

Reconnection along a separator in shock turbulence

1 ANONYMOUS AUTHOR(S)

2 (Dated: January 16, 2024)

ABSTRACT

4 Numerous structures conducive to magnetic reconnection are frequently observed in the turbulent
5 regions at quasi-parallel shocks. In this work, we use a particle-in-cell simulation to study three-
6 dimensional magnetic reconnection in shock turbulence. We identify and characterise magnetic null
7 points, and focus on reconnection along the separator between them. We identify a reconnection region
8 with strong parallel current, a finite parallel potential and counter-rotating electron flows. Electrons
9 are shown to be accelerated by the parallel electric field before being scattered at the null.

1. INTRODUCTION

11 Numerous reconnecting current sheets have been ob-
12 served at and downstream of the transition region at
13 Earth’s bow shock (Gingell et al. 2020; Wang et al.
14 2019; Phan et al. 2018; Stawarz et al. 2022). In the
15 quasi-parallel regions, these are the result of reflected
16 particles exciting ion-ion instabilities (Wang et al. 2019;
17 Bessho et al. 2020; Gingell et al. 2023) leading to the for-
18 mation of intense current sheets, and further secondary
19 instabilities causing electron-scale structures to form.

20 Kinetic and hybrid simulations have been a useful tool
21 in studying the formation of reconnection regions and
22 their importance in these transition regions. Previous
23 investigations (Bessho et al. 2022) have demonstrated
24 how electrons are accelerated, with the trapping of elec-
25 trons in islands being a key mechanism, while Gingell
26 et al. (2023) has studied a wide range of parameters
27 to determine which are favourable for reconnection at
28 quasi-parallel shocks. Three dimensional simulations
29 have shown that a wider range of reconnection regimes
30 can be accessed (Ng et al. 2022) as the additional de-
31 gree of freedom allows weak guide field reconnection and
32 differently oriented reconnection planes.

33 The simulation studies listed above have focused on
34 two-dimensional or quasi-two-dimensional reconnection
35 regions. In these quasi-2D systems, the “out-of-plane”
36 direction parallel to the current is treated as slowly vary-
37 ing, with instabilities allowing the development of 3D
38 structure. Generalizations of magnetic reconnection to
39 three-dimensional systems (Schindler et al. 1988) have
40 linked a finite value of $U_{\parallel} = - \int E_{\parallel} ds$ integrated along
41 a field line to global topology change. Three dimen-
42 sional structures are expected in the solar corona, at
43 the magnetopause and different regions of the magneto-
44 sphere (Li et al. (2021a) and references therein). Based

45 on theoretical considerations, there are different forms
46 of reconnection that can take place at magnetic nulls
47 (Priest & Pontin 2009), or along magnetic separators
48 (Parnell et al. 2010a; Stevenson & Parnell 2015). “Slip-
49 page” reconnection can also occur in sheared flux tubes
50 (Kuniyoshi et al. 2021).

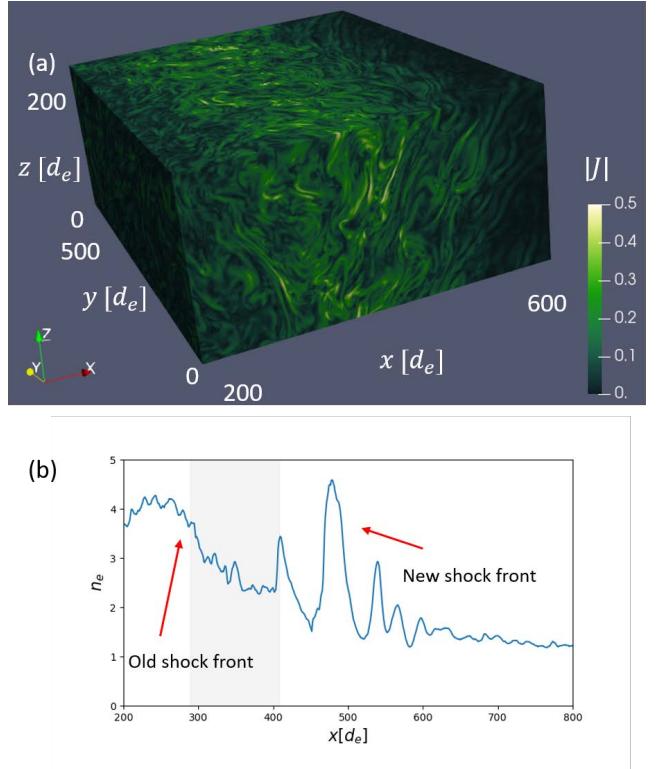
51 Though many of the studies of 3d reconnection are
52 in the context of solar physics (e.g. Priest & Pontin
53 (2009); Parnell et al. (2010a); Pontin & Wyper (2015);
54 Cheng et al. (2023)) and take place at MHD scales, there
55 have been recent simulations and observations that dis-
56 cuss kinetic scales. MMS has observed the evolution
57 of a null in the flank of the magnetopause (Ekawati &
58 Cai 2023), while reconstruction using the magnetic field
59 data of Cluster has allowed the identification of mag-
60 netic nulls and separators including events in turbulent
61 regions (Guo et al. 2022). Kinetic simulations have been
62 used to study nulls in different environments, where it
63 is shown that energy dissipation is stronger in regions
64 close to spiral nulls (Olshevsky et al. 2016).

