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Abstract
Knots in open strands such as ropes, fibers, and polymers, cannot typically be
described in the language of knot theory, which characterizes only closed
curves in space. Simulations of open knotted polymer chains, often parameter-
ized to DNA, typically perform a closure operation and calculate the Alexander
polynomial to assign a knot topology. This is limited in scenarios where the
topology is less well-defined, for example when the chain is in the process
of untying or is strongly confined. Here, we use a discretized version of the
Second Vassiliev Invariant for open chains to analyze Langevin Dynamics
simulations of untying and strongly confined polymer chains. We demonstrate
that the Vassiliev parameter can accurately and efficiently characterize the
knotted state of polymers, providing additional information not captured by
a single-closure Alexander calculation. We discuss its relative strengths and
weaknesses compared to standard techniques, and argue that it is a useful and
powerful tool for analyzing polymer knot simulations.

Supplementary material for this article is available online

Keywords: knot, polymer, vassiliev

1. Introduction

In this work, we examine the use of the Second Vassiliev Invariant (v2) [1] for the classifica-
tion of open polymer knots, in comparison to the most commonly used tool of evaluating the
Alexander polynomial (∆(t)) [2] after closing the knot by joining the ends to each other or to
an external surface. While mathematical knots are only defined in closed loops, colloquially
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and in technological use any entangled portion of an open fiber may be identified as a knot,
as anyone who wears shoes or headphones can attest. Indeed, most human interactions with
knots involve tying or untying them in open strings or ropes. Inspired in part by the occur-
rence of knots in viral and cellular DNA [3, 4], experiments examining the polymer physics of
knotted DNA molecules [5, 6], and the potential impact of knots on genomics devices [7, 8],
many simulation studies have been performed examining the knotting and unknotting of open
DNA-like polymer chains [9–13].

Several schemes exist to extend the definition of knots to open curves. The most common is
closure, in which the two ends of the chain are connected to form a closed loop, such that the
knot can be identified through the calculation of an invariant such as the Alexander polynomial
[2]. The ends may be connected directly through the interior of the knot, or connected to a
virtual surface outside the knot. A popular and freely available tool, KymoKnot, performs
‘minimally interfering closure’ either by connecting the ends directly or via the convex hull
of the knot, depending on whether the ends are closer to each other or the surface [14]. While
these methods yield a definite topological classification (for simple knots that do not share an
Alexander polynomial), open curves do not necessarily have a definite knot topology. More
rigorously, the ends of chain may be projected to many points on a virtual sphere surrounding
the knot, computing a distribution of possible topologies consistent with the curve [15, 16]
(figure 1(a)). First discussed in the context of protein knotting [17], this is sometimes known
as stochastic closure, although the points need not be chosen randomly. Although this better
captures the ambiguous topology of an open knot, it is significantly slower computationally.
Besides closure, other methods include the classification of knotoids [18], which categorize
incomplete closures, and virtual knots, which categorize ambiguous closures [19].

To demonstrate the utility of the v2, we focus on two cases in which open knotted poly-
mers may have ambiguous topology. The first is the untying of complex knotted chains, in
which knots evolve through a sequence of progressively simpler topologies until they reach
the unknot (figure 1(b)). The second is the case of spherically confined polymers, in which
the motion of the ends of the chain through the polymer-filled sphere leads to a diffusive equi-
librium of knotting and unknotting. Alexander et al [15] define ‘strong’ and ‘weak’ knotting
based on the stochastic closure of knots to the surface of a bounding sphere, defining strong
knotting when more than half the projections are represented by a single knot type, weak knot-
ting when there is only a plurality, and unknottedness when over half the projections yield the
unknot. An unconfined polymer knot is typically strongly knotted when the chain ends are far
from the knotted core, but can become weakly knotted as the ends of the chain reptate through
the knot as it unties. In tightly confined polymers in spheres (which mimics the packaging
of viral DNA in capsids [3]), the ends of the chain cannot always be connected or projected
to the surface of the sphere without creating several new crossings. Not only is the knotting
weak, it is difficult to unambiguously define what the topology ‘would be’ if the ends were
connected. Dai and Doyle [20] examined the complexity of highly confined knots, and broke
the ambiguity by imposing an arbitrary axis to stretch the chain along, physically rather than
virtually realizing the topology.

