
Microelectronics Reliability 147 (2023) 115055

A
0

Contents lists available at ScienceDirect

Microelectronics Reliability

journal homepage: www.elsevier.com/locate/microrel

Testing and reliability enhancement of security primitives: Methodology and
experimental validation
Md Toufiq Hasan Anik d,∗, Jean-Luc Danger a, Omar Diankha e, Mohammad Ebrahimabadi d,
Christoph Frisch c, Sylvain Guilley b, Naghmeh Karimi d, Michael Pehl c, Sofiane Takarabt b

a LTCI, Télécom Paris, Institut polytechnique de Paris, France
b Secure-IC, France
c Technical University of Munich, Department of Electrical and Computer Engineering, Germany
d University of Maryland Baltimore County, United States
e Paris 8 University, France

A R T I C L E I N F O

Keywords:
Test
PUF
High order Alphabet (HoA)
TRNG
SCA
FIA
DS
Automatic Test Pattern Generation (ATPG)

A B S T R A C T

The test of security primitives is particularly strategic as any bias coming from the implementation or
environment can wreak havoc on the security it is intended to provide. This paper presents how some security
properties are tested on hardware security primitives including True Random Number Generation (TRNG),
Physically Unclonable Function (PUF), and cryptographic modules. Moreover, we discuss how the sensors
embedded to protect cryptographic modules against fault injection attacks should be calibrated over time
to fulfill the requirement it was designed for. The testing we discuss in this paper is different from the
conventional testing where we consider a fault model and generate test patterns via an ATPG to detect such
faults. The test of TRNG and PUF to ensure a high level of security is mainly about the entropy assessment,
which requires specific statistical tests. The security against side-channel analysis (SCA) of cryptographic
primitives, like the substitution box in symmetric cryptography, is generally ensured by masking. However,
the hardware implementation of masking can be damaged by glitches, which create leakages on sensitive
variables. Accordingly, a test method is to search for nets of the cryptographic netlist, which are vulnerable
to glitches. Finally, the Digital Sensor (DS) is an efficient primitive to detect disturbances and raise alarms in
the case of fault injection attack (FIA). The dimensioning of this primitive requires a precise test to take into
account the environmental variations including aging.

This paper extends on a conference paper presented at DFTS’21 by the same co-authors, where the test
methodology for three critical security primitives is presented. In addition, in this paper, we add experimental
validation to show how such testing methodology is applied in practice.
1. Introduction

Functional testing has become a mandatory requirement for circuits
to be admitted in downstream supply chain. Involved techniques are
JTAG for boundary scan, and inner logic validation, BIST for memories,
etc. Although these methods are well-known and have been deployed
for a long time in digital circuits, their suitability for security functions
appears to be insufficient. Indeed, those techniques only assess the
correct functional behavior, but fail to test security functionalities
(which are often non-functional).

Typically, regarding security applications, it is expected that some
domain-specific tests are carried out. A secure chip typically embeds
key generation logic (such as a PUF and/or a TRNG), cryptographic
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1 International standard ISO/IEC 20897-2 [18] gives a comprehensive list of requirements regarding PUFs, which can be found in [48, §3.2].

algorithms, and embedded sensors to monitor the operating condi-
tions and/or prevent fault injection attacks. Obviously, PUFs used as
master keys shall be reliable.1 In addition, as any cryptographic key,
they must be unpredictable; hence their randomness shall be ensured.
Indeed, cryptographic algorithms are designed and proven secure as-
suming keys of maximal entropy (see for instance the recommendation
from [1, § B.3.14.8]). Besides, cryptographic key management shall be
secure against side-channel attacks, such as those exploiting masking
countermeasures. Such protections are nowadays well known, in gen-
eral. But without special care, they are vulnerable to glitches, which
shall be managed responsibly. Eventually, digital sensors, which are
standard-cell based structures shall be calibrated in terms of aging,
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so that they remain as efficient as possible across device utilization
stages.

This paper addresses all these issues in a pedagogical manner. Three
sections are devoted to security-specific tests that shall be carried out
in addition to the usual functional tests. Given the fast spread of
security features in chips, these tests shall not only be considered as
nice features, but very soon, as mandatory features. Indeed, silicon
ecurity pieces of ‘‘intellectual properties’’ (IP) are required to fulfill
he requirements of some safety or cyber-security certification schemes.
able 1 lists some such schemes and indicates which IP allows getting
ompliance. The safety schemes are:

• IEC 61508, entitled ‘‘Functional Safety of Electrical/ Electron-
ic/Programmable Electronic Safety-related Systems’’, published
by the International Electrotechnical Commission (IEC) and

• ISO 26262, entitled ‘‘Road vehicles – Functional safety’’, is pub-
lished by International Organization for Standardization (ISO)
sub-committee ISO/TC 22/SC 32, and is an adaptation for the
automotive market.

he security schemes are multiple. We list them hereafter:

• The ‘‘Security Evaluation Standard for IoT Platforms’’ (SESIP) is
a Global Platform standard specifying lightweight requirements
dedicated to the Internet of Things (IoT) market. The SESIP can
be seen as a simplified profile from Common Criteria.

• The standard ISO/IEC 15408, also known as ‘‘Common Criteria’’
(CC), is an open, rigorous, scheme aiming