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those that model suitability by comparing the environments of a species’ occurrence
records with those of a background or pseudoabsence sample). For each hazard, we
state relevant assumptions, detail problems that arise when violating them, and con-
vey straightforward existing recommendations. We also discuss five major outstanding
questions of active current research. We hope this contribution will promote more rig-
orous implementation of these valuable models and stimulate further advancements.
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Modeling species distributions

Approaches termed species distribution models, ecological niche models, or habitat
suitability models (hereafter, SDMs) encapsulate a set of theory and tools valuable in
basic and applied biogeography, ecology, and evolutionary biology (Fig. 1) (Franklin
2010, Peterson et al. 2011, Guisan et al. 2017). Substantial literature exists regard-
ing relationships between species ecological niches and geographic distributions, as
well as correlative and mechanistic approaches to estimating them (Soberén 2007,
Enriquez-Urzelai et al. 2019, Kearney and Porter 2020, Franklin 2023). Studies
using these techniques generally aim to estimate environmental suitability for a spe-
cies, mapping it onto geography to characterize spatial patterns (Fig. 1). These models
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Figure 1. Schematic overview of how a species distribution mod
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el is built. (a) Records of a species’ presence (white circles) within a study

region (rectangle) are gathered, along with relevant environmental variables. Environmental variables typically consist of gridded GIS layers
describing abiotic conditions of the study region (e.g. temperature, soil type; colors for each grid cell depict different values of the variable).

(b) These data are used as input for any of the several available
variables. The model distinguishes the environmental conditions

algorithms, which characterize suitability as a function of environmental
more frequently associated with presence of the species versus those from

a comparison dataset (either absences or more commonly background or pseudoabsence information across the study region). (c) The

model characterizes environmental suitability for the species in e

nvironmental space (warmer colors indicating increasingly suitable condi-

tions). (d) Typically, the model is then applied to geographic space, indicating spatial patterns of suitability across the study region. Finally,
the model is evaluated quantitatively, typically by assessing how well it predicts an evaluation dataset (arrow back to (b)).
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are frequently applied to issues of importance to society,
from agriculture and public health to biodiversity manage-
ment and conservation, including the cross-cutting effects
of climate change (Guisan et al. 2014, Willis et al. 2015,
Johnson et al. 2019). However, key principles and proce-
dures frequently remain underappreciated or misapplied
(Morales etal. 2017, Aradjo et al. 2019, Andrade et al. 2020).
This can lead to unreliable models and erroneous interpreta-
tions being published or used as inputs for additional down-
stream analyses, which increasingly include valuable studies
that address applied real-world problems (Brown et al. 2016,
Fordham et al. 2018, Briscoe et al. 2019, Reid et al. 2019,
Zurell et al. 2020a, Tuia et al. 2022).

This situation stems from several interrelated factors. First,
SDMs have seen explosive use and development since around
the year 2000, creating an enormous literature (Aradjo et al.
2019, Feng et al. 2019a). Second, semi-automated software
makes analyses quick and easy to implement, which can lure
users into building models without considering the underly-
ing principles carefully (Joppa et al. 2013, Merow et al. 2014,
Escobarand Craft 2016, Sillero and Barbosa 2021). Especially
in the era of ‘big data, this can be exacerbated in studies
that model hundreds of species via workflows that employ
automated code-based pipelines, which is often needed to
achieve broad assessments of biodiversity (Brown et al. 2015,
Gomes et al. 2019, Merow et al. 2022). Finally, SDMs com-
monly form part of interdisciplinary studies (e.g. combin-
ing demographic, molecular, or epidemiological approaches;
Perktas et al. 2017, Guevara et al. 2018a, Bonfim et al. 2019,
Gonzélez-Serna et al. 2019), where the research team may
not include an SDM expert. As a consequence of these fac-
tors, researchers often struggle to follow recommendations
from the massive, disparate literature that has accumulated
for individual aspects of modeling. Indeed, a quantitative
analysis of randomly selected SDM studies with an applied
biodiversity focus published between 1995 and 2015 found
that 46% of them were deficient regarding at least one key
issue (Aratjo et al. 2019). Perhaps most disturbingly, the
evaluation of model assumptions saw a decrease in quality
over that time period, suggesting that enormous growth in
the use of these techniques unfortunately had been accom-
panied by lessened consideration of the fields conceptual
foundations.

To help rectify this situation, here we highlight what in
our view constitute the ten most problematic hazards nega-
tively affecting SDM implementation — each with exist-
ing solutions. To varying degrees, these issues have been
addressed elsewhere, although often independently (Aratjo
and Peterson 2012, Jiménez-Valverde et al. 2013, Cooper
and Soberén 2018, Yates et al. 2018, Cobos et al. 2019a,
Qiao et al. 2019, Warren et al. 2020). Fortunately, some syn-
thetic books (Franklin 2010, Peterson et al. 2011, Guisan et al.
2017), shorter reviews (Elith et al. 2011, Anderson 2012,
Merow et al. 2014, Jarnevich et al. 2015, Beery et al. 2021,
Sillero et al. 2021, Franklin 2023), and proposed standards for
modeling and reporting exist (Aratjo et al. 2019, Feng et al.
2019a, Sofaer et al. 2019, Zurell et al. 2020b, Fitzpatrick et al.

2021). Nevertheless, the book-level syntheses are long and
include mathematical and statistical formalizations, making
it difficult for some readers to understand key information
and deterring others from attempting. On the other hand, the
shorter reviews each only consider a few key issues and some-
times are highly technical, requiring several papers to cover
key topics and again limiting the audience. Finally, although
comprehensive in breadth, the proposed standards do not go
into great depth of explanation, emphasizing key principles
and recommendations more than guiding the reader’s under-
standing regarding problems that can occur if they are not
followed. Complementary to these resources, here we present
a concise, structured treatment of ten hazardous, frequently
misunderstood issues (and ways that they interact), avoid-
ing mathematical formulations to produce a didactic guide
for readers with a wide range of exposure to these techniques.
Additionally, we include a glossary of some important terms
(Table 1), which appear in italic at first mention. We hope
that this contribution will help a broad set of researchers
reach a deeper understanding of these issues and prove useful
to them as authors, reviewers, and editors. We also provide
ample citations, constituting a rich resource for readers who
want to delve deeper into the literature.

In this guide, we consider the most common implementa-
tion of correlative SDMs, where absence data do not exist
and the researcher aims to use records of the species’ pres-
ence (presence-only data) to model the environmental condi-
tions (and geographic areas) suitable for it. Specifically, we
focus on models that compare environmental conditions
for records of the species’ presence versus those of the back-
ground (the study region or a sample of it) or pseudoabsences
(places within the study region that lack records of the spe-
cies; Anderson 2012, Fig. 1). All the issues we cover hold true
regardless of modeling algorithm; additionally, many are also
applicable to implementations that exclusively use presence
data (Booth et al. 2014), incorporate information regard-
ing absences (Guisan et al. 2017), or model more than one
species simultaneously (Pollock et al. 2014, Poggiato et al.
2021). Also, the issues we present (or an equivalent analog)
are relevant to integrated modeling approaches that combine
distinct data types (e.g. presence-only, presence—absence and
abundance information; Fletcher et al. 2019, Miller et al.
2019, Isaac et al. 2020, Kays et al. 2022a).