For experimental context, studies by one of the authors of this manuscript examined knotted
DNA molecules with topologies that were indeterminate, variable, and weak. To form knots
in DNA, molecules are compressed through an electrohydrodynamic instability until they are
much smaller than their equilibrium size [21, 22], forming dense weak knots similar to those
found in polymers under extreme confinement. When these compressed DNA molecules are
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Figure 1. a. Open knotted polymers and their knot types as determined by closure. The
open circles surrounding each chain represent the knot type as determined by connecting
both ends to the 20 corners of a dodecahedron. The filled circles on the chain ends
represent the knot type determined by connecting them directly. Left: an unconfined
polymer untying between a strong 51 and 31 topology, with 15/20 projected closures
and the end closure yielding 51. Right: A confined polymer that is weakly knotted, with
8/20 projected closures yielding 51 and 7/20 projected closures plus the end closure
yielding 62. The radius of the closure points was much larger than in the visualizations.
Midset shows an open trefoil knot closed by projection to one corner of a dodecahedron.
b. The typical untying sequence simulated in this manuscript, in which a 71 unties into
a 51 then into a 31 and finally into the unknot.

stretched and examined with fluorescence microscopy, they typically have complex knots loc-
alized in the interiors of the molecules [23]. When these knots reach the end of the chain,
they form a diffraction-limited spot within which the end reptates through the knot, gradually
untying [24]. Often, the knot only partially unties and separates from the chain end, participat-
ing in multiple untying events until the molecule no longer contains a knot [25]. To understand
this process, we carried out simulation studies with twist knots that could untie in multiple
stages [11], similar to the torus knots studied in the current manuscript. In both scenarios, knot
formation and partial knot untying, it is desirable to have a measure of the molecule’s topology
that does not just characterize the topology before and after, but during these transitions.

To measure the topological state of a knotted polymer chain we desire a measure with the
following properties:

• it should work on polygonal curves, which may include taking Cartesian coordinates as an
input.

• for closed chains, it should reproduce values of established knot invariants.
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• for open chains, it should continuously interpolate between these established values as the
chain ends move with respect to the rest of chain, particularly when untying or forming a
new knot.

• it should identify subsections of the chain that contribute most significantly to its topological
state.

• it should be computable in a reasonable amount of time.

The closure-Alexander technique used by KymoKnot satisfies four of these requirements for
strongly knotted curves, but does not provide a continuousmeasurement for open chains.When
untying events occur, the measured Alexander polymer suddenly shifts, and can fluctuate back
and forth repeatedly as the knot unties. Alexander determination with stochastic closure can
satisfy the third requirement, at the expense of computation speed. Other open knot classific-
ation schemes exist but do not satisfy all requirements. Sleiman et al [26] showed a neural
network trained on writhe representations of knots can track a knot’s topology as it unties, but
it cannot be identified with known invariants and lacks smooth interpolation.

The Second Vassiliev Invariant (v2) is a parameter that characterizes the linking of a curve
with itself [1]. It is similar to the writhe of a knot, with the additional complexity that it charac-
terizes the linking of two identical curves with each other as measured over alternating indices.
It is equivalent to the quadratic coefficient of the Alexander–Conway polynomial [27], and
related to the Casson invariant [28]. While it has not seen as much use as the Alexander poly-
nomial, there has been some use of v2 in the study of polymer knots. Ferrari and Zhao [29] as
well as Daeguchi and Tsurusaki [30] have used a version of the Vassiliev invariant to categorize
knotting in closed knotted curves. In two works, Moore et al [31] and Lua et al [32] used it in
conjunction with the Alexander Polynomial to identify knotting probabilities in random poly-
gons. It gas been used to explore knots formed by random projections of higher-dimensional
curves [33], and there has been similar limited use of the Casson invariants to chararacterize
random petal knots [34].

Recently, Panagiotou and Kauffman established a definition of v2 for open chains [35],
which was further used to measure v2 for random walks [27]. The purpose of this manuscript
is to show that a discrete version of the open-curve v2 satisfies all five requirements for a
good categorizer of open knots, based on an analysis of Langevin Dynamics simulations of
knotted polymers. We will compare its utility to that of the Alexander polynomial, discussing
its relative advantages and disadvantages. Before proceeding, we note that v2 is not as strong
an invariant as the Alexander polynomial. For example, the 31 and 63 knots have the same
value of v2, while having different Alexander polynomials. We also note that the topology
of an open curve that evolves over time is not fixed, meaning parameters calculated from its
coordinates are not invariant. We refer to the value we compute as the Vassiliev parameter.

2. Theory and simulations

2.1. The Vassiliev parameter

The SecondVassiliev Invariant can be calculated from the double alternating self-linking integ-
ral (SLL) defined by Panagioutou and Kaufmann [35]. A curve in space takes the form r⃗(s)
where s is a parametric variable between 0 and 1 and its tangent vector as ˙⃗r(s). If we consider
four variables traversing the curve between 0 and 1, s1 > s2 > s3 > s4, the double alternating
self linking integral can be defined as:
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SLL=
1
8π

ˆ 1

0
ds1

ˆ s1

0
ds2

ˆ s2

0
ds3

ˆ s3

0
ds4

((
˙⃗r(s1)× ˙⃗r(s3)

)
· r⃗(s1)− r⃗(s3)
|⃗r(s1)− r⃗(s3) |3

)
×
((

˙⃗r(s2)× ˙⃗r(s4)
)
· r⃗(s2)− r⃗(s4)
|⃗r(s2)− r⃗(s4) |3

)
. (1)

