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Dicke State Generation and Extreme Spin Squeezing via Rapid Adiabatic Passage
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Considering the unique energy level structure of the one-axis twisting Hamiltonian in combination with
standard rotations, we propose the implementation of a rapid adiabatic passage scheme on the Dicke state
basis. The method permits to drive Dicke states of the many-atom system into entangled states with
maximum quantum Fisher information. The designed states allow us to overcome the classical limit of
phase sensitivity in quantum metrology and sensing. We show how to generate superpositions of Dicke
states, which maximize metrological gain for a Ramsey interferometric measurement. The proposed
scheme is remarkably robust to variations of the driving field and has favorable time scaling, especially for
a small to moderate (~1000) number of atoms, where the total time does not depend on the number of

atoms.
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Quantum sensors have the potential to go beyond their
classical counterparts [1-7] and reach the fundamental
quantum precision limit, the Heisenberg limit (HL) [8,9],
by fully exploiting nonclassical properties of matter. In that
limit, measurement precision scales proportional to the
number of atoms. In contrast, the standard quantum limit
(SQL) scales proportional to the square root of the number
of atoms. To achieve enhanced scaling, it is imperative to
find robust ways to create ultrasensitive entangled quantum
states and engineering protocols to utilize them. The
quantum advantage thus obtained will boost the precision
of interferometric devices such as accelerometers [10],
gyroscopes [11,12], and gravimeters [13]. Further appli-
cations are the search for dark matter [14], timekeeping
[15], gravitational wave detection [16], geodesy [17-19],
and ultraprecise tests of the fundamental laws of physics
[20,21]—all fields where ultraprecise metrology plays the
crucial role.

One common method of creating collective entangle-
ment is through an effective one-axis twisting (OAT)
Hamiltonian [22], often engineered by exploiting the
nonlinear interaction between the atoms and the light inside
a cavity [7,23-26]. That Hamiltonian squeezes the quantum
state quasiprobability distribution, creating nonclassical
correlations that reduce the variance of one measurement
quadrature while increasing the variance in the orthogonal
direction. Thus, squeezing can enhance precision in
Ramsey interferometric measurements [27]. The maximum
metrological gain in the context of Ramsey interferometry
is achieved with particular squeezed states known as
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extreme spin-squeezed (ESS) states [28—-31]. We consider
the dynamics of the system in the Dicke basis, the set of
eigenstates |S, m) of the operator S‘z. In general, ESS states
are a superposition of Dicke states, but as the squeezing
increases, they gravitate to a single Dicke state.

Collective rotations generate transitions between Dicke
states, which in combination with applications of the OAT
Hamiltonian steer the N-atom system towards the desired
ESS states. One widely used control scheme is to use a
fixed-area resonant pulse scheme, that is, a train of Rabi
pulses [32,33]. Precise control of the pulse power and
duration is required for this method to be effective since
errors accumulate with the pulse train [34].

An alternative is to use rapid adiabatic passage (RAP) to
generate the state transitions [35-39]. In this case, the
transition frequency sweeps through the resonance with the
excitation frequency as in the Landau-Zener model [40],
and the frequency chirp leads to a robust population
transfer [41,42]. Shortcuts to adiabaticity may be used to
speed up the process [43,44].

Here, we propose an implementation of the RAP method
to create extreme spin-squeezed states and pure Dicke
states. We consider N noninteracting two-level atoms or
spin one-half particles under the action of the Hamiltonian

H = 82+ p(1)S. +Q(1)S,. (1)
where § ; are the components of the collective spin operator,

Jj = x,y, z. The first term is the entangling OAT interaction,
and y is the shearing parameter. The second and third terms
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are rotations around the z and x axes. We are addressing the
situation in the limit where dissipation is weak, and the
system is well represented by the Hamiltonian of Eq. (1). In
the context of the Hamiltonian implementation using the
interaction between atoms and light in a cavity, this case
corresponds to the limit of very strong cavity coupling. The
Hamiltonian can also be realized in superconducting qubits
[45] or exploiting the Ising interactions between trapped
ions [46] and Rydberg atoms [47,48].

The equation of motion for the probability amplitude
being in a Dicke state |S, m) is

Q
iam = Em(t>am + % (C+azn+1 + C—am—1>7 (2)

where E,, = ym® + B(t)m is the state energy, . = [(S F
m)(S £+ m + 1)]'/? are transition elements, and m = —S,
-S+1,....,8—=1,5for N = 2§ particles. We focus here on
an even number N of atoms, for which there is a unique
ground state |S,0) [49].

According to Eq. (2), only neighboring Dicke states are
coupled. Therefore, it is possible to generate successive
transitions m = n — n =+ 1, or to create a superposition of
several Dicke states by properly choosing the time-
dependent function B(¢) in Eq. (1) and controlling the
duration of the field Q(¢). For example, we can start from
the coherent spin state (CSS) |S, S) and then use various
control methods [50] to prepare a desired Dicke state or
other correlated quantum states.

