with Nimble
extension (TVM-N). As the results on mobile GPU show a similar
trend, they are not included here. ‘-’ implies that a model is not sup-
ported by a given framework. The ‘Min’ and ‘Max’ columns indicate
the minimum and maximum memory consumption (excluding the
memory for holding the model itself because this part is the same for
all frameworks). The last row of the table shows the geometric mean
memory consumption of each framework normalized by SoD?. Its
detailed calculation method is shown below the table and is over the
cases where execution is possible. Among other frameworks, only
MNN can support Conformer. SegmentAnything is not supported
by other frameworks as either certain key operators are missing,
and/or there are limitations in optimization, leading to large model
execution footprints.

Table 7: Latency impact of input distribution on YOLO-V6.
Each cell shows the latency speedup of SoD? over a correspond-
ing baseline of ORT, MMN, or TVM-N.

Model \ 1th 25th 50th 75th 100th
ORT 1.43% 1.66x 1.95x% 2.33x% 2.52x%
MNN 1.41x% 1.44x 1.50% 1.58x 1.65x
TVM-N 2.13%x 2.52x 3.03x 3.67x 3.90x

Compared with other frameworks, SoD? has significantly lower

memory consumption. Specifically, ORT, MNN, and TVM-N need
to use 3.64x, 1.37x, and 8.62x memory, respectively, over SoD?.
SoD? results in a greater reduction in memory consumption for
image models (compared to other models) because image models
generally have larger memory footprints, allowing for more signif-
icant optimization opportunities. It is worth noticing that TVM-N
executes models as its own Android RPC application, which is one
of the causes of higher memory requirements.
Overall Latency Comparison. Table 6 presents a comparison of
end-to-end latency for SoD? against other frameworks on both mo-
bile CPU and GPU. The table includes the minimum and maximum
latency observed across different input samples for each model. On
mobile CPU, SoD? achieves an average speedup of 2.5x, 1.7x, and
2.7x compared to ONNX Runtime, MNN, and TVM-N, respec-
tively. TVM-N does not support dynamic models on a mobile GPU.
Compared against the other two frameworks on mobile GPU, SoD?
achieves a speedup of 3.9x and 2.3 x over ORT and MNN, respec-
tively. Notably, the minimum latency achieved by SoD? on mobile
GPU is significantly lower than other frameworks for ConvNet-AlIG,
RaNet, and BlockDrop models. This is because our optimizations
can handle different cases and mitigate the effect of execution path
variations. It is worth pointing out that the distribution of inputs
could impact results. However, it does not change our conclusion. To
show this impact more explicitly, we conduct a set of experiments on
YOLO-V6 by selecting 50 input samples from different percentiles
ranging from 1Ist to 100th, and our results are as shown in Table 7.
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Figure 5: Memory reduction of different optimizations on CPU.
Over the baseline w/o any RDP-enabled optimization (No opt.)
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Figure 6: Execution speedup of different opt. on CPU and GPU.
Over the baseline w/o any RDP-enabled optimization (No opt.)

5.3 Optimization Breakdown Analysis

This section studies the individual impact of the key optimizations
in SoD? on both memory consumption and latency.

Memory Reduction w/ Different Optimizations. Figure 5 evalu-
ates the memory reduction achieved through different optimizations
for 4 models (StableDiffusion-Encoder, CodeBERT, RaNet, and
BlockDrop), including RDP-enabled operator fusion (Fusion), static
execution planning (SEP), and dynamic memory planning (DMP). The
results for other models exhibit a similar trend and are excluded due
to space limitations. The baseline version is referred to as No opt
— despite the name, it includes general static optimizations, such as
static operator fusion and constant folding. Building on this version,
we study the benefits of optimizations enabled by RDP analysis. On
mobile CPU, operator fusion, static execution planning, and dynamic
memory planning bring 18% to 30%, an extra 22% to 37%, and an-
other extra 3% to 7% memory reduction, respectively. Multi-version
code generation (MVC) is primarily designed for latency improve-
ment, its impact on memory reduction is negligible. The memory
reduction on mobile GPU is omitted because our optimizations are
general to both CPU and GPU, and the results are similar.