We can compute this for a knot based on a discrete set of Cartesian coordinates r⃗i(x,y,z) and its
tangent vectors⃗̇ri(x,y,z). Instead of integrating along the path of a knot parameterized between
0 and 1, we sum over the indices of each vertex in the knot between 1 and N. We first compute
the linking matrixM:

Mij = (ṙi× ṙj) ·
r⃗i− r⃗j
|⃗ri− r⃗j|3

. (2)

The sum of all elements in the linking matrix is 4π times the space writhe of the knot.
The double alternating SLL is a sum of every unique product of elements in this matrix with
alternating indices

SLL=
1
8π

N∑
i=4

i−1∑
j=3

j−1∑
k=2

k−1∑
ℓ=1

MikMjℓ. (3)

When computed from a set of coordinates, SLL is six times the the Second Vassiliev
Invariant, under the convention that v2 = 0 for the unknot v2 = 1 for the trefoil. Other tabula-
tions use a different convention, e.g. Ferrari and Zhao use v2 = −1

12 and v2 = 23
12 for the unknot

and trefoil [29]. To maintain consistency with the former tabulation, and to take into account
that the measured quantity for an open knot is not truly invariant, we define the Vassiliev
parameter:

V=
SLL
6

. (4)

Which is the parameter used to analyze polymer knots in this work.
In practice, the tangent vector is computed as the average of the displacement vector

between each vertex and its two neighbors:

˙⃗ri =
1
2
(⃗ri+1 − r⃗i−1) . (5)

When a chain is closed, the first tangent is calculated between the 2nd andNth vertices, and the
Nth as between the 1st and N–1th. When the chain is open, the tangent vector at either end is
calcualted from the displacement vector between the second and first vertex, and between the
final and penultimate vertex. In practice, the tangent vector could be computed more smoothly
e.g. by fitting a spline curve to each quartet of points and computing its derivative, although
care must be taken to preserve topology.

Instead of computing the elements of the writhe matrix according to equation (2), they may
also be computed geometrically as the solid angles subtended by two line segments [36], which
may avoid issues with tangent discretization. Here we have used the algebraic formulation to
maintain consistency between the integral and sum forms of SLL. Other methods of integration
may produce more accurate approximations of the integral in equation (1). Ferrari and Zhao,
for example, used Monte Carlo integration while smoothing the corners of the curve near
vertices [37]. They were able to get a very precise measurement of the Vassiliev invariant of
a 24-vertex cubic lattice trefoil knot using one billion Monte Carlo samples, in contrast to the
13 824 multiplications that equation (3) requires. In this work we demonstrate the utility of
our coarse-grained integration scheme, knowing that it can likely be further improved.
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2.2. Langevin dynamics simulation

We simulate polymer knots using a model used to simulate topologically complex polymers in
previous works [13, 26].We use a parameterization that models DNA at the low ionic strengths
used in fluorescence experiments, in which the persistence length is ten times the effective
width of the molecule [38], and the contour length is ten to twenty persistence lengths.

In short, the chain is comprised of N beads of diameter σ connected by springs to their two
neighbors. σ takes a value of 1 and sets the lengthscale of the system. A finitely-extensible non-
linear elastic (FENE) spring potential with a maximum extension of 1.5σ is used. Excluded
volume interactions between beads are enforced by a truncated Lennard–Jones repulsive
potential that applies when the centers of mass of two beads are closer than σ. The relat-
ively short range of distances between the excluded volume of the beads and maximum exten-
sion of the springs ensures that strands do not cross and the knots cannot untie themselves
by pathological strand crossings. Bending rigidity is imposed by a Kratky–Porod potential
depending on the cosine of the angle between three successive beads. The strength of this
potential sets the persistence length of the polymer. The entire contribution to the energy of a
bead is:

Utot = Uspr +Uev +Ubend +Uconf. (6)

The excluded volume interaction takes the form:

Uev =

{
4ϵ

[(
σ
r

)12 − (
σ
r

)6
+ 1

4

]
if r⩽ 21/6σ

0 otherwise,
(7)

where ϵ sets the energy scale of the repulsive interactions. If activated, the confinement energy
takes the same form as the excluded volume interaction, activating when r is within 21/6σ of
the sphere’s radius R. The spring force is parameterized as:

Uspr =

− 1
2

(
κ ϵ
σ2

)
Rmax log

(
1−

(
r

Rmax

)2
)
, if r⩽ Rmax

0 otherwise,
(8)

where κ is typically 30 and sets the spring constant in units of ϵ/σ2 and Rmax is the maximum
separation of the springs, and is 1.5σ in this work. The bending potential takes the form:

Ubend =
ℓp
σ
kT(1− cosθ) . (9)

