
SoD2: Statically Optimizing Dynamic Deep Neural Network
Execution

Wei Niu*

wniu@uga.edu

University of Georgia

Athens, GA, USA

Gagan Agrawal
gagrawal@uga.edu

University of Georgia

Athens, GA, USA

Bin Ren
bren@wm.edu

William & Mary

Williamsburg, VA, USA

ABSTRACT

Though many compilation and runtime systems have been developed

for DNNs in recent years, the focus has largely been on static DNNs.

Dynamic DNNs, where tensor shapes and sizes and even the set

of operators used are dependent upon the input and/or execution,

are becoming common. This paper presents SoD2, a comprehen-

sive framework for optimizing Dynamic DNNs. The basis of our

approach is a classification of common operators that form DNNs,

and the use of this classification towards a Rank and Dimension

Propagation (RDP) method. This framework statically determines

the shapes of operators as known constants, symbolic constants, or

operations on these. Next, using RDP we enable a series of opti-

mizations, like fused code generation, execution (order) planning,

and even runtime memory allocation plan generation. By evaluating

the framework on 10 emerging Dynamic DNNs and comparing it

against several existing systems, we demonstrate both reductions

in execution latency and memory requirements, with RDP-enabled

key optimizations responsible for much of the gains. Our evaluation

results show that SoD2 runs up to 3.9× faster than these systems

while saving up to 88% peak memory consumption.

CCS CONCEPTS

• Computer systems organization→ Embedded systems; Redun-

dancy; Robotics; • Networks→ Network reliability.

KEYWORDS

dynamic neural network, compiler optimization, mobile device

ACM Reference Format:

Wei Niu, Gagan Agrawal, and Bin Ren. 2024. SoD2: Statically Optimiz-

ing Dynamic Deep Neural Network Execution. In 29th ACM International

Conference on Architectural Support for Programming Languages and Op-

erating Systems, Volume 1 (ASPLOS ’24), April 27-May 1, 2024, La Jolla,

CA, USA. ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/

3617232.3624869

*This work was primarily done while the author was at William & Mary.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0372-0/24/04. . . $15.00
https://doi.org/10.1145/3617232.3624869

1 INTRODUCTION

Deep Neural Networks are enabling several of the most exciting and

innovative applications that are executed on a variety of computing

devices, ranging from servers to edge and mobile devices. From a

systems research viewpoint, this had led to a large set of ongoing

projects on optimizing DNN inference (and training) tasks [1, 21,

23, 26, 32, 34, 61, 66, 69] as well as tensor compilers [31, 33, 54].

Most of the work on optimizing DNNs considers static models

that are characterized by the following two properties: 1) input

and output shapes and sizes for each layer are known a prior, and

2) the execution path is fixed, i.e., independent of the input. In

dynamic models, in contrast, one or both of the above two properties

are no longer true, and such models are now becoming prevalent.

For example, Skipnet [63] decides, based on the input, whether to

include or exclude certain operators (or layers). A different form of

dynamism seen in transformers for NLP like BERT [13] or cutting-

edge computer vision models [29, 55, 56] can take inputs with

different shapes and/or apply variable portions of filter kernels during

the execution. Consider a commonly used dataset like Wikipedia.

The length of input sequences typically varies from 32 to 512 [71],

creating significant dynamism in text processing. Similarly, neural

networks for image/video processing often deal with images/videos

of varying resolutions that dynamically change based on network

conditions and player settings. At least three factors have contributed

to the popularity of dynamic models and this trend is expected

to continue: the need for adapting to computational capacities of

different devices, the need for supporting different types of input

(e.g. images of different resolutions), and the need for achieving

high accuracy for different scenarios.

Dynamic shapes, sizes, and control flow in these models pose

many challenges for the optimizations that have been key to obtain-

ing high efficiency. For example, loop fusion [19, 42, 46, 59] cannot

be applied [57, 73, 74] if we do not know that the index space of

two loops (which likely is the same as the dimensions of respective

input tensors) is identical. Planning the execution order [2] to reduce

memory requirements or otherwise planning memory allocation [51]

is, similarly, not possible if tensor sizes are not statically known.

While many of the existing systems for DNN execution can sup-

port dynamic models, they do with high overheads due to very

conservative assumptions and/or expensive analyses at the runtime.

For example, TFLite [1] and MNN [26] perform re-initialization

(equivalent of recompilation) when the input shape to the model

changes.

This paper presents the first nuanced approach for optimizing

DNN inference in the presence of dynamic features. Our approach

emphasizes reducing inference latency as well as memory require-

ments – the latter being quite important on the mobile devices we

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Niu et al.

Table 1: Inference overhead for shape dynamism w/ execution

re-initialization. SL: shape propagation and layout selection. ST:

schedule and tuning. Alloc: memory allocation. Infer: inference

time. Experiments are conducted on a Samsung Galaxy S21 w/

MNN [26].

Model
CPU latency (ms) GPU latency (ms)

SL ST Alloc Infer SL ST Alloc Infer

YOLO-V6 [36] 6.9 1,155 2.2 476 0.8 1,678 30,605 102
Conformer [20] 3.8 127 7.8 926 3 1,021 73,170 1,193
CodeBERT [16] 2.3 253 2.8 370 1 856 4,568 498

target. The foundation of our approach is an in-depth study of op-

erators that form the basis for modern DNNs. These operators are

classified into several groups on the basis of how the output shapes

relate to input shapes and values. Based on such a classification, we

present a data-flow analysis framework, called Rank1 and Dimension

Propagation (RDP) that infers shapes and dimensions of interme-

diate tensors. RDP analysis considers known constants, symbolic

constants, and expressions involving these. RDP analysis results are

then used for enabling a number of optimizations, which includes

operator fusion and fused code generation, static execution planning,

runtime memory allocation, and multi-version code generation. This

work integrates RDP and optimizations enabled by it together and

builds a comprehensive framework for optimizing Dynamic DNNs,

called SoD2. SoD2 is extensively evaluated on 10 cutting-edge DNN

models with shape dynamism and/or control-flow dynamism. Specif-

ically, these models include the ones for emerging Artificial General

Intelligence (AGI) [18] such as StableDiffusion [56] and Segmen-

tAnything [29]. Our evaluation results show that SoD2 saves 27%

to 88% memory consumption and results in 1.7× to 3.9× execu-

tion speedup compared with four state-of-the-art product-level DNN

execution frameworks (such as ONNX Runtime [12], MNN [26],

TVM [5] with Nimble extension [57], and TensorFlow Lite [1]) that

support dynamic DNNs.

In all, this paper makes the following contributions. DNN Op-

erator Classification. We classify the operators used for modern

DNNs (specifically 150 operators used in ONNX (Open Neural

Network Exchange)) into 4 categories, which are Input Shape Deter-

mined Output, Input Shape Determined Output Shape, Input Shape

& Value Determined Output Shape, Execution Determined Output.

We formally define these operators and explain their significance for

inferring ranks and dimensions for the DNNs where the input can

be of different sizes and the execution is data dependent.

Data-Flow Analysis for Rank and Dimension Propagation. Build-

ing on the operator classification, we have developed a static analysis

framework for propagating shape and size information through a

computational graph. This framework, called RDP, considers both

known and symbolic constants as well as expressions involving

these values. Though somewhat similar to the well-known constant

propagation analysis [4], our work is different in having transfer

functions specific to the operator (types), supporting both backward

and forward analyses, and considering not only known and symbolic

constants but also expressions involving them.

1Rank denotes the number of dimensions in a tensor.

Comprehensive Set of Static and Dynamic Optimizations. Using

results from RDP analysis, we enable a series of optimizations.

First, we enable code fusion, including generating multiple versions

when sufficient static information is not available. Next, we perform

execution planning, using the results of RDP to partition the original

graph, and further using several heuristics based on RDP output.

Finally, we enable runtime plan generation for memory allocation

and also generate multiple versions of optimized implementations

for individual operators.

2 EXISTING FRAMEWORKS AND

LIMITATIONS

Existing DNN inference engines on mobile devices use two common

approaches when handling dynamic DNNs.

Static Solutions. Many existing DNN inference engines for mobile

platforms (specifically, TFLite [1] and MNN [26]) support dynamic

features by extending their static model execution. For handling

dynamic input shapes, this involves either execution re-initialization

when the input shape changes or, alternatively, conservative (maxi-

mum) memory allocation when the input shapes are unknown. To

handle dynamic control flow, it typically requires the execution of

all possible paths, and stripping out invalid results. Not surpris-

ingly, such simplistic handling of dynamic features incurs significant

execution and/or memory overhead. To further illustrate, Table 1

shows a performance study of three models (YOLO-V6 [36], Con-

former [20], and CodeBERT [16]) that can take input with dynamic

shapes. MNN [26] runs these models on a Samsung Galaxy S21

with execution re-initialization to handle varied input shapes. These

results show that the re-initialization usually takes even significantly

longer time than the inference itself. This approach might be ac-

ceptable for cases where the overhead of re-initialization can be

amortized over a number of inference tasks (e.g., certain video pro-

cessing scenarios). However, many application scenarios (across

the image, audio, and language processing) involve continuously

changing inputs. An alternative way, as also indicated above, is to

conservatively allocate large memory spaces. However, it incurs

significant memory wastage, which can limit the ability to execute

large models or to do so efficiently, especially on mobile (or edge)

devices with limited memory.

Runtime Solutions. TVM (with Nimble extension) [5, 57] improves

on the limitations of static solutions by providing a set of optimiza-

tions within a virtual machine. An example of this functionality is a

shape function to infer the output tensor shape and use this informa-

tion for dynamic memory allocation. However, such functions and

the subsequent dynamic memory allocation introduces significant

execution overhead.

3 OPERATOR CLASSIFICATION BASED ON

DYNAMISM

Our observation is that DNN operators have different dynamism

degrees, leading to distinct levels of challenges and opportunities

in optimizing them. More specifically, this work categorizes DNN

operators into four types: Input Shape Determined Output, Input

Shape Determined Output Shape, Input Shape & Value Determined

Output Shape, and Execution Determined Output. This section gives

a formal definition.

SoD2 : Statically Optimizing Dynamic Deep Neural Network Execution ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

(b) Input Shape Determined

Output Shape

Reduce

ArgMax

GlobalPooling

Conv

(c) Input Shape & Value Determined

Output Shape

MatMulReduce

Gather

Sigmoid

Reduce

TopK

Add

Switch

Pooling Softmax

Combined

BiasAdd

1 2

(d) Execution-Determined

3

(a) Input Shape

Determined Output

Gather

Range

BiasAdd

Shape

Input Shape Determined Output ShapeInput Shape Determined Output Input Shape & Value Determined Output Shape Execution-Determined

Figure 1: Different degrees of dynamism. Each node is a DNN operator. Yellow, blue, red, and purple mean Input Shape Determined

Output, Input Shape Determined Output Shape, Input Shape & Value Determined Output Shape, and Execution Determined Output,

respectively. In (d), Switch’s execution path is decided dynamically during runtime and red dot edges represent both the computation

dependency and control flow.