65 In this paper we study 3D reconnection using a kinetic
66 simulation of a quasi-parallel shock. We focus on a single
67 event where we analyze reconnection along a separator
68 between two magnetic nulls. We compare the properties
69 of the plasma in this region and relate it to prior studies
70 of separator reconnection, and analyse the acceleration
71 of electrons in the reconnection region. We show that
72 parallel acceleration can increase the electron energy by
73 an amount comparable to the electron temperature, but
74 is likely to be overshadowed by the acceleration of elec-
75 trons trapped in flux ropes.

2. SIMULATION SETUP

76 We perform three-dimensional simulations of a quasi-
77 parallel shock using the fully-kinetic particle-in-cell code

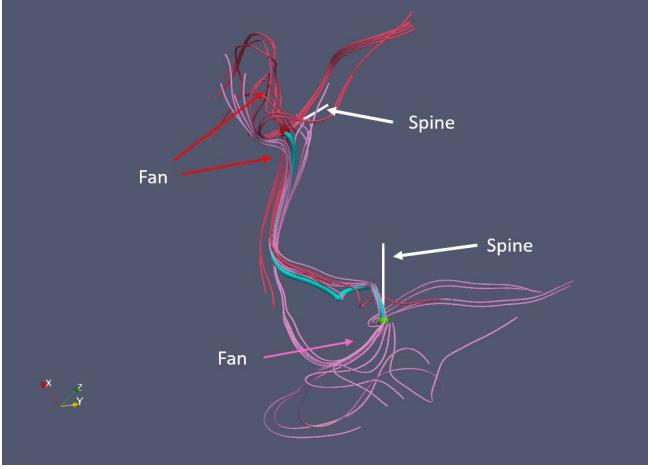
79 VPIC (Bowers et al. 2008b,a). The initial condition con-
 80 sists of a uniform plasma and electromagnetic fields,
 81 with $B_x = B_0 \cos \theta_{Bn}$, $B_y = B_0 \sin \theta_{Bn}$ and $E_z =$
 82 $V_{flow} B_0 \sin \theta_{Bn}$, where θ_{Bn} is the angle between the
 83 magnetic field and shock normal ($\hat{\mathbf{x}}$). The initial plasma
 84 moves in the negative x direction with velocity $-V_{flow}$.
 85 The lower x boundary uses conducting walls for fields
 86 and reflecting walls for particles, while plasma is in-
 87 jected and the z -component of the electric field is im-
 88 posed at the upper x boundary with the initial field
 89 and flow values. The y and z boundaries are periodic.
 90 The simulation domain is $1500 \times 500 \times 200 (d_e)^3$ cov-
 91 ered by $3000 \times 1000 \times 400$ cells, and is initialized with
 92 150 particles per species per cell. Physical parameters
 93 used in the simulation are $\omega_{pe}/\Omega_{ce} = 4$, $m_i/m_e = 100$,
 94 $\beta_e = \beta_i = \sqrt{2}$, $\theta_{Bn} = 20^\circ$ and $M_A = 10$. Here ω_{pe} is the
 95 electron plasma frequency, Ω_{ce} the electron cyclotron
 96 frequency, β the ratio between thermal pressure and
 97 magnetic pressure for either species and $M_A = V_{flow}/v_A$
 98 the Alfvén Mach number of the injected plasma. As the
 99 simulation develops, the shock front propagates from the
 100 lower x boundary in the positive x direction. Unless oth-
 101 erwise mentioned in the text, length scales in the paper
 102 are normalized to d_e , and velocities to c , and number
 103 densities to the initial upstream density. Aside from the
 104 smaller θ_{Bn} , the physical conditions are similar to Ng
 105 et al. (2022).


106

3. RESULTS

 107 An overview of the simulation is shown in Figure 1.
 108 In the quasi-parallel shock geometry, the interaction be-
 109 tween incident and reflected ions leads to the genera-
 110 tion of electromagnetic waves in the foreshock. Conse-
 111 quently, numerous current sheets form in the transition
 112 region and downstream of the shock, as shown in Fig-
 113 ure 1(a).

114 In Figure 1(b), a 1-dimensional cut of the electron den-
 115 sity along x with $y = 86, z = 94$ is shown. At this time,
 116 the shock is undergoing reformation and a new shock
 117 front is forming around $x = 500$. For the analysis of
 118 magnetic topology, we focus on a specific $(120d_e)^3$ vol-
 119 ume in the simulation domain, centered at $(349, 86, 94)$.
 120 The x extent of this region is shaded in Figure 1.


121 The region of interest in this work is the magnetic
 122 topology around the null points shown in Figure 2. Here
 123 the nulls have been located using the trilinear interpo-
 124 lation method of Haynes & Parnell (2007), and their char-
 125 acter has been determined by using the eigenvalues and
 126 eigenvectors of the matrix $M_{ij} = \frac{\partial B_i}{\partial x_j}$ at the null. These
 127 are not the only nulls in the volume, but the analysis is
 128 confined to this specific region due to how it illustrates
 129 reconnection and electron acceleration.

120 **Figure 1.** Overview of the shock simulation at $t\Omega_{ci} = 17$.
 121 The upstream region is to the right and plasma is flowing
 122 in the $-x$ direction. (a) Magnitude of the current density
 123 showing multiple current structures. (b) A cut at $y = 86, z =$
 124 94 of the electron density showing the reforming shock. The
 125 shaded area illustrates the x extent of the volume used in
 126 the later figures.