The dimensionless ratio of the persistence length ℓp to the bead diameter is typically 10 in this
work. The time evolution of the ith bead is determined by the Langevin equation:

m¨⃗ri =−γ ˙⃗ri−∇Utot +
√

2kTγη. (10)

Here, γ is the drag coefficient on a single bead, kT is the thermal energy scale, η is a
delta-correlated normal random variable, and an overdot represents a time derivative. The final
term provides a random force that emulates Brownian motion in a manner consistent with the
fluctuation-dissipation theorem. The parameters of the system define its Lennard–Jones times-
cale, τLJ = σ

√
m/ϵ. These equations of motion are solved by LAMMPS [39], which iterates

the system forward in time using the Velocity Verlet algorithm. We note that the foundation
of our simulations is a LAMMPS tutorial found on Davide Michieletto’s website [40] which
was modified to study open and confined chains, and as such the description of the methods
may be similar to previous works.
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We initialize torus knots with a harmonic parameterization scaled such that no bond is
overstretched. If other knots are used, they are typically initialized fromKnotPlot’s coordinates
[41] and rescaled to the desired number of beads with spline interpolation. To simulate untying,
we initialize a knot in a closed chain and iterate it with using harmonic (rather than FENE)
springs for 100 τLJ to thermalize the initial configurations and eliminate over-stretching of
the bonds, then another 100 τLJ with FENE bonds. This serves as an initial configuration
for untying, after which the chain can be repeatedly untied by opening a single bond of the
initial configuration, or randomly iterating through the bond that is opened.We typically iterate
the opened chain for 1000 to 5000 τLJ, depending on its size and knot complexity. Many of
our simulations focus on the 71 alternating torus knot, which unties through a predictable
sequence of 71 → 51 → 31 → 01, (figure 1(b)) each with an Alexander characteristic that is ±
the crossing number. This untying sequence was also investigated by Caraglio et al [13, 42],
and is similar to the even-twist untying sequence investigated by Soh et al [11].

3. Results and discussion

3.1. Validation and performance

To verify that the Vassiliev parameter reproduces the Second Vassiliev Invariant for closed
chains, we compute it for knots with smooth configurations of 256 vertices: ideal knots gen-
erated from Gilbert’s coefficients for all knots up to 9 crossings [43], and (p,2) and (p,3) torus
knots. A plot of this validation is seen in figure 2(a). Values of v2 were taken from the coeffi-
cients of the Alexander–Conway polynomials on KnotInfo [44], and can be found in a table
in the appendix. Generally speaking, V is close to but not identical to v2, with the discrepancy
increasing with v2. Although there is a weak discrepancy between the predicted and measured
values, for the knots sampled with nonzero v2 the mean ratio betweenmeasurement and predic-
tion was 1.01. We posit the disagreement lies in the discrete nature of our tangent vector calcu-
lation, as Ferrari and Zhao were able to more accurately measure v2 with a corner-smoothing
procedure [37]. To probe the worst possible case, we measured the Vassiliev parameter for
a tight configuration of a 1023-crossing torus knot (presented in [45]) with 400 vertices, an
order of magnitude fewer vertices per crossing than typical of polymer knot simulations. Our
algorithm underpredicted v2 by 19%.

To examine the utility of our algorithm for measuring the Vassiliev parameter for polymer
knots, we simulated the steady-state behavior of closed polymers with 01, 31, and 41 knots, at
various persistence lengths. Figure 2(b) shows this data for ℓp = 10σ and ℓp = 1σ. We expect
the measurement to be less accurate and precise for flexible chains, when the tangent vector is
not smooth and is poorly approximated by discretization. In both cases the measured Vassiliev
parameter fluctuates near its expected value, and the flexible chain shows greater variance and
a slightly larger offset from the expected value. Nevertheless, our discrete Vassiliev parameter
approximates the second Vassiliev invariant quite well even for data it is not suited for, with
the fluctuations and inaccuracies being much smaller than the difference between separate
knot types. We also note that the fluctuations of the Vassiliev parameter are uncorrelated with
typical measures of polymer knots. For example, for the semiflexible trefoil in figure 2(b),
the radius of gyration and average crossing number are anticorrelated with a −0.64 Pearson’s
coefficient, while the Vassiliev parameter has a −0.16 and 0.09 correlation with the average
crossing number and radius of gyration respectively. It is clear from figure 2(b) that V is not
a perfect measure, but even in the worst cases its fluctuations and biases are small relative to
the difference in v2 between knots.
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Figure 2. a. Scatter plot of measure Vassiliev parameterV against the true value for ideal
and torus knots. The solid line represents perfect agreement. b. Steady-state Vassiliev
parameters for closed 01, 31, and 41 knots simulated as polymers. The darker data curves
represent semiflexible chains (ℓp = 10σ) and the lighter curves represent flexible chains
(ℓp = 1σ). The expected values are shown as horizontal lines.