Background and Notation. It is common to represent a DNN as

a Computational Graph, which happens to be a Directed Acyclic

Graph (DAG). Each tensor (which can be an input and/or output) can

be categorized by a shape (including dimensions) and the contents

or values. Each operator is denoted as Ll , where l is the operator

index. Assume Ll has m input tensors (of which, 1,k are constant

tensors while k,m are output tensors from previous operators) and n

output tensors. The shape of the input tensor i for the lth operator is

denoted as ISl
i and the corresponding tensor value can be denoted

as IV l
i , Similarly, each output tensor’s shape and value are OSl

i and

OV l
i , respectively. Now, intuitively, a class of functions relates the

output shapes and values to the input shapes and values – F f s for

the shapes and Fv for the values.
• Input Shape Determined Output: The output (tensor), which

is characterized by both its shape and value, has the following
dependence on the input. The output tensor shapes are dependent
on the input tensor shapes, whereas the output tensor values are
determined by the input tensor shapes and possibly some of the
constant tensors – input values do not impact the output. Examples
include Shape and EyeLike. Formally, there is a pair of functions

F f s,Fv, such that:

OSl
i

F f s

←−− ISl
1, . . . , ISl

m

OV l
i

Fv

←− ISl
1, . . . , ISl

m, IV
l
1 , . . . , IV

l
k−1

where 1f k f m.
• Input Shape Determined Output Shape: Similar to the previous

category, the output shapes depend on the input shapes. However,
what is different is that the output values rely on all the input val-
ues (including intermediate and constant input values). Examples
include Conv, Add, and Pooling. The significance of this category,
as compared to the next set of categories, is that if the input shape
of this operator is known, compiler optimizations (e.g., operator
fusion, execution/memory optimizations) are enabled. Formally,

there is a pair of functions F f s,Fv, such that:

OSl
i

F f s

←−− ISl
1, . . . , ISl

m

OV l
i

Fv

←− ISl
1, . . . , ISl

m, IV
l
1 , . . . , IV

l
m.

• Input Shape & Value Determined Output Shape: Similar to
the previous category, the output values rely on the input shapes
and all the input values. The difference is that the output shapes
also rely on partial set of input values. Examples include Extend

and Range). Formally, there is a pair of functions F f s,Fv and a

subset of input tensors (p, . . . ,q) whose values specify the output
shape, such that:

OSl
i

F f s

←−− ISl
1, . . . , ISl

m, IV
l
p, . . . , IV

l
q

OV l
i

Fv

←− ISl
1, . . . , ISl

m, IV
l
1 , . . . , IV

l
m

, where 1 f p f q f m. If p f q f k, which is identical to

Input Shape Determined Output Shape, and all the dependent

input tensors are constant. In such cases, the input shapes can

be calculated without knowing other intermediate input tensors.

If only the input shape of this operator is known, only partial

compiler optimizations with conservative analysis can be applied

to it, and full optimizations need dynamic execution results.
• Execution Determined Output: Similar to the previous two

categories, the output values rely on the input shapes and all the
input values. Examples include Nonzero and If. Formally, there
is a function Fv, such that:

OV l
i

Fv

←− ISl
1, . . . , ISl

m, IV
l
1 , . . . , IV

l
m

, and the shape of i-th output tensor can only be measured after
materializing its value:

OSl
i ←− SHAPE_OFOV l

i

, which means it is not able to know the output shapes until mate-

rializing the output tensors (i.e., after executing the layer). Only

partial optimization with conservative analysis can be applied

to this operator, and full optimizations need dynamic execution

results.
Although these operator types are defined according to forward

transfer , i.e. an output tensor shape and value are related to the
input tensor shape and/or value. In practice, Backward transfer is
also used, i.e., we can (and need to) backward propagate the known
output shapes (either rank or dimension or both) to the unknown
input shapes. For instance, if we know the output shape of Add,
its input dimension might be 1 or identical to the corresponding
output dimension due to broadcasting rules [11]. We define backward
transfer functions as:

ISl
i

Fbs

←−− OSl
1, . . . ,OSl

n.

Table 2 shows typical operators in ONNX [48] categorized by

the above classification. As further illustration, Figure 1 shows four

sub-graphs that represent operators with different dynamism degrees

(marked with red boundary) and their connections. Figure 1 (a)

shows an Input Shape Determined Output operator Shape. Once its

input shape is known, its value result can be directly inferred (and in

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Niu et al.

Table 2: Classification of DNN operators based on dynamism degrees. Operators are from ONNX (Open Neural Network Ex-

change) [48].

Operator type Operators Representative

Input Shape Determined Output Shape, ConstantOfShape, Eyelike Shape

Input Shape Determined Output Shape
Add, AveragePool, Cast, Concat, Conv, Elementwise w/ broadcast,

Gather, MatMul, MaxPool, Reduce, Relu, Round, Sigmoid, Softmax
Conv, MatMul

Input Shape & Value Determined Output Shape
Expand, GroupNormalization, MaxUnpool, Onehot, Range, Reshape,

Resize, Slice, TopK, Upsample
Reshape, Range

Execution Determined Output If, Loop, NMS, Nonzero, <Switch, Combine>† If, Loop

† <Switch, Combine> is a pair of customized operators for dynamic control flow that is not defined in ONNX.

fact, this value can be propagated from Shape to BiasAdd because

all following operators belong to the Input Shape Determined Output

Shape group). Similarly, Figure 1 (b) implies that if the input shape

to Conv is known, this shape information could be propagated to

the entire sub-graph because all operators in this sub-graph belong

to the Input Shape Determined Output Shape group. For the cases

represented in both (a) and (b), even if the exact shape is unknown,

it is still possible for us to perform compiler optimizations such as

operator fusion and fused code generation, execution order optimiza-

tion, and memory optimization, which will be elaborated in the next

Section. In Figure 1 (c), the output shape of TopK depends on its

input value (which is the left predecessor’s branch in the example),

i.e., the output shape of TopK (and its successors) is unknown until

its left predecessor branch is executed. Figure 1 (d) represents a

sub-graph involving a dynamic control flow. Switch results decide

if path d, e, and/or f will be taken, and Combine merges the results

from executed paths. Both (c) and (d) require dynamic execution,

thus is more difficult to optimize statically.

Discussion. Although the examples in Table 2 and Figure 1 men-

tioned above simply classify each operator into one category, there

are additional considerations. For example, an Upsample operator

may belong to either Input Shape Determined Output Shape or Input

Shape & Value Determined Output Shape depending on whether

some of the input tensors are constant or not. Therefore, with con-

stant propagation, an operator may transform from a more dynamic

classification to a less dynamic one, offering us more aggressive op-

timization opportunities. This has motivated certain aspects of SoD2.

In addition, because our operator classification essentially models

the dynamism degree of an operator by studying its computation

logic and input/output tensor shapes and values, it is possible to

create an automatic and generic tool based on existing intermediate

representations like tensor expression (e.g., TVM expression) to

categorize operators into different classifications.

4 DESIGN OF SOD2

Based on the DNN operator classification introduced above, SoD2

introduces a new static data-flow analysis framework to infer the

intermediate result tensor shape. Such an analysis is the enabler

of several optimizations, which are dynamic DNN operator fusion,

execution path planning, memory planning, and multi-version code

generation. All of these optimizations ensure a deterministic running

sequence and a consistent output, given a particular input. At a high

level, our approach does not require conservative static assumptions

nac(§)

����� ��������

� � * ����}
�������� ��������

{�|� * ������ ���}

�� �������� ��������

� � = �� � , � , �1, � * ��/�� ��������}

-

�����(¦)

Figure 2: Domain of RDP dataflow analysis. It includes known,

symbolic, and operation-inferred constants that form a lattice.

or runtime overheads, thus providing significant improvement over

the existing state-of-the-art.

4.1 Pre-Deployment Data-Flow Analysis

To facilitate static optimizations for dynamic DNNs, a critical re-

quirement is knowing (possibly symbolically) the intermediate result

tensor shape (i.e., rank and dimension). Our key observation is that

for many operators and operator combinations (e.g., an Input Shape

Determined Output operator and an Input Shape Determined Output

Shape operator), even without knowing the input tensor shape, it is

still possible to infer the shape of the intermediate result tensor to

a certain degree. Our framework is based on this observation and

is called operator Rank and Dimension Propagation, or RDP. While

RDP has certain similarities with the classical (symbolic) constant

propagation frameworks [4], it needs to deal with nuances of the

DNN operations and the computational graph. RDP also considers

operations over multiple (symbolic) constants as a possibility in its

lattice and requires iterative forward and backward analysis.

Formal Definition of Operator Rank and Dimension Propagation

(RDP).. The entire RDP algorithm is expressed as a four-tuple <

G,D,L′,F >.

• G is an extended computational graph (a DAG), with control-

flow operators <Switch, Combine>). If this extended compu-

tational graph involves multiple branches that all need to be

executed, we assume the execution order is always from left

to right. It is easy to prove that G is equivalent to a control-

flow graph on operators, which serves as the foundation of

this data-flow analysis.

• D is the direction of the data flow, which can be FORWARD

and BACKWARD. Unlike most classic data-flow formula-

tions, e.g., constant propagation or reaching definitions, RDP

iteratively processes G in forward and backward directions

SoD2 : Statically Optimizing Dynamic Deep Neural Network Execution ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Softmax

Shape

Min

TopK

Status Output shape Symbolic value

� = [�, �] � = �����

� = � �

= [�, �]
� = �����

� = � �

= [2]

� = � (�)
= [�, �]

� = � �

= [1]

� = � (�)
= ���(�, �)

� = � � , �

= (�,���(�, �))
� = �����

(b) An example of backward transfer(a) An example of forward transfer

�

�

�

�

�

Swish

MatMul

Transpose

�

�

�

Status Output shape Symbolic value

� = [2�, 4�] � = �����

� = [2�, 2�] � = �����

� = [2�, 2�] � = �����

� = � � , �

= [2�, 4�]
� = �����

� = � �

= [4�, 2�]
� = �����

1

0
�

2

3

4

0

1

2

3

4

4

13

2 0
�

�

4

3

2

1

0
Inferred by

forward

Inferred by

backward

Figure 3: Examples of forward and backward transfer. Each node is an operator. Yellow, blue, and red mean Input Shape Determined

Output, Input Shape Determined Output Shape, and Input Shape & Value Determined Output Shape, respectively. Ids (e.g., d) indicate

the location where transfer functions apply and their applying orders for a forward transfer (a backward transfer reverses this order).