Latency Reduction w/ Different Optimizations. Figure 6 presents
the speedup breakdown of our key optimizations on the same 4
models. On mobile CPU, our RDP-based operator fusion yields 1.3 x
to 1.9 speedup compared to No opt. Additionally, static execution
planning provides 1.1x to 1.3x speedup, and dynamic memory
planning gains 1.04x to 1.1x speedup, and Multi-version code
generation brings an extra 1.3 to 1.6x speedup. On mobile GPU,
these numbers are 1.4x to 2.3x, 1.2x to 1.3x, 1.06x to 1.2, and
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Figure 7: Further break down effect of existing static fusion
(SFusion) and RDP-based fusion (RDP Fusion). For both layer
count and intermediate result size, normalized by no fusion opt.
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Figure 8: The percentage of different types of sub-graph.

1.4x to 1.7 %, respectively. Our optimizations provide more benefits
for mobile GPU since GPU is more sensitive to memory and data
movement and supports a higher degree of parallelism. We further
study each optimization with more profiling results.

RDP-enabled Operator Fusion. Figure 7 further breaks down the
effect of existing operator fusion for static DNNs only (SFusion)
and our RDP-enabled operator fusion (RDP Fusion) on these four
dynamic DNNSs. These results are normalized by the original DNN
without fusion (Original). SFusion reduces the layer counts by
26% to 61%; while RDP Fusion further reduces the layer counts
by 16% to 46% additionally by leveraging RDP analysis results.
In terms of intermediate result (IR) size, RDP Fusion saves an
additional 13% to 40% on top of SFusion.

Subgraph Data. To better understand execution and memory plan-
ning, this part studies how many sub-graphs can benefit from RDP
analysis results. Figure 8 (a) shows the percentage of different sub-
graphs, i.e. those with all known constant shapes, with mixed con-
stant shapes, and with statically unknown (nac) only for 2 represen-
tative models. The numbers (1, 2-4, and 5-8) after Mixed const
denote the number of code versions that are required to optimize this
sub-graph (the lower the better). This result shows that over 90%
of the sub-graphs belong to all known constant or mixed constant
categories whose execution plan and memory plan can be optimized
by our framework. To further confirm this, Figure 8 (b) shows the
latency percentage of each kind of sub-graphs.

5.4 Further Performance Analysis

This section further studies SoD? under different cases.

Latency Comparison with the Same Execution Path. To pro-
vide an apple-to-apple comparison for control-flow dynamism, this
test disables the control-flow logic in 4 models (SkipNet, RaNet,
ConvNet-AIG, and BlockDrop) that have control-flow dynamism.
Our execution included all paths, including all branches in the
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Figure 9: Latency and memory consumption comparison be-
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Figure 10: Performance variation with different input sizes
(shapes). The data is collected from YOLO-V6. A larger input
size means more computations.

<Switch, Combine> pairs. Figure 9 illustrates the performance com-
parison with MNN because MNN performs the best among all base-
line frameworks we compared. SoD? achieves 1.5x to 2.0x speedup
and 1.2x to 1.5x memory reduction on the mobile CPU. This result
further validates the effect of our RDP analysis and fusion, execution,
and memory optimizations based on it even without the dynamic
branch selection capability of SoD?.

Latency Comparison with Different Input Sizes. To demonstrate
the stability of SoD?, this test randomly selects 15 input shapes for
YOLO-V6, and Figure 10, shows their inference latency with MNN
and SoD?. These results demonstrate that SoD? outperforms MNN
in terms of both latency and stability across increasing input sizes
on mobile CPUs and GPUs. Specifically, SoD? exhibits lower and
more consistent latency, while MNN exhibits significant variations.
Latency Comparison with Fixed Memory Budget. Figure 11
presents a latency comparison between SoD? and TFLite with the
same memory budget. Specifically, TFLite fixes its memory con-
sumption to match SoD?’s, and uses the XLA rematerialization
policy [19] to handle the out-of-memory cases. SoD? outperforms
TFLite by an even greater margin. Additionally, SoD? demonstrates
a higher speedup on mobile GPU compared to mobile CPU due to
the longer time required for mobile GPU to materialize intermedi-
ate tensors from its cache into main memory because of memory
mapping.