The algorithm we use was written in MATLAB and first calculates one half of the link-
ing matrix (below the diagonal) in a two-nested for-loop, then computes SLL using a four-
nested for-loop, requiring approximately N4/24 multiplications of the matrix elements. We
have included a MATLAB script in the ancillary data of the arXiv version of this paper. For
comparison, we compute Alexander polynomial values with a MATLAB script that was adap-
ted from one originally written by Renner [46]. It projects the coordinates of a knot onto a
surface and evaluates the over-underness of crossings to generate and computer the determin-
ant of the Alexandermatrix, similar to the KymoKnot algorithm [14]. The simplest query of the
Alexander polynomial will yield a value with indeterminate sign, which may be appropriate
when the chain can only be in a few known knotted configurations (e.g. when untying between
successive (p,2) torus knots). Multiple queries (in our case, four) are required to determine the
sign, and projecting the endpoints of the knot to multiple locations on an enclosing sphere will
require significantly more.

We calculated the computation time required to calculated V for the unknot, 31, 51, and 71
knots for simple configurations with between 40 and 1000 vertices. We compared this to the
computation time of the unsigned Alexander characteristic (∆(−1)), which we multiply by
4 to take into account sign determination, and 20 to take into account projection to uniform
points on a sphere. The results are seen in figure 3. This computation was performed in 2023
on a Lenovo laptop with a 3 GHz AMD Ryzen 5 4600 H processor and 16 GB of RAM. It is
entirely possible that more efficient algorithms, more powerful hardware, or GPU optimization
could reduce the computation time of either parameter.

The Vassiliev computation is asymptotically quartic, whereas the simplest Alexander
computation is asymptotically quadratic, and will be faster for large knots. However, the
Vassiliev calculation is faster than the Alexander calculation below approximately 120 ver-
tices. Requiring more complexity out of the Alexander computation increases the size at which
it begins to outperform the Vassiliev computation: approximately 300 for the signed Alexander
characteristic, 600 for an unsigned projection to 20 points, and well over 1000 for a signed pro-
jection. Spherical projection typically uses more than 20 closure points, which would extend
V’s competitive range. The 40-bead knots take 1–2 milliseconds, the largest about 82 s. In
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Figure 3. Mean computation time required to compute the Vassiliev parameter and the
Alexander characteristic of four knots as a function of their size. Parallel dashed lines
approximate the Alexander computation if sign determination and sphere projection is
used. Error bars, when visible, represent the standard error on the mean, and are smaller
than the symbols otherwise.

practice, an untying simulation of an open knotted chain with 100 monomers could be ana-
lyzed in about two seconds, depending on the sampling density. We believe V satisfies our
fifth requirement, that of speedy computation, for all but the largest knots, and is competitive
with the Alexander polynomial especially if multiple closure points are desired. In principle,
the time required to compute the Alexander polynomial increases with knot complexity, as the
determinant of a larger crossing matrix must be taken. In practice, this did not have a signific-
ant effect on the computation time until the tested knots had 50 or more essential crossings,
and at N = 400 exceeded the Vassiliev computation time at around 67 crossings. This may
be relevant for highly confined or very long chains, although in the latter case the Vassiliev
measure would likely still be slower.

Another freely available package, Knoto-ID [47], can efficiently characterize open curves
as projection-dependent distributions of knotoid diagrams, and may satisfy the five require-
ments listed in the introduction. A potential disadvantage of knotoids is combinatorial explo-
sion: there are 2 knots with 5 crossings, and 950 knotoids. Categorization of higher-crossing
knotoids is incomplete, and the interpretation of a partially untied knot being consistent with
dozens of knotoids rather than two knots is at this time ambiguous. While we did not extens-
ively test it, we found that Knoto-ID was able to characterize the knotoids of an N = 100 71
knot untying over 200 time points, along 20 projected axes in about five seconds. The Vassiliev
parameters for the same data set were computed in 2 s, but would not compare as favorably for
longer chains. A full evaluation of Knoto-ID for characterizing confined and untying polymer
knots is beyond the scope of this work.

3.2. Untying polymers

Here we discuss the use of the Vassiliev parameter for the analysis of unconfined knotted
polymers. Our simulations initialize a closed knotted chain with N= 100 beads and then open
the chain, simulating it for long enough that it is unambiguously unknotted. An example is
seen in figure 4(a), in which the absolute Alexander characteristic and the Vassiliev parameter

9
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Figure 4. Time series of the Vassiliev and absolute Alexander parameters of knots as
they untie and retie. a. A knot initialized as a 71 and untying through a sequence of 51
to 31 to the unknot. The expected values are 7–5–3–1 for the absolute Alexander poly-
nomial and 6–3–1–0 for the Vassiliev parameter. The red curve shows the Alexander
parameter as determined by minimally interfering closure, and the blue shows the aver-
age value when the ends are projected to 20 evenly spaced points on a large enclosing
sphere. b. The Vassiliev and Alexander parameters during an event in which an unknot-
ted polymer spontaneously forms a trefoil knot. In this case, the Alexander value has
been rescaled so that it is easier to compare it to the Vassiliev parameter by eye.

are plot for a chain that is initialized as a 71 and unties to the unknot. Figure 4(b) shows the case
of an unknotted chain transiently forming a trefoil knot and untying again. While figure 4(a)
shows the results of a single simulation, the population average of 50 untying 71 knots is shown
in figure 6. All 50 iterations followed the pathway shown in figure 1, with occasional transient
jumps to the previous torus knot.

