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of degree 2
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Abstract

We study the Noether-Lefschetz locus of the moduli space M of K32-fourfolds
with a polarization of degree 2. Following Hassett’s work on cubic fourfolds, De-
barre, Iliev, and Manivel have shown that the Noether-Lefschetz locus in M is
a countable union of special divisors M, where the discriminant d is a positive
integer congruent to 0,2, or 4 modulo 8. We compute the Kodaira dimensions
of these special divisors for all but finitely many discriminants; in particular, we
show that for d > 224 and for many other small values of d, the space M is a
variety of general type.

Résumé

On étudie le lieu de Noether-Lefschetz dans I'espace de modules M des variétés
de type K32 munies des polarisations de degré 2. Selon I'approche de Hassett
pour les cubiques de dimension quatre, Debarre, Iliev, et Manivel ont établi que
ce lieu dans M est une réunion des diviseurs spéciaux Mg, ou le discriminant d
est un entier positif congru a 0,2, ou 4 modulo 8. On calcule les dimensions de
Kodaira des diviseurs spéciaux pour presque tous les discriminants; en partic-
ulier, on démontre que, pour d > 224 et d’autres petits entiers d, ’espace My
est une variété de type général.

1. Introduction

The aim of this paper is to study the internal geometry of some moduli
spaces of hyperkahler fourfolds. Let M denote the moduli space of complex
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four-dimensional polarized hyperkihler (HK) manifolds of K32 type with po-
larization of degree 2, the simplest possible polarization degree. The variety M,
quasi-projective and of dimension 20, is also the period space for Gushel-Mukai
fourfolds, as well as the period space for EPW double sextics. A very general
X € M has the property that X has Picard rank 1. The locus where this
property fails is the Noether-Lefschetz locus NL(M) of M:

NLM)={(X,H) e M(C) : rkPicX > 2},

which is a union of countably many irreducible divisors known as the (Noether-
Lefschetz)-special divisors in M. Our specific goal in this paper is the compu-
tation of the Kodaira dimensions of these special divisors.

1.1. Statement of main theorem

Recall that for any HK manifold X, the Picard group Pic X injects (via
the exponential exact sequence) into the singular cohomology group H?(X,Z).
The Beauwville-Bogomolov form qx: H*(X,Z) — Z equips H?(X,Z) with the
structure of an even integral lattice. A point p € M is represented by a pair
(X, H) where X is an HK fourfold of deformation type K31?/ and H € Pic(X) —
H?(X,Z) is an ample divisor with qx(H) = H? = 2. A polarized HK fourfold
(X, H) is said to be special if (X,H) € NL(M). A primitive sublattice K C
Pic X of rank 2 containing H forms the data of a special labelling of discriminant
d for X (or more precisely, for (X, H)), where d = \D(Kf;z(x,z)ﬂ (cf. [DM, §4]).

For each d, there is a moduli space My C M of polarized special K3[2-
fourfolds of discriminant d. The nonempty M, are hypersurfaces in M, first
studied by Debarre, Iliev, and Manivel in [DIM15] as the locus of Hodge struc-
tures possessing a special discriminant d labelling in the period domain for prime
Fano fourfolds of index 10 and degree 2 (such Fano fourfolds are also known as
Gushel-Mukai fourfolds). They prove that the moduli space M, is nonempty
if and only if d ¢ {2,8} and d = 0,2,4 mod 8. Furthermore, the divisor M is
irreducible if d = 0,4 mod 8 or d = 10; otherwise, when d = 2 mod 8, the hyper-
surface M of special fourfolds of discriminant d is the union of two irreducible
divisors, denoted M/, and M/}, which are birationally isomorphic (see [DM,
Theorem 6.1]).

In this paper, we determine the Kodaira dimension of M for nearly every
value of d. We show My is of general type for almost all d:

d> 224 = k(M) =19.

Moreover, we push our methods to determine the Kodaira dimension for many
other small values of d. Our results, together with the additional inputs to be
discussed in §1.2, determine information about the birational type of M for all
but 34 discriminants.
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Our goal is to prove the following theorem:

Theorem 1.1. Let M denote the moduli space of hyperkdhler fourfolds of degree
2 of K3B-type, and let My C M denote the moduli space of special K3[2-
fourfolds with a special labelling of discriminant d.

1. Suppose that d = 8m with m > 11. Then Mgy is of general type for
m ¢ {11,12,13, 14,
16,17,22,25,28}. Furthermore, for m ¢ {14,16,22}, the variety Mg has
nonnegative Kodaira dimension.

2. Suppose that d = 8m + 2 with m > 12. Then My has two birationally
isomorphic irreducible components, M/, and MY, both of which are of
general type when
m ¢ {12,13,14,15,16,17,21,23}. Furthermore, for m ¢ {14,16}, the
varieties M/, and M!] have nonnegative Kodaira dimension.

8. Suppose that d = 8m + 4 with m > 14. Then Mgy is of general type if
m ¢ {15,17,21,25,27}. Furthermore, for m # 15, the variety Mgy has
nonnegative Kodaira dimension.

The idea of the proof is to work with the global period domain D, an
irreducible quasi-projective variety. The Torelli theorem for M shows that Mg
is a Zariski open subset of Dy. Then we use automorphic techniques developed
by Gritsenko-Hulek-Sankaran in [GHS07] and [GHS13] to study the Kodaira
dimension of Dy. This requires the construction of special odd weight modular
forms on certain quotients of type IV Hermitian symmetric domains of the form
O (L)\Q (see §2 for the relevant definitions).

We note that by a result of Ma, there are only finitely many even integral
lattices L of signature (2, n) such that O (L)\Q is not of general type ([Ma,18,
Theorem 1.3]). Ma’s result implies that each nonempty D, is of general type
for d > Dy, where Dy is some constant Dy > 5.5- 106, In the present work, we
find a smaller upper bound, dy = 224, such that each nonempty Dy is of general
type for d > dy.

1.2. Relationship to Kgq and Cq4

There are 40 values of d for which the techniques used to prove Theorem 1.1
do not yield any information about M . However, it is possible to use results on

2The 34 discriminants for which we have no information on the Kodaira dimension of My
at the present time are: 12, 16, 18, 24, 28, 32, 36, 40, 42, 48, 50, 52, 56, 58, 60, 64, 66, 68, 72,
74, 76, 80, 82, 84, 90, 92, 100, 108, 112, 114, 124, 128, 130, 176.



the Kodaira dimension of the moduli space of degree d polarized K3 surfaces g
to conclude something about M, for some of these discriminants. For d = 2k
with1 <k <13ork € {15,16,17,19}, it is known that /4 has negative Kodaira
dimension, and in fact /4 is unirational ([GHS13, Theorem 4.1] and [Nuel6]).
Since Ky dominates Mg whenever d is not divisible by a prime 3 mod 4 and
M # 0 ([DIM15, Proposition 6.5]), we conclude that M, has negative Kodaira
dimension and is in fact unirational when d € {4, 10, 20, 26, 34}.

Similarly, the moduli space C4 of special cubic fourfolds of discriminant d
dominates My whenever d = 2 or 20 mod 24 and the only odd primes dividing
d are congruent to £1 mod 12 ([DIM15, Proposition 6.5]). The only new infor-
mation this yields about the Kodaira dimension of M, is that M4 has negative
Kodaira dimension, since Cyq4 is uniruled by work of Nuer (see [Nuel6]).