To evaluate the usefulness of a state for high-precision
measurement, we use the quantum Fisher information
(QFI) [51-53]. For pure states, the QFI of a state |y) is
Fj=4((wISHy) = (wlSilw)?), with j==x, y, z. For
the Dicke state |S,m), we find F_, =0 and Fry=
4AS3, = N?/2—2m* 4+ N. Thus, Dicke states are not
sensitive to perturbations proportional to S, (due to their
axial symmetry on the Bloch sphere). In contrast, x, y
components depend on m” and demonstrate a scaling
transition from the SQL, F,, = N for the |[N/2,N/2)
state (a CSS), to F, , = N?/2 + N for the |[N/2,0) Dicke
state. According to the Cramer-Rao bound, the maximum
precision of a phase estimation is bounded by the QFI as
A@?,.>1/F,,. [51]. Thus [N/2,0) is reaching the HL
scaling for x and y (up to the prefactor 1/2) for N > 1.

To prepare the |[N/2,0) state via RAP, we apply the
linear-chirping function (¢) = atu(—1), i.e., the chirp rate
a stops at t = 0 due to the Heaviside step function u(—¢). In
this case, the linear chirping tunes the transitions between
the adjacent Dicke state to the resonance, and appropriate
Q(¢) efficiently transfers population from the initial CSS to
a target Dicke state or Dicke state superposition.

Figure 1 presents both the diabatic and adiabatic pictures
of the multiple sequential crossings between the state
energies, E,,(t), which become avoided crossings due to

energy

at/x

FIG. 1. Example of the energy levels of the five lowest Dicke
states as a function of time. The solid lines represent the
instantaneous eigenvalues of the Hamiltonian in Eq. (1) (adia-
batic picture), and the dashed curves are the diagonal values, E,,,,
(diabatic picture). The coupling pulse goes up to Q.. = 0.4y. It
starts to turn off at # = 0 and is entirely off at ar/y = 1. The chirp
rate is a = 0.1y2.

the coupling (7). The crossing time between adjacent
Dicke states m and m — 1 is t,, ,_; = (1 —2m)/a, pro-
viding resonances between adjacent Dicke states with
period 7 = 2y/a. This comes from the interplay of the
quadratic and linear structure of $? and S. eigenvalues, in
complete analogy with the RAP between momentum states
using frequency-chirped standing-wave fields [34,35].

In the adiabatic limit, each sequential avoided crossing
can be considered independent, and the Dicke state
population dynamics is described by the well-known
Landau-Zener model [40]. Therefore, if at t = —co the
whole N-atom system population is in the CSS (single
Dicke state |[N/2,N/2)), then, according to the adiabatic
theorem, the total evolution of the system happens in the
single adiabatic state (the lowest solid line in Fig. 1). Since
the chirp stops at # = 0 and the coupling Q(¢) is turned off
soon after, the last avoided crossing is between the Dicke
states |[N/2,1) and [N/2,0). Therefore, when adiabatic
conditions are satisfied for all sequential crossings, the
system population will be efficiently transferred to the
target Dicke state [N /2, 0) at the final time. This qualitative
picture is independent of the number of atoms, as long as
adiabaticity is maintained (Q2,,/a > 1).

In Fig. 2, we show the dynamics of the Dicke state
populations using RAP from |5,5) to |5,0) with fidelity
€2 = 0.9996. To be realistic, we are turning Q(¢) on and
off with a Blackman shape. The value at the plateau is
Qax = 0.88y. There is a residual population of the |5, 4-1)
states building up at the end, which returns to the target
|5,0) state as the pulse Q(¢) is turned off. This transient
effect is known as adiabatic population return for off-
resonant excitation schemes [50].

The results shown in Fig. 2 are extremely robust to
variations in the chirp rate & and the coupling strength Q(),
see Supplemental Material [54]. Indeed, it is sufficient to
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FIG. 2. Population dynamics of the ten-atom Dicke states. The
solid black line shows the coupling pulse shape, Q(¢). The chirp
rate is a = 0.1y2.

have a slow turn-on before the first crossing, between
energies F5(7) and E4(t) of the |5, 5) and |5, 4) Dicke states
here. We set the plateau to start at 1, = —Ny/a with a
switch-on time of ¢,, = 2y/a, and choose t, = 0 as the
plateau end with 7, = 2y /a for the switch-off time. A time
delay of the plateau end to ¢, = y/a slightly reduces the
fidelity to € = 0.9992. Increasing the number of atoms N
requires only an earlier start of the plateau time by a
corresponding number of periods 7 to accommodate more
Dicke state crossings. The adiabatic picture in Fig. 1 is
valid for an arbitrary number of the atoms for the target
Dicke state [N /2, 0). It is also possible to choose any other
Dicke state as a target, which can be efficiently prepared
with high fidelity by applying the same excitation scheme.
To selectively prepare another Dicke state |N/2,n), we
need to adjust the plateau duration time so that the last
avoided crossing is between states |N/2,n+ 1)
and |N/2,n).