To better compare the Alexander polynomial to the Vassiliev parameter, we define the aver-
aged absolute Alexander characteristic which is the mean value of the absolute value of the
Alexander polynomial evaluated at -1 with the ends of the knot closed at 20 different points cor-
responding to the vertices of a large regular dodecahedron surrounding the chain. For strongly
knotted chains, this has a similar value to the Alexander polynomial evaluated through minim-
ally interfering closure, while for weakly knotted chains it represents the many possible knots
consistent with the chain. We take the absolute value to better showcorrelation between the
averaged Alexander characteristic and the Vassiliev parameter, as the Alexander characteristic
of torus knots has a varying sign while v2 is strictly positive. To better demonstrate the cor-
relation between this parameter and V, we can transform the Alexander polynomial such that
∆∗(−1) = (|∆(−1)| − 1)/2 so that it takes values of 1 and 0 for the trefoil and unknot, the
same as the Vassiliev values.

The single-closure Alexander polynomial is an excellent tool for detecting and characteriz-
ing knots when the topology is stable and the chain ends are far from the knot. When the knot
is in the process of untying and one or both of the chain ends are within the core of the knot,
it can produce wildly fluctuating results. Typically, the Alexander value will jump between (at
least) two values as one knot transitions to another or the unknot. An advantage of the Vassiliev
parameter is that is insensitive to the choice of closure and does not display these jumps. For
example, figure 4(a) shows the untying of a 71 knot as determined by both parameters. The
71 quickly becomes a 51 but the Alexander characteristic fluctuates between its values of 7,
5, and 3 as closure identifies it as a 71, 51, or 31, before it enjoys brief stability at 3 before
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Figure 5. Vassiliev parameter of populations of 31 and 41 polymer knots untying,
aligned at the time at which their minimally-closed Alexander polynomial shifts (ver-
tical line). The population average is overlaid.

repeating the same process between 3 and 1, its unknotted value. In contrast, the Vassiliev
parameter undergoes small fluctuations, but never undergoes ambiguous flips in its knot type.
It decreases through its values of the four knots, 6 to 3 to 1 to 0 without reversal.

In figure 4(b) the rescaled sphere-averaged Alexander polynomial and the Vassiliev para-
meter are seen to be highly correlated, indicating they contain similar information about the
topological state of the polymer. Both cases show several features that highlight the usefulness
of the Vassiliev parameter compared to the single-closure Alexander polynomial. The minim-
ally interfering Alexander parameter shows discrete jumps when the knot type is determined
to have changed, whereas the Vassiliev parameter smoothly evolves from one state to another.
Although V fluctuates when the knot is steady and ∆ does not, the fluctuations contain topo-
logical information (e.g. the rise at around t = 40 in figure 4(b) showing that the chain is in a
position where it could soon tie, but does not). In longer simulations of dynamic knotting and
unknotting (e.g. of a strongly confined polymer chain), the autocorrelation function of V will
provide information about topological dynamics in a way that ∆ is unable to.

The closure-Alexander method and other discrete classifiers [26] can detect the point of
transition between two knot types on an untying pathway or between a knot and the unknot.
However, this is typically not a discrete process, as the polymer undergoes conformational
changes in preparation for untying (for knotted DNA in elongational fields, this can include a
contraction of the chain [24]), and immediately after still maintains vestiges of its former knot.
Previous studies have examined the survival probability function of ensembles of knots [13],
but this loses information about the knottedness during the untying event. To closely exam-
ine the polymer untying process, we simulated 31 and 41 knots untying to the unknot, and
measured V going from ±1 to 0. While these knots untied at a stochastic range of times, we
measured the minimally-closed Alexander polynomial at−1 and identified the time at which it
shifted. We used this time to align the Vassiliev data frommany runs, and examined its popula-
tion average during the untying event (figure 5). Both knots have similar untying trajectories,
with the average curve showing three phases. First, the absolute Vassiliev parameter slowly
decreases below its knotted value. At the same time when the Alexander polynomial shifts,
it makes a substantial jump towards zero, then further levels off towards zero. A comparable
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Figure 6. a. Population-average Vassiliev parameter of ensembles of 01, 31, 71 and 819
knots untying in a sphere of R= 6σ. They eventually reach a common equilibrium level
of the Vassiliev parameter. b. Population-average Vassiliev parameter of ensembles of
71 knots untying under varying degrees of confinement. An equilibrium level is reached
in each case, which increases as the confinement becomes tighter.

plot using the Alexander polynomial would reveal a step function. This suggests the Vassiliev
parameter as a new tool for studying the polymer untying process, and its behavior with respect
to the physical parameters of the system (e.g. chain length) is an intriguing subject for future
work.