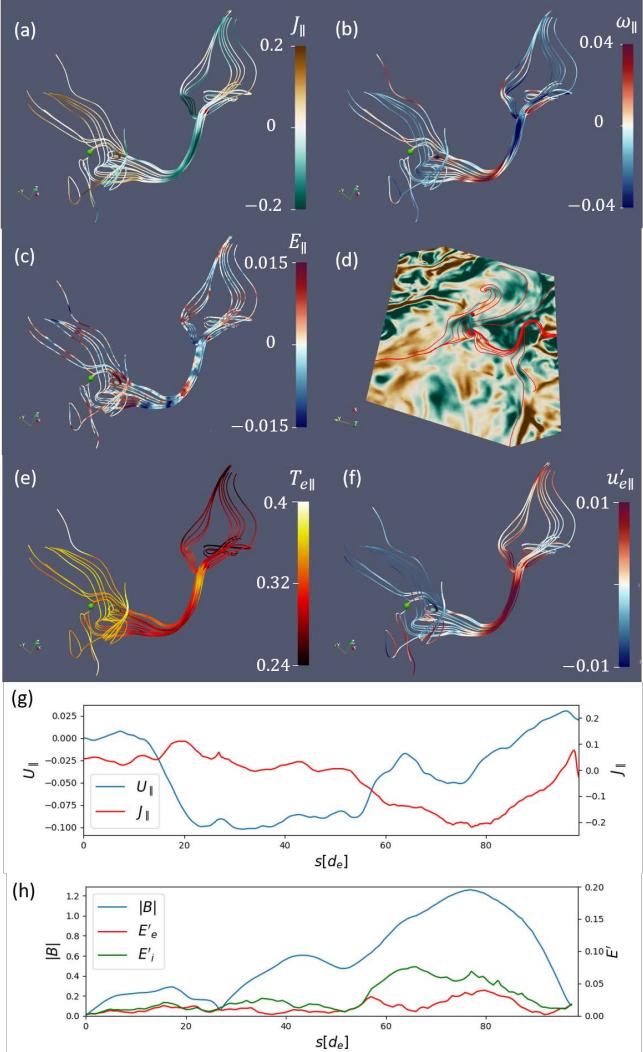
127 In this figure the two null points are marked by
 128 spheres. The upper null (red) is a radial null with the
 129 matrix M_{ij} having three real eigenvalues, while the lower
 130 null (green) is a spiral null with M_{ij} having one real
 131 and two complex eigenvalues. The eigenvalues of the ra-
 132 dial and spiral nulls are $(0.17, -0.11, -0.066)$ and $(0.042,$
 133 $-0.022+0.019i, -0.022-0.019i)$ respectively. The spiral
 134 structure is clearly visible in the fan plane of the lower
 135 null, while the straighter field lines associated with the
 136 radial null are clearest just below the upper null, though
 137 the changing magnetic field in the vicinity makes them
 138 challenging to see. At each null, the spine direction is
 139 shown by a white line. Field lines seeded in the vicinity
 140 of the upper null are shown in the darker pink, with the
 141 spine and fan planes marked by arrows, while the field
 142 topology around the lower null is shown by the lighter
 143 pink lines. The separator, which connects the two nulls,
 144 is shown by the thicker cyan line.

145 An analysis of the plasma parameters in this region is
 146 shown in Figure 3. In this figure, field lines are traced
 147 starting from the vicinity of the separator and shaded

Figure 2. Topology around the null points in the quasi-parallel shock simulation. The nulls are marked by red and green spheres. Field lines showing the spine and fan for the upper and lower nulls are darker and lighter respectively. The separator is the thicker cyan line. The white lines show the direction of the spines at each null, and are $20d_e$ long. The total length along the separator is $98d_e$.

with different quantities. Particularly relevant to reconnection are the parallel electric field E_{\parallel} , parallel current J_{\parallel} , and the electron vorticity ω . Below the field line panels are J_{\parallel} and $U_{\parallel} = - \int E_{\parallel} ds$ evaluated along the separator. Figure 3(a) shows that there is a region of intense parallel current just below the upper (red) null point. E_{\parallel} in this region is highly nonuniform, which will be better quantified below. Towards the lower null point, the field lines are twisted and are beginning to form a flux rope where both J_{\parallel} and E_{\parallel} reverse sign.

The dynamics between the two nulls may be interpreted in terms of reconnection along a separator (Parnell et al. 2010a; Stevenson & Parnell 2015). As mentioned earlier, there are two regions with intense current density – the vertical region just below the red null towards the right, and the twisted region towards the left. Unlike the systems studied in Parnell et al. (2010a); Stevenson & Parnell (2015) where there are also multiple regions with an E_{\parallel} signature, these regions have oppositely signed E_{\parallel} .


Similar to Parnell et al. (2010a,b); Stevenson & Parnell (2015); Hornig & Priest (2003), we compute the vorticity parallel to the magnetic field, which is shown in Figure 3(b). In this case, we use the electron vorticity rather than the ion vorticity based on $|\mathbf{E} + \mathbf{u}_e \times \mathbf{B}|$ being smaller than $|\mathbf{E} + \mathbf{u}_i \times \mathbf{B}|$ in the region of interest ($60 < s < 100$) as shown in Figure 3(h). The parallel component of the vorticity, $\omega_{\parallel} = (\nabla \times \mathbf{u}_e) \cdot \hat{\mathbf{b}}$, shows reversals, indicating the presence of counter-rotating flows which can cause the twisting of magnetic field lines.