S and V equations map values in the RDP domain to the shape and value of each tensor, in which, F denotes the transfer function. fs

and bs of F denote forward and backward, and F’s subscript is a short form of its type (e.g., ISDOS means Input Shape Determined

Output Shape).

until the results converge. This is because the shape of a

tensor could be inferred from its producing operator and/or

consuming operator, and their inference results should be the

same to guarantee the correctness of this DNN execution.

• L′ itself is a three-tuple < V ′,',m >. V ′ is the domain of

values (also shown in Figure 2) and includes known con-

stants, symbolic constants, and operation-inferred constants

that form a lattice. The lattice also includes undefined (unde f)

as the top (¦) of the lattice and Bottom (§) which is not-

a-constant (nac). ' is a meet operator, which follows the

common definition for product lattice. m is a map function

mapping values in lattice to two variables, Shape (S) and

Value (V), representing these for the intermediate tensor.

More specifically, RDP is a type of data-flow analysis, where

L′ describes its analysis scope, i.e., how to map each shape

and value property to a kind of constant that forms a lat-

tice structure (in Figure 2). This lattice guarantees that the

analyzed properties of RDP follow lattice theory, so RDP

analysis will converge with a unique solution.

• F : V ′ → V ′ is the domain for transfer functions. F is de-

signed for each operator (type) and transfers the Shape (S)

and Value (V) from the input tensor to the output tensor based

on the operator type. Similar to data-flow analysis for con-

stant propagation RDP has two kinds of transfer functions,

Update, and Merge. Update transfers from the input tensor to

the output tensor for an individual operator; while Merge oper-

ates on branch control flow and merges (output) tensors from

multiple possible execution paths. Because RDP has both

FORWARD and BACKWARD directions, F also contains

transfer functions for both directions.

Transfer Function Examples. SoD2 contains 16 types of Update

transfer functions. These functions are based on the classification of

the operator’s dynamism degree, as detailed in Table 3. The table

includes four dynamic degrees, covering two directions (forward and

backward) and two types of propagation (shape and value). During

Table 3: Illustration of forward and backward transfer functions

for different operator types.

Type
Forward Backward

Shape Value Shape Value

Input Shape Determined Output F
f s

ISDO F
f v

ISDO Fbs
ISDO Fbv

ISDO

Input Shape Determined Output Shape F
f s

ISDOS F
f v

ISDOS Fbs
ISDOS Fbv

ISDOS

Input Shape & Value Determined Output Shape F
f s

ISV DOS F
f v

ISV DOS Fbs
ISV DOS Fbv

ISV DOS

Execution Determined Output F
f s

EDO F
f v

EDO Fbs
EDO Fbv

EDO

Table 4: Definition of Rank and Dimensions Propagation (RDP).

Notation Definition Notation Definition

Domain Tensor Rank and Dimensions Direction Forward, Backward

Forward OUT L = F
f s

P∈predLP Backward INL := FbsOUT L

Initial OUT L = unde f Terminate No more changes

forward transfer, each operator employs its shape and value transfer

functions in accordance with its associated dynamism degree to infer

the shape (e.g., F
f s

ISDO) and value (e.g., F
f v

ISDO) of its output tensor,

respectively. Similarly, Fbs
ISDO and Fbv

ISDO serve as two examples of a

backward transfer function for shape and value during the backward

transfer process. Figure 3 illustrates several common ones. The

left-hand side (Figure 3 (a)) shows an example with four forward

transfers that employ three types of Update transfer functions. Simi-

larly, the right-hand side (Figure 3 (b)) shows an example with two

backward transfer functions that belong to the same type. A point

worth noting is that the appropriate transfer function to apply to

an operator depends not only on the computational graph but also

on the constants inferred during the RDP analysis process, which

determines the dynamism classification of the operator. The Merge

transfer function is straightforward – it merges the S-map and V-map

from multiple control-flow branches based on the lattice in Figure 2.

Table 4 summarizes the key components of RDP.

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Niu et al.

Algorithm 1: RDP’s Optimized Chaos Algorithm

1 foreach node in ecg.sorted_node do

2 mark_as_undef(node) /* Initialize as unde f */

3 set_model_input_shape(ecg)

4 do

5 changed← false

/* Traverse the Depth-first sorted nodes */

6 foreach node in ecg.sorted_node do

7 predecessors← predecessor_of(node)

8 successors← successor_of(node)

9 if node.type is Combine then

/* Merge the rank and dims for Combine */

10 changed |= node.merge(predecessors)

11 if node.type is Switch or Combine then

12 continue /* Transit to all successors */

/* 1 Forward transfer to current node */

13 changed |= forward_transfer(node, predecessors)

/* 2 Backward transfer to predecessors */

14 foreach pred in predecessors do

15 changed |= backward_transfer(node, pred)

/* 3 Update for Input Shape Determined Output */

16 if node.type ∈ Input Shape Determined Output then

17 if node.shape ∉ unde f ,nac then

18 node.value← get_symbolic_value(node.shape)

19 while changed

Func forward_transfer: node, preds
20 if all(node.outputs.shape ∉ undef) then

21 return False /* Outputs are not in unde f */

22 pred_shapes, pred_values← shape_of(preds), value_of(preds) switch

node.op_type do

23 case ‘Input Shape Determined Output’ do

/* Only depends on the first input shape */

24 return FT_ISDO(node, pred_values[0])

25 case ‘Input Shape Determined Output Shape’ do

26 return FT_ISDOS(node, pred_shapes)

27 case ‘Input Shape & Value Dependent Output Shape’ do

28 return FT_ISVDOS(node, pred_shapes, pred_values)

29 case ‘Execution-Determined’ do

/* Assign nac */

30 return False

Func backward_transfer: node, pred
31 if all(pred.outputs.shape ∉ undef) then

32 return False /* Outputs are not in unde f */

/* Similar to forward_transfer */

RDP Solution. The method is shown as Alg. 1 and involves

applying the transfer functions (F) to the extended computational

graph (G) along the two directions iteratively. Elaborating on Alg. 1,

it first sorts the nodes (i.e., operators) in the computational graph G

with the dept-first order and initializes the output shape- and value-

maps of each node as undef (Line 1 to Line 2). It next processes each

node (n) by applying forward transfer functions to n’s predecessors’

output shape- and value-maps (i.e., n’s input shape- and value-maps)

(Line 13). Moreover, it propagates n’s output shape- and value-maps

to n’s predecessors’ output shape- and value-maps by backward

transfer functions if any predecessors have undef analysis results

(Line 14 to Line 15). These forward and backward transfer functions

are defined based on the dynamism classification of DNN operators

(as shown in Line 20 to Line 32). Alg. 1 needs to process two specific

types of nodes (operators): i) control-flow nodes (like Combine or

Sigmoid

Add

A [I', J', K']

B [I, J, K]

C [I, J, K]

A [I', J', K'], B [I, J, K], C [I, J, K]

A [I, 1, 1], B [I, J, K], C [I, J, K]

General cases:

I' = 1 or I, J' =1 or J, K' =1 or K

If we know:

I' = I, J9= 1, K' =1

Figure 4: Operator fusion with dynamic shapes. The top code

snippet shows that fusion is not feasible because of broadcast-

ing [11]. Specifically, Add requires A’s indices I′, J′, and K′ to be

either 1 or I, J, and K, resulting in 8 fusion scenarios. With RDP,

such fusion is feasible (shown in the below code snippet). This

fusion significantly reduces intermediate result materialization

requirements.

Switch), for which, it needs to call the Merge function to merge

analysis results from multiple control-flow paths (Line 9 to Line

10), and ii) Input Shape Determined Output nodes, for which, it

assigns a symbolic constant to the value map to facilitate subsequent

analysis (Lines 16 to 18). Alg. 1 continues processing nodes in G

until no updates happen on any node’s shape-/value-maps. Similarly

to other data-flow analysis, RDP follows Lattice Theory [28], so an

optimized chaos implementation (based on worklist) is guaranteed

to converge.

4.2 Operator Fusion for Dynamic DNN based on

RDP

Though fusion has been a successful optimization on DNNs [46], it

is also known to be very hard to implement on dynamic DNNs [57].

A frequent issue is that without knowing the tensor shape of two

operators, the DNN compiler either cannot fuse them at all or has

to generate a large number of code versions, each for a possible

combination of shapes for the two operators. In fact, as often more

than two operators are merged, the possible combinations for which

separate code should be generated increase rapidly. Our proposed

RDP analysis can address this issue by using (possibly symbolic)

shape information. Information such as the two operators having

tensors of the same shape can enable and/or simplify fusion, even if

the exact dimensions are not known till runtime.

Figure 4 shows a simplified example with two common DNN

operators (Sigmod and Add) on tensors with shapes not known till

runtime. Sigmod takes an input tensor A with a dynamic shape of [I’,

J’, K’]. Add performs an element-wise addition on Sigmod’s output

and another input tensor B, whose shape happens to be [I, J, K]. Now,

if A and B are of different shapes, a shape broadcast operation on the

output tensor of Sigmod needs to be conducted immediately before

the element-wise addition. Without our RDP analysis, the dynamic

shape of A and B (and the possible shape broadcast operation)

prevents the DNN compiler from fusing these two operators in an

efficient way, i.e., the compiler either generates code without fusion

(as shown in the blue box of Figure 4), or generates multiple code

SoD2 : Statically Optimizing Dynamic Deep Neural Network Execution ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

versions (8 versions for this example) and selects a version during

the runtime. Assuming our RDP analysis result is I’ = I, J’ = 1, and

K’ = 1, i.e., a mix of symbolic constant (I) and known constant, the

DNN compiler can further generate a unique version of fused code

(as shown in the green box of Figure 4). SoD2 incorporates RDP

and the above operator fusion based on RDP into a state-of-the-art

operator fusion for static DNNs (DNNFusion [46]) to generate the

fusion plan and optimized fused code.

4.3 Static Execution Planning based on RDP

A computational graph (DAG) typically allows for several different

orderings for the execution of operators. The choice of ordering

has an impact on the peak memory usage (for intermediate results),

which further has consequences for cache performance and the exe-

cution latency. There has been previous work on this problem, which

has in fact shown that generating an optimal execution plan (by a

metric like memory consumption) is an NP-complete problem [2].

Thus, choosing an optimal plan can be difficult for modern large

DNNs with hundreds or even thousands of operators.