3.3. Confined polymers

A knotted polymer confined in a sphere typically has ends that cannot be closed without intro-
ducing a significant number of new crossings, leaving the knot type indeterminate under tra-
ditional methods. A spherical closure scheme will produce a distribution of knot types for a
typical configuration, which will have a mode that makes up less than 50% of total closure
points on the sphere, putting confined polymers in the weakly knotted regime.

Under confinement, V reaches a plateau, which can be imagined as a chemical equilib-
rium between knot untying and the formation of new knots. The average value of this plateau
increases with the strength of confinement. Figure 6(a). shows the evolution of several initial
knots under the same confinement. While they start at their expected value, they approach the
same plateau at approximately the same rate, indicating a timescale beyond which the initial
topology is no longer relevant. Figure 6(b) shows the evolution of an ensemble average V of
initialized 71 knots evolving in confining spheres of different radius. In the bulk, this decays
to zero as the knot unties, similar to the knot survival probability analyzed by Caraglio et al
[13], but the plateau value increases with decreasing sphere radius.

Treating V as a general measure of the knottedness of confined chains that is not necessarily
identified with a single knot invites comparison to the average crossing number, which can be
computed more efficiently. The ACN has previously been used to characterize the knotted-
ness of spherically confined polymers to study viral capsid packaging [48]. V is more closely
tied to topology than ACN, as ACN is strongly anti-correlated with radius of gyration and
is sensitive to nugatory folding, while V is not. However, an increasing ACN in confinement
generally indicates stronger knotting, which is not necessarily the case for V. For example, an
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Figure 7. Ensemble average Vassiliev parameter and average crossing number for pop-
ulations of 20 initially unknotted polymers confined in spheres and in the bulk, as a
function of the reciprocal confinement radius.

814 knot could undergo strand passage into a 31 knot, and V would go from 0 to +1. Similar
events in spherical confinement mean that the sign of V fluctuations are not necessarily correl-
ated with more complexity. Although values may take either sign, the data indicates that V is
increased by confinement, which is consistent with the findings of Smith and Panagiotou for
random walks confined in spheres [27]. Figure 7 shows the population average value of the
Vassiliev parameter and the average crossing number for 20 initially unknotted polymers in
confinement (R = 4σ to R = 10σ) and the bulk, showing that both parameters increase simil-
arly in confinement. While Smith and Panagiotou have proven the positivity of these values,
the interpretation of these specific numbers is an open question.

3.4. Knotted subchain identification

One use of knot identification algorithms is to locate the knotted subchain on a larger polymer.
This has been useful for finding the equilibrium sizes of knots in closed chains to validate
models of knot metastability [49], as well as identifying configurations on open chains that
lead to different untying mechanisms while tracking the motion of knots [11] or identifying
individual components of composite knots [50]. Typically this is done by iteratively removing
beads from the end of the chain and calculating the Alexander polynomial at each stage, noting
at which point the topology of the chain changes (it may also be done ‘bottom-up’ by adding
beads to a virtual subchain until a knot is detected). This can produce a discrete step function
of knottedness with respect to monomer index. Recently, Barbensi and Celoria extended this
to describe the Knot Intensity Distribution, which quantifies the importance of an individual
monomer to the global state of the knot [51]. A similar scheme can be performed with the
Vassiliev parameter, except is does not produce a binary clasification of knottedness, but rather
a local measure of salience that reflects how much V changes when a subchain terminating in
that bead is removed. This can fill a similar role as the Alexander subchain detection, with a
slightly different interpretation.

We calculate a ‘top down’measure of the salience of eachmonomer by removingmonomers
from the end until the Nth bead and calculating V. We subtract that from the full chain’s
Vassiliev parameter to find a measure of how much V would change if the subchain from
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Figure 8. Knotted subchain analysis using the Vassiliev parameter. a. Vassiliev salience,
the degree to which a subchain between each monomer and the closest end contributes
to the total Vassiliev parameter for an open trefoil knot. b. Conformation of the knot
analyzed in a., with brighter monomers corresponding to greater salience. c. Kymograph
of theVassiliev salience for an initial 71 knot untying towards the unknot in several stages
(including a brief retying from 31 to 51), from which the trefoil in a. and b. was sampled.
The smaller kymographs below show the initial untying from 71 to 51 to 31, and the final
untying from 31 to the unknot.