A more detailed view of the electron flows is shown in Figure 4. Here two planes perpendicular to \mathbf{B} corresponding to the local maximum and minimum of vorticity along the separator are shown. For each plane, the electron velocity is shown after subtracting the local bulk velocity, and in-plane streamlines are plotted. Using the local coordinate systems as defined in the Figure, the streamlines are shaded according to the x components of the velocity, while the planes are shaded according to the y components of the velocity. Viewing from above, the upper plane shows a clockwise rotation, while the lower plane shows an anti-clockwise rotation. The parallel electron temperature and parallel electron velocity are also shown in Figure 3(e) and (f). Here, the parallel electron velocity is measured in the electron frame at the red null point. The region where the parallel velocity is large is consistent with the parallel current. On approaching the red null point, there is a reduction in the parallel velocity, with a corresponding increase in the parallel pressure. This is consistent with parallel momentum balance. The parallel temperature increases towards the end of the region with negative J_{\parallel} close to the red null, but is reduced moving along the field lines past the null, suggesting that scattering is taking place.

In generalized magnetic reconnection, a finite value of the quantity $U_{\parallel} = - \int E_{\parallel} ds$ can be used to determine if reconnection has global consequences (Schindler et al. 1988). However, there is an assumption of an external ideal region, which is challenging to identify and may not exist in the turbulent environment. For completeness, we have evaluated this quantity, as shown in Figure 3(g). Large parallel potential variations can be seen in the $s < 20$ and $s > 50$ regions, where s is the distance along the field line, corresponding to the strong E_{\parallel} in Figure 3(c).

In prior MHD studies of reconnection between two nulls (Parnell et al. 2010a,b), there are cases with multiple regions of enhanced reconnection along different parts of the separator, though the sign of E_{\parallel} in these studies remains the same. As mentioned before, in Figure 3(c) and (g) there are two main regions where the potential variation is large ($s < 20$ and $s > 50$), with the parallel electric field being oppositely signed on average in these regions. We interpret this as two reconnection regions where the field lines are twisting in opposite directions.

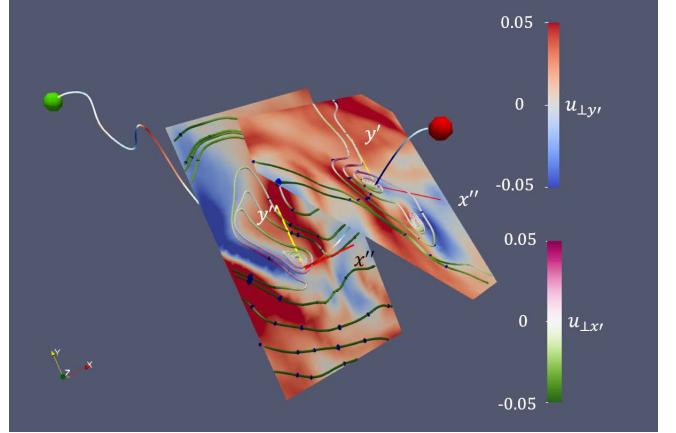
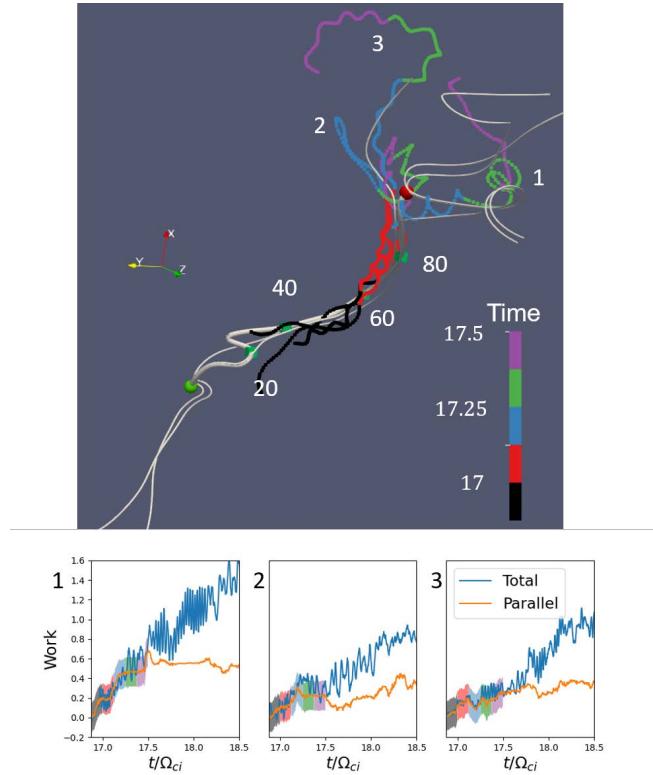

In the rest of the paper, we focus on the vertical region with the strong negative parallel current just below the red null point. The average density and magnetic field in this region are 2.9 and 0.87 respectively, giving $Bv_A = 0.044$, while the average E_{\parallel} is -0.003 , giving $\langle E_{\parallel} \rangle / (Bv_A) \approx -0.06$. Interestingly, this is similar to

Figure 3. Field lines in the vicinity of the null points showing (a) J_{\parallel} , (b) $\omega_{e,\parallel}$ and (c) E_{\parallel} . (d) Parallel current density and magnetic field lines in a plane perpendicular to the separator (looking down from the right (red) null point) showing an O-point like structure. (e) Parallel electron temperature. (f) Parallel electron velocity in the electron frame at the right (red) null point. (g) Parallel current and parallel potential along the separator, starting from the left (green) null. (h) $|B|$ and $|E'|$ where $\mathbf{E}'_s = \mathbf{E}_s + \mathbf{u}_s \times \mathbf{B}$.

the typical values in 2D and 3D reconnection sites with slow variation in the direction of the current (Birn et al. 2001; Cassak et al. 2017), though whether this is generally true requires further study.