1.3. EPW double sextics and My

O’Grady has shown that a general (X, H) € M is a smooth EPW double sex-
tic (see [O’G06]). Precisely, there is a Zariski open subset U of M parametrizing
pairs (X, H) with ample and base-point free H such that |[H|: X — P realizes
X as a ramified double cover of an EPW sextic in P®. We can consider the sub-
variety Uy = MygNU C M in U parametrizing EPW double sextics which have
a special labelling of discriminant d. It is possible (see [DM, Example 6.3]) that
dimU, < dim My: if d = 4 then Uy = (), and while U/, is known to be nonempty
for d > 10 and d = 0,2,4 mod 8, it is unknown whether dimi/; = dim My for
such d. Still, for d sufficiently large, the variety Uy is birational to My (because
U is an open subset of M), and thus we can conclude that Uy is of general type
for such d. It would follow from a conjecture of O’Grady [DM, Example 6.3]
that Uy is birational to My for all d # 4.

Corollary 1.2. Let Uy denote the moduli space of smooth EPW double sextics
that possess a special labelling of discriminant d. Then for all sufficiently large
d the following hold:

e Ifd=0,4mod 8, then the space Uy is of general type.
e Ifd =2 mod 8, then both irreducible components of Uy are of general type.

If O’Grady’s conjecture is true, then one can take d > 224 in Corollary 1.2,
but as of this writing the result remains ineffective.

Remark 1.3. There is an remarkable geometric association, first appearing
in [IM11], between Gushel-Mukai fourfolds and EPW double sextics, which
gives a morphism from the 24-dimensional moduli stack of GM fourfolds to the
20-dimensional moduli stack of EPW double sextics; in particular, the image
of a special Gushel-Mukai fourfold of discriminant d is a special EPW double
sextic of discriminant d (cf. [DIM15], [DK18]), and hence the image of the locus
of special Gushel-Mukai fourfolds lies in U4,.



1.4. Owverview

In §2 we review some relevant notions about lattices and hyperkahler vari-
eties. Then we give the definitions of the moduli spaces M and M, and explain
how the work of Gritsenko-Hulek—Sankaran determines Kodaira dimension of
these varieties provided a modular form can be constructed with special prop-
erties. The strategy is to build modular forms using a kind of “pulling back” of
the Borcherds modular form ®q5. For this, we need to construct special lattice
embeddings.

The systematic study of these lattice embeddings is taken up in §3. Here,
we use a slightly modified version of the “lattice engineering” trick from [Tan19,
Section 4]. We formulate elementary conditions on certain lattice embeddings
from which Theorem 1.1 will follow.

In §4, we take up actual construction of these embeddings with the desired
properties, breaking our analysis into the cases d = 8m, 8m+2, and 8m+4 (see
84.1, §4.2, §4.3). We then reduce the problem of constructing special embed-
dings to a number theoretic problem concerning the integer valued points on a
diagonal quadric. To guarantee the existence of such points for all sufficiently
large d, we invoke a classical result of Halter-Koch on the sums of three squares.
The final part of the argument deals with the low values of the discriminant
d using computer code code written in the Magma language [BCP97], which is
provided on the author’s webpage.

2. Basic notions and definitions

In this section we define the main objects of the paper, starting with a
review of lattice theory in §2.1 and the moduli and periods of our hyperkéahler
fourfolds in §2.2. The special divisors M, and Dy are discussed in §2.3, and the
orthogonal modular varieties F, are discussed in §2.4.

2.1. Lattices

(References:[CS99], [Ser73].) An (integral) lattice is a free Z-module L of
finite rank together with a nondegenerate symmetric Z-bilinear form

(n): LxL—7Z.

The signature (r,s) of L is the signature of a Gram matrix for L. A lattice L is
even if (z,x) == 2% € 2Z for all x € L. An element z € L is primitive if it is not
an integral multiple of any other vector in L. An (n)-root of L is any primitive
vector r of square-length r2 = n.

An embedding L — M of integral lattices is primitive if the quotient group
M/L is torsion-free. The orthogonal complement of L in M will be denoted
Ly, or simply L+ with the ambient lattice understood from context. To every



even integral lattice L, there is the associated dual lattice LY = Hom(L,Z)
with an embedding L < LY given by = — (z,-). The group D(L) == LV/L
is a finite abelian group, called the discriminant group. The natural extension
of (+,+) to LY endows LV with a Q-valued bilinear form,. which in turn gives
rise to a Q/2Z-valued bilinear form by, on LY /L, called the discriminant form.
An integral lattice is unimodular if it has trivial discriminant group. Let O(L)
denote the group of automorphisms of L preserving (-, ), and let 6(L) denote
the subgroup of automorphisms which preserve the discriminant form; that is,

O(L) = ker(O(L) — O(L" /L)).

The group O(L) is a finite index subgroup of O(L) and is known as the stable
orthogonal group. In this work, the notation (n) for a nonzero integer n will
denote a rank 1 integral lattice with a generator x of length n. Following
standard practice, the lattice A; denotes the lattice (2). If L is a lattice, then
L(n) denotes the lattice with the same underlying abelian group as L with
pairing given by

($7y>L(n) =n-(2,y)r.

Often, we will write down a lattice by writing down a Gram matrix for a basis
of the lattice. The lattices U and Eg denote, respectively, the hyperbolic plane

0 1
given by the Gram matrix <1 0) , and the unique unimodular positive-definite
even lattice of rank 8. Later, when perform explicit computation involving Fsg,

we make use of the Gram matrix for Eg ([CS99, Ch 4, §8]):

2 0 -2 -1 0 0 0 O
o 2 0 -1 -1 0 0 O
-2 0 4 0 0 0 0 1
B -1 -1 0 2 0 0 0 O
0 -1 0 O 2 -1 0 0
o o0 o o -1 2 =120
o o0 o o o -1 2 0
0 0 1 0o o0 0 0 2

We also need the “checkerboard” lattice Dg ([CS99, §7]): let ey,...,es denote
the standard basis of Z® C RS with the usual dot product. Then we define
an even integral lattice Dg by Dg = {>_cie; € Z5 : > ¢; = 0 mod 2} C ZS.
The 2-roots of Dg (i.e. the square-length 2 vectors) are given by S U —S, where

S ={e;+e; : i# j}. The dual lattice Dy is the Z-span of Z° and the vector
(1,111 1 1y

27272727272

Remark 2.1. If AY? < Fg a is primitive embedding of lattices, then (AP?)1 =
Dg. This can be verified by direct computation, first on a single embedding, and



then by using that embeddings Aim — Fjg are unique up to isometry (see [Nik79,
Theorem 1.14.4]).

When L has signature (2,m), we also define the subgroup O™ (L) of auto-
morphisms which preserve the orientation on the positive-definite part of L.
Note that O* (L) is a finite index subgroup of O(L) and that O" (L) acts on the
period space for L:

Qf ={zeP(L®C): (v,2)=0,(z,z) >0}

where the + notation indicates that we are taking one component of the two-
component set {x € P(L®C) : (z,z) =0, (x,Z) > 0} (the two components are
exchanged by complex conjugation). For any primitive vector r € L of square
length 72 < 0, there is a rational quadratic divisor in Q}f defined by

Qi(r)={Z2€Q} : (Zr)=0}L
We will also need the group
OF(L) =0T (L)NO(L)

which is a finite index subgroup of the groups O(L),O" (L), and 6(L), and
acts properly and discontinuously on QJLr (as does any finite index subgroup
I' C O"(L)). For a sublattice K C L, define

O(L,(K)) ={g € O(L) : ¢g(K) =K}

and define
O(L,K)={g € O(L,(K)) : g|lk =idk}.
=0

We will write O(L,v) := O(L,Zv) for v € L. One can also define OT (L, (K)),
O*(L,K), and so on.