We order the ten key hazards according to the step in which
they arise (data gathering and processing, model building,
model evaluation, and model interpretation; i.e. not according
to importance or frequency in the literature; Table 2, Fig. 2).
For each hazard, we state relevant assumptions, detail prob-
lems that arise when violating them, and summarize existing
recommendations. In most entries, we explain one or more
key interactions with other specific hazards, using the syntax
‘interaction with Hazard X’; in contrast, we denote simple ref-
erences to another hazard by the wording ‘Hazard Y. While
we strive for general explanations, we also provide some exam-
ples for particular algorithms (especially the commonly used
maximum entropy approach MaxEng Phillips et al. 2000).
Given the increasing number of studies modeling many species
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Table 1. Glossary of selected key terms.

Term Definition

commission
(Peterson et al. 2011)
(= false positive rate; =1
— specificity; see also
omission)

evaluation

Error that represents the failure of a model to predict an absence of the species once a binary prediction of
suitability is obtained (by applying a threshold above which a grid cell is considered suitable or predicted
presence). In studies lacking true absence data, estimates of commission error are typically inflated.

Process by which the model resulting from training is assessed. Ideally, the evaluation would be performed
using fully independent testing data. However, because such information seldom exists, in most instances
evaluation is conducted via a semi-independent validation dataset based on a partition not used in training
(Hastie et al. 2009, Wenger and Olden 2012, Zurell et al. 2020b). We use evaluation as a blanket term that
applies to either validation (via a partition of the same dataset used for training) or testing (based on
independent data).

The premise that within the study region, factors related to dispersal, establishment, and persistence of
populations (e.g. dispersal barriers or small patch size); biotic interactions; and human modifications of the
environment do not cause the species to occupy an environmentally biased subset of the areas abiotically
suitable for it. Under these assumptions, even if the species does not inhabit all suitable areas in the study
region (i.e. is not at spatial equilibrium), it occurs in environmental equilibrium, with such factors only
adding statistical noise (Anderson 2013).

Environments in which the conditions are different from those in which the model was trained. It usually
refers to environmental values beyond the minimum and maximum present in the training data but can
also refer to novel environmental combinations (Mesgaran et al. 2014, Guevara et al. 2018b).

Error that represents the failure of a model to predict a presence of the species once a binary prediction of
suitability is obtained (by applying a threshold above which a grid cell is considered suitable or predicted
presence).

noise assumptions

non-analog

omission (Peterson et al.
2011) (= false negative
rate; =1 — sensitivity;
see also commission)
overfit A model that is fit too tightly to the training data. This reduces the generality and utility of the model, which
will have high performance in predicting the sample with which it was trained but perform poorly on other
datasets (e.g. those withheld for validation, deriving from additional sampling, or corresponding to transfer
of the model to other areas or time periods; see transfer).
When known occurrences of the species reflect vagaries associated with patterns of biological sampling (e.g.
greater efforts near roads or biodiverse regions). This sampling bias in geographic space usually translates
into a bias in environmental space.
The ability of a model to predict a presence of the species (see omission).
The ability of a model to predict an absence of the species (see commission).
The geographic region in which a species distribution model is trained, and from where the sample of
presences and any environmental background (or pseudoabsence) information is obtained.
training (= fitting; referred  The process by which a particular model is built (Hastie et al. 2009, Zurell et al. 2020b). Often this includes
to as calibration in some  automated iterations with subsets of the data, when plausible environmental associations are explored and
literature (Peterson etal.  evaluated by the algorithm, aiming to achieve an optimal solution (e.g. maximizing likelihood in
2011) regression, or minimizing relative entropy in MaxEnt; Merow et al. 2013, Phillips et al. 2017).
transfer Use of a model in a place or time period different from that in which it was trained. If non-analog
environments are encountered (different from those in which the model was trained), extrapolation of the
model is required (e.g. following response curves beyond the point of truncation; Guevara et al. 2018b).

tuning Approximating optimal parameterization and model complexity for a given dataset. This is achieved by
building multiple models differing in the underlying parameters (or settings that constrain their estimation
from the data) and choosing the best one/s according to specific evaluation criteria (Elith et al. 2011,
Merow et al. 2013).

sampling bias

sensitivity
specificity
study region

individually via automated pipelines (Brown et al. 2015,
Gomes et al. 2019), for each hazard we note the feasibility
and challenges of implementing the recommendations in such
approaches. In addition to the ten key hazards, we also discuss
a few other important topics that researchers should be aware
of; yet for which solutions and recommendations remain chal-
lenging and require additional research.

Top ten hazards

Data gathering and processing

1. Overlooking errors in occurrence datasets
Online biodiversity portals (e.g. GBIF; eBird; Robertson et al.
2014) often aggregate information from many data
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providers, affording invaluable access to species occur-
rence data. However, such data sources are often misused
by researchers who employ records of insufficient quality
(Newbold 2010, Maldonado et al. 2015).

Assumptions. Input data are free of substantial errors regard-
ing taxonomic identification and georeference (e.g. latitude
and longitude coordinates), with spatial and temporal uncer-
tainty smaller than the resolution of the environmental pre-
dictors (Lozier et al. 2009, Aubry et al. 2017, Aratjo et al.
2019).

Problem. Despite increasing attention to data quality and
uncertainty in data portals (Anderson et al. 2020), errors
of taxonomic identification and georeferencing remain

d ‘¥ “vT0T L8S00091

:sdny woiy

QSUSIIT SUOWIWO)) dANELAI) d[qedrjdde oy Aq paurdA0S dIe sA[ONIE YO (9N JO SO[NI J0J AIRIQIT SUIUQ AJ[TA\ UO (SUONIPUOI-PUB-SULIA) WO AS[IM" AIRIqI[AUT[UO//:sd1N) SUONIPUO)) PUE SWIS [, Y 998 “[+T0T/+0/20] U0 AIeIqrT duIjuQ AS[IAN 10X MAN JO 9801100 A1) oYL AQ 76890 'S0/ [ "0 1/10P/W0d KI[IM",



common, and high spatial uncertainty may always persist for
many older records (Newbold 2010, Maldonado et al. 2015,
Serra-Diaz et al. 2017). Depending on the type and magni-
tude of these errors, spatial resolution of the environmental
predictors, and heterogeneity of the landscape, substantial dis-
tortions and inflations of inferred environmental associations
and suitable areas may occur (Romero et al. 2014, Costa et al.
2015, Aubry et al. 2017, Gébor et al. 2020a). Unfortunately,
species identifications may be incorrect, and aggregators sel-
dom capture updates from recent taxonomic publications
(Anderson et al. 2020). Additionally, the vast majority of
records lack information regarding the uncertainty of iden-
tification and georeference (and unit conversions to decimal
degrees often falsely implies high precision and accuracy).