The dynamic properties (e.g., dynamic shapes and control flow)

further complicate this problem. In SoD2, we develop a series of

heuristics driven by the use of proposed RDP analysis. The overall

idea is that since a globally optimal solution is almost infeasible,

an approach based on graph partitioning is justified. It turns out

that the results of RDP are able to guide both graph partitioning and

choice of solution within each sub-graph. Particularly, we observe

that known constants, symbolic constants, op-inferred constants, and

§ or nac progressively increase the impediment on the generation

of an optimal execution plan. More specifically, for a sub-graph sg

with a limited number of operators:

First, if the shape of all tensors in sg are known constants, the

optimal execution plan for sg can be obtained statically by an ex-

haustive search – a limited size of sg can further make such a search

feasible. Second, if the shape of tensors in sg are mixed known

constants, symbolic constants, and op-inferred constants, it is still

possible to compare the memory requirements and thus generate

a (close to) optimal execution plan. This is especially true if these

shapes are derived from the same set of symbolic constants. Third,

if an operator has an nac output tensor shape, it disables further anal-

ysis and execution planning. Such operators, it turns out, provide an

opportunity to partition the original graph into sub-graphs that can

be independently analyzed.

4.4 Other Optimizations

4.4.1 Memory Allocation Plan. Besides execution (order) planning,

memory planning of DNNs is also a critical step [2, 51]. A memory

allocation plan, which decides where in a linear memory space

each intermediate tensor is allocated, and when it is deallocated,

can restrict peak memory usage and improve execution performance

– the latter by reducing memory fragmentation, avoiding memory

movement, and limiting memory allocation/de-allocation. In contrast

to execution planning that (even for dynamic DNNs) can be carried

out at compilation time, memory planning for dynamic DNNs can

only be performed at execution time when all tensor sizes are known.

Memory planning of static DNN execution has also been proved

NP-complete [2], while DNN model dynamism further complicates

memory planning.

Existing memory planning methods for dynamic DNN execution

(e.g., Nimble [57]) have addressed this. Without knowing the exact

tensor shapes, the methods usually rely on a greedy strategy [51],

(e.g., finding the minimal memory slot currently available that can

hold the new tensor). In comparison, we use RDP results and the

following two key insights. First, we base our approach on sub-

graphs generated by our static execution planning method. It turns

out that for sub-graphs with known constant shapes, as well as those

with symbolic/op-inferred constant shapes that are defined solely

by the input tensor of the sub-graph, the peak memory requirement

can be inferred from static RDP analysis results and subsequent

execution plan generation.

Second, we have observed that for most sub-graphs, the memory

requirement decreases monotonically in both forward and backward

directions from the location in the graph with peak memory us-

age. Therefore, initiating memory planning from the peak memory

consumption location and traversing in the forward and backward

directions, and picking the available memory slots for reuse works

as a good strategy, and does not lead to the need for extra memory

space.

Based on these insights, a lightweight greedy approach that starts

from the peak memory requirement location can help to find optimal

memory usage for many/most sub-graphs. Our evaluation (details

omitted because of space limits) on ConvNet-AIG [62] shows that

our RDP-based memory allocation plan requires 1.05× of optimal

peak memory consumption (that results from an exhaustive search);

while the one based on the greedy strategy mentioned above (MNN)

requires 1.16× of optimal peak memory consumption.

4.4.2 RDP-based Multi-Version Code Generation. As we discussed

in Section 4.2, RDP analysis enables and/or simplifies operator fu-

sion by revealing (possibly symbolically) tensor shapes. In cases

where a single (fused) version is not feasible, one of the advan-

tages of the information obtained through RDP is that the number

of different versions of the fused code generated can be reduced

significantly.

SoD2 further benefits from this property of RDP by generating

multi-version code to optimize hotspot operators (e.g., CONV and

GEMM) that dominate the DNN execution. Prior efforts [1, 26] have

shown that the optimization opportunities for these operators depend

on the shapes and sizes of the input/output tensors. Therefore, for

static DNN executions, existing frameworks (such as TensorFlow

Lite [1] and MNN [26]) usually employ multi-version codes that

involve different optimizations (e.g., tiling, unrolling, choice of

the number of thread blocks, etc.). However, this optimization is

challenging for dynamic DNNs because an unknown tensor shape

and/or tensor size implies that too many versions will be needed. The

tensor shape (or shape relations) provided by RDP help to generate

code for more specific tensor shapes only, thus resulting in fewer

code versions.

More specifically, SoD2 relies on an auto-tuner based on Genetic

Algorithm to generate the exploration space (e.g., tiling shapes, loop

permutation, and unrolling settings) for kernel code generation as

DNNFusion [46]. One feature of this auto-tuner is the more effec-

tive exploitation of parallelism available in the hardware. To tackle

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Niu et al.

Table 5: Memory consumption (allocated for intermediate results) for ONNX Runtime, MNN, TVM with Nimble extension (TVM-N),

and SoD2 on a mobile CPU. “-” means this model is not supported by the framework yet. “S” stands for shape dynamism, and “C”

represents for control-flow dynamism.

Model #Layers
Model

Dynamism Input Type
ORT (MB) MNN (MB) TVM-N(MB) SoD2 (MB)

Size (MB) Min Max Min Max Min Max Min Max

StableDiffusion [56] 407 137 S Text + Image 186 342 124 376 - - 92 271

SegmentAnything [29] 857 17 S Text + Image - - - - - - 16 22

Conformer [20] 1,703 303 S Audio - - 61 78 - - 49 58

CodeBERT [16] 985 502 S Text 32 75 25 54 - - 21 41

YOLO-V6 [36] 599 239 S Image 288 430 148 404 964 1,103 89 206

SkipNet [63] 549 103 S + C Image 168 597 27 124 522 700 18 86

DGNet [37] 847 91 C Image 37 37 76 76 - - 23 29

ConvNet-AIG [62] 282 104 S + C Image 168 423 33 109 557 646 26 77

RaNet [68] 2,617 525 S + C Image 675 1275 166 675 - - 86 452

BlockDrop [65] 439 179 S + C Image 242 460 35 105 523 723 24 69

Geo-mean memory consumption normalized by SoD2 ⋆ 3.64× 1.37× 8.62× 1

⋆ This normalized geo-mean memory consumption is calculated by 1) averaging the memory usage of runs with all input samples for each model, 2) calculating the geo-mean

of the average memory usage of all models, and 3) normalizing with SoD2’s geo-mean memory usage.

the challenge of dynamic shapes, SoD2 employs a multi-version

approach, where the versions are chosen based on empirical evi-

dence relating to the impact of different shapes on performance. For

instance, our auto-tuner considers fat, regular, and skinny matrices

for both GEMM and CONV kernels.

5 EVALUATION

SoD2 is implemented by extending an existing DNN execution

framework (DNNFusion [46]) that supports static DNN execution

only. This section evaluates the performance of SoD2 by compar-

ing it with four state-of-the-art frameworks. These frameworks are

ONNX Runtime (ORT) [12] (V1.14.1), MNN [26] (Vdcb080c),

TVM [5] w/ Nimble extension (TVM-N) [57] (V7831a79), and

TFLite [1] (V2.11.1). ORT, MNN, and TVM-N support shape dy-

namism, while for DNNs with control flow, they execute all pos-

sible branches and strip out invalid ones. For fairness, this section

also shows a performance comparison between SoD2 and MNN

by disabling SoD2’s <Combine, Switch> control-flow support and

adopting the same “execute-all, strip-out-invalid” strategy. TFLite

supports dynamic input shapes with memory re-initialization; how-

ever, it cannot run most of our dynamic models properly because

it usually fails on some input shapes. It does not support dynamic

control flow either as required by most of the models we target. Thus,

we use TFLite as a baseline for comparing DNN executions with

fixed inputs and paths only.

Our evaluation has four objectives: 1) demonstrating that SoD2

outperforms other frameworks with respect to both memory require-

ments and execution latency (Section 5.2), 2) studying the perfor-

mance effect of our key optimizations based on RDP (Section 5.3),

3) further confirming the performance advantage of SoD2 by evalu-

ating it under different situations (Section 5.4), and 4) showing that

SoD2 performs well on different mobile platforms (i.e., SoD2 has

good portability).

5.1 Evaluation Setup

Dynamic Models and Datasets. Our evaluation is conducted on

three types of dynamic models: 1) models with shape dynamism,

2) models with control-flow dynamism, and 3) models with both

shape and control-flow dynamism. The first category comprises five

cutting-edge DNN models, which are StableDiffusion [56] (cover-

ing the Encoder part, referred to as SDE), SegmentAnything [29],

Conformer [20], CodeBERT [16], and YOLO-V6 [36] (referred to

as YL-V6). The second category includes DGNet [37]. The third

category consists of four models, including SkipNet [63] (referred

to as SNet), ConvNet-AIG [62] (referred to as CNet), RaNet [68],

and BlockDrop [65] (referred to as BDrop).

Table 5 characterizes these models by showing the nature of dy-

namism, target input types, model size, and the total number of layers.

Because the choice of training datasets has a negligible impact on

the final inference latency or memory consumption (since the model

size and structure are the same), this section reports results from one

training dataset for each model. StableDiffusion-Encoder, SkipNet,

DGNet, ConvNet-AIG, RaNet, and BlockDrop are trained on Ima-

geNet dataset [9]; YOLO-V6 is trained on MS COCO dataset [40];

SegmentAnything is trained on SA-1B dataset [29]; CodeBERT is

pre-trained on [10]; and finally, Conformer is trained on Librispeech

dataset [49]. Since the model accuracy is the same across all frame-

works, our evaluation focuses only on execution time and memory

consumption.

Test Samples and Setup. Our inference performance evaluation ran-

domly selects 50 input samples from the corresponding validation

dataset for each model. Specifically, for models that take images as

input, i.e., YOLO-V6, SkipNet, ConvNet-AIG, RaNet, and Block-

Drop, our evaluation randomly selects 50 input images from the

ImageNet dataset, with the size of dimensions ranging from 224

to 640. DGNet does not support dynamic input shapes, but it does

support dynamic control flow. Therefore, we only tested images with

a dimension of 224 for DGNet. As YOLO-V6 only accepts images

with dimensions that are multiples of 32, only a subset of inputs

could be used. For StableDiffusion-Encoder and SegmentAnything,

the 50 randomly selected input images have dimensions ranging

from 64 to 224. For CodeBERT and Conformer, our evaluation ran-

domly selects 50 input samples with sequential lengths ranging from

32 to 384.

SoD2 : Statically Optimizing Dynamic Deep Neural Network Execution ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Table 6: End-to-end execution latency comparison among ONNX Runtime, MNN, TVM-N, and SoD2 on mobile CPU and mobile GPU.

“-” means this model is not supported by the framework yet.