2.2. Moduli and periods of hyperkdhler fourfolds of K32 -type

(Reference: [Deb22]). Let X be a complex algebraic variety which is de-
formation equivalent to the Hilbert scheme S of length-two zero-dimensional
subschemes of a K3 surface S (a variety of K3[P-type). Then X is a four-
dimensional hyperkahler (HK) manifold — meaning X is simply connected with
a nowhere degenerate 2-form w such that H%(X, Q%) = Cw. Any HK manifold
has H"(X,Ox) = 0 for any r odd, so the exponential exact sequence shows that
Pic X injects into H?(X,Z). The second integral singular cohomology also un-
derlies a Hodge structure of weight 2 of K3-type. The gives another realization
of the Picard group as Pic X = HYY(X) N H*(X, Z).

The group H?(X,Z) (and its subgroup Pic X) inherits the structure of a
quadratic space from the Beauville-Bogomolov-Fujiki (BBF) form qx, a cer-



tain canonically defined nondegenerate integral quadratic form of signature
(3,02(X) — 3). For more on gx we refer the reader to [Bea83]. For S a K3
surface, the second cohomology with the BBF form (H?(S!?,Z), q5) is isomor-
phic to H?(S,Z) & Z§ with §2 = —2. The summand H?(S, Z) is the K3 lattice
and carries an intersection form given by the cup product, with s-s = ¢(s).
The class 20 is corresponds to the divisor in S[?! parametrizing nonreduced sub-
schemes of S of length two. Since q(H?(SP!,Z)) = 2Z, the cohomology group
H?(SPl,Z) has the structure of an even, integral lattice.

The second integral cohomology with the BBF form is deformation invariant.
As H?(S,Z) 2 U3¢ Eg(—1)®? for any K3 surface S, it follows for X a fourfold
of K3P-type that H?(X,Z) is isomorphic to the lattice

M=U% @ Es(-1)%? @ (-2).
Let u,v denote a null basis for the first copy of U in the decomposition of M:
u? = 0% =0, (u,v) = 1.

Let u',v" denote a null-basis for the second copy of U, and let w denote the
(—2) factor in the decomposition above.

A polarized HK fourfold is a pair (X, H) where H € Pic X is a primitive,
ample divisor with ¢(H) = e > 0. The integer e is called the degree of the polar-
ized fourfold. In this work we consider the lowest possible polarization degree
K3P_type fourfolds, those with degree e = 2. There is a coarse quasi-projective
moduli space M, which is irreducible and has dimension 20, parametrizing po-
larized K3[-type fourfolds of degree 2 up to isomorphism; O’Grady showed
that this moduli space is unirational (see [O’G06, Theorem 1.1]). A marking of
an HK fourfold of K3[Z-type is an isomorphism

0: H*(X,Z) = M.

Every marking on some (X, H) € M is equivalent, under O(M), to one sending
H to h = wu+ v. One computes that

ht =A=U®? @ FEg(-1)%? @ (-2)%%

We briefly recall some relevant Hodge theory for our degree 2 K 3[2-fourfolds.
The period of a point (X, H) € M together with marking ¢ is the line

oc(H*°(X)) e Aw C.

A period determines, via the Hodge-Riemann relations, a weight 2 Hodge struc-
ture on A of K3-type. The global and local period domains for A are spaces
that parametrize these Hodge structures. There exists a map to the local period



domainQX7
{(X,H,p) : (X,H) €M, ¢: H*(X,Z) - M, ¢(H) = h} — Qf,

which sends a triple (X, H, ) to its period; after quotienting out by isomorphism
of these triples, one gets a map into the global period domain

7 M= D:=0"(A)\QF.

Applying well-known results of Baily-Borel [BB66], the arithmetic quotient D is
a quasi-projective, irreducible, normal variety. Using Markman’s computation
on the monodromy of K3[™-type manifolds ([Mar10, Theorem 1.2]), we see that
the the group 6*(/\) is the monodromy group generated by parallel-transport
operators respecting the polarization. Hence, by the global Torelli theorem for
polarized HK fourfolds, due to Verbitsky and Markman (see [Marl1, Theorem
8.4]), the morphism 7 is algebraic and is an open immersion. We note for later
use that N
O+(A) = {7 € OF(A) : v € O(M,h)x},

by a result of Nikulin [Nik79, Corollary 1.5.2] (Nikulin’s result is about the
group O(A), but nevertheless yields the above when restricting to the subgroup
0+ (M)

2.3. Noether-Lefschetz locus

We say that X possesses a special labelling of discriminant d if there exists
a primitive sublattice K C Pic X of rank 2 with H € K such that |[D(K*)| = d.
A very general fourfold X in M has rkPic X =1 (see [Zar90, Section 5.1] for a
standard argument for this fact) and thus does not possess any special labelling.
The following result of Debarre, Iliev, and Manivel classifies all possible special
labelling (we are able to employ their result because the nonspecial cohomology
lattice of a discriminant d Gushel-Mukai fourfold is isomorphic to the nonspecial
cohomology lattice of a discriminant d K3[? fourfold):

Theorem 2.2. [DIM15, Proposition 6.2] A special sublattice K, i.e. a rank 2
sublattice K C M with u+v € K of signature (1,1), must have discriminant
d=0,2,4 mod 8. Furthermore, the orbits of OT(A\) acting on the set of special
rank 2 sublattices are as follows:

1. If d = 8m, there is just one orbit for each m > 0, represented by Kq with
~ (2 0
Kq= (O 2m> and KgNA=Z{u —mv).

2. If d = 8m + 2, there are two orbits for each m > 0, exchanged by an
automorphism of A switching w and u —v. Both of these orbits consist of



S . 2 .
lattices isomorphic to ( 0 . One of these orbits has representa-

0 —2-8m
tive K, with KjNA = Z(u—v+2u' —2mv’). The other has representative
K/ such that K] N A = Z(w + 2u’ — 2mv’).

3. If d = 8m + 4, there is just one orbit for each m > 0. This orbit has a

representative Kgq with Kg = ((2) _4 E 8m>’ and KgNA=2Z(u—v+

w + 2u’ — 2mv’).
Using [Nik79, Corollary 1.5.2] once again, we observe that
O (A Ka N A)ges = OH(M,Ko)lyes = OF(KF)
and

ry:= 6+(A’ (KdﬂA))lKj- = (O+(M’ h)ﬂ0+(M, (Kd»)'Kj- = <6+(Kdl)> _idKj->'
(2.1)
In particular, the group O+ (K7) is an index 2 subgroup of I'.
We define the divisor Dy C D for each d = 0,2,4 as in Theorem 2.2 as
follows: For d = 0,4 mod 8, define

QF ={weQl : wtDKsNA}

Then Dy is the image of Q;}' under the projection map Qj\' — Dy, and is an
irreducible divisor. We define My to be My := 771(Dy); when nonempty, this
is a divisor in M. Note that M, parameterizes the (X, H) € M that possess
a special labelling of discriminant d. For d = 2 mod 8, the irreducible divisors
D), D] C D and My C M are similarly defined.

The following theorem of Debarre and Macri, a consequence of [DM, Propo-
sition 4.1 and Theorem 6.1], gives the image of 7:

Theorem 2.3 (Debarre-Macri). The image of the Torelli map 7: M — D
meets exactly the following divisors (d > 0):

1. If d = 0,4 mod 8, the image meets Dy except for d =4 and d = 8.

2. If d = 2 mod 8, the image meets D, and D!], except for: d = 2, and one
of D}, Dl for d = 10.

To prove Theorem 1.1, it suffices to compute the Kodaira dimension for Dy,
since My and D, are birational.

Notational Convention 2.4. For d = 2 mod 8, we will set Dg = D/}, as we
only care about Kodaira dimension, and D), is isomorphic to D!;. We will also
set Kd = K&

10



2.4. Orthogonal modular varieties

Let us now relate Dy via a birational map to an orthogonal modular variety,
that is, a quotient of the form I'\Q2} for any I' C O (L) of finite index. Our
approach to finding an appropriate orthogonal modular variety F; birational to
Dy is inspired by Hassett’s work ([Has96], [Has00]) on the analogous problem
for special cubic fourfolds, which is lucidly explained in [Huy19] and in [Bra21].
Then we discuss how to apply the low-weight cusp form trick.