that bead to the closest end were removed. An example for a trefoil knot can be seen in
figures 8(a) and (b). This can also be applied to closed chains with an arbitrary cut point, and
is insensitive to the choice of starting point. There are a few differences between an Alexander-
based subchain detection and the Vassiliev salience measure. The value within the knotted core
is not constant, but typically reaches a plateau. There is also no fixed cutoff beyond which the
chain is definitively not part of the knot. There is a drop-off towards the end of the chain, as the
Vassiliev parameter depends more on the orientation of the free ends than does the Alexander
polynomial. The Vassiliev salience at each stage of a knot untying sequence can be extended
into a kymograph (figure 8(c)), similar to those shown by Caraglio et al [13] or Tubiana et al
[9]. When the knot is still consistent with 71 or 51, multiple levels within the knotted section of
the kymograph can be seen. The unknotted portion of the kymograph contains a ‘ghost’ region
of where a knot would form if a chain end were to penetrate it. While we have considered
only the detection of knotted subchains, in principle a subchain matrix between all pairs of
monomers could be calculated, and used to identify slipknots and pre-knotted segments of the
chain.
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4. Concluding remarks

We believe the analyses present demonstrate that the Vassiliev parameter is a useful tool for
analyzing knot simulations, providing additional information not revealed by a single-closure
Alexander polynomial measurement. However, for sufficiently long chains, it will be consid-
erably slower. A more direct comparison would be to stochastic spherical closure, to which
the Vassiliev parameter compares favorably. For the analysis of closed chains or the validation
of topology in a simulation in which pathological strand-crossing may occur, the Alexander
polynomial is likely superior.

The algorithm discussed in this manuscript is sufficient for chains that are up to a few
hundred beads long, consistent with typical lengths used to study knotted polymer dynamics.
Sleiman et al [26] developed a new knot classification algorithm based on chains of N = 100,
Caraglio et al [13] simulated untying knots in chains of up to N = 200, while Soh et al [11]
used N = 300. Tubiana et al simulated knotting and unknotting for chains of up to N = 4096,
which is likely beyond the useful range of the current algorithm. Likewise, studies of knot
formation in growing static polymers typically use much longer chains, for example up to
40 000 beads by Rieger and Virnau [12], for which our algorithm is not useful.

Recently, Sleiman et al [26] found that a neural network trained on polymer knots in a
‘local writhe’ basis could effectively categorize and identify knots, including during untying.
The writhe basis used by Sleiman et al generates a matrix for each configuration that is similar
to the linking matrix in equation (2), except that each element categorizes how the local chain
around monomer i is linked with the local chain around monomer j. We can compute a version
of the Vassiliev parameter based on the local segment-to-segment writhe matrix, and find that
it yields similar results. Comparing the Vassiliev parameters calculated from (a) the regular
writhe matrix to those from (b) the segment-to-segment writhe matrix, using the same polymer
model as Sleiman et al yields values of 0.003 and 0.007 for the unknot (v2 = 0), 0.98 and 0.94
for the trefoil (v2 = 1), and 2.92 and 2.82 for the 52 (v2 = 3). Because Sleiman et al’s neural
network effectively performs a matrix convolution of a writhe matrix, the training algorithm
may be discovering something similar to (but stronger than) the Vassiliev invariant.

Overall, we have demonstrated that the Vassiliev paremeter, a discretized version of the
Second Vassiliev Invariant for open curves, is a useful tool for characterizing open polymer
knots in conditions where the topology is ambiguous, including during untying and under
strong confinement. The algorithm can be computed from Cartesian coordinates, produces
values consistent with those expected for closed knots when appropriate, interpolates between
these known values during untying, can identify the salient portions of knotted subchains, and
performs these computations in a reasonable time. Additionally, it identifies several features
not observed using a single-closure Alexander measure, such as fluctuations associated with
unsuccessful knotting events, the precursors and postcursors of untying, and a confinement-
dependent average value. Its use having been established in this work, future studies can invest-
igate deeper aspects of the physics of polymer untying and knot formation using the Vassiliev
parameter.
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Appendix

The table shows the values of v2 for knots with up to nine crossings. The unknot takes a
value of 0.

Knot v2 Knot v2 Knot v2 Knot v2

31 1 88 2 98 0 929 1
41 −1 89 −2 99 8 930 −1
51 3 810 3 910 8 931 2
52 2 811 −1 911 4 932 −1
61 −2 812 −3 912 1 933 1
62 −1 813 1 913 7 934 −1
63 1 814 0 914 −1 935 7
71 6 815 4 915 2 936 3
72 3 816 1 916 6 937 −3
73 5 817 −1 917 −2 938 6
74 4 818 1 918 6 939 2
75 4 819 5 919 −2 940 −1
76 1 820 2 920 2 941 0
77 −1 821 0 921 3 942 −2
81 −3 91 10 922 −1 943 1
82 0 92 4 923 5 944 0
83 −4 93 9 924 1 945 2
84 −3 94 7 925 0 946 −2
85 −1 95 6 926 0 947 −1
86 −2 96 7 927 0 948 3
87 2 97 5 928 1 949 6
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