Recommendations. Models should be built using occurrence
data with correct taxonomic identifications and georeferences
whose uncertainties do not affect the results greatly (e.g. only
increase noise minimally and do not bias the model). Ideally,
occurrence records would have been vetted by a specialist
knowledgeable regarding the current taxonomy of the group
at hand (e.g. by examining morphological, photographic,
or audio vouchers to check the identification) and a person
familiar with the region (e.g. by consulting maps and field
notes to help determine an accurate and precise georeference;
Maldonado et al. 2015, Soley-Guardia et al. 2019). For some
databases, partial vetting has already been accomplished, with
‘research grade’ designations allowing the efficient use of
only such data (e.g. by iNaturalist; inaturalist.org or Arctos;
arctosdb.org; Kays et al. 2022b, Gaier and Resasco 2023).
Similarly, some consortia of data providers have determined
coordinate uncertainty, which percolates up to aggregators,
so that researchers can use only those accurate enough for
the aims of a given study (e.g. MaNIS; Stein and Wieczorek
2004). Focused endeavors to standardize and clean data for
given taxonomic groups and regions also provide much bet-
ter information than otherwise available (e.g. BIEN and
BioModelos; Maitner et al. 2018, Veldsquez-Tibatd et al.
2019). When these situations do not exist, automated meth-
ods for data cleaning can catch many but certainly notall errors
(e.g. identifying unit conversion errors; spatial and environ-
mental outliers; Garcia-Rosellé et al. 2014, Naimi et al. 2014,
Robertson et al. 2016, Zizka et al. 2019). In cases where the
uncertainties of records are not known, researchers can con-
duct qualitative or quantitative sensitivity analyses and dis-
cuss the likely effects on model output (Gdbor et al. 2020a).
Additionally, expert knowledge remains critical in interpreting
the outputs of both the data-cleaning algorithms and resulting
models (e.g. ‘outliers’ may represent rarely sampled sites and
provide valuable information; Jiménez-Valverde et al. 2011,
Soley-Guardia et al. 2014). All of these investments in data
cleaning improve the quality of models, perhaps especially
those generated via automated analyses for projects modeling
many species (Veldsquez-Tibatd et al. 2019).

2. Disregarding biases inherent to biological sampling
Aggregated biodiversity data combine records that gener-
ally were collected by opportunistic rather than stratified or

random sampling (Beck et al. 2014, Isaac and Pocock 2015,
Daru et al. 2018).

Assumptions. Sampling effort has been homogeneous across
the study region, so that no bias exists in the conditions
inferred to represent the species’ environmental associations
(Castellanos et al. 2019, Vollering et al. 2019, Taylor et al.
2020).

Problem. Opportunistic sampling tends to be geographi-
cally biased towards accessible areas or habitats of par-
ticular interest (Daru et al. 2018, Tarli et al. 2018). Such
geographic bias typically translates into environmental
bias as well, with some conditions inhabited by the spe-
cies being artificially overrepresented (Yackulic et al. 2013,
Monsarrat et al. 2019). If not corrected for, certain environ-
mental combinations will erroneously be identified as indi-
cating higher suitability for the species, yielding a biased
model (Syfert et al. 2013, Ranc et al. 2017, Vollering et al.
2019). Importantly, inappropriate (yet commonly applied)
evaluation approaches fail to detect this bias, which per-
vades both raining and validation datasets (interaction with
Hazard 8; Fig. 2).

Recommendations. Completely eliminating the false sig-
nal resulting from sampling bias remains challenging; how-
ever, several approaches may reduce its effects considerably
(Franklin 2023). One theoretically sound approach corrects
for sampling bias by contrasting the focal species’ occurrences
against a sample of the environment characterized by the same
bias, via occurrence records of other species detected with the
same techniques (i.e. ‘target-group background’; Anderson
2003, Phillips et al. 2009, Merow et al. 2016). This approach
can be modified by concentrating background sampling
around occurrences of the target-group species in proportion
to their density (‘weighted locality approach’; Anderson 2003;
sometimes called ‘background thickening’; Ranc et al. 2017,
Stea et al. 2018, Vollering et al. 2019, Barber et al. 2022).
Alternatively, a practical approach that can improve perfor-
mance is to apply a spatial or environmental filter that reduces
the number of clustered occurrences (‘thinning), likely reduc-
ing the effects of sampling bias (Boria et al. 2014, Varela et al.
2014). Nevertheless, choosing an appropriate filtering distance
that retains the niche signal while removing the bias remains
challenging (Fourcade et al. 2014, Aiello-Lammens et al.
2015, Castellanos et al. 2019, Gébor et al. 2020b) but can
be tuned empirically (Soley-Guardia et al. 2019). For projects
implementing automated modeling of many species, either
using target-group background correction (with experts defin-
ing suitable groupings based on relevant sampling techniques)
or filtering approaches should be feasible.

3. Using spatially or temporally inconsistent proxy
environmental variables

Predictor variables used in SDMs may affect species distri-
butions directly (proximal/driving factors) or indirectly (via
correlation with the former; Austin 2002, Anderson 2013,
Title and Bemmels 2018). Whereas indirect proxy variables
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Table 2. Overview of the ten most problematic hazards in species distribution modeling covered in this paper. The columns indicate: the
corresponding step of modeling; the name of the hazard; the nature of the hazard; its relevance for predictions (whether it affects the model
in the training region, under transferal, or both); interactions with other hazards (an asterisk indicates those where the interaction is explained
in the main text only in the entry for the other hazard involved); and three selected references. All hazards correspond to important concepts
in the field, but for their nature we note ‘conceptual’ for those with especially close ties to ecological theory. While Hazards 3 and 9 apply
primarily to model transfer, they may also affect predictions within the time and space in which the model was trained (see main text).

Relevance Interaction
(non-transfer with other
Step of modeling Hazard Nature and transfer) hazards References
Data gathering 1. Overlooking errors in data quality both - Maldonado et al. 2015,
and processing occurrence datasets Veldsquez-Tibatd et al. 2019,
Anderson et al. 2020
2. Disregarding biases inherent  data quality both 4*, 6%, 8 Phillips et al. 2009, Boria et al.
to biological sampling 2014, Monsarrat et al. 2019
3. Using spatially or temporally  conceptual transfer 6 Austin 2002, Dormann et al.
inconsistent environmental (primarily) 2013, Feng et al. 2019b
variables
Model building 4. Relying on default settings analytical both 2,5% 8 Merow et al. 2014,
Hallgren et al. 2019,
Valavi et al. 2022
5. Reducing predictor variables  analytical- both 4 Breiman 2001, Dormann et al.
irrespective of their conceptual 2013, Farrell et al. 2019
information content
6. Using an overly large study analytical- both 2,3% 7,9, Anderson and Raza 2010,
region conceptual 10* Barve et al. 2011, Cooper and
Soberén 2018
Model evaluation 7. Misinterpreting metrics of analytical both 6 Aratjo and Peterson 2012,
model performance Leroy et al. 2018, Bohl et al.
2019
8. Evaluating models with analytical both 2,4,9 Veloz 2009, Radosavljevic and
random splits of the data Anderson 2014, Roberts et al.
2017
Model 9. Misunderstanding or analytical- transfer 6%, 8% Fitzpatrick and Hargrove 2009,
interpretation overlooking the effects of conceptual (primarily) Elith et al. 2010, Owens et al.
extrapolation 2013
10. Comparing model outputs analytical- both 6 Fithian and Hastie 2013, Phillips
across different species or conceptual and Elith 2013, Guillera-

places

Arroita et al. 2015

can provide strong predictive ability within a limited study
region, their correlation with driving factors usually varies in
other places or time periods (Dormann et al. 2013).

Assumptions. The variables (at a given spatial and tempo-
ral resolution; Hazard 1) incorporated into a model affect
the species’ distribution directly or are highly and consis-
tently correlated with those that do (Anderson 2013, Lira-
Noriega et al. 2013).