Recall that K j‘ denotes the orthogonal complement (in M) of the repre-
sentative Ky given in Theorem 1.1. We defined (2.1) a group I'y C OF(K7)
which contains Ot (K 1) as an index 2 subgroup. We have natural morphisms
of algebraic varieties:

Ga=O0T(Ki)\Qf, = Fa=Ta\Q}. O (A\Qf =D  (22)

By definition, the image of the second morphism in (2.2) is Dy, so we may
rewrite these morphisms as

Ga 2 Fay Dy (2.3)

The variety Gy parametrizes marked special weight 2 Hodge structures of K3
type on K3 (a Hodge structure on K; together with the data of a lattice
embedding K4 < M) , while Fy parametrizes labelled weight 2 Hodge structures
of K3 type on Kj- (Hodge structures on M together with the data of the image
of a lattice embedding K, < M).

Remark 2.5. We note that since —id acts as the identity on Q;r( ., we have
d

that 73 = G4. We choose to work with F; to avoid the potential issues due
to irregular cusps (although this only happens when d = 32, see [Ma,21]), and
because the property that —id € I'y will be useful in §3.2.

The next proposition, whose proof we mirror on similar arguments appear-
ing in [Huyl19, Corollary 2.5] and [Bra2l], has the key consequence that the
morphism 1 appearing in (2.3) is generically injective:

Proposition 2.6. The morphism v is the normalization of Dy.

Proof. We show 1 is finite of degree 1. We begin by showing the properness of
. start with observation that the morphisms (in the complex analytic category)
QX — Dp, Qj{i — QX, and Qj{i — Fg are closed, and that the composition
Q5 L Qf — Dy is closed as well. Since we can further factor this closed

morphism into the composition of two other morphisms with the first being
closed,
Q;L — Fq— Dd,
d

11



it follows that F4 — Dy is closed. Since each fiber is a compact set — indeed
a finite set— this is a proper morphism. Furthermore, as v is quasi-finite and
proper, it follows that 4 is finite.

Let n denote the degree of ¢, i.e. there is an open set U C Fy; such that, for
any x € U, the fiber ¢y~ (x) has cardinality n. Since a very general (X, H) € My
has rk(Pic X') = 2 (again by the reasoning in [Zar90, Section 5.1]), a very general
fiber must consist of a single point. Therefore, we have n = 1 and so v is a
birational morphism. By [BB66], the variety F, is normal, so Fy4 must be the
normalization of D,. O

Since 1 is a birational map, we may conclude
K(Fg) = k(Dqg) = K(My).

To use the low-weight cusp-form trick to compute k(Fy) = k(My), we review
a little theory of modular forms on orthogonal groups. Let L be a signature (2, n)
lattice with n > 3, let ' € OT (L) be a finite index subgroup, let x: I' — C* be a
character, and let QI' denote the affine cone over QJLr A modular form of weight
k with character x for the group I' is a holomorphic function F': QZ' — C
satisfying the following properties for all z € QJL":

1. For every v € ', we have F(yz) = x(v)F(2)

2. For every t € C*, we have F(tz) =t FF(z).

Let us denote by M (T, x) the collection of all such modular forms. A cusp
form is a modular form F' € M (T, x) vanishing at the cusps of the Baily-Borel
compactification of the variety I’\QI, and all such forms form a vector space
denoted S (T, x). The low-weight cusp form trick is summarized in the following
theorem of Gritsenko, Hulek, and Sankaran:

Theorem 2.7. ([GHS07, Theorem 1.1] and [Ma,21]) Let L be a lattice of sig-
nature (2,n) withn > 9 and T C O (L) a subgroup of finite index containing
—id. The variety F\QZ 18 of general type if there exists a cusp form F for
the group I' with wetght a < n and character x such that F' vanishes along the
divisor of ramification of the projection map Qf — T\Qf . If there is a nonzero
cusp form of weight n for T with character det, then x(I'\Q}) > 0.

+
K}’
needs a supply of modular forms which are modular with respect to I'y. For
us, these are provided by quasi-pullbacks of modular forms with respect to some
higher rank orthogonal group, which we now describe. Let Ly 2 denote the

To apply Theorem 2.7 to compute the Kodaira dimension of I'z\Q one

unique even unimodular lattice of signature (2,26):

Loos = UP? @ Eg(—1)%3
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It is known ([Bor95]) that Mi2(O" (L2 26), det) is a one-dimensional complex
vector space spanned by a modular form @15, called the Borcherds form. The
divisor of zeros of ®15 is the union

div(®5) = U QF, . (7), (2.4)

r€Ly 26,m2=—2

where QJLFZ ,, (1) denotes a rational quadratic divisor as in §2.1, and the order
of vanishing of ®15 is exactly 1 along each such divisor. Given a primitive
embedding of lattices ¢: L < Ly 96, with L of signature (2,n), let

R_5(1) = {r € Lags: r* = =2, (r,1(L)) = 0}.

When the embedding is clear from context, we may sometimes write R_o(L).
To construct a modular form for some subgroup of O% (L), one might try using
the pullback of ®15 along the naturally induced closed immersion Q}* — Qj{;%.
But for any r € R_o(L), one has Qf* C Qf (r), and hence @15 vanishes identi-
cally on QJL“. The method of the quasi-pullback, due to Gritsenko, Hulek, and

Sankaran, deals with this issue by dividing out by appropriate linear factors:

Theorem 2.8. [GHS13, Theorem 8.2] Let L be a lattice of signature (2,n),
with 3 < n < 26. Given a primitive embedding of lattices v: L — Lo 26 and the
naturally induced embedding QF* — Qz;%, the set R_o(L) of (—2)-vectors of

Lg 96 orthogonal to L is a finite set. The quasi-pullback of ®1o with respect to

this embedding
D15(2)

reR_2(L)/i1(Zv r)

|szj’

Df,(1) = i
is a nonzero modular form in MN(L(L))+12(6+(L), det) where N((L)) = #R_2(¢)/2.
If N(«(L)) > 0, then @,y is a cusp form.

We will need modularity with respect to I'y, so we will need to be careful that
our quasi-pullbacks are modular with respect to the additional transformation
—id. Throughout this paper, when an underlying embedding ¢: K dL — L is
clear from context, we will adopt the notation (I"Kj = ®|, and N(K7) = N(1).

Thus, to show that k(M) = 19, we will first construct embeddings ¢: K3 <
L2 56 such that 0 < N(:) < 7, and using the quasi-pullback trick this gives a
modular form ®|, 1) of weight 12 + N(K7) (if an embedding of K satisfies
N(K3) =7, we may still use this embedding in a proof that (M) > 0). These
embeddings will automatically be modular with respect to o+ (K j‘) Still, there
is nothing in Theorem 2.8 to guarantee automatically that ®| Kt vanish along
the ramification divisor. We will deal with this in §3, where we see how the extra
condition that the quasi-pullback is modular with respect to I'y guarantees this
vanishing.

13



3. Constructing embeddings: generalities

In this section, we begin constructing embeddings K j‘ — L3 26 such that
N(Kj) < 7. Let us first write down the lattices KdL we are studying. Using the
representatives from Theorem 2.2, we compute the lattices K j. The results of
this straightforward computation are summarized in the following proposition.
We introduce for ease of notation lattices My defined by their Gram matrices
(see also [DIM15, Proposition 6.2] and [Perl9, Lemma 4.6]):

-2 0 0
d= 8m, My = 0 —2 0
0 0 2m
-2 0 0
d=8m+2, Mg:=1 0 -2 1
0 1 2m
-2 0 1
d=8m+4, Myg:=| 0 -2 1
1 1 2m

Proposition 3.1. Let K, be the representative rank 2 lattice from Theorem 2.2.
Then
K= M;oU®®EP*(-1).