At the top of Fig. 2, we show a Wigner representation
[55,56] (see Supplemental Material [54]) of the system
state on the generalized Bloch sphere at selected times.
There are fringes indicating atomic coherence. Note that
there is a reduced variance in the z direction at the final
time. In fact, the variance AS‘? is zero for any Dicke state,
including the |[N/2,0) state. However, there is no clear
orientation of the total spin, the state is symmetric in the x-y

plane, and the mean spin components (S'X,y_Z) of the state
are zero. Therefore, the standard Ramsey interferometry
with this state has zero contrast. However, it is possible to
design another measurement scheme that can utilize the full
quantum advantage of the Dicke state |[N/2,0) using a
twist-and-turn strategy to decode the phase imprinted in the
quantum state after free evolution as in [57,58].

To demonstrate the efficiency and robustness of
the proposed scheme, in Fig. 3, we present the QFI
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FIG. 3. Quantum Fisher information, F , as a function of time

for the RAP transfer from |S,S) to |S,0) for three values of
a=oa/y’, a, =10, @, = 1072, and @y = 10'; N = 10. We
also present snapshots of the Wigner function of the collective
state at the selected time.

time-evolution during the RAP process with several values
of the chirp rate. Initially, the system is in the Dicke state
S, S), the QFI equals N = 10. The QFI dynamics depend
strongly on the chirp rate, yet all regimes give the same final
result. For a = 10742, the dynamics of the Dicke state
population is fully adiabatic; the population goes sequen-
tially from one Dicke state to the next and, at most, only two
adjacent states are populated at any time. In the plateau areas,
the values of the QFI correspond to the QFI of individual
Dicke states, F, = N?/2 — 2m? + N. The reduction of the
QFI in this regime can be evaluated by calculating QFI
for a two-Dicke-state superposition |y) = cos{/2|S, m) +
e sin{/2|S,m + 1). We find F, = sin®{, F, = N?/2 +
N —2m? +2(2m + 1)sin®¢/2 — sin?¢cos’p(N? /4 — m? +
N/2F m), and F, = N*/2 + N = 2m* +2(2m £ 1)
sin?¢/2 — sin’¢sin®p(N?/4 — m?> + N/2 F m). These
expressions explain the substantial reductions in the value
of F, when equal superpositions are created ({ = 7/2),
especially as m decreases. The dynamics of the QFI in the y
direction, ¥, (not shown here) is qualitatively similar and
well correlated with the analytic expression above.

For larger chirp rates, @ = 1072y?, more Dicke states are
populated, and the QFI reduces even further at intermediate
times. For a = 107152, we see that the QFI stays most of
the time below the SQL (F, = N), since many Dicke states
are populated simultaneously. However, a smooth switch-
off of the coupling and the chirp guarantees the adiabatic
passage to the target Dicke state.

A notable feature of the proposed RAP scheme is that the
chirp rate @ can be increased at least proportional to N (see
Supplemental Material [54]). Assuming a y independent of
N, we can conclude that the total time of the RAP scheme,
which is roughly N7 = Ny/a, can be independent of N.
Moreover, in the limit where each transition is traversed at
its maximum speed, the overall time of the RAP scheme
could even decrease proportionally to log(N)/N. The
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assumption that y is independent of N is possible for
moderate values of N (up to N ~ 1000) and could be
accomplished by engineering the squeezing pulse, as
discussed in [7,26] and the Supplemental Material [54].
In the case of larger atom numbers, y scales as 1/N. Yet, the
RAP is still efficient as long as the turn-on and off time of
the coupling field is adjusted to compensate for the
reduction of the energy difference between adjacent
Dicke states. In that case, the total time scales as log(N)
for the non-negligible values of y.

The above-described RAP scheme can be modified to
prepare another class of correlated quantum states, provid-
ing sensitivity enhancement for Ramsey spectroscopic
measurements. The metrological gain can be evaluated
by the Wineland squeezing parameter [59,60]

& = A(PZ/A(P%ss = AS%N/KS})

2, (3)

where Ag? is the variance of a phase estimation for an
entangled state and AgpZq is the result for a coherent state.
Here, we have chosen z as the squeezing direction and x as
the mean spin orientation.