Model

ORT (ms) MNN (ms) TVM-N (ms) SoD2 (ms)

CPU GPU CPU GPU CPU GPU CPU GPU

Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max

StableDiffusion [56] 179 2,115 217 2,076 189 1,287 159 1,252 - - - - 152 733 105 530

SegmentAnything [29] - - - - - - - - - - - - 66 108 42 71

Conformer [20] - - - - 51 300 265 498 - - - - 40 225 35 150

CodeBERT [16] 141 752 - - 125 1,265 - - - - - - 102 452 72 366

YOLO-V6 [36] 174 1,386 155 733 168 925 47 287 251 2,108 - - 118 546 33 178

SkipNet [63] 111 841 - - 92 789 116 363 109 974 - - 41 633 29 253

DGNet [37] 122 122 127 127 67 67 211 211 - - - - 32 56 23 42

ConvNet-AIG [62] 90 693 - - 88 731 96 305 98 947 - - 46 526 22 203

RaNet [68] 102 641 - - 139 663 114 208 - - - - 63 403 31 150

BlockDrop [65] 153 1,199 - - 145 1,421 139 468 185 1,622 - - 79 668 42 295

Geo-mean latency⋆ 2.5× 3.9× 1.7× 2.3× 2.7× - 1 1

⋆ This normalized geo-mean execution latency is calculated by 1) averaging the execution latency of runs with all input samples for each model, 2) calculating the geo-mean

of the average execution latency of all models, and 3) normalizing with SoD2’s geo-mean execution latency.

The experiments are performed on a Samsung Galaxy S21 smart-

phone powered by a Snapdragon 888 processor [53]. This processor

features an octa-core Kryo 680 CPU, comprising one large core,

three middle cores, and four small cores, and a Qualcomm Adreno

660 GPU with 1024 ALUs. Additionally, to demonstrate the porta-

bility of our approach, SoD2 is also tested on an earlier generation

of Snapdragon platform with more constrained resources, specifi-

cally the Snapdragon 835 [52] equipped with a Qualcomm Kryo

280 octa-core CPU, consisting of four middle cores and four small

cores, and a Qualcomm Adreno 540 GPU with 384 ALUs. Our eval-

uation employs 8 threads on mobile CPUs and pipelined execution

on mobile GPUs. The GPU execution uses a 16-bit floating-point

representation, while the CPU execution uses a 32-bit floating-point

representation. Each experiment is executed 50 times and only the

average numbers are reported – as the variance was negligible, it is

not reported for readability.

5.2 Overall Comparison

This section focuses on the end-to-end memory reduction and exe-

cution latency gains of SoD2.

Overall Memory Consumption Comparison. Table 5 presents a

comparison of end-to-end memory consumption on a mobile CPU

using SoD2, ONNX Runtime (ORT), MNN, and TVM with Nimble

extension (TVM-N). As the results on mobile GPU show a similar

trend, they are not included here. ‘-’ implies that a model is not sup-

ported by a given framework. The ‘Min’ and ‘Max’ columns indicate

the minimum and maximum memory consumption (excluding the

memory for holding the model itself because this part is the same for

all frameworks). The last row of the table shows the geometric mean

memory consumption of each framework normalized by SoD2. Its

detailed calculation method is shown below the table and is over the

cases where execution is possible. Among other frameworks, only

MNN can support Conformer. SegmentAnything is not supported

by other frameworks as either certain key operators are missing,

and/or there are limitations in optimization, leading to large model

execution footprints.

Table 7: Latency impact of input distribution on YOLO-V6.

Each cell shows the latency speedup of SoD2 over a correspond-

ing baseline of ORT, MMN, or TVM-N.

Model 1th 25th 50th 75th 100th

ORT 1.43× 1.66× 1.95× 2.33× 2.52×
MNN 1.41× 1.44× 1.50× 1.58× 1.65×
TVM-N 2.13× 2.52× 3.03× 3.67× 3.90×

Compared with other frameworks, SoD2 has significantly lower

memory consumption. Specifically, ORT, MNN, and TVM-N need

to use 3.64×, 1.37×, and 8.62× memory, respectively, over SoD2.

SoD2 results in a greater reduction in memory consumption for

image models (compared to other models) because image models

generally have larger memory footprints, allowing for more signif-

icant optimization opportunities. It is worth noticing that TVM-N

executes models as its own Android RPC application, which is one

of the causes of higher memory requirements.

Overall Latency Comparison. Table 6 presents a comparison of

end-to-end latency for SoD2 against other frameworks on both mo-

bile CPU and GPU. The table includes the minimum and maximum

latency observed across different input samples for each model. On

mobile CPU, SoD2 achieves an average speedup of 2.5×, 1.7×, and

2.7× compared to ONNX Runtime, MNN, and TVM-N, respec-

tively. TVM-N does not support dynamic models on a mobile GPU.

Compared against the other two frameworks on mobile GPU, SoD2

achieves a speedup of 3.9× and 2.3× over ORT and MNN, respec-

tively. Notably, the minimum latency achieved by SoD2 on mobile

GPU is significantly lower than other frameworks for ConvNet-AIG,

RaNet, and BlockDrop models. This is because our optimizations

can handle different cases and mitigate the effect of execution path

variations. It is worth pointing out that the distribution of inputs

could impact results. However, it does not change our conclusion. To

show this impact more explicitly, we conduct a set of experiments on

YOLO-V6 by selecting 50 input samples from different percentiles

ranging from 1st to 100th, and our results are as shown in Table 7.

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Niu et al.

(a) Mobile CPU

Figure 5: Memory reduction of different optimizations on CPU.

Over the baseline w/o any RDP-enabled optimization (No opt.)

(a) Mobile CPU

(b) Mobile GPU

Figure 6: Execution speedup of different opt. on CPU and GPU.

Over the baseline w/o any RDP-enabled optimization (No opt.)

5.3 Optimization Breakdown Analysis

This section studies the individual impact of the key optimizations

in SoD2 on both memory consumption and latency.

Memory Reduction w/ Different Optimizations. Figure 5 evalu-

ates the memory reduction achieved through different optimizations

for 4 models (StableDiffusion-Encoder, CodeBERT, RaNet, and

BlockDrop), including RDP-enabled operator fusion (Fusion), static

execution planning (SEP), and dynamic memory planning (DMP). The

results for other models exhibit a similar trend and are excluded due

to space limitations. The baseline version is referred to as No opt

– despite the name, it includes general static optimizations, such as

static operator fusion and constant folding. Building on this version,

we study the benefits of optimizations enabled by RDP analysis. On

mobile CPU, operator fusion, static execution planning, and dynamic

memory planning bring 18% to 30%, an extra 22% to 37%, and an-

other extra 3% to 7% memory reduction, respectively. Multi-version

code generation (MVC) is primarily designed for latency improve-

ment, its impact on memory reduction is negligible. The memory

reduction on mobile GPU is omitted because our optimizations are

general to both CPU and GPU, and the results are similar.

Latency Reduction w/ Different Optimizations. Figure 6 presents

the speedup breakdown of our key optimizations on the same 4

models. On mobile CPU, our RDP-based operator fusion yields 1.3×
to 1.9× speedup compared to No opt. Additionally, static execution

planning provides 1.1× to 1.3× speedup, and dynamic memory

planning gains 1.04× to 1.1× speedup, and Multi-version code

generation brings an extra 1.3× to 1.6× speedup. On mobile GPU,

these numbers are 1.4× to 2.3×, 1.2× to 1.3×, 1.06× to 1.2×, and

(a) Layer count (b) IR size

Figure 7: Further break down effect of existing static fusion

(SFusion) and RDP-based fusion (RDP Fusion). For both layer

count and intermediate result size, normalized by no fusion opt.

(a) Sub-graph percentage (b) Latency percentage

Figure 8: The percentage of different types of sub-graph.

1.4× to 1.7×, respectively. Our optimizations provide more benefits

for mobile GPU since GPU is more sensitive to memory and data

movement and supports a higher degree of parallelism. We further

study each optimization with more profiling results.

RDP-enabled Operator Fusion. Figure 7 further breaks down the

effect of existing operator fusion for static DNNs only (SFusion)

and our RDP-enabled operator fusion (RDP Fusion) on these four

dynamic DNNs. These results are normalized by the original DNN

without fusion (Original). SFusion reduces the layer counts by

26% to 61%; while RDP Fusion further reduces the layer counts

by 16% to 46% additionally by leveraging RDP analysis results.

In terms of intermediate result (IR) size, RDP Fusion saves an

additional 13% to 40% on top of SFusion.

Subgraph Data. To better understand execution and memory plan-

ning, this part studies how many sub-graphs can benefit from RDP

analysis results. Figure 8 (a) shows the percentage of different sub-

graphs, i.e. those with all known constant shapes, with mixed con-

stant shapes, and with statically unknown (nac) only for 2 represen-

tative models. The numbers (1, 2-4, and 5-8) after Mixed const

denote the number of code versions that are required to optimize this

sub-graph (the lower the better). This result shows that over 90%

of the sub-graphs belong to all known constant or mixed constant

categories whose execution plan and memory plan can be optimized

by our framework. To further confirm this, Figure 8 (b) shows the

latency percentage of each kind of sub-graphs.

5.4 Further Performance Analysis

This section further studies SoD2 under different cases.

Latency Comparison with the Same Execution Path. To pro-

vide an apple-to-apple comparison for control-flow dynamism, this

test disables the control-flow logic in 4 models (SkipNet, RaNet,

ConvNet-AIG, and BlockDrop) that have control-flow dynamism.

Our execution included all paths, including all branches in the

SoD2 : Statically Optimizing Dynamic Deep Neural Network Execution ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

(a) Inference time (b) Memory consumption

Figure 9: Latency and memory consumption comparison be-

tween SoD2 and MNN with the same execution path.

(a) Mobile CPU (b) Mobile GPU

Figure 10: Performance variation with different input sizes

(shapes). The data is collected from YOLO-V6. A larger input

size means more computations.

<Switch, Combine> pairs. Figure 9 illustrates the performance com-

parison with MNN because MNN performs the best among all base-

line frameworks we compared. SoD2 achieves 1.5× to 2.0× speedup

and 1.2× to 1.5× memory reduction on the mobile CPU. This result

further validates the effect of our RDP analysis and fusion, execution,

and memory optimizations based on it even without the dynamic

branch selection capability of SoD2.

Latency Comparison with Different Input Sizes. To demonstrate

the stability of SoD2, this test randomly selects 15 input shapes for

YOLO-V6, and Figure 10, shows their inference latency with MNN

and SoD2. These results demonstrate that SoD2 outperforms MNN

in terms of both latency and stability across increasing input sizes

on mobile CPUs and GPUs. Specifically, SoD2 exhibits lower and

more consistent latency, while MNN exhibits significant variations.

Latency Comparison with Fixed Memory Budget. Figure 11

presents a latency comparison between SoD2 and TFLite with the

same memory budget. Specifically, TFLite fixes its memory con-

sumption to match SoD2’s, and uses the XLA rematerialization

policy [19] to handle the out-of-memory cases. SoD2 outperforms

TFLite by an even greater margin. Additionally, SoD2 demonstrates

a higher speedup on mobile GPU compared to mobile CPU due to

the longer time required for mobile GPU to materialize intermedi-

ate tensors from its cache into main memory because of memory

mapping.