Note that in every My, there is a primitively embedded copy of the lattice
A1(—1)%2 corresponding to the upper-left 2 x 2 block in the Gram matrix of
My, so from here on we will refer to a sublattice A :== A;(—1)%2 C Mj.

We want to consider as many embeddings K j‘ — Lo 96 as possible. We will
label the factors in our decomposition of Lg 26 as follows:

Lyos =Ur @U@ Es(*l)(l) S E8(*1)(2) S Es(*l)(g)-

By Nikulin’s analog of Witt’s theorem (see [Nik79, Theorem 1.14.4]), a primitive
embedding U & Es(—1)%2 < Ly o6 is unique up to isometry of L o6, and the
same is true for any primitive embedding A;(—1)®? < U® Fg(—1). Thus, with-
out loss of generality, we will from now on assume that all of our embeddings:

1. identify the factor U & E§92(—1) appearing in our decomposition of K7
in Proposition 3.1 with U; @ Eg(—1)") @ Fg(—1)®) C Lg g6 ; and

2. Tsometrically embed A;(—1)%2 € My into Eg(—1)®). Let a;,as denote
the images of generators of the two A;(—1) summands.

14



So the problem of writing down embeddings to prove Theorem 1.1 is reduced
to choosing ¢ € Uy @ FEg(—1)® such that ¢? = 2m and

(lya1) = (£,a2) =0  if d=8m,
(lya1)=1,(¢,a2) =0 ifd=8m+2 (3.1)
(6,a1) = (fas) =1  if d=8m+ 4.

We will say that a vector £ = ae + 8f + v, where {e, f} is a null basis fo Us,
v E Eg(—l)(3), and £2 = 2m, is admissible for d if one of the three equations
in (3.1) holds. Note that if a vector £ is admissible, there is a unique associated
discriminant d € {8m,8m + 2,8m + 4} such that (3.1) is true. For admissible ¢
and its associated discriminant d, we introduce the following notations:

® Ly Kj- — L9 96 is the embedding associated to ¢
e Ry is the set R_o(u(K7))

o Ny =H#Ry/2.

e & is the modular form @, k1.

Remark 3.2. Every primitive embedding K j — Ly 96 is isometric to ¢y for
some admissible /—although not every admissible ¢ yields primitive ¢,. In what
follows, we can guarantee that a choice of ¢ gives a primitive embedding ¢,
whenever « and § are coprime.

For each d, we wish to find admissible ¢ such that the following hold:

(A) ¢ is primitive and 0 < N, < 7 with Ny odd (or 0 < N, < 7 with N, odd if
attempting to prove k(Mgy) > 0).

(B) ®, vanishes along the ramification locus of the projection Q;L — F\Q}L.
d da

Then we can apply Theorem 2.8 to these embeddings to produce the cusp forms
we need to prove Theorem 1.1. The condition that N, is odd will guarantee
that the cusp form vanishes along the ramificiation divisior, as we explain later
in this section.

The remainder of the paper will be dedicated to the search for admissible £
with these desired properties.

8.1. Controlling the size of Ry

The next two lemmas from [Tanl9, Section 4], which we state in a slightly
more general form, will help us count the number of roots Ry. Recall one of our
goals ((A) above) is to keep N, small.
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Lemma 3.3. Let L = U @ Eg(—1) where U = (e, f) with e = f2 = 0 and
(e, f) =1, and let Ly be a primitive rank 2 sublattice of Es(—1). Let £ € L have
length €2 = 2m, for some m > 0 a positive integer, such that { = ae+Bf+v with
a,B € Z and v € Eg(—1), and suppose further that a« # 8 and m < aff < 2m.
Let Ry denote the finite set

{reUe (Lo)gy_1) = 7 =-2,(r0) =0}

Letr=de+ B f+v € Ry. Then /B =0 and there are three types of vectors
r € Ry:

_ - o 1
1. Type I vectors r =v'. In this case &' = ' =0 and r € (LO)Es(—l)'
2. Type II vectors r = a’e +v', o' # 0. In this case, (v,v") =0 mod (.

3. Type III vectors r = B f + ', B #0. In this case, (v,v") =0 mod a.

Proof. See [Tan19, Lemma 4.1] and [Tan19, Remark 4.2]. The proof there works
for this slightly more general statement, as it only relies on the Cauchy-Schwarz
inequality and on the negative definiteness of Ly. O

Imposing slightly stronger inequalities, we get an even stronger statement:

Lemma 3.4. [Tan19, Lemma 4.3] Suppose we are in the situation of Lemma 3.3,
and suppose furthermore that the following three inequalities hold:

5
a>wﬁ5>¢ﬁaﬂ<£3

Then every r € Ry is a vector of Type I, i.e. r € (LO)JE‘S(_I).

Proof. Let r = a’e + 'f +v' € Ry. Since /8’ = 0 by Lemma 3.3, it follows
that (v')? = —2. Then by Cauchy-Schwarz,

(0,0") < V3I?| = VA@B =) < 4(T—n) v

But then (v,v’) is not divisible by «, nor by 8, by the first two inequalities in
the hypotheses above. So r is of Type L O

Remark 3.5. In fact, for our embeddings, we will want to impose a stronger
condition for a and S, for some p > 0 to be determined later:

MO+Mm<a<\é?,MO+Mm<B<1£% (3.2)
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3.2. Modularity with respect to I'g

The quasi-pullback ®, along any one of our embeddings is already modular
with respect to 6+(Kj). Since Fy = G4, we could simply work with the
smaller modular group O (K, 1) C Iy and then verify that ®, vanishes along
the ramification divisor along the lines of [GHS13, Proposition 8.13]. We offer
an alternative approach to the vanishing along the ramification divisor using
modularity with respect to the larger group I'y.

Remark 3.6. Our results are unchanged whether we consider modularity with
respect to O (K1) or I'y, since all modular forms for O (K3 ) computed in the
small discriminant range in §4 are also modular with respect to I'y.

We would like to choose £ such that @[ is in addition modular with respect
to —id € O(K7). Then ¢|Kj will be modular with respect to T'y since —id
and O(K)* generate I'y. But since we already know that Plps is Ot (KF)-
modular by 2.8, then we can conclude that

Oy(—id Z2) = Dy(—2) = (-1)VDy(Z).

As a consequence, we have shown the following important lemma:

Lemma 3.7. Let v: L — Lo 26 be a primitive embedding of lattices as in The-
orem 2.8 . Then ®|1, is modular with respect to —id € OT(L*) if and only if
N(u(L)) (as defined in Theorem 2.8) is odd.

Thus, to guarantee I'y-modularity of the quasi-pullback, we want to be cer-
tain that each embedding ¢, which we construct has the property that N (c,(K7))
is odd (this is why we said as much in A).

The main purpose for us in asking for modularity with respect to I'y is
guaranteeing vanishing along the ramification divisor, which we explain now.
For r € L such that 2 < 0, we say that r is reflective whenever the reflection

(v.1)
(r.7)

is an isometry of L, i.e. o, € O(L). A rational quadratic divisor Q} (r) is said to
be a reflective divisor if r is reflective. The following proposition of Gritsenko,
Hulek, and Sankaran describes the ramification divisor of the projection Qz —
I'\Q} as a union of certain reflective divisors:

Proposition 3.8. (see [GHS07, Corollary 2.13]) Let L be a lattice of signature
(2,n) and T be a finite index subgroup of OT(L). Then the ramification divisor
Bdiv(nr) of the projection mr: QX — 1"\QJLr is given as the countable union

Bdiv(rr) = U o).
reL primitive
r2<0
+o,.€l

OriV—V—2
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Let us now apply the above proposition to a modular form ® € M (T, det).
We first observe that —o,. € I'y <= 0, € I'4. Thus, to prove ® vanishes along
Bdiv(nr, ), it suffices to show that ® vanishes on all reflective divisors Q;i (r)

d

with o, € I'y. By modularity, we have det(o,)®(Z) = ®(0,Z) for all Z € Q;;I
d
We observe that det(o,) = —1 and (o}.) = id. Tt follows that ® vanishes

|+
ol ()

on Q;r( . (r)®. This yields the following proposition:
d

Proposition 3.9. FEvery modular form for T'g with character det vanishes along
the ramification divisor.