Problem. If this is not the case, predictions can be inaccu-
rate — especially when occurrence datasets are small, study
regions are overly large (interaction with Hazard 6; Fig. 2;
because correlations between proxy and driving variables
are less likely to be consistent across space), or models
undergo fransfer across space or time for the needs of the
study. Elevation constitutes a classic example of a variable
that frequently violates this assumption because its cor-
relation with the presumed driving variable (temperature),
differs across latitudes and over time periods (Austin 2002,
Elith and Leathwick 2009). However, commonly used cli-
matic variables also can suffer changes in correlation with
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missing driving factors (e.g. soil type, groundwater avail-
ability; Dormann et al. 2013, Mesgaran et al. 2014, Soley-
Guardia et al. 2014, Feng et al. 2019b).

Recommendations. Based on existing natural history or
physiological information, researchers should strive to
select environmental variables known or suspected to have
a direct effect on suitability for the species, at relevant
spatial and temporal resolutions (Hazard 1; Mod et al.
2016, Detitpierre et al. 2017, Reside et al. 2019, Morente-
Lépez et al. 2022). Fortunately, advances continue regard-
ing variables with various spatial resolutions and potentially
tighter links with species physiologies (e.g. “WorldClim?2’;
Fick and Hijmans 2017; ‘(ENVIREM’; Title and Bemmels
2018; ‘NicheMapR’; Kearney and Porter 2017, 2020,
Enriquez-Urzelai et al. 2019). For projects modeling many
species using automated pipelines, researchers can select
environmental variables in bunches (e.g. for groups of spe-
cies with similar natural histories) rather than using the
same set for all of them, although that still may not achieve
models as good as those possible with species-specific
decisions.
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Model building

4. Relying on default settings

SDMs characterize the relationships between occurrence data
and environmental variables based on allowed mathematical
options and algorithmic settings, including those that influ-
ence model complexity (e.g. feature classes and regularization
multdiplier in MaxEnt; Merow et al. 2013; lasso in general
linear models (GLMs) and general additive models (GAMs);
Dicko et al. 2014; tree depth in random forests; Valavi et al.
2021). Due to the availability of modeling software with
defaults for key settings that affect model complexity, it is
common for users to overlook the need to consider a variety
of values for them, to approximate the optimal ones (a pro-
cess often called runing or smoothing; Morales et al. 2017,
Feng et al. 2019a, Hallgren et al. 2019).

Assumptions. Models are fairly insensitive to settings that
affect their complexity; or default settings result in an accept-
able parameterization regardless of biases and nuances of each
input dataset.

Problem. Estimates indeed can be highly sensitive to the
algorithmic settings that control model building and com-
plexity (Hallgren et al. 2019, Valavi et al. 2022). Default
settings commonly result in models that are overly com-
plex and overfit to the training data, producing distorted
suitability estimates and poor transferability to other
places or times (Moreno-Amat et al. 2015, Morales et al.
2017, Tracy et al. 2018). This is especially problematic
when the occurrence data are biased (Merow et al. 2014,
Warren et al. 2014, Galante et al. 2018; interaction with
Hazard 2; Fig. 2) and for inappropriate model-evaluation
schemes that cannot detect overfitting (interaction with
Hazard 8; Fig. 2).

Recommendations. Instead of relying on default settings,
tuning experiments allow researchers to explore multiple
parameterization scenarios and evaluate them via approaches
that can detect overfitting (e.g. spatial blocks for data par-
titioning; Merow et al. 2014, Tracy et al. 2018, Soley-
Guardia et al. 2019; interaction with Hazard 8; Fig. 2).
For example, with MaxEnt, multiple candidate models for
each species can be run with different combinations of fea-
ture classes and regularization multipliers; with appropri-
ate model-evaluation schemes, overfit models will show
poorer performance on validation data than on training
data (Radosavljevic and Anderson 2014). Recent software
packages (e.g. ‘biomod2’; Thuiller et al. 2009; ‘ENMeval’;
Kass et al. 2021; ‘SDMtoolbox’; Brown et al. 2017; “Wallace
EcoMod’; Kass etal. 2018, 2023), have made this practical via
automation, at least for certain algorithms. Despite increas-
ing computational time, their ease of automation makes tun-
ing exercises a feasible element for projects modeling many
species (Valavi et al. 2022); nevertheless, as for all modeling
efforts, expert inspection of the response curves and geo-
graphic prediction of the selected model to assess ecological

realism remains beneficial and wise (Hazard 9; Guevara et al.
2018Db, Veldsquez-Tibatd et al. 2019).

5. Reducing predictor variables irrespective of their
information content

With the goal of minimizing variable correlations and/or
overfitting, researchers often reduce the number of predictors
prior to model building irrespective of their information con-
tent (i.e. their predictive power or ability to inform regard-
ing a species’ distribution), for example via pre-determined
cutoffs in correlation analyses (Breiman 2001, Feng et al.
2019b, Sillero et al. 2021). This approach stems from other-
wise sound statistical practices in regression modeling, often
also aimed at identifying the contributions of particular vari-
ables and obtaining simple, explanatory models that facilitate
interpretation and hypothesis-testing (Dormann et al. 2013,
Farrell et al. 2019, Feng et al. 2019b).

Assumptions. Modeling with fewer or less correlated vari-
ables yields simpler and better models (Breiman 2001,
Elith et al. 2008, Evans et al. 2013) that are not fitted to
nuances in the data.

Problem. Removing predictor variables a priori without con-
sideration of their information content may arbitrarily discard
informative data (reducing the predictive ability of the model)
and does not directly address the problem of overfitting
(Breiman 2001, Olden et al. 2008, Braunisch et al. 2013).

Recommendations. After identifying candidate variables
based on their biological relevance (Hazard 3), approaches
that consider information content to limit complexity (instead
of via correlations a priori) can reduce overfitting and lead to
improved models (Cobos et al. 2019a, Farrell et al. 2019).
Many algorithms have options for controlling the degree of
fitting to the sample by penalizing complex models (e.g. those
with higher numbers of variables and more complex responses
to them). Approaches for limiting complexity include regu-
larization procedures like lasso and ridge regression in GLMs
and MaxEnt and pruning in regression trees (Hastie et al.
2009, Dicko et al. 2014, Guisan et al. 2017, Valavi et al.
2022). Values of the penalties for higher complexity (e.g.
the regularization multiplier in MaxEnt; interaction with
Hazard 4; Fig. 2) can be tuned using evaluation procedures
that detect overfitting (Hazard 8). Increasing the penalization
for complexity tends to lead to zero contribution for variables
with low or no information content (by themselves or in
combination with correlated variables that are more informa-
tive), in effect excluding them from the final model (interac-
tion with Hazard 4; Fig. 2; Phillips et al. 2017, Farrell et al.
2019, Valavi et al. 2022). Because of this, algorithms that
implement variable selection indirectly through penalties for
complexity tend to yield models without highly correlated
variables, which also simplifies interpretation of the response
curves for those retained by the algorithm (Feng et al. 2019b,
Morente-Lépez et al. 2022). Such approaches dovetail with
projects that automate model-building for many species,
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as long as appropriate evaluation procedures are employed

(Hazard 8).