Latency Comparison with Static Models. Figure 12 examines
the latency overhead of SoD? in contrast to our baseline, DNNFu-
sion [46], for static models. Specifically, we evaluate the latency in
SkipNet and RaNet where dynamic values were fixed statically and
fully propagated, ensuring the absence of unknown values and dy-
namic control flows. As shown in Figure 12, SoD? incurs an average
overhead of 3% and 7% performance slowdown when compared
to the completely optimized static DNNFusion. This is attributed
to the fact that DNNFusion, with full information available, results
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Figure 12: Inference time comparison with DNNFusion for static
models (i.e., with both frozen shapes and control flows).

in a more comprehensive fusion optimization and does not include
dynamic memory planning overhead.

5.5 Portability

To further investigate the effectiveness of portability, Figure 13
shows the execution speedup of SoD? over other frameworks on an-
other mobile device — Snapdragon 835, and 5 models (StableDiffusion-
Encoder, YOLO-V6, SkipNet, ConvNet-AIG, and BlockDrop). SoD?
achieves similar speedup trends, and interestingly, it achieves higher
speedups on this earlier generation of SoC because this SoC has
more restricted resources (e.g., cache size and memory throughput).
The RDP-based optimizations employed in SoD? significantly re-
duce memory requirements, leading to improved performance on
these platforms.

6 RELATED WORK

Dynamic Neural Network Optimizations. Type analysis and type
inference [8, 22, 33, 44, 58] are widely used to analyze tensor shapes,
thus assisting in Dynamic Neural Network optimizations. Nim-
ble [57], which has been integrated into TVM, is a compilation-based
Dynamic DNN framework. This framework relies on expensive dy-
namic functions to interpret dynamic shapes at the runtime. This
implementation, which we have extensively compared against, limits
the opportunities for optimized code generation, such as performing
operator fusion. DISC [74] extends MLIR-HLO [33] and propagates
the shape information for operators that have certain constraints,
e.g. same dimensions ( the case of Activation) and same size (the
case of Transpose). SoD? provides a more comprehensive operator
classification based on dynamism degrees, bringing in significantly
enhanced optimization opportunities. Axon [6] is a programming
language that allows specification of symbolic shapes for input and
output tensors for computational graphs. It uses a constraint solver
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Figure 13: Portability evaluation. The results are collected on
Snapdragon 835. An empty bar means the model is not sup-
ported by the framework. Results are normalized by MNN for
readability.

to find shapes whereas SoD? uses a forward and backward data-
flow analysis (RDP), which also alleviates additional programmer
involvement. In addition, SoD? includes a set of opts enabled by
RDP.

Less closely related to SoD?, DietCode [73] proposes an auto-
scheduler framework based on TVM for dynamic shapes. The frame-
work builds a cost model to predict runtime performance and re-
duces the search space to find optimal runtime parameters (e.g., loop
tiling). Cortex [15], Cavs [67], and another effort [25] mainly aim
to address recursive dynamism of neural networks, different from
SoD?’s focus. Other efforts focus on dynamic batching for infer-
ence [14, 17,41, 72] or are designed for dynamic DNN training [45].
DNN Execution and Memory Optimizations. Several studies exist
for operator execution order scheduling, such as [2, 38, 39]. Among
these efforts [38, 39] focus on minimizing peak memory consump-
tion by reordering operators for resource-constrained devices (e.g.,
MCUs), and effort [2] proposes an optimized scheduling framework
for complex models (irregularly wired neural networks). These ap-
proaches rely on static shapes only. There have aldo been recent
efforts on optimizing memory allocation planning and memory man-
agement for DNNs. Works such as [35, 51] have designed various
heuristic memory planning algorithms for static DNNs only. Tela-
Malloc [43] performs memory management on the fly for static
control-flow graphs with known intermediate tensor shapes and
sizes. It does not fully consider the DNN control-flow dynamism
and dynamic shapes. A possible future work can be to integrate
our RDP analysis and TelaMalloc’s combination of heuristics with
a solver-based approach to further improve our memory planning.
When the available memory is limited, rematerialization [24, 30]
and recomputation [3] methods achieve a trade-off between memory
consumption and execution latency. These aspects can be considered
for dynamic DNNS in the future.