Figure 3(d) shows the parallel current density and the in-plane structure of the magnetic field perpendicular to the separator. Here the field lines show an O-point like structure, which is a possibility during separator reconnection (Parnell et al. 2010a; Stevenson & Parnell 2015). This has implications for the detection of reconnection events which we will discuss later.


Figure 4. Rotating electron flows in planes perpendicular to the separator where the vorticity shows its local maximum and minimum. The colour scale for vorticity along the separator is the same as Figure 3(c). Electron velocities are calculated after subtracting the mean flow from $(6d_e)^3$ regions along the local maxima and minima. Red and yellow lines show local coordinate systems used to plot the in-plane velocity components. Streamlines are coloured by the x components, planes are coloured by the y components.

We now consider electron acceleration along the separator and close to the null, with a focus on the current layer. Figure 5 shows examples of trajectories of self-consistent tracer particles in this region. The shading of the trajectories indicates the simulation time, and the overplotted field lines use data from $t\Omega_{ci} = 17$, where the red and black parts of the trajectories meet. As such, the particles are in the region of strong J_{\parallel} and mostly negative E_{\parallel} during red parts of the trajectory, which takes place during the interval from $t\Omega_{ci} = 17$ to 17.125. The electrons travel towards the null, where they are scattered in different directions.

The work done by the parallel and total electric fields is shown in the lower panels, where $W = q \int \mathbf{E} \cdot \mathbf{v}_e dt$ and $W_{\parallel} = q \int E_{\parallel} v_{\parallel} dt$, shown by the blue and orange lines respectively. Initially, the acceleration is primarily due to the parallel electric field, after which the trajectories and acceleration mechanisms differ.

During the period between $t\Omega_{ci} = 17$ to $t\Omega_{ci} = 17.125$, the parallel energy gain of the particles is approximately $0.1m_e c^2$, which is consistent with the maximum potential difference in Fig. 3. Particles do show acceleration before and after this interval, with #1 and #2 showing larger energy increases due to work done by the parallel electric field of approximately $0.25m_e c^2$.

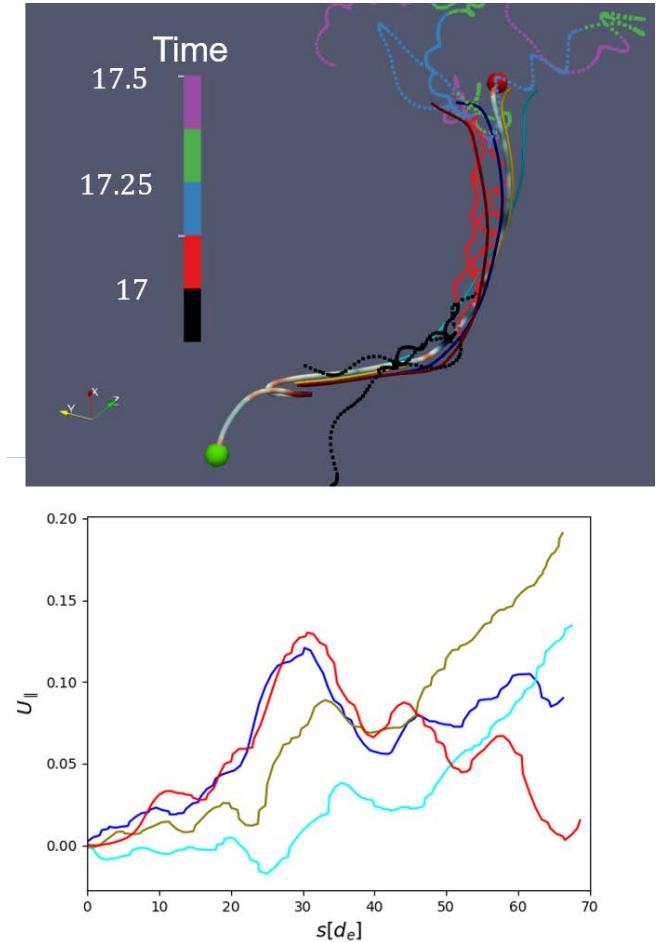

Because of the spatial and temporal scales of the system, the system is evolving throughout the period we analyze, while the parallel potential is calculated at a fixed time. Also, the particles do not travel along the separator for the entire duration. We investigate the

Figure 5. (Top) Particles accelerated along the separator with trajectories shaded by simulation time. The distances (s) corresponding to Figure 3 are marked by the boxes. (Bottom) Work done by total and parallel electric fields. Shading corresponds to the colors above representing time.