6. Using an overly large study region

Often, rescarchers use an overly large study region for model
building and/or evaluation (Aradjo and Peterson 2012,
Liang et al. 2018). Sometimes such a region is selected with
the misconception that it will yield an accurate depiction of the
species’ range (rather than the areas suitable for it) but probably
most often because a map of suitability is desired in that full
area. For example, researchers often seek to find suitable areas
with sparse sampling, identify likely areas of spread for invasive
species, or characterize potential overlap where related species
may occur (uses that all require estimates of suitability).

Assumptions. Within the study region for model train-
ing, the species occurs in spatial (or at least environmental)
equilibrium. In the first scenario, the species inhabits all
suitable areas (i.e. spatial equilibrium; Peterson et al. 2011,
Guisan et al. 2017). Because of this, its distribution also cor-
responds to environmental equilibrium: the places occupied
by the species accurately reflect the environments suitable for
it. In the second scenario, although the species does not occur
in all suitable areas, it inhabits an environmentally represen-
tative (unbiased) subset of them (i.e. environmental equi-
librium). Hence, it fulfills the noise assumptions (Anderson
2013), whereby factors related to dispersal, establishment,
and persistence of populations; biotic interactions; and
human actions do not cause the species to occupy an environ-
mentally biased subset of the areas suitable for it, but rather
only add statistical noise.

Problem. The chances of violating the spatial-equilibrium
or environmental-equilibrium (noise) assumptions increase
with the extent of the study region (Saupe et al. 2012, Cooper
and Soberén 2018). Strong departures from these assump-
tions occur especially because of barriers to dispersal and for
species not yet at equilibrium with suitability (e.g. invasive
species or those not quickly tracking a changing climate;
Elith et al. 2010, Anderson 2013). Environmental informa-
tion extracted from areas that are suitable yet unoccupied can
bias the inferred environmental associations, underestimat-
ing suitability in areas both within and beyond the range
(Jiménez-Valverde et al. 2013, Cooper and Soberén 2018,
Liang et al. 2018); the same is true for occupied regions
not yet documented because of biased sampling; Hazard 2).
Unfortunately, such violations often lead to inflated measures
of performance when using evaluation statistics that include
overestimates of commission error (a pervasive problem with
background or pseudoabsence data; Jiménez-Valverde 2012,
Radosavljevic and Anderson 2014; interaction with Hazard
7; Fig. 2). This constitutes a particularly dangerous interac-
tion between hazards because it gives a false impression of
good model performance.

Recommendations. An appropriate study region approxi-
mating the assumption of spatial equilibrium (or the noise
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assumptions) should be defined using available information
regarding the species’ natural history and the configuration
of the landscape (e.g. excluding regions beyond likely barri-
ers to dispersal; Anderson and Raza 2010, Barve et al. 2011,
Saupe et al. 2012, Guisan et al. 2017; or with particularly low
sampling effort; Hazard 2). Doing so has the effect of masking
out areas where the lack of occurrence records derives from fac-
tors other than the environmental variables considered. Buffers
around occurrences or established biogeographic regions may
better approximate assumptions, although the buffering dis-
tances employed generally remain subjective (Brown et al.
2016, Mammola and Isaia 2017, Soley-Guardia et al. 2019,
Andrade et al. 2020). Buffering known occurrence records
also can have the benefit of excluding consideration of areas
with particularly low sampling effort, where such a bias can
negatively affect model building by sending a false negative
signal (interaction with Hazard 2; Fig. 2). If needed, models
can then be transferred to larger spatial extents to assess suit-
ability beyond the known range, minding necessary caveats
regarding any non-analog conditions that require extrapola-
tion in environmental space (interaction with Hazard 9;
Fig. 2). Complementarily, these models can be post-processed
to obtain actual ranges (e.g. masking predictions with land-
use layers; Heap 2016, Calixto-Pérez et al. 2018, Merow et al.
2022), if such estimates are needed (instead of suitability).
Projects modeling many species likely will employ automated
decision-making (e.g. buffering occurrence records by a given
distance or using biogeographic regions). Although species-
specific choices likely would approximate assumptions more
closely and produce superior models, making these decisions
by bunches (e.g. for species with similar natural histories and
inhabiting regions with comparable levels of environmen-
tal heterogeneity) may prove more reasonable than a single
choice for all species.

Model evaluation

7. Misinterpreting metrics of model performance

A particularly widespread hazard in studies employing
presence-background or presence-pseudoabsence data is eval-
uating performance using metrics designed for analyses with
reliable absence information (e.g. AUC, Kappa, true skill sta-
tistic), under the misconception that they represent statisti-
cally unbiased, absolute measures of performance (Lobo et al.
2008, Leroy et al. 2018). Unfortunately, with great frequency
researchers interpret these metrics in the same manner as
when true absence data are used for their calculation (e.g.
predictions with AUC values > 0.5 being better than random
and those approaching 1.0 being a requisite for or indica-
tive of a good model); or as comparable among predictions
for different species or study regions (Jiménez-Valverde et al.
2013, Liang et al. 2018, Fernandes et al. 2019).

Assumptions. Error rates for omission (false negatives) and
commission (false positives) are both accurately calculated
(Lobo et al. 2008, Jiménez-Valverde 2012, Leroy et al.
2018; see also their respective complements, sensitivity and
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specificity). For commission error and metrics that include it,
comparisons across species or regions assume that the ratio
of suitable to unsuitable environments remains constant
(Jiménez-Valverde et al. 2013, Bohl et al. 2019).

Problem. When absence data are not available, commission
errors estimated from a background or pseudoabsence sample
suffer from (an unknown) statistical bias. Great numbers of
map pixels typically exist within areas that are suitable for the
species, but the vast majority of them are not documented by
the limited sample of presence records (a problem exacerbated
by overly large study regions, where factors other than envi-
ronmental suitability preclude the species’ presence; interac-
tion with Hazard 6; Fig. 2). Because of this, the estimate of
commission error is strongly inflated (Anderson et al. 2003,
Aradjo and Peterson 2012, Leroy et al. 2018, Saupe et al.
2018). Therefore, when calculated using background or pseu-
doabsence data, commission error and metrics derived from
it are biased indicators of performance (Radosavljevic and
Anderson 2014, Fourcade et al. 2018, Liang et al. 2018),
penalizing models that correctly predict suitability beyond
the species documented occurrences and favoring those
that do not (Aradjo and Peterson 2012, Jiménez-Valverde
2012). Ciritically, it follows that because of this bias, such
metrics do not represent values of absolute performance, but
instead relative ones valid for comparisons only with other
analyses for the same species and study region (Lobo et al.
2008, VanDerWal et al. 2009, Jiménez-Valverde et al. 2013).
Additionally, this bias undermines the use of these metrics in
identifying an optimal threshold for converting model output
into a binary prediction of suitable vs unsuitable conditions
(e.g. via the sum of sensitivity and specificity; Liu et al. 2013).