Latency Comparison with Static Models. Figure 12 examines

the latency overhead of SoD2 in contrast to our baseline, DNNFu-

sion [46], for static models. Specifically, we evaluate the latency in

SkipNet and RaNet where dynamic values were fixed statically and

fully propagated, ensuring the absence of unknown values and dy-

namic control flows. As shown in Figure 12, SoD2 incurs an average

overhead of 3% and 7% performance slowdown when compared

to the completely optimized static DNNFusion. This is attributed

to the fact that DNNFusion, with full information available, results

(a) Mobile CPU (b) Mobile GPU

Figure 11: Speedup with the same memory consumption.

(a) Mobile CPU (b) Mobile GPU

Figure 12: Inference time comparison with DNNFusion for static

models (i.e., with both frozen shapes and control flows).

in a more comprehensive fusion optimization and does not include

dynamic memory planning overhead.

5.5 Portability

To further investigate the effectiveness of portability, Figure 13

shows the execution speedup of SoD2 over other frameworks on an-

other mobile device – Snapdragon 835, and 5 models (StableDiffusion-

Encoder, YOLO-V6, SkipNet, ConvNet-AIG, and BlockDrop). SoD2

achieves similar speedup trends, and interestingly, it achieves higher

speedups on this earlier generation of SoC because this SoC has

more restricted resources (e.g., cache size and memory throughput).

The RDP-based optimizations employed in SoD2 significantly re-

duce memory requirements, leading to improved performance on

these platforms.

6 RELATED WORK

Dynamic Neural Network Optimizations. Type analysis and type

inference [8, 22, 33, 44, 58] are widely used to analyze tensor shapes,

thus assisting in Dynamic Neural Network optimizations. Nim-

ble [57], which has been integrated into TVM, is a compilation-based

Dynamic DNN framework. This framework relies on expensive dy-

namic functions to interpret dynamic shapes at the runtime. This

implementation, which we have extensively compared against, limits

the opportunities for optimized code generation, such as performing

operator fusion. DISC [74] extends MLIR-HLO [33] and propagates

the shape information for operators that have certain constraints,

e.g. same dimensions (the case of Activation) and same size (the

case of Transpose). SoD2 provides a more comprehensive operator

classification based on dynamism degrees, bringing in significantly

enhanced optimization opportunities. Axon [6] is a programming

language that allows specification of symbolic shapes for input and

output tensors for computational graphs. It uses a constraint solver

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Niu et al.

(a) Mobile CPU (b) Mobile GPU

Figure 13: Portability evaluation. The results are collected on

Snapdragon 835. An empty bar means the model is not sup-

ported by the framework. Results are normalized by MNN for

readability.

to find shapes whereas SoD2 uses a forward and backward data-

flow analysis (RDP), which also alleviates additional programmer

involvement. In addition, SoD2 includes a set of opts enabled by

RDP.

Less closely related to SoD2, DietCode [73] proposes an auto-

scheduler framework based on TVM for dynamic shapes. The frame-

work builds a cost model to predict runtime performance and re-

duces the search space to find optimal runtime parameters (e.g., loop

tiling). Cortex [15], Cavs [67], and another effort [25] mainly aim

to address recursive dynamism of neural networks, different from

SoD2’s focus. Other efforts focus on dynamic batching for infer-

ence [14, 17, 41, 72] or are designed for dynamic DNN training [45].

DNN Execution and Memory Optimizations. Several studies exist

for operator execution order scheduling, such as [2, 38, 39]. Among

these efforts [38, 39] focus on minimizing peak memory consump-

tion by reordering operators for resource-constrained devices (e.g.,

MCUs), and effort [2] proposes an optimized scheduling framework

for complex models (irregularly wired neural networks). These ap-

proaches rely on static shapes only. There have aldo been recent

efforts on optimizing memory allocation planning and memory man-

agement for DNNs. Works such as [35, 51] have designed various

heuristic memory planning algorithms for static DNNs only. Tela-

Malloc [43] performs memory management on the fly for static

control-flow graphs with known intermediate tensor shapes and

sizes. It does not fully consider the DNN control-flow dynamism

and dynamic shapes. A possible future work can be to integrate

our RDP analysis and TelaMalloc’s combination of heuristics with

a solver-based approach to further improve our memory planning.

When the available memory is limited, rematerialization [24, 30]

and recomputation [3] methods achieve a trade-off between memory

consumption and execution latency. These aspects can be considered

for dynamic DNNs in the future.

DNN Inference Engines on Mobile. Support for DNN inference

on mobile devices has become an area of active research in recent

years. Efforts such as MCDNN [21], DeepX [32], DeepMon [23],

DeepSense [69], and DeepCache [66] have primarily concentrated

on optimizing the execution of static DNNs with static shapes and

control flow. TensorFlow Lite (TFLite) [1], Pytorch-Mobile [50],

TVM [5], and MNN [26] provide support for dynamic shapes relying

on reinitialization or conservative (maximum) memory allocation.

They either do not support dynamic control flow or require execu-

tions of all paths with a stripping of invalid results. As shown in

our evaluation, these methods introduce high runtime overhead. One

of the previous systems for static DNNs, DNNFusion [46], also in-

volved a classification of DNN operators, however, the classification

introduced here is orthogonal.

7 DISCUSSION AND FUTURE WORK

Generalizing to Other Platforms. The proposed techniques, such

as RDP analysis, RDP-enabled fusion, and execution and memory

planning, have broad applicability to various platforms, including

data-center GPUs. This is particularly true for single-input inference

scenarios. One potential nuance that may arise is the distinction

between data-center GPUs and mobile GPUs in terms of their abil-

ity to perform batched inference. Unlike mobile GPUs, data-center

GPUs have the capacity to process multiple inputs concurrently,

thereby maximizing their computational power. However, it is pos-

sible that different input samples within a batch may necessitate

the use of different execution paths. Therefore, the integration of

dynamic batching with dynamic neural networks presents a potential

direction for future research.

Scalability of Handling LLMs. The optimizations in SoD2 can

also be applied to massive large language models (LLMs). One of

the primary procedures we employ is graph partitioning, as elab-

orated in Section 4.3. This procedure involves dividing the entire

computational graph into a collection of sub-graphs, each of which

encompasses a restricted number of layers. The optimal solution is

determined offline for each sub-graph. However, Language Models

(LLMs) have been characterized by an incredibly large number of

parameters, numbering in the billions [7, 60, 70]. This poses a sig-

nificant challenge for mobile devices in terms of computation and re-

source requirements. Our future work will enhance SoD2 by combin-

ing it with the model pruning and quantization advances [27, 47, 64]

to achieve an even better performance.

Extending beyond ONNX. Operator classification and associated

optimization designs are also not limited to ONNX or other infer-

ence formats (e.g., TFLite, Caffe2). This is because our proposed

analysis is based on the degree of dynamism defined by the compu-

tation logic of an operator and the relationship between its input and

output, rather than relying on the specific representation or format of

the operator. Some formats have yet to fully support dynamic com-

putational graphs. For instance, PyTorch supports exporting models

with dynamic shapes (such as Input Shape Determined Output, Input

Shape Determined Output Shape, and Input Shape & Value Deter-

mined Output Shape) to ONNX. However, it is unable to convert

models with dynamic control flow to ONNX. To address this limita-

tion, we added a customized ONNX operator pair <Switch, Com-

bine> (as shown in Figure 1d) and registered a customized export

routine on PyTorch specifically for models with a dynamic control

flow. SoD2 does have limitations in handling very complicated (or

user-defined) dynamic models (such as Graph Neural Networks or

DNNs involving recursive executions) that can be represented well

in PyTorch. We leave this further optimization as a future work.

8 CONCLUSIONS

This paper has presented a comprehensive framework, SoD2, for

optimizing DNNs. SoD2 classifies common operators of Dynamic

DNNs into four types, and comprises a novel static dataflow analysis

SoD2 : Statically Optimizing Dynamic Deep Neural Network Execution ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

(RDP). This is followed by a set of optimizations enabled by RDP for

Dynamic DNNs, including operator fusion, static execution (order)

planning, dynamic memory allocation planning, and multi-version

code generation. SoD2 is extensively evaluated on a mobile system

with 10 emerging dynamic DNNs and the evaluation results show

that it saves up to 88% memory consumption and brings up to

3.9× execution speedup over four state-of-the-art DNN execution

frameworks. As the underlying techniques are general and applicable

to other devices as well, our future work will evaluate SoD2’s efficacy

on other devices (e.g., edge GPUs and Raspberry Pi).

ACKNOWLEDGMENTS

The authors would like to express their gratitude to the anonymous

reviewers and shepherd for their insightful and detailed comments.

All of these have significantly contributed to the enhancement of

this paper. This work was supported in part by the National Science

Foundation (NSF) under the awards of CCF-2047516 (CAREER),

CCF-2146873, CCF-2333895, CCF-2334273, CNS-2230944, CNS-

2341378, IIS-2142681, III-2008557, and OAC-2333899. Any errors

and opinions are not those of the NSF and are attributable solely

to the author(s). The authors also acknowledge William & Mary

Research Computing for providing computational resources.

REFERENCES
[1] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray,
Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan
Yu, and Xiaoqiang Zheng. 2016. TensorFlow: A system for large-scale machine
learning. In OSDI 2016. USENIX Association, USA, 265–283.

[2] Byung Hoon Ahn, Jinwon Lee, Jamie Menjay Lin, Hsin-Pai Cheng, Jilei Hou,
and Hadi Esmaeilzadeh. 2020. Ordering Chaos: Memory-Aware Scheduling of
Irregularly Wired Neural Networks for Edge Devices. In Proceedings of Machine

Learning and Systems 2020, MLSys 2020, Austin, TX, USA, March 2-4, 2020,
Inderjit S. Dhillon, Dimitris S. Papailiopoulos, and Vivienne Sze (Eds.). mlsys.org.
https://proceedings.mlsys.org/book/290.pdf

[3] Samuel Rota Bulò, Lorenzo Porzi, and Peter Kontschieder. 2018. In-Place Ac-
tivated BatchNorm for Memory-Optimized Training of DNNs. In 2018 IEEE

Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt

Lake City, UT, USA, June 18-22, 2018. IEEE Computer Society, 5639–5647.
https://doi.org/10.1109/CVPR.2018.00591

[4] David Callahan, Keith D Cooper, Ken Kennedy, and Linda Torczon. 1986. Inter-
procedural constant propagation. ACM SIGPLAN Notices 21, 7 (1986), 152–161.

[5] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen
Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin,
and Arvind Krishnamurthy. 2018. TVM: An automated end-to-end optimizing
compiler for deep learning. In OSDI 2018. 578–594.