4. Constructing embeddings: specifics

In this section, we prove Theorem 1.1. This will follow from the following
proposition:

Proposition 4.1. For each discriminant for which we claim My is of general
type in Theorem 1.1, there is some £, admissible for d, which satisfies condi-
tions (A) and (B) above.

Proof of Theorem 1.1, assuming Proposition 4.1. For each d in the theorem state-
ment, there is some ¢ from Proposition 4.1 such that the quasi-pullback (The-
orem 2.8) ¥, is a nonzero cusp form of weight < 19 for T'y with character det.
Furthermore, by Proposition 3.9, this quasi-pullback vanishes along the ramifi-
cation locus of Qj{j — F\Q;;. It follows from 2.7 that F\Q;dl is a variety of

general type. O

All that remains to do is provide a proof for Proposition 4.1. The rest of the
paper is dedicated to this goal.

Given an embedding ¢y, we may count N, with the help of Lemmas 3.3
and 3.4 using Ly = (a1, az), in which case (LO)JE’S(—U = Dg(—1). The upshot of
Lemma 3.4 is that, for any admissible £ = ae+ S f 4+ v such that « and [ satisfy
the inequalities (3.2), the set Ry is contained entirely in Dg(—1):

Ry ={r € Dg(—1) : r?> = —2,(r,f) = 0}.

Proof of Proposition 4.1. We need to construct primitive embeddings ¢y associ-
ated to £ = ae+ B f + v such that 0 < Ny < 7 and Ny is odd. We construct such
an ¢ for all large m by picking «, 8 such that (3.2) holds, and can pick v thanks
to Lemma 4.3 below. We then compute a lower bound on the discriminants
for which these conditions can always be met. This leaves us with a finite list
of discriminants to analyze. We handle these cases with a computer, giving a
summary of this procedure in §4.4. We break our analysis into the three cases
of discriminant congruent to 0,2, or 4 modulo 8 in sections §4.1, §4.2, and §4.3.
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4.1. Analysis: d = 8m

For the case d = 8m, we are searching for «, 3, and v such that ¢ = ae+8f+wv
of length 2m is admissible for d = 8m. For the admissibility of ¢, it is necessary
and sufficient that (¢,a1) = (£,a2) = 0 (by (3.1)), which amounts to requiring
v € Dg(—1). The next lemma gives a way to construct £ such that the associated
embedding has small Ny:

Lemma 4.2. Let { = ae+ f +v € U® Dg(—1). Suppose that a, B satisfy the
inequalities (3.2), and that v is of the form

v = T1€1 + Toeg + X33 + €4 + €5 (4.1)

with x1,x2, T3 all nonnegative integers, not all equal. Then Ny, < 5. In particu-
lar, Ny is always odd in this case, and:

1. If the nonnegative integers x1,xs, T3 are distinct and none of them equal

to 1, then Ry = {£(e4 —e5)}.

2. If the nonnegative integers x1,x2,x3 are distinct with x; = 1, then Ry =
{*(es —e5), £(es —€;), £(e5 —€;)}.
3. If the nonnegative integers x1,x2,x3 are distinct with x; = 0 and none of

them is equal to 1, then Ry = {x(es —e5),£(e1 — eg), (€1 + e6)}.

4. If the nonnegative integers x1,x2, 3 are distinct with x; = 0,x; = 1, then
Ry ={=x(ei +es),£(e; —e6), £ £ (ea — €;),E(es — €;5), E(ea —€5)}.

Proof. By hypothesis, all vectors in Ry are of Type I (Lemma 3.3). We shall
write 4 = x5 = 1 and xg = 0. The roots of Dg(—1) are +e; £e;, 1 < 4,5 <6,
i # j. We have for all such roots r € Dg(—1), (r,v) = £(e;xej,v) = £(z; £ z;).
. The other cases are proved similarly. O

Thus, to find v as in the lemma, it would suffice to pick a, 8 satisfying (3.2)
such that 2(af —m —1) is a sum of three distinct coprime squares: any triple of
distinct nonnegative integers (1, z2,x3) € Z2, with ged(z1, 22, 23) = 1 which
is a solution to B

23+ i+l =2B —m—1), xyrow3 £ 0 (4.2)

yields v for which Lemma 4.2 applies. The next lemma, guarantees the existence
of these solutions in many cases, is from [Hal83, Section 1, Korollar 1]:

Lemma 4.3. FEvery integer A # 0,4,7 mod 8 with
A¢{1,2,3,6,9,11,18,19,22,27,33,43,51,57,67,99, 102,123,163, 177,187,267, 627}U{ N }

may be written as the sum of three distinct, coprime squares. If the generalized
Riemann hypothesis is true for all global L-functions, then we may take N =1,
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but if a generalized Riemann hypothesis (GRH) is false for certain L-functions,
then N > 5-1010,

We also have the following lemma to give us more flexibility in our choice of
a and § beyond (o, ) =1

Lemma 4.4. Assume that { = ae + f +v € U @ Eg(—1) has square length
(2 = 2m, with v primitive in Dg(—1) = <a1,a2>§8(71) , and furthermore assume
that 21 (o, B). Then the embedding vp: Kg,, < La 26 is primitive.

Proof. Tt is enough to check that My = A;(—1)®2®(2m) embeds primitively into
U ® Eg(—1). To show an embedding is primitive, it suffices to show the image of
every primitive vector is primitive. Thus, we check that zu 4 y/ is primitive in
U @ Eg(—1) for any relatively prime integers = and y and any primitive vector
u € {a1,as). Suppose that there is a positive integer n dividing zu + y¢ in
U ® Es(—1). Then n|y(a, ). As Eg(—1)/(A1(=1)®2 @ Dg(—1)) ~ Z/2 x Z/2,
we must have n|2. It follows that n|y, so n|z as well (as A;(—1)%? is primitively

embedded in Eg(—1)). As z and y are coprime, we must have n = 1, so
zu + yl is indeed primitive under the embedding ¢y, and we conclude that ¢ is
primitive. O

To build our desired embeddings, we will show that for m large enough, we
can choose a, 5 so that: (a) 21 (o, 8), (b) the inequalities (3.2) hold, and (c)
2(af —m —1) is a sum of three distinct coprime nonnegative squares. Observe
that it is necessary and sufficient for (c¢) to hold that a8 —m—1 be both odd and
avoid some finite set of exceptional values (see Lemma 4.3). Then by Lemma 4.4
and Lemma 4.2, we get a primitive embedding ¢y : Kj- — Lo 96 with N, € {1,3}.

We begin by choosing some real number p > 0 such that

%m —/(+p)m > 2. (4.3)

If m = 0 mod 2, we are able to pick a and 5 = a + 1 satisfying (3.2), thanks
to (4.3). If m = 1 mod 2, we again can use (4.3) to pick & = 1 mod 2 satisfying
the inequality for « in (3.2), and set & = 3. So in any case, with these choices
for @ and 3, (a), (b) hold, and also the quantity a8 —m — 1 is odd.