Recommendations. Adjustments for differential weight-
ing of omission and commission errors have been proposed
(Peterson et al. 2008), but appropriate weights for given
study systems remain elusive. Instead, metrics that gauge
performance without estimating commission error are valid
and more appropriate for this type of data, both for assessing
model performance and for use in threshold selection. For
example, rates of omission at a given threshold are commonly
used and comparable across species (e.g. validation omission
rate based on a threshold corresponding to the minimum
training presence value; Peterson et al. 2011), at least when
the effects of sampling bias have been ameliorated (Hazard
2). In situations where metrics based on both omission and
commission can provide useful information (e.g. assessing
discrimination from the background for the same species and
study region in tuning exercises; Soley-Guardia et al. 2016,
Galante et al. 2018), they are best interpreted against a null
expectation specific to the system. Fortunately, null-model
approaches now exist to determine statistical significance and
effect size (Raes and ter Steege 2007, Bohl et al. 2019; for
example including implementation in ‘ENMeval’; Kass et al.
2021). These approaches increase computational time greatly
but do not represent analytical barriers for projects that auto-
mate modeling of many species.

8. Evaluating models with random splits of the data

Most SDM studies lack truly independent occurrence data for
testing (e.g. independently collected from a random or strati-
fied survey design). Because of this, researchers commonly
conduct model evaluation by partitioning available presence
(and background or pseudoabsence) data into subsets, with
some being used for model training and the rest for validation
(Hastie et al. 2009, Zurell et al. 2020b). Over the past two
decades, a particularly widespread partitioning approach has
employed random division of the data (e.g. cross validation
with random division into # folds, or groups, one of which
is excluded from training in each round to serve instead for
evaluation; Naimi and Aratjo 2016, Roberts et al. 2017).

Assumptions. Training and validation datasets created using
random splits are independent from one another.

Problem. Random splits of occurrence data do not provide
statistical independence; instead, data points of the training
and validation subsets often end up lying in geographic prox-
imity (especially if sampling is spatially clustered; interaction
with Hazard 2; Fig. 2). Due to pervasive spatial autocorre-
lation of the environment, geographically proximal records
share similar or identical conditions; furthermore, because
training and validation subsets are highly non-independent,
they both reflect the same biases of the overall sample
(Jiménez-Valverde et al. 2011, Wenger and Olden 2012,
Roberts et al. 2017). Hence, undesired fitting to biases in
the training data (interaction with Hazard 2; Fig. 2), which
is more likely in overly complex models (interaction with
Hazard 4), will go undetected — yielding inflated measures of
performance via an especially misleading interaction among
these three hazards (Veloz 2009, Anderson 2012, Hijmans
2012, Fourcade et al. 2018).

Recommendations. Splitting data non-randomly increases
independence and reduces spatial correlation among subsets
(e.g. using spatial or environmental blocks; Radosavljevic
and Anderson 2014, Roberts et al. 2017). Such data-
partitioning schemes make it possible to detect fitting to
biases in the sample (interaction with Hazard 2; Fig. 2).
Hence, they can be applied to estimate optimal model com-
plexity appropriately in tuning exercises, rather than relying
on default settings that often lead to overfitting (interaction
with Hazard 4; Fig. 2). Fortunately, evaluation procedures
with automated non-random (e.g. spatial) partitioning exist
(‘BlockCV’; Valavi et al. 2019; ‘ENMeval’; Kass et al. 2021;
‘ENMTMUL; Andrade et al. 2020; ‘kuenm’; Cobos et al.
2019b; ‘SDMrtoolbox’; Brown et al. 2017; “Wallace EcoMod’;
Kass etal. 2018, 2023). Notably, this approach often faces the
additional challenge of requiring extrapolation of response
curves into non-analog environments (entailing additional
caveats, including changes in the correlation structure of
the variables; interaction with Hazard 9; Fig. 2). However,
this can be regarded as an advantage when the ultimate use
will require model transfer to another place or time (because
spatial blocks allow assessment of the model under transfer;
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Roberts et al. 2017, Soley-Guardia et al. 2019). Non-random
splits for cross-validation exercises are feasible for automated
analyses modeling many species, but they increase the need
for expert inspection of the response curves and geographic
prediction of the selected model.

Model interpretation

9. Misunderstanding or overlooking the effects of
extrapolation

When the ultimate use of a model requires its transfer to
another place or time, the new conditions typically contain
at least some non-analog environments (beyond those found
in the training study region). This makes extrapolation of
the modeled response curves necessary to make a prediction
(Anderson 2013; see slightly different use of terminology in
Owens et al. 2013, Qiao et al. 2019). Frequently, however,
researchers confuse this need to extrapolate with the particu-
lar manner in which extrapolation is accomplished.

Assumptions. Two fundamental methods exist for extrapo-
lating beyond the minimum and maximum environmental
values found for any variable within the training dataset
(composed of the sample of presences and the background
or pseudoabsence information). One assumes that the mod-
eled response to a given variable continues its trend uncon-
strained (e.g. achieved by including cubic and quadratic
terms in GLMs, or disabling ‘clamping’ in MaxEnt); the
other assumes that the response remains fixed at the last value
of the training dataset (e.g. using linear or constant splines in
GLMs, ‘clamping’ in MaxEnc, or in all uses of classification
and regression trees including random forests and boosted
regression trees; Elith and Graham 2009, Elith et al. 2010,
Anderson 2013). Which method is more appropriate, and
how much the corresponding estimates of suitability differ,
both depend on several factors. These include the degree of
environmental novelty in the new area or time (i.e. how dif-
ferent the conditions are compared with those used for model
training) and the tendency and height of the response curve
at its point of truncation (e.g. increasing or decreasing; near-
ing suitability limits or not; Fitzpatrick and Hargrove 2009,
Anderson 2013, Guevara et al. 2018b).

Problem. Confusing the need to extrapolate with the man-
ner in which it is accomplished can result in not only incor-
rectly documenting this important aspect of modeling but
also ignoring its effects on predicted suitability and biological
inferences (Guevara et al. 2018a, Feng et al. 2019a). While
this applies primarily to model transfer, it also can affect
predictions within the time and space where the model was
buile (when the background or pseudoabsence sample does
not contain the full set of environments of the study region
(Guevara et al. 2018b).

Recommendations. Several analytical approaches now exist
to provide a clearer understanding and documentation of
extrapolation. Together, they allow for flagging areas with
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high uncertainty due to extrapolation, which can help
researchers identify regions where drawing any inference
from the suitability values may be unadvisable (Owens et al.
2013, Franklin 2023). For example, MaxEnt can calculate the
degree of environmental novelty across space (‘MESS’ and
‘MoD’ analyses) as well as how much the prediction depends
on the particular extrapolation method (‘clamping analysis’;
Elith et al. 2010). Such analyses are best interpreted in con-
junction with inspection of the response curve for each envi-
ronmental variable included in the final model, to assess its
plausibility in non-analog conditions (Guevara et al. 2018b).
Additionally, the model’s robustness to extrapolation can be
estimated with evaluation schemes that include transfer, such
as spatial blocks (Roberts et al. 2017, Soley-Guardia et al.
2019) (Hazard 8). Fortunately, tools for tackling aspects
of extrapolation continue to be developed (Mesgaran et al.
2014, Bartley et al. 2019, Cobos et al. 2019b, Andrade et al.
2020). These now include the ability to make separate deci-
sions (whether or not to constrain the response) for each tail
of every environmental variable (for example, depending on
whether the response curve is increasing or decreasing at the
point of truncation; Anderson 2013, Guevara et al. 2018b,
Kass et al. 2021). Additionally, researchers can compare
results among techniques that extrapolate only via a fixed
response (e.g. classification and regression trees), others that
do so unconstrained (e.g. some implementations of GLMs),
and those with the ability to do cither (e.g. MaxEnt and con-
trasting ways to employ GLMs) — and then characterize the
associated uncertainty (Elith and Graham 2009, Aradgjo et al.
2019). Decisions regarding environmental extrapolation can
be automated but represent a challenge for analyses model-
ing many species, where expert inspection of response curves,
maps of predicted suitability, and uncertainty due to extrapo-
lation remain advisable.