DNN Inference Engines on Mobile. Support for DNN inference
on mobile devices has become an area of active research in recent
years. Efforts such as MCDNN [21], DeepX [32], DeepMon [23],
DeepSense [69], and DeepCache [66] have primarily concentrated
on optimizing the execution of static DNNs with static shapes and
control flow. TensorFlow Lite (TFLite) [1], Pytorch-Mobile [50],
TVM [5], and MNN [26] provide support for dynamic shapes relying
on reinitialization or conservative (maximum) memory allocation.
They either do not support dynamic control flow or require execu-
tions of all paths with a stripping of invalid results. As shown in
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our evaluation, these methods introduce high runtime overhead. One
of the previous systems for static DNNs, DNNFusion [46], also in-
volved a classification of DNN operators, however, the classification
introduced here is orthogonal.

7 DISCUSSION AND FUTURE WORK

Generalizing to Other Platforms. The proposed techniques, such
as RDP analysis, RDP-enabled fusion, and execution and memory
planning, have broad applicability to various platforms, including
data-center GPUs. This is particularly true for single-input inference
scenarios. One potential nuance that may arise is the distinction
between data-center GPUs and mobile GPUs in terms of their abil-
ity to perform batched inference. Unlike mobile GPUs, data-center
GPUs have the capacity to process multiple inputs concurrently,
thereby maximizing their computational power. However, it is pos-
sible that different input samples within a batch may necessitate
the use of different execution paths. Therefore, the integration of
dynamic batching with dynamic neural networks presents a potential
direction for future research.

Scalability of Handling LLMs. The optimizations in SoD? can
also be applied to massive large language models (LLMs). One of
the primary procedures we employ is graph partitioning, as elab-
orated in Section 4.3. This procedure involves dividing the entire
computational graph into a collection of sub-graphs, each of which
encompasses a restricted number of layers. The optimal solution is
determined offline for each sub-graph. However, Language Models
(LLMs) have been characterized by an incredibly large number of
parameters, numbering in the billions [7, 60, 70]. This poses a sig-
nificant challenge for mobile devices in terms of computation and re-
source requirements. Our future work will enhance SoD? by combin-
ing it with the model pruning and quantization advances [27, 47, 64]
to achieve an even better performance.

Extending beyond ONNX. Operator classification and associated
optimization designs are also not limited to ONNX or other infer-
ence formats (e.g., TFLite, Caffe2). This is because our proposed
analysis is based on the degree of dynamism defined by the compu-
tation logic of an operator and the relationship between its input and
output, rather than relying on the specific representation or format of
the operator. Some formats have yet to fully support dynamic com-
putational graphs. For instance, PyTorch supports exporting models
with dynamic shapes (such as Input Shape Determined Output, Input
Shape Determined Output Shape, and Input Shape & Value Deter-
mined Output Shape) to ONNX. However, it is unable to convert
models with dynamic control flow to ONNX. To address this limita-
tion, we added a customized ONNX operator pair <Switch, Com-
bine> (as shown in Figure 1d) and registered a customized export
routine on PyTorch specifically for models with a dynamic control
flow. SoD? does have limitations in handling very complicated (or
user-defined) dynamic models (such as Graph Neural Networks or
DNNs involving recursive executions) that can be represented well
in PyTorch. We leave this further optimization as a future work.

8 CONCLUSIONS

This paper has presented a comprehensive framework, SoD?, for
optimizing DNNs. SoD? classifies common operators of Dynamic
DNNs into four types, and comprises a novel static dataflow analysis
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(RDP). This is followed by a set of optimizations enabled by RDP for
Dynamic DNNSs, including operator fusion, static execution (order)
planning, dynamic memory allocation planning, and multi-version
code generation. SoD? is extensively evaluated on a mobile system
with 10 emerging dynamic DNNs and the evaluation results show
that it saves up to 88% memory consumption and brings up to
3.9x execution speedup over four state-of-the-art DNN execution
frameworks. As the underlying techniques are general and applicable
to other devices as well, our future work will evaluate SoD?’s efficacy
on other devices (e.g., edge GPUs and Raspberry Pi).
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