We also need to ensure that oS — m — 1 misses a finite set of exceptional
values. For this, note that

AHa-m—-1>a’>-—m—1>pm—1 (4.4)

holds for all m, « for which (3.2) holds. So given our choices of @ and S from
the previous paragraph, we have the inequality

2(af—m—1) > 2pm — 2.
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Now, we impose the additional constraint that
pm > 52 (4.5)

guaranteeing that 2(af — m — 1) > 102 and thereby avoiding the exceptional
values of Lemma 4.3 (note that there are no odd values in the list of exceptional
values which lie between 103 and 627), except perhaps N. If 2(af—m—1) = N,
then the inequalities

ﬁQ—ﬂ—m—1<ﬁ2—m—1<62—m<%

hold under our continuing assumption of (3.2) , so

m
N < —.
<2

Therefore, we have m > 10 - 10'°. If we take p to be sufficiently small and m is
large enough, then

577” ~ VAt pm>4 (4.6)

so we can adjust a by £2 to avoid N (and still keep the quantity of —m — 1
odd).

At this point, we have demonstrated that whenever m and p satisfy the
inequalities (4.5) and (4.3), it is possible to pick o and 8 and v to prove M is
of general type. A simple optimization for (4.3) and (4.5) yields m > 648 for
p = 0.0804. If m > 10-10'°, then (4.6) holds, so o may be adjusted to avoid N
if necessary.

Putting everything together, we have now shown that when m > 648, Propo-
sition 4.1 is true for d = 8m. For the discriminants d = 8m with m < 648, we
make use of a computer to find explicit embeddings. See §4.4 for details.

4.2. Analysis: d = 8m + 2

As in the d = 8m case, we are searching for «, 8, and v such that the square-
length 2m vector ¢ = ae+ B f +v is admissible (i.e. satisfies (3.1) for d = 8m +2
and yields a small, odd value for N,. For the admissibility of ¢, it is necessary
and sufficient that the vector v € Eg(—1) may be written as

—a
v= 2 0/ € ((an,a2) @ Do(-1))" = {an,02)¥ & Do(-1)",
where v € Dg(—1)V = ({(a1, az)*)".

For each m greater than the lower bound that is to be determined, our argu-
ment is written in a way that relies on the choice of a1, as € Fg(—1); precisely, for
each m, we will construct Eg(—1) as a specific overlattice of A;(—1)®2@® Dg(—1),
and then consider embeddings for which a1, as generate image of the summand
A1(—1)%2. The theory of overlattices is explained in [Nik79, Section 1.4], a con-
sequence of which is the following: there are exactly two unimodular negative
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definite even integral sublattices L; and Lo of rank 8 (necessarily isomorphic
to Eg) contained in (A;(—1)®2)Y @ Dg(—1)V, each of which corresponds to
one of the two maximal isotropic subgroups L;/(A1(—1)%?) @ Dg(—1)) and
Lz/(Al(il)@Q D D6(71)) of D(A1(71)®2 &) Dﬁ(*l)) To describe L1 and LQ,
let hy, ho each denote a generator of an orthogonal summand of A;(—1)®2, and
define elements by, ba, in (hy, he)Y @ Dg(—1)Y by

h1+ ha

bl =e1 +

. 1 hp
bgm = §(€1+62+€3+€4+€5+66)+?

where the index p is either 1 or 2. Then L, is generated as a submodule of
(Al(—l)@Q)v D DG(—l)V by b1, b27p, and <h1, h2> D DG(—l).

We now prove two simple lemmas: one will help ensure our eventual choice
for v’ actually gives an embedding, and the other controls the size of Ny.

Lemma 4.5. Suppose that v' € Dg(—1) ® Q is of the form

1
v = 5(.’17161 + xaes + T3€3 + 3e4 + 3es + 3eg) (4.7)

with x; € Z all nonnegative odd. Then v' € Dg(—1)V and there is always a
choice of p € {1,2} such that v :=v" — h—; € Ly.

Proof. We have v/ € Dg(—1)" because all the coefficients with respect to the
{e1,...,es} basis are half-integers. For the other statement, we compute

—3—|—1_ I 1

2 2 2

(’U, bl) =

1
4
These inner products are integer-valued if and only if v € L) = L,. By taking
p =1 when z1 + 22 + 3 = 3 mod 4 or choosing p = 2 otherwise, we see there
is always p such that v € L,,. O

1
(’U,blp) = (9—1—1‘1 +$2+CB3) — Z(hg,hp).

Lemma 4.6. Suppose that
e «, 3, and m are positive integers satisfying the inequalities (3.2),
e v = %(mlel +xes+ 1363+ 3e4+3e5+3es) € Dg(—1)V, as in Lemma 4.5,
o« W)?=2m—af)+1,

e the integers x1,x9,x3 n v’ are distinct integers, none of which are equal
to 3.

Choose p € {1,2} so that v' — h—; € Ly, and fiz an identification of L, with
Es(—1). Let vy be the embedding defined by ay = hy,a2 = ho, and { = ae+Sf +
v' — 2. Then Ry = {%(es —es5), £(es —eg), E(es —e6)}-
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Proof. Omitted, as it is completely similar to the proof of Lemma 4.2. O

Assuming we have chosen «, 8, and m satisfying the inequalities (3.2), we
show that it is always possible to pick v’ € Dg(—1) satisfying the hypothesis of
the lemma. A vector v’ as in (4.7) satisfies

—2v)2 =2t d i+ 22+ 2T = —(8(m —aBf) +2) =8(af —m) — 2.
So it suffices to find a solution to
2 2 2 _
] + x5 + x5 = 8(af —m) — 29 (4.8)

subject to certain conditions; precisely, we want distinct nonnegative integer
solutions (z1,x2,3), such that 3 ¢ {x1,z2,23}. Since every square is 0 or
1 mod 4, it follows that any solution satisfying these conditions is a triple of
odd integers. As 8(aff —m) — 29 = 3 mod 8, we can apply Lemma 4.3 to find
a coprime triple of distinct nonnegative integers (z1, 2, x3) satisfying (4.8)
as long as the expression 8(af — m) — 29 avoids a finite list of exceptional
values. Suppose that we arrange, by appropriately choosing o and 3, that
3[8(aB —m) —29. If 22 = 0 mod 3 for all i = 1,2,3, then the z; are not
coprime, so we must have z? = 1 mod 3 for all i; in particular, the z; are
distinct from 3. Therefore, if we impose the additional condition on «, 5, and
m that 3|8(a8 — m) — 29, then there exists a v’ satisfying the hypotheses of
Lemma 4.6.

To build our embeddings, it suffices to arrange that: (a) (a,8) = 1 (to
guarantee primitivity), (b) the inequalities (3.2) hold, and (c¢) 8(af8 — m) — 29
is a sum of three distinct coprime nonnegative squares. We have already seen
that (c) holds if

8(af —m) —29 > 627, 8(aff —m)—29# N (4.9)

and
3|18(a8 —m) — 29. (4.10)
If the inequality

M > 6 (4.11)

holds, then there must exist relatively prime «, 5 satisfying (3.2) such that both
B = a+ g for some g € {1,3} and 3|8(af —m) — 29.

By considering the conditions (4.11) and (4.9), we can now successfully de-
termine a lower bound mg such that Mg,, o is of general type for m > my.
First, note that for a, 8 = a+ g, and m satisfying (3.2), we have the inequality

af—m=a’+ga—m>a*—m>pm (4.12)
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and, as an immediate consequence,
8(af —m) — 29 > 8pm — 29.

Thus, taking
pm > 82 (4.13)

will ensure that 8(af —m) — 29 > 627. If 8(af —m) — 29 = N, where N is as
defined in Lemma 4.3, then the inequalities

aﬁ—m:ﬁQ—gﬁ—m<62—m<%
hold under our continuing assumptions on «, 3 = o + g, and m. Therefore for
such N we must have
N < 2m — 29.