10. Comparing model outputs across different species or
places

Without additional data or assumptions, algorithms that use
presence data and a background or pseudoabsence sample
(i.e. without true absence information) do not provide proba-
bility of presence but rather an output that represents relative
suitability across map pixels for a given species (Phillips and
Elith 2013, Yackulic et al. 2013). Nevertheless, direct com-
parisons of such outputs across species or geographic regions
is frequently desired (e.g. to assess competition or niche over-
lap; Peterson 2011, Gutiérrez et al. 2014). Only within a
study region where the species’ distribution is in equilibrium
with environmental suitability (interaction with Hazard 6;
Fig. 2), can relative suitability values be interpreted as related
to probability of presence (by an unknown function, which
is presumably monotonic although not necessarily linear).
For techniques with theoretical links to population ecology
(e.g. MaxEnt, GLMs, and GAMs; Hastie and Fithian 2013,
Phillips and Elith 2013), such outputs of relative suitability
can be transformed to yield absolute probability of presence,
allowing direct comparisons across species and geographic
regions. This requires an explicit rescaling function, obtained
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Figure 2. Illustration of interactions between pairs of the ten most problematic hazards in species distribution modeling covered in this
paper (arrows; Table 2). The colored shapes denote the corresponding step of modeling (orange hexagons: data gathering and processing;
purple circles: model building; blue squares: model evaluation; green ovals: model interpretation). Red arrows highlight an especially mis-
leading interaction among hazards from three different steps of modeling that together can trick researchers into making overfit models that
falsely appear to have excellent performance (Hazards 2, 4 and 8). Other interactions appear in black. Notably, Hazard 6 shows interactions
with over half of the other individual hazards, emphasizing the far-reaching repercussions of violating its associated assumptions. In addi-
tion to these direct interactions explained in the text, the various hazards also have diffuse effects on each other (not shown), including the
cascading impacts of Hazard 1 (overlooking errors in occurrence datasets).

from additional data or assumptions (Guillera-Arroita et al.
2015, Renner et al. 2015). For instance, MaxEnt’s ‘raw’ out-
put can be transformed to a probability of presence (0-1) via
a scaling parameter representing either prevalence (fraction
of the study region occupied; Guillera-Arroita et al. 2014) or
local abundance (‘logistic’ and ‘cloglog’ outputs, respectively;
Phillips and Elich 2013, Phillips et al. 2017). Estimates of

overall prevalence or abundance at particular sites can be pro-
vided by the user, but because such information rarely exists,
default values typically are used (Guillera-Arroita et al. 2014).

Assumptions. Values given to scaling parameters are appropri-

ate (whether default or user-defined). Alternatively, it can be
assumed that even if mis-specified, the rescaling parameters
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are still equivalent among the entities involved (e.g. for eco-
logically similar species), rendering output values that are
consistently incorrect yet comparable in absolute terms.

Problem. If these assumptions are violated (or no theoretical
rescaling to probability of presence exists for the algorithm
being used), suitability can only be interpreted as relative
across the study area of a given analysis, and the values of
the predictions of different models should not be directly
compared across species or regions (Fithian and Hastie 2013,
Merow and Silander 2014, Guillera-Arroita et al. 2015).

Recommendations. In modeling techniques with theoreti-
cal links to population ecology (e.g. MaxEnt, GLMs, and
GAMs), available estimates of occupancy or abundance can
be used to set the scaling parameters rather than relying on
default values (Guillera-Arroita et al. 2014, Phillips et al.
2017). By extension, if scaling parameters are unknown but
can be justified as likely to be similar across species, the result-
ing values can be interpreted across models in absolute terms
(but as comparable suitability scores, not as probability of
presence; see also a modification of logistic regression aimed
at allowing comparisons across species; Real et al. 20006). In
all other cases, model output should be interpreted as only
relative estimates of suitability across map pixels of the arca
of analysis (specific to that given species and region), whether
or not values have been rescaled (Soley-Guardia et al. 2016).
For any of these three situations, researchers can enhance
interpretations by calculating the species’ prevalence sepa-
rately across different levels of suitability (although necessary
information regarding detectability often remains lacking;
Anderson 2023). In projects automating the production
of models for many species, researchers likely will make
assumptions regarding scaling parameters for sets of species
with similar natural histories (to yield values for comparison
across species or regions as suitability scores, not probability
of presence).

Outstanding questions

In addition to the ten commonly misunderstood hazards dis-
cussed above (each with existing recommendations), other
topics remain challenging and require additional research.
Various such issues exist (e.g. spatial and temporal resolutions
and correlations among environmental variables; standard-
ization of methods to increase comparability of models across
species and studies; emerging approaches for modeling with
big data; Aradjo et al. 2019, Franklin 2023). Below, we cover
five of them, important topics currently being investigated
and each related in various ways to the ten hazards covered
above: model uncertainty; model complexity; biotic interac-
tors; interactions among suitability drivers; and intraspecific
niche variation. Although definitive resolutions for these
issues do not yet exist, researchers should be able to appreciate
them and comment upon how they may affect conclusions
(Aratjo et al. 2019, Sofaer et al. 2019, Zurell et al. 2020b).
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Quantifying model uncertainty

Although most SDM studies rely on conclusions from a
single final estimate of suitability, the field lacks a unified
approach to quantify, partition, and map the uncertainty
that arises from the many factors that can affect predictions
(Beale and Lennon 2012, Peterson et al. 2018, Yates et al.
2018, Aratjo et al. 2019). To characterize such uncer-
tainty, researchers usually have focused on different sources
by combining models built with various splits of the data
(Soley-Guardia et al. 2019), under different parameteriza-
tions of the same algorithm (Breiner et al. 2015, Boria et al.
2017), and using different algorithms (‘ensemble’ or ‘con-
sensus’ approach; Aratjo and New 2007, Meller et al.
2014, Hao et al. 2020). The latter involves difficult chal-
lenges, including how to combine different output formats
(Marmion et al. 2009, Sillero 2011, Andrade et al. 2020) and
ensuring an equally sound implementation of each algorithm
(Barry and Elith 2006, Jarnevich et al. 2015, Hao et al. 2019,
2020). Additionally, the degree of uncertainty (or outright
bias) introduced by errors in taxonomy and georeferences
almost always remains unknown, and the answer surely dif-
fers among taxonomic groups and geographic regions (Beale
and Lennon 2012, Costa et al. 2015, Gébor et al. 2020a).
Simulation studies with virtual species can be informative for
determining how sensitive different approaches are to par-
ticular aspects of the modeling process (Meynard et al. 2019),
but resolution of this issue and corresponding recommenda-
tions likely will depend on aspects of the system.