274 potential difference for nearby field lines at $t\Omega_{ci} = 17$
 275 in Figure 6 understand its spatial variation. The field
 276 lines are seeded just after the twist in the separator close
 277 to the lower null. There are common features, such as
 278 the initial potential increase around $s = 20$, though the
 279 magnitude varies with position. At larger s , the field
 280 lines diverge, with the yellow line showing the largest
 281 potential difference of slightly less than $0.2m_ec^2$. This
 282 is more consistent with the work done by the parallel
 283 electric field for particle #1 in particular, which trav-
 284 els towards the right (of the figure), close to this field
 285 line as it passes the null. Particles #2 and #3 initially
 286 travel towards the left of Figure 5 when close to the null
 287 (around $t\Omega_{ci} = 17.125$ when the trajectories transition
 288 from red to blue) where the field lines show a smaller po-
 289 tential difference, with both showing deceleration after
 290 being accelerated along the separator. Finally, it should
 291 also be re-emphasized that the field structure is drifting
 292 in the negative z , positive x direction (towards the left
 293 of the figure).

294 To evaluate the importance of the parallel accelera-
 295 tion, we focus on the trajectory of particle #1. Figure 7

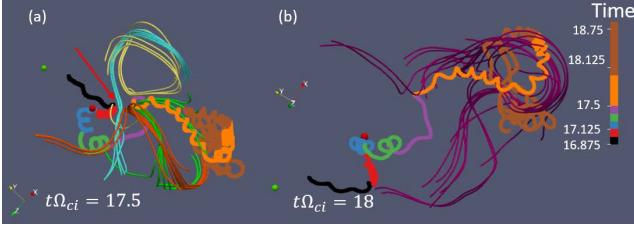


Figure 6. (Top) Field lines in the vicinity of the separator along with the sample electron trajectories. (Bottom) Integral of the parallel electric field along the field lines with colours corresponding to the field lines above.

296 shows the fate of this particle as it continues on its jour-
 297 ney in the shock. There is further parallel acceleration
 298 as it moves past the null, followed by another jump in
 299 the work done due to both parallel and perpendicular ac-
 300 celeration at another reconnection site (shown in panel
 301 (a) at $t\Omega_{ci} = 17.5$). After this the particle enters a flux-
 302 rope like structure (panel (b) at $t\Omega_{ci} = 18$), where the
 303 work is primarily done by perpendicular electric fields,
 304 as can be seen in Figure 5, where the parallel work re-
 305 mains approximately constant after $t\Omega_{ci} = 17.5$. The
 306 energy increases at the second reconnection site and in
 307 the flux rope are larger than the increase close to the
 308 null, but are still of the same order of magnitude.

4. DISCUSSION AND SUMMARY

310 In this work we analyze 3D PIC simulation results of
 311 shock turbulence in the light of prior studies on separa-
 312 tor reconnection. There are multiple differences between
 313 the configuration studied in this work and previous stud-

Figure 7. Extended trajectory of particle #1 showing field topology at (a) $t\Omega_{ci} = 17.5$ with a reconnection region marked by the arrow and (b) $t\Omega_{ci} = 18$ with a flux rope.

ies of separator reconnection. Many of these studies are at the MHD scale with a focus on solar flares (e.g. Priest & Pontin (2009); Parnell et al. (2010a); Stevenson & Parnell (2015); Parnell et al. (2010b); Threlfall et al. (2015)), and take place in idealised systems, while this work focuses on an event at kinetic scales within the shock transition region. Although the topological structures are the same, they are formed in a turbulent environment rather than from initial conditions constructed for the formation of nulls and separators which are then driven to reconnect. Nevertheless, it is still instructive to use these studies to help understand our results.

From the electron vorticity shown in Figure 3, the field topology changes are driven by counter-rotating plasma flows, similar to what is seen in Parnell et al. (2010a); Stevenson & Parnell (2015); Parnell et al. (2010b), though the field lines here follow the electron, rather than the ion flow. The presence of multiple actively reconnecting regions is similar to Parnell et al. (2010b), where there are multiple regions with strong E_{\parallel} . The small current and electric field at the null points suggests that reconnection is not taking place at these null points (Priest & Pontin 2009).

With respect to acceleration, Threlfall et al. (2015) used test particles to study electron acceleration along MHD-scale separator current layers, showing that electrons close to the reconnection regions are accelerated with most of the work done by the parallel electric field, similar to what is seen from the first part of the sample trajectories in Figure 5. The gain in energy depends on the parallel potential, which is controlled by the length scale of the reconnection regions and the parallel electric field. In the solar corona, this provides a means to accelerate electrons to high energies due to the large length scales involved ($\sim 10^6 m$ scale). In the fluctuating magnetosheath, it is difficult to provide an estimate of how large reconnection regions could be, but one expects correlation length scales of $\sim 10d_i$ close to reconnection regions from statistical studies (Stawarz et al. 2022). For the event in this work, the reconnection region is approximately $5d_i$ long. Because of the numerical

parameters used in this simulation such as the reduced m_i/m_e and ω_{pe}/Ω_{ce} , the energy gain shown in the earlier analysis is larger than would be expected at the bow shock. If we assume $E_{\parallel}/(Bv_A)$ remains the same, and use typical upstream values of $n_0 = 5 \text{ cm}^{-3}$, $B_0 = 5 \text{ nT}$ for the solar wind at Earth (Russell 2001) and scaling B and n in the reconnection region appropriately, the energy gain would be $eE_{\parallel}L \approx 31 \text{ eV}$, compared to the electron temperature of $\approx 18 \text{ eV}$ using these parameters and $\beta_e = \sqrt{2}$. We may also consider more extreme upstream parameters such as those during solar flares (Tsurutani et al. 2006). For example, using $B_0 = 50 \text{ nT}$ and $n_0 = 15 \text{ cm}^{-3}$, we find an energy gain of approximately 1 keV. Understanding the parameters for which this type of acceleration is significant will require further study.