So we would like to ensure that for m > (N +29)/2, the quantity p > 0 is small
enough so that the difference

%m — /A +pm (4.14)

is large enough to adjust «, 8 by +3 (to preserve (4.10)) in order to avoid N.
As before, optimization for (4.11)) and (4.13) yields m > 3238 and p =
0.025328. In the range m > 3238 for this p, one checks that

S A pym > 16000 (4.15)
4

so we are always able to adjust a to avoid N. As in §4.1, we now have proven
Proposition 4.1 is true when m > 3238. The remaining cases for d = 8m + 2 are
handled by computer (see §4.4).

4.8. Analysis: d =8m + 4

Our argument for d = 8m + 4 is nearly identical to the case for d = 8m + 2,
but we write out the details since there is a slight variation in the construction
we use to produce an explicit lower bound. To precisely state the problem,
we wish to show that for all but finitely many positive integers m, there are
positive integers «, 8, and v € U @& FEg(—1) such that the square-length 2m
vector { = ae + Bf 4 v is admissible for d = 8m + 4 and yields a small, odd
value for Ny. For the admissibility of ¢, it is necessary and sufficient that the
vector v € Eg(—1) may be written as

—a; — a2

v= 2 v € ((a1,a2) & Do(—1))" = (a1,02)" & Do(~1)",

where v/ € Dg(—1)Y = (<a17a2>L)v.
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The following two lemmas adapt Lemmas 4.5 and 4.6 to the case of 8m + 4.
Recall the vectors hi,hq are an orthogonal basis for A;(—1) and by,be, for
p € {1,2} are vectors in A;(—1)V®2 @ Dg(—1)V.

Lemma 4.7. Suppose that v' € Dg(—1) ® Q is of the form

v = x1e1 + x9es + x3e3 + 3eq + 3es + 3eg (4.16)

with x; € Z all nonnegative integers such that Y x; = 0mod 2 . Then v’ €
Dg(—1)Y; furthermore, for any isometrically embedded sublattice A;(—1)%2 @
Dg(—1) = Eg(—1), the image v of v'—21E"2 under the induced map (A1 (—1)%?&
Ds(—1)) ® Q — Eg(—1) ® Q is an element of Eg(—1).

Proof. We have v/ € Dg(—1)V because all the coefficients with respect to the
{e1,...,es} basis are integers. For the other statement, we recall that for some
p € {1,2}, Es(—1) is formed by the span of the isometric image of (hy, hs) &
Dg(—1) and by, b2 ,. We compute:

('U,bl) = —2 + ].

1 1
(’U, bg’p) = —5(9 + 21+ a2+ {)33) — 5
By hypothesis, the right-hand sides of these equalities are integers, and therefore
v E Eg(—].) O

Lemma 4.8. Suppose that
e «, 3, and m are positive integers satisfying the inequalities (3.2),
o v =xie1 + Taey + x3e3 + 3eq + 3es + 3eg € Dg(—1)Y, as in Lemma 4.7,
o (V) =2(m—aB)+1,

e the integers x1, 2,23 in v are distinct integers, none of which are equal
to 3.

Pick any a1, as orthogonal (—2)-roots of Es(—1), and let 1y be the embedding
defined by a; = hi,as = hg, and { = ae + Sf + v — al;‘“. Then R, =
{:l:(64 - 65), :|:(€5 - 66), :E(€4 - 66)}.

Proof. Omitted, as it is completely similar to the proof of Lemma 4.2. O

Assuming we have chosen «, 3, and m satisfying the inequalities (3.2), we
show that it is always possible to pick v' € Dg(—1) satisfying the hypothesis of
Lemma 4.8. A vector v’ as in (4.16) satisfies

(W)Y =2 a2l a2 +27=2(af—m) -1
So it suffices to find a solution to

o3+ 25 423 =2(af —m) — 28 (4.17)
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subject to certain conditions; precisely, we want distinct, nonnegative, coprime
integer solutions (z1,x2,x3), such that 3 ¢ {1, x2,25}. Suppose we have ar-
ranged that 2(af8 — m) — 28 = 2 mod 4, or, equivalently, that o8 — m is odd.
Then we can always solve (4.17) (by Lemma 4.3), away from the finite list of ex-
ceptional values. Suppose that we have additionally arranged, by appropriately
choosing « and g, that 3|2(af — m) — 28. Then each of the integers z1, z2, x3
coming from a solution to (4.17) must be distinct from 3, or else we would have
3| GCD(x1, z2,x3) (recall we are asking that the xz; are coprime). Therefore,
if we impose the additional conditions on «, 8, and m that 3|2(af8 — m) — 28
and that a8 — m is odd, then there exists a v’ satisfying the hypotheses of
Lemma 4.8.

To build our embeddings, it suffices to arrange that: (a) (a,8) = 1 (to
guarantee primitivity), (b) the inequalities (3.2) hold, and (c) 2(af — m) — 28
is a sum of three distinct coprime nonnegative squares. We have already seen
that (c¢) holds if

2(af —m) —28 > 102, 2(af —m) —28 # N, (4.18)
312(af — m) — 28, (4.19)
af —m =1mod 2. (4.20)

If we insist that the inequality

577” O pm > 12 (4.21)

holds, then there must exist relatively prime «, satisfying (3.2) such that
(c) holds: the inequality (4.21) lets us pick «, with § = a + g for some
g €{1,2,3,6} such that 3|2(a¢f8 — m) — 2 and af — m is odd. Specifically, if m
is odd, pick appropriate o and 8 = a+ ¢ for g € {1,3}, while if m is even pick
B =a+ g with g € {2,6}.

By considering the conditions (4.21) and (4.18), we can now successfully
determine a lower bound mg such that Mg, 2 is of general type for m > my.
First, note that for a, 8 = a4+ g, and m satisfying (3.2), we have the inequality

af—m=a’+ga—m>a*—m>pm (4.22)
and, as an immediate consequence,
2(af —m) — 28 > 2pm — 28.

Thus, taking
pm > 52 (4.23)

will ensure that 2(aff —m) — 28 > 2. If 2(af — m) — 28 = N, where N is as
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defined in Lemma 4.3, then the inequalities

aﬁ—m:ﬁQ—gﬁ—m<62—m<%
hold under our continuing assumptions on «, 8 = o + g, and m. Therefore for
such N we must have
N <m/2—28.

So we would like to ensure that for m > 2(IN + 28), the quantity p > 0 is small
enough so that the difference

M T

is large enough to adjust «, 8 by +6 (to preserve (4.19) and (4.20)) in order to
avoid N.
As before, optimization for (4.21) and (4.23) yields m > 10463 and p =

0.0014337.
5
Tm — /(1 p)m > 50000 (4.24)

so we are always able to adjust a to avoid N. As in §4.1,we now have proven
that Proposition 4.1 is true for m > 10772. The remaining cases for d = 8m +4
are handled by computer (see §4.4).

4.4. Searching for embeddings by computer

A list of embeddings for the values of m less than the lower bounds we
calculated above is available on the author’s webpage. To find these embeddings,
we used a simple transplantation of the algorithm given in [Tanl9, §5]. Our
search for these embeddings was exhaustive: we include in our list every m for
which there exists an embedding K j‘ — Lo 96 with our desired properties. We
include this list along with Magma code [BCP97] to certify that the embeddings
in our list produce modular forms of the correct weight3. To count the size of
R_5 corresponding for each embedding, we count by their Type from Lemma 3.3
(see Step (iv) of the algorithm in [Tanl19, §5]). Our list of explicit embeddings,
taken together with the analyses in §§4.1, 4.2, 4.3, prove Proposition 4.1.

O
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