[6] Alexander Collins and Vinod Grover. 2022. Axon: A Language for Dynamic
Shapes in Deep Learning Graphs. ArXiv preprint abs/2210.02374 (2022). https:
//arxiv.org/abs/2210.02374

[7] Mike Conover, Matt Hayes, Ankit Mathur, Jianwei Xie, Jun Wan, Sam
Shah, Ali Ghodsi, Patrick Wendell, Matei Zaharia, and Reynold Xin.
2023. Free Dolly: Introducing the World’s First Truly Open Instruction-
Tuned LLM. https://www.databricks.com/blog/2023/04/12/dolly-first-open-
commercially-viable-instruction-tuned-llm

[8] Karl Crary and Stephanie Weirich. 1999. Flexible type analysis. In Proceedings of

the fourth ACM SIGPLAN international conference on Functional programming.
233–248.

[9] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Fei-Fei Li. 2009.
ImageNet: A large-scale hierarchical image database. In 2009 IEEE Computer

Society Conference on Computer Vision and Pattern Recognition (CVPR 2009),

20-25 June 2009, Miami, Florida, USA. IEEE Computer Society, 248–255. https:
//doi.org/10.1109/CVPR.2009.5206848

[10] Microsoft Developer. 2023. CodeBERT. https://github.com/microsoft/CodeBERT.
[11] Numpy developers. 2023. Tensor Broadcasting. https://numpy.org/doc/stable/

user/basics.broadcasting.html. Version: 1.24.
[12] ONNX Runtime developers. 2023. ONNX Runtime. https://onnxruntime.ai/.

Version: 1.14.1.

[13] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Associ-

ation for Computational Linguistics: Human Language Technologies, Volume 1

(Long and Short Papers). Association for Computational Linguistics, Minneapolis,
Minnesota, 4171–4186. https://doi.org/10.18653/v1/N19-1423

[14] Jiarui Fang, Yang Yu, Chengduo Zhao, and Jie Zhou. 2021. TurboTransformers: an
efficient GPU serving system for transformer models. In Proceedings of the 26th

ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming.
389–402.

[15] Pratik Fegade, Tianqi Chen, Phillip Gibbons, and Todd Mowry. 2021. Cortex: A
compiler for recursive deep learning models. Proceedings of Machine Learning

and Systems 3 (2021), 38–54.
[16] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,

Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming Zhou. 2020. CodeBERT:
A Pre-Trained Model for Programming and Natural Languages. In Findings of

the Association for Computational Linguistics: EMNLP 2020. Association for
Computational Linguistics, Online, 1536–1547. https://doi.org/10.18653/v1/2020.
findings-emnlp.139

[17] Pin Gao, Lingfan Yu, Yongwei Wu, and Jinyang Li. 2018. Low latency RNN infer-
ence with cellular batching. In Proceedings of the Thirteenth EuroSys Conference.
1–15.

[18] Ben Goertzel. 2014. Artificial general intelligence: concept, state of the art, and
future prospects. Journal of Artificial General Intelligence 5, 1 (2014), 1.

[19] Google. 2023. Tensorflow XLA. https://www.tensorflow.org/xla.
[20] Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki Parmar, Yu Zhang, Jiahui

Yu, Wei Han, Shibo Wang, Zhengdong Zhang, Yonghui Wu, and Ruoming Pang.
2020. Conformer: Convolution-augmented Transformer for Speech Recogni-
tion. In Interspeech 2020, 21st Annual Conference of the International Speech

Communication Association, Virtual Event, Shanghai, China, 25-29 October

2020, Helen Meng, Bo Xu, and Thomas Fang Zheng (Eds.). ISCA, 5036–5040.
https://doi.org/10.21437/Interspeech.2020-3015

[21] Seungyeop Han, Haichen Shen, Matthai Philipose, Sharad Agarwal, Alec Wolman,
and Arvind Krishnamurthy. 2016. Mcdnn: An approximation-based execution
framework for deep stream processing under resource constraints. In Proceedings

of the 14th Annual International Conference on Mobile Systems, Applications,

and Services (MobiSys). ACM, 123–136.
[22] Robert Harper and Greg Morrisett. 1995. Compiling polymorphism using in-

tensional type analysis. In Proceedings of the 22nd ACM SIGPLAN-SIGACT

symposium on Principles of programming languages. 130–141.
[23] Loc N Huynh, Youngki Lee, and Rajesh Krishna Balan. 2017. Deepmon: Mobile

gpu-based deep learning framework for continuous vision applications. In Proceed-

ings of the 15th Annual International Conference on Mobile Systems, Applications,

and Services (MobiSys). ACM, 82–95. https://doi.org/10.1145/3081333.3081360
[24] Paras Jain, Ajay Jain, Aniruddha Nrusimha, Amir Gholami, Pieter Abbeel, Kurt

Keutzer, Ion Stoica, and Joseph Gonzalez. 2020. Checkmate: Breaking the Mem-
ory Wall with Optimal Tensor Rematerialization. In Proceedings of Machine

Learning and Systems 2020, MLSys 2020, Austin, TX, USA, March 2-4, 2020,
Inderjit S. Dhillon, Dimitris S. Papailiopoulos, and Vivienne Sze (Eds.). mlsys.org.
https://proceedings.mlsys.org/book/320.pdf

[25] Eunji Jeong, Joo Seong Jeong, Soojeong Kim, Gyeong-In Yu, and Byung-Gon
Chun. 2018. Improving the expressiveness of deep learning frameworks with
recursion. In Proceedings of the Thirteenth EuroSys Conference. 1–13.

[26] Xiaotang Jiang, Huan Wang, Yiliu Chen, Ziqi Wu, Lichuan Wang, Bin Zou, Yafeng
Yang, Zongyang Cui, Yu Cai, Tianhang Yu, Chengfei Lyu, and Zhihua Wu. 2020.
MNN: A Universal and Efficient Inference Engine. In Proceedings of Machine

Learning and Systems 2020, MLSys 2020, Austin, TX, USA, March 2-4, 2020,
Inderjit S. Dhillon, Dimitris S. Papailiopoulos, and Vivienne Sze (Eds.). mlsys.org.
https://proceedings.mlsys.org/book/287.pdf

[27] Qing Jin, Jian Ren, Richard Zhuang, Sumant Hanumante, Zhengang Li, Zhiyu
Chen, Yanzhi Wang, Kaiyuan Yang, and Sergey Tulyakov. 2022. F8net:
Fixed-point 8-bit only multiplication for network quantization. arXiv preprint

arXiv:2202.05239 (2022).
[28] Gary A Kildall. 1973. A unified approach to global program optimization. In

Proceedings of the 1st annual ACM SIGACT-SIGPLAN symposium on Principles

of programming languages. 194–206.
[29] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura

Gustafson, Tete Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo,
Piotr Dollár, and Ross Girshick. 2023. Segment Anything. ArXiv preprint

abs/2304.02643 (2023). https://arxiv.org/abs/2304.02643
[30] Marisa Kirisame, Steven Lyubomirsky, Altan Haan, Jennifer Brennan, Mike

He, Jared Roesch, Tianqi Chen, and Zachary Tatlock. 2021. Dynamic Ten-
sor Rematerialization. In 9th International Conference on Learning Represen-

tations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net.
https://openreview.net/forum?id=Vfs_2RnOD0H

[31] Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and Saman Ama-
rasinghe. 2017. The tensor algebra compiler. Proceedings of the ACM on Pro-

gramming Languages 1, OOPSLA (2017), 1–29.

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Niu et al.

[32] N. D. Lane, S. Bhattacharya, P. Georgiev, C. Forlivesi, L. Jiao, L. Qendro, and F.
Kawsar. 2016. DeepX: A Software Accelerator for Low-Power Deep Learning
Inference on Mobile Devices. In 2016 15th ACM/IEEE International Conference

on Information Processing in Sensor Networks (IPSN). 1–12.
[33] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis,

Jacques Pienaar, River Riddle, Tatiana Shpeisman, Nicolas Vasilache, and Olek-
sandr Zinenko. 2021. Mlir: Scaling compiler infrastructure for domain specific
computation. In 2021 IEEE/ACM International Symposium on Code Generation

and Optimization (CGO). IEEE, 2–14.
[34] Royson Lee, Stylianos I Venieris, Lukasz Dudziak, Sourav Bhattacharya, and

Nicholas D Lane. 2019. Mobisr: Efficient on-device super-resolution through
heterogeneous mobile processors. In The 25th Annual International Conference

on Mobile Computing and Networking. 1–16.
[35] Maksim Levental. 2022. Memory Planning for Deep Neural Networks. ArXiv

preprint abs/2203.00448 (2022). https://arxiv.org/abs/2203.00448
[36] Chuyi Li, Lulu Li, Hongliang Jiang, Kaiheng Weng, Yifei Geng, Liang Li, Zaidan

Ke, Qingyuan Li, Meng Cheng, Weiqiang Nie, et al. 2022. YOLOv6: A single-
stage object detection framework for industrial applications. ArXiv preprint

abs/2209.02976 (2022). https://arxiv.org/abs/2209.02976
[37] Changlin Li, Guangrun Wang, Bing Wang, Xiaodan Liang, Zhihui Li, and Xiaojun

Chang. 2021. Dynamic Slimmable Network. In IEEE Conference on Computer

Vision and Pattern Recognition, CVPR 2021, virtual, June 19-25, 2021. Computer
Vision Foundation / IEEE, 8607–8617. https://doi.org/10.1109/CVPR46437.2021.
00850

[38] Edgar Liberis and Nicholas D Lane. 2019. Neural networks on microcon-
trollers: saving memory at inference via operator reordering. ArXiv preprint

abs/1910.05110 (2019). https://arxiv.org/abs/1910.05110
[39] Ji Lin, Wei-Ming Chen, Yujun Lin, John Cohn, Chuang Gan, and Song Han.

2020. MCUNet: Tiny Deep Learning on IoT Devices. In Advances in Neu-

ral Information Processing Systems 33: Annual Conference on Neural Informa-

tion Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual,
Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin (Eds.). https://proceedings.neurips.cc/paper/2020/hash/
86c51678350f656dcc7f490a43946ee5-Abstract.html

[40] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D. Bourdev, Ross B.
Girshick, James Hays, Pietro Perona, Deva Ramanan, Piotr Doll’a r, and
C. Lawrence Zitnick. 2014. Microsoft COCO: Common Objects in Context.
CoRR abs/1405.0312 (2014). arXiv:1405.0312 http://arxiv.org/abs/1405.0312

[41] Moshe Looks, Marcello Herreshoff, DeLesley Hutchins, and Peter Norvig. 2017.
Deep Learning with Dynamic Computation Graphs. In 5th International Confer-

ence on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017,

Conference Track Proceedings. OpenReview.net. https://openreview.net/forum?
id=ryrGawqex

[42] Lingxiao Ma, Zhiqiang Xie, Zhi Yang, Jilong Xue, Youshan Miao, Wei Cui, Wenx-
iang Hu, Fan Yang, Lintao Zhang, and Lidong Zhou. 2020. Rammer: Enabling
Holistic Deep Learning Compiler Optimizations with rTasks. In 14th USENIX Sym-

posium on Operating Systems Design and Implementation (OSDI 20). USENIX
Association, 881–897.