Another difference between studies at MHD scales and kinetic scales is that the time scale of the electron transit along the separator is comparable to the time scale of the magnetic field evolution. This may contribute to the discrepancy between the potential difference and the energy gain, in addition to the spatial variation discussed earlier.

Other mechanisms of electron acceleration by reconnection in shocks have also been studied. In Bessho et al. (2023), it has been shown that electrons are accelerated at both electron-scale and ion-scale reconnection sites. During interactions with multiple electron-scale reconnection sites, the electrons are Fermi-reflected, but the most energetic electrons are those that are trapped in ion-scale magnetic islands. Both these mechanisms involve the perpendicular electric field, and the only significant parallel acceleration seen in that work is due to the pseudopotential across the shock. In this work the parallel electric field provides an additional mechanism for electron acceleration, with the energy gain comparable to the electron temperature. Trapping in a flux rope still provides a larger energy increase than the parallel acceleration, similar to the previous shock work (Bessho et al. 2022), or current sheet studies (Li et al. 2021b; Dahlin et al. 2017). Further work will be required to determine if the additional acceleration due to trapping in a moving island can still be achieved in three dimensions.

With respect to observations, this work is relevant to the quasi-parallel regions of Earth's bow shock. Current studies of reconnecting current sheets use various diagnostics to identify candidate events, including $|J|$, \mathbf{B} reversals and electron flow perturbations (Gingell et al. 2020; Stawarz et al. 2022). Further analysis is then used to identify if these signatures are consistent with the reconnection geometry. However, in 3D reconnection,

407 the magnetic topology may not have an X-point like
 408 structure in the 2D plane perpendicular to the separa-
 409 tor (Parnell et al. 2010a,b; Stevenson & Parnell 2015).
 410 Figure 3(d) shows the magnetic field lines in a plane
 411 perpendicular to the separator within the reconnection
 412 region. Here the structure is more similar to an O-point,
 413 which may not be recognized by existing searches for
 414 reconnection which generally assume X-point like struc-
 415 tures. Although magnetic nulls have been studied by
 416 in-situ measurements, their detection depends on acc-
 417 curate reconstruction of the magnetic field (Guo et al.
 418 2022). Even when identifying strong J_{\parallel} , E_{\parallel} and counter-
 419 rotating flows, it may be challenging to identify this form
 420 of reconnection if the null points are sufficiently far from
 421 the reconnection regions.

422 To summarise, we have identified three-dimensional
 423 reconnection along a separator in the quasi-parallel
 424 shock transition region. We have identified signatures

425 such as J_{\parallel} , E_{\parallel} and counter-rotating flows, which show
 426 similarities to separator reconnection studied at MHD
 427 scales. In the actively reconnecting region, electrons are
 428 accelerated by the parallel electric field, with the energy
 429 increase comparable to the work done by the reconnec-
 430 tion electric field, before being scattered in different di-
 431 rections at the magnetic null. The work done by the
 432 parallel electric field is smaller than the later energy in-
 433 crease after trapping in a flux rope, and much smaller
 434 than the energy gain for electrons trapped in islands as
 435 seen in 2D simulations (Bessho et al. 2023). Finally, we
 436 have discussed how these results relate to MHD scale
 437 separator reconnection, and the potential of seeing this
 438 form of reconnection in observations such as that from
 439 NASA's Magnetospheric Multiscale mission.

(Acknowledgments anonymized for review)