Reaching consensus on optimal model complexity

No consensus exists on the best criteria for approximating
optimal model complexity (Peterson et al. 2011, Merow et al.
2014, Warren et al. 2014, 2020). A commonly used metric
that penalizes complexity via the number of parameters incor-
porated into the model (AICc) remains statistically imper-
fect for some algorithms (e.g. MaxEnt, because the degrees
of freedom cannot be calculated exactly; Warren and Seifert
2011, Warren et al. 2014, Galante et al. 2018, Velasco and
Gonzélez-Salazar 2019). Additionally, for measures of per-
formance calculated using partitioned validation data or fully
withheld testing data, the particular metric employed can
lead to selection of different models as optimal, and no single
one has been demonstrated as reliable and sufficient on its
own (Hirzel et al. 2006, Boria et al. 2017, Bohl et al. 2019,
Jiménez and Soberén 2020). Disagreement even remains
about whether simpler models are always desirable (Garcia-
Callejas and Aratjo 2016, Yates et al. 2018, Coelho et al.
2019), and few studies have investigated how complexity cor-
relates with predictive ability (Galante et al. 2018, Velasco and
Gonzdlez-Salazar 2019). Future studies comparing model per-
formance according to diverse criteria (Norberg et al. 2019)
should shed light on this issue and are now facilitated by
several software options (e.g. ‘biomod2’; Thuiller et al. 2009;
‘ENMeval’; Kass et al. 2021; ‘sdm’; Naimi and Aratjo 2016;
“Wallace EcoMod’; Kass et al. 2018, 2023).
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Integrating biotic interactors

Most SDM implementations rely on the Eltonian noise
hypothesis that biotic interactions occurring at a fine spatial
resolution in local communities do not alter the abiotic sig-
nal retrieved from the coarser-grain environmental data used
across large spatial extents (Soberén and Nakamura 2009,
Lira-Noriega et al. 2013). Nevertheless, key biotic interac-
tions often carry their effects to resolutions and extents rel-
evant for SDMs (Wisz et al. 2013). In these cases, SDMs can
benefit from incorporating data regarding biotic interactors
(assuming that the nature of their effects remains stationary
across the study region; Sanin and Anderson 2018, Fern et al.
2019, Kass et al. 2020). However, for the correlative models
considered here (comparing presence data with background
or pseudoabsence information), only biotic interactors with
unidirectional effects on the focal species should be consid-
ered as predictor variables (the interactor affects the distribu-
tion of the focal species but not vice versa; Soberén 2007,
2010, Anderson 2017). Other interactors can be informative
during post-processing of model output (Peers et al. 2013,
Gutiérrez et al. 2014) or via classes of models that incorpo-
rate population demography (Zurell 2017). Even joint spe-
cies distribution models that can fit environmental responses
of multiple species simultaneously still assume stationarity
of the effects of relevant biotic interactions (Pollock et al.
2014, Poggiato et al. 2021). Clearly, incorporating biotic
interactions remains difficult, and some unresolved chal-
lenges include: accounting for their statistical interaction
with abiotic predictors and historical contingencies such as
past extinctions and dispersal barriers (Warton et al. 2015,
Dormann et al. 2018, Brown and Carnaval 2019, Early
and Keith 2019, Franklin 2023); computational limitations
for considering inputs from adjacent populations in local
population-dynamic models (Zurell et al. 2020a); and extrap-
olating to non-analog biotic contexts (Williams and Jackson
2007, Jaeschke et al. 2012).

Accounting for interactions among suitability
drivers

Although SDM predictions often represent the combina-
tion of independent responses estimated for each predictor
variable, suitability is likely driven by non-additive effects
(Merow et al. 2014, Golding and Purse 2016). Accounting
for such effects can be particularly important when extrapo-
lating into novel environmental combinations (Zurell et al.
2012, Mesgaran et al. 2014, Feng et al. 2019b). Realistic
inclusion of such statistical interactions is currently pos-
sible for only a few modeling algorithms (e.g. multivariate
adaptive regression splines, ‘MARS’; Leathwick et al. 2006;
Gaussian processes; Golding and Purse 2016). Others pro-
vide partial solutions to the problem, for instance allowing
simple pairwise fixed interactions (e.g. MaxEnt’s product fea-
tures; Merow et al. 2013, Phillips et al. 2017), or providing
great flexibility but without much specification control by the
user (random forests and boosted regression trees; Elith et al.

2008, Merow et al. 2014). Simulation studies are needed to
assess the importance of accounting for such interactions and
determine which particular approaches are most suited to the
task under what circumstances (Golding and Purse 2016).

Incorporating intraspecific niche variation

SDMs assume equal environmental associations for indi-
viduals across populations (i.e. niche conservatism over
space), which may closely approximate reality for many taxa
and commonly used predictor variables (Peterson 2011).
However, in an increasing number of studies, genetically
determined differences have been documented for fac-
tors related to distributional limits among populations
(Pelini et al. 2009, Fournier-Level et al. 2011, Morente-
Lépez et al. 2022, Franklin 2023). Whereas the problem of
violating this assumption of stationarity in SDMs has been
addressed in studies of invasive species (van Boheemen et al.
2019, Pili et al. 2020), phylogeography (Costa et al. 2002),
and climate change (Fitzpatrick and Keller 2015, Moran
and Ormond 2015, Martin et al. 2020), resolving it fully
involves multiple conceptual and practical challenges
(Smith et al. 2019). These challenges include: 1) detecting
deviations from niche homogeneity when data regarding
adaptation and plasticity are not available (i.e. poor predic-
tion in spatial transfers could stem from niche variability
or from various methodological factors, including over-
fit models; Peterson and Holt 2003, Brown and Carnaval
2019); 2) building models with population-specific data
(i.e. separate models for evolutionarily distinct populations
vs single models integrating data on functional differences
across the range; Fitzpatrick and Keller 2015, Hillfors et al.
2016, Thorson et al. 2016); and 3) identifying appropriate
means for transferring such models across space and time
(e.g. involving estimation of distributional limits for par-
ticular populations and the effect of any future intermixing;
Prates et al. 2016, Martin et al. 2020).

Closing remarks

With many topics in species distribution modeling now well
understood and others advancing rapidly, researchers can
take advantage of over two decades of impressive progress
to make defensible and useful models (Aratjo et al. 2019,
Sofaer et al. 2019, Zurell et al. 2020b). In contrast, not
addressing adequately any of the ten hazards detailed here can
hinder progress in basic science — including the understand-
ing of fundamental biological processes — as well as lead to
inefficient or ineffective use of resources and counterproduc-
tive decision-making for important applications in areas as
varied as invasive agricultural pests, human zoonotic diseases,
and the effects of climate change on biodiversity (Guillera-
Arroita et al. 2015, Morales et al. 2017, Tuia et al. 2022).
Attention to key principles holds particular relevance as
researchers increasingly embark on projects modeling species
en masse via automated pipelines, where quality can suffer
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without expert supervision and insights. Importantly, we
note several direct interactions between pairs of hazards, and
in one case among three of them (Fig. 2, Table 2). Therefore,
because of both their individual and collective effects, we
encourage researchers to follow — and reviewers and editors
to call for heeding — existing recommendations for these and
other critical issues. As we mention, comprehensive treat-
ments exist to guide research and promote quality (and rep-
licability) across all aspects of modeling species distributions
(Aradjo et al. 2019, Zurell et al. 2020b). In closing, we hope
that researchers will think about all of these topics carefully
for successful implementations and continue to develop
novel approaches that better approximate reality.
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