From Eq. (3), we can see that we need to minimize the
quadrature in the z direction, AS ., while keeping the
projection onto the x axis, (S’x>, as high as possible, since it
defines the maximum contrast in the interferometric proto-
col. It has been shown [28-31] that the optimal ESS states
that minimize £ under the constraint of the fixed signal

contrast must satisfy the equation [y8? — QS.]|¥)gss =
A|¥)gss. Interestingly, as the signal contrast approaches
zero, the ESS state becomes the Dicke state |S,0) [29,31],
and the squeezing parameter diverges. Indeed, the more
metrologically useful the ESS states become, the more they
approach the Dicke state |S, 0), and are well-approximated
by a linear combination of the Dicke states |S,0) and
S, :i:l). For a fixed value of contrast, ESS states give HL
scaling [31]. Therefore, creating them allows us to achieve
such scaling for Ramsey interferometry.

During the RAP generating the |S = 5,0) Dicke state
(Fig. 2), we observed transient population in the
|S =5,+1) states. To create the ESS state, we abruptly
turn off the coupling, Q(z), which results in some pop-
ulation of the |S, 4-1) states at final time, thus creating the
desired ESS state.

Figure 4 shows the ESS state generation via fast turn-off
of the coupling during a RAP pulse aiming towards |S, 0).
The main change in the time dependence of the coupling
compared to the one in Fig. 2 is that we set the switch-off
time of the coupling pulse to 7, = 0.583y/a and choose
the turn-off time #, = 0.5y/a. The maximum overlap with
the ESS target state is €2 = 0.9994, while the averaged spin
projection onto the x axis is (S,) = /2. Despite these
modifications, a large parameter space region still gives
excellent fidelity (see Supplemental Material [54]).
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FIG. 4. Generation of the ESS state via RAP, the chirp rate is
a = 0.1y%. Upper panel: the Dicke state population dynamics, the
time-dependent coupling with the maximum €., = 0.88y is
shown by a black solid line. The Wigner function of the generated
state at r = Sy /a is in the inset. Bottom panel: the infidelity as a
function of time.

Since the created ESS state is not an eigenstate of 52,
which is the system’s Hamiltonian after the coupling and
the chirp are both turned off, the ESS state infidelity, 1 — €2,
oscillates with the frequency proportional to the shearing
strength, y, as shown in the bottom panel of Fig. 4. The
oscillations are relatively slow, and they end when turning
off the OAT term in the Hamiltonian, Eq. (1), to achieve
maximum fidelity. The ESS-state Wigner function is shown
in the inset of Fig. 4. We observe a reduced variance in the z
direction, while there is a definite orientation of the total
spin ((S,) = §/2) that ensures significant contrast of the
Ramsey signal, as opposed to the case utilizing the Dicke
state |S,0).

So far, for illustration purposes, we have used only a
small number of atoms. However, the proposed method
works for arbitrary N. To demonstrate this, in Fig. 5, we
plot the metrological gain of the RAP-produced state with
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FIG. 5. Comparison between the metrological gain as a

function of the atom number for ideal ESS states and ESS states
created by RAP. The results share the HL scaling.
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respect to the CSS. As a target state, we use an ESS state
with contrast <S‘x> = §/2. The metrological gain obtained
with the RAP-produced states is practically identical to the
ESS-state gain with the HL scaling.

To conclude, we have demonstrated the creation of many-
atom entangled states via RAP between Dicke states. The
generated |S, 0)-Dicke and ESS states maximize the QFI and
metrological gain for Ramsey interferometry. We have
shown how to steer the system into the Dicke state |S,0)
and how to prepare an ESS state, providing HL scaling. The
RAP technique is possible due to the unique structure of the
nonlinear OAT Hamiltonian. The process is exceptionally
robust to driving field variations and variations in the
number of atoms, eliminating the requirement of a precise
count. In addition, the total time of the RAP is independent
of N for moderate N. These interesting properties open up
the possibility of applying the RAP to create metrologically
useful many-atom entangled states that are not easily
accessible with other techniques, such as twist-and-turn
strategies, that suffer from the accumulation of gates error
[61] and require substantial optimization efforts [31] that
become challenging to implement as N increases [32—34].
The technique could also work to prepare GHZ and various
cat states. For instance, one could drive the system into
|S, —=S) (instead of |S, 0)) and adjust the turn-on of the pulses
so that the first transition only transfers half of the pop-
ulation, thus creating a superposition of |S, S) and |S, —S).
As an extension of this work, it could be beneficial to
consider a shortcut-to-adiabaticity scheme [43,44] to speed
up RAP, as well as applying advanced techniques of optimal
quantum control [62,63] to maximize the fidelity (and
metrological gain) and minimize losses due to decoherence,
dephasing, and photon scattering. The remarkable robust-
ness of RAP may also allow for the implementation of the
protocol via Ising interactions that approximate the OAT
Hamiltonian [46-48], thus broadening the range of appli-
cations to other research areas.
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