[43] Martin Maas, Ulysse Beaugnon, Arun Chauhan, and Berkin Ilbeyi. 2022. Tela-
Malloc: Efficient On-Chip Memory Allocation for Production Machine Learning
Accelerators. In Proceedings of the 28th ACM International Conference on Ar-

chitectural Support for Programming Languages and Operating Systems, Volume

1 (ASPLOS 2023). Association for Computing Machinery, New York, NY, USA,
123–137. https://doi.org/10.1145/3567955.3567961

[44] Robin Milner. 1978. A theory of type polymorphism in programming. Journal of

computer and system sciences 17, 3 (1978), 348–375.
[45] Graham Neubig, Chris Dyer, Yoav Goldberg, Austin Matthews, Waleed Ammar,

Antonios Anastasopoulos, Miguel Ballesteros, David Chiang, Daniel Clothiaux,
Trevor Cohn, et al. 2017. Dynet: The dynamic neural network toolkit. ArXiv

preprint abs/1701.03980 (2017). https://arxiv.org/abs/1701.03980
[46] Wei Niu, Jiexiong Guan, Yanzhi Wang, Gagan Agrawal, and Bin Ren. 2021.

DNNFusion: accelerating deep neural networks execution with advanced operator
fusion. In Proceedings of the 42nd ACM SIGPLAN International Conference on

Programming Language Design and Implementation. 883–898.
[47] Wei Niu, Xiaolong Ma, Sheng Lin, Shihao Wang, Xuehai Qian, Xue Lin, Yanzhi

Wang, and Bin Ren. 2020. Patdnn: Achieving real-time dnn execution on mobile
devices with pattern-based weight pruning. In Proceedings of the Twenty-Fifth

International Conference on Architectural Support for Programming Languages

and Operating Systems. 907–922.
[48] ONNX. 2017. Open Neural Network Exchange. https://www.onnx.ai.
[49] Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. 2015.

Librispeech: An ASR corpus based on public domain audio books. In 2015 IEEE

International Conference on Acoustics, Speech and Signal Processing, ICASSP

2015, South Brisbane, Queensland, Australia, April 19-24, 2015. IEEE, 5206–
5210. https://doi.org/10.1109/ICASSP.2015.7178964

[50] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Köpf, Edward Yang, Zachary DeVito, Martin Raison,

Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep
Learning Library. In Advances in Neural Information Processing Systems 32:

Annual Conference on Neural Information Processing Systems 2019, NeurIPS

2019, December 8-14, 2019, Vancouver, BC, Canada, Hanna M. Wallach, Hugo
Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Ro-
man Garnett (Eds.). 8024–8035. https://proceedings.neurips.cc/paper/2019/hash/
bdbca288fee7f92f2bfa9f7012727740-Abstract.html

[51] Yury Pisarchyk and Juhyun Lee. 2020. Efficient memory management for deep
neural net inference. ArXiv preprint abs/2001.03288 (2020). https://arxiv.org/abs/
2001.03288

[52] Qualcomm. 2016. Snapdragon 835. https://www.qualcomm.com/products/
snapdragon-835-mobile-platform.

[53] Qualcomm. 2020. Snapdragon 888. https://www.qualcomm.com/products/
snapdragon-888-5g-mobile-platform.

[54] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo
Durand, and Saman Amarasinghe. 2013. Halide: A Language and Compiler
for Optimizing Parallelism, Locality, and Recomputation in Image Processing
Pipelines. In PLDI 2013. Association for Computing Machinery, New York, NY,
USA, 519–530.

[55] Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie Zhou, and Cho-
Jui Hsieh. 2021. DynamicViT: Efficient Vision Transformers with Dy-
namic Token Sparsification. In Advances in Neural Information Processing

Systems 34: Annual Conference on Neural Information Processing Systems

2021, NeurIPS 2021, December 6-14, 2021, virtual, Marc’Aurelio Ranzato,
Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman
Vaughan (Eds.). 13937–13949. https://proceedings.neurips.cc/paper/2021/hash/
747d3443e319a22747fbb873e8b2f9f2-Abstract.html

[56] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn
Ommer. 2022. High-resolution image synthesis with latent diffusion models.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition. 10684–10695.
[57] Haichen Shen, Jared Roesch, Zhi Chen, Wei Chen, Yong Wu, Mu Li, Vin Sharma,

Zachary Tatlock, and Yida Wang. 2021. Nimble: Efficiently compiling dynamic
neural networks for model inference. Proceedings of Machine Learning and

Systems 3 (2021), 208–222.
[58] Jeremy Siek and Walid Taha. 2007. Gradual typing for objects. In ECOOP 2007–

Object-Oriented Programming: 21st European Conference, Berlin, Germany, July

30-August 3, 2007. Proceedings 21. Springer, 2–27.
[59] TensorFlow. 2018. TensorFlow Grappler. https://www.tensorflow.org/guide/graph_

optimization.
[60] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yas-

mine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhos-
ale, et al. 2023. Llama 2: Open foundation and fine-tuned chat models. arXiv

preprint arXiv:2307.09288 (2023).
[61] Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya Goyal,

Zachary DeVito, William S Moses, Sven Verdoolaege, Andrew Adams, and Albert
Cohen. 2018. Tensor comprehensions: Framework-agnostic high-performance
machine learning abstractions. ArXiv preprint abs/1802.04730 (2018). https:
//arxiv.org/abs/1802.04730

[62] Andreas Veit and Serge Belongie. 2018. Convolutional Networks with Adaptive
Inference Graphs. European Conference on Computer Vision (ECCV) (2018).

[63] Xin Wang, Fisher Yu, Zi-Yi Dou, Trevor Darrell, and Joseph E Gonzalez. 2018.
Skipnet: Learning dynamic routing in convolutional networks. In Proceedings of

the European Conference on Computer Vision (ECCV). 409–424.
[64] Zifeng Wang, Zheng Zhan, Yifan Gong, Geng Yuan, Wei Niu, Tong

Jian, Bin Ren, Stratis Ioannidis, Yanzhi Wang, and Jennifer Dy. 2022.
SparCL: Sparse Continual Learning on the Edge. In Advances in Neu-

ral Information Processing Systems, S. Koyejo, S. Mohamed, A. Agar-
wal, D. Belgrave, K. Cho, and A. Oh (Eds.), Vol. 35. Curran Associates,
Inc., 20366–20380. https://proceedings.neurips.cc/paper_files/paper/2022/file/
80133d0f6eccaace15508f91e3c5a93c-Paper-Conference.pdf

[65] Zuxuan Wu, Tushar Nagarajan, Abhishek Kumar, Steven Rennie, Larry S. Davis,
Kristen Grauman, and Rogério Schmidt Feris. 2018. BlockDrop: Dynamic Infer-
ence Paths in Residual Networks. In 2018 IEEE Conference on Computer Vision

and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018.
IEEE Computer Society, 8817–8826. https://doi.org/10.1109/CVPR.2018.00919

[66] Mengwei Xu, Mengze Zhu, Yunxin Liu, Felix Xiaozhu Lin, and Xuanzhe Liu.
2018. DeepCache: Principled Cache for Mobile Deep Vision. In Proceedings of

the 24th Annual International Conference on Mobile Computing and Networking

(MobiCom ’18). Association for Computing Machinery, New York, NY, USA,
129–144.

[67] Shizhen Xu, Hao Zhang, Graham Neubig, Wei Dai, Jin Kyu Kim, Zhijie Deng,
Qirong Ho, Guangwen Yang, and Eric P Xing. 2018. Cavs: An efficient run-
time system for dynamic neural networks. In 2018 {USENIX} Annual Technical

Conference ({USENIX}{ATC} 18). 937–950.
[68] Le Yang, Yizeng Han, Xi Chen, Shiji Song, Jifeng Dai, and Gao Huang. 2020. Res-

olution Adaptive Networks for Efficient Inference. In 2020 IEEE/CVF Conference

SoD2 : Statically Optimizing Dynamic Deep Neural Network Execution ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

on Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June

13-19, 2020. IEEE, 2366–2375. https://doi.org/10.1109/CVPR42600.2020.00244
[69] Shuochao Yao, Shaohan Hu, Yiran Zhao, Aston Zhang, and Tarek F. Abdelzaher.

2017. DeepSense: A Unified Deep Learning Framework for Time-Series Mobile
Sensing Data Processing. In Proceedings of the 26th International Conference on

World Wide Web, WWW 2017, Perth, Australia, April 3-7, 2017, Rick Barrett, Rick
Cummings, Eugene Agichtein, and Evgeniy Gabrilovich (Eds.). ACM, 351–360.
https://doi.org/10.1145/3038912.3052577

[70] Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang, Hanyu Lai, Ming Ding,
Zhuoyi Yang, Yifan Xu, Wendi Zheng, Xiao Xia, et al. 2022. Glm-130b: An open
bilingual pre-trained model. arXiv preprint arXiv:2210.02414 (2022).

[71] Jinle Zeng, Min Li, Zhihua Wu, Jiaqi Liu, Yuang Liu, Dianhai Yu, and Yanjun Ma.
2022. Boosting Distributed Training Performance of the Unpadded BERT Model.

arXiv preprint arXiv:2208.08124 (2022).
[72] Yujia Zhai, Chengquan Jiang, Leyuan Wang, Xiaoying Jia, Shang Zhang, Zizhong

Chen, Xin Liu, and Yibo Zhu. 2022. ByteTransformer: A High-Performance
Transformer Boosted for Variable-Length Inputs. ArXiv preprint abs/2210.03052
(2022). https://arxiv.org/abs/2210.03052

[73] Bojian Zheng, Ziheng Jiang, Cody Hao Yu, Haichen Shen, Joshua Fromm, Yizhi
Liu, Yida Wang, Luis Ceze, Tianqi Chen, and Gennady Pekhimenko. 2022. Di-
etCode: Automatic optimization for dynamic tensor programs. Proceedings of

Machine Learning and Systems 4 (2022), 848–863.
[74] Kai Zhu, WY Zhao, Zhen Zheng, TY Guo, PZ Zhao, JJ Bai, Jun Yang, XY Liu, LS

Diao, and Wei Lin. 2021. DISC: A dynamic shape compiler for machine learning
workloads. In Proceedings of the 1st Workshop on Machine Learning and Systems.
89–95.