REFERENCES

- 447 Bessho, N., Chen, L.-J., Hesse, M., et al. 2023, The
 448 Astrophysical Journal, 954, 25,
 449 doi: [10.3847/1538-4357/ace321](https://doi.org/10.3847/1538-4357/ace321)
- 450 Bessho, N., Chen, L.-J., Stawarz, J. E., et al. 2022, Physics
 451 of Plasmas, 29, 042304, doi: [10.1063/5.0077529](https://doi.org/10.1063/5.0077529)
- 452 Bessho, N., Chen, L.-J., Wang, S., et al. 2020, Physics of
 453 Plasmas, 27, 092901, doi: [10.1063/5.0012443](https://doi.org/10.1063/5.0012443)
- 454 Birn, J., Drake, J. F., Shay, M. A., et al. 2001, Journal of
 455 Geophysical Research: Space Physics, 106, 3715,
 456 doi: [10.1029/1999JA900449](https://doi.org/10.1029/1999JA900449)
- 457 Bowers, K. J., Albright, B. J., Bergen, B., et al. 2008a, in
 458 Proceedings of the 2008 ACM/IEEE Conference on
 459 Supercomputing, SC '08 (Piscataway, NJ, USA: IEEE
 460 Press), 63:1–63:11.
<http://dl.acm.org/citation.cfm?id=1413370.1413435>
- 462 Bowers, K. J., Albright, B. J., Yin, L., Bergen, B., & Kwan,
 463 T. J. T. 2008b, Physics of Plasmas, 15, 055703,
 464 doi: [10.1063/1.2840133](https://doi.org/10.1063/1.2840133)
- 465 Cassak, P. A., Liu, Y.-H., & Shay, M. A. 2017, Journal of
 466 Plasma Physics, 83, 715830501,
 467 doi: [10.1017/S0022377817000666](https://doi.org/10.1017/S0022377817000666)
- 468 Cheng, X., Priest, E. R., Li, H. T., et al. 2023, Nature
 469 Communications, 14, doi: [10.1038/s41467-023-37888-w](https://doi.org/10.1038/s41467-023-37888-w)
- 470 Dahlin, J. T., Drake, J. F., & Swisdak, M. 2017, Physics of
 471 Plasmas, 24, 092110, doi: [10.1063/1.4986211](https://doi.org/10.1063/1.4986211)
- 472 Ekawati, S., & Cai, D. 2023, Journal of Geophysical
 473 Research: Space Physics, 128, doi: [10.1029/2021ja029571](https://doi.org/10.1029/2021ja029571)
- 474 Gingell, I., Schwartz, S., Kucharek, H., et al. 2023, Physics
 475 of Plasmas, 30, 012902
- 476 Gingell, I., Schwartz, S. J., Eastwood, J. P., et al. 2020,
 477 Journal of Geophysical Research: Space Physics, 125,
 478 e2019JA027119,
 479 doi: <https://doi.org/10.1029/2019JA027119>
- 480 Guo, R., Pu, Z., Wang, X., Xiao, C., & He, J. 2022, Journal
 481 of Geophysical Research: Space Physics, 127,
 482 doi: [10.1029/2021ja030248](https://doi.org/10.1029/2021ja030248)
- 483 Haynes, A. L., & Parnell, C. E. 2007, Physics of Plasmas,
 484 14, 082107
- 485 Hornig, G., & Priest, E. 2003, Physics of Plasmas, 10, 2712,
 486 doi: [10.1063/1.1580120](https://doi.org/10.1063/1.1580120)
- 487 Kuniyoshi, H., Hesse, M., Norgren, C., Tenfjord, P., &
 488 Kwagalala, N. K. 2021, Journal of Geophysical Research:
 489 Space Physics, 126, doi: [10.1029/2021ja029236](https://doi.org/10.1029/2021ja029236)
- 490 Li, T., Priest, E., & Guo, R. 2021a, Proceedings of the
 491 Royal Society A, 477, 20200949
- 492 Li, X., Guo, F., & Liu, Y.-H. 2021b, Physics of Plasmas,
 493 28, 052905, doi: [10.1063/5.0047644](https://doi.org/10.1063/5.0047644)
- 494 Ng, J., Chen, L.-J., Bessho, N., et al. 2022, Geophysical
 495 Research Letters, 49, e2022GL099544,
 496 doi: <https://doi.org/10.1029/2022GL099544>
- 497 Olshevsky, V., Deca, J., Divin, A., et al. 2016, The
 498 Astrophysical Journal, 819, 52,
 499 doi: [10.3847/0004-637x/819/1/52](https://doi.org/10.3847/0004-637x/819/1/52)
- 500 Parnell, C. E., Haynes, A. L., & Galsgaard, K. 2010a,
 501 Journal of Geophysical Research: Space Physics, 115,
 502 doi: <https://doi.org/10.1029/2009JA014557>
- 503 Parnell, C. E., Maclean, R. C., Haynes, A. L., & Galsgaard,
 504 K. 2010b, Proceedings of the International Astronomical
 505 Union, 6, 227, doi: [10.1017/s1743921311017650](https://doi.org/10.1017/s1743921311017650)

- 506 Phan, T., Eastwood, J., Shay, M., et al. 2018, *Nature*, 557,
507 202
- 508 Pontin, D. I., & Wyper, P. F. 2015, *The Astrophysical
509 Journal*, 805, 39, doi: [10.1088/0004-637x/805/1/39](https://doi.org/10.1088/0004-637x/805/1/39)
- 510 Priest, E. R., & Pontin, D. I. 2009, *Physics of Plasmas*, 16,
511 122101, doi: [10.1063/1.3257901](https://doi.org/10.1063/1.3257901)
- 512 Russell, C. T. 2001, *Solar Wind and Interplanetary
513 Magnetic Field: A Tutorial* (American Geophysical Union
(AGU)), 73–89,
514 doi: <https://doi.org/10.1029/GM125p0073>
- 515 Schindler, K., Hesse, M., & Birn, J. 1988, *Journal of
517 Geophysical Research: Space Physics*, 93, 5547,
518 doi: <https://doi.org/10.1029/JA093iA06p05547>
- 519 Stawarz, J. E., Eastwood, J. P., Phan, T. D., et al. 2022,
520 *Physics of Plasmas*, 29, 012302, doi: [10.1063/5.0071106](https://doi.org/10.1063/5.0071106)
- 521 Stevenson, J. E. H., & Parnell, C. E. 2015, *Journal of
522 Geophysical Research: Space Physics*, 120, 10,334,
523 doi: [10.1002/2015ja021730](https://doi.org/10.1002/2015ja021730)
- 524 Threlfall, J., Stevenson, J. E. H., Parnell, C. E., &
525 Neukirch, T. 2015, *Astronomy & Astrophysics*, 585, A95,
526 doi: [10.1051/0004-6361/201527381](https://doi.org/10.1051/0004-6361/201527381)
- 527 Tsurutani, B. T., Guarnieri, F. L., Fuller-Rowell, T., et al.
528 2006, *Radio Science*, 41,
529 doi: <https://doi.org/10.1029/2005RS003331>
- 530 Wang, S., Chen, L.-J., Bessho, N., et al. 2019, *Geophysical
531 Research Letters*, 46, 562,
532 doi: <https://doi.org/10.1029/2018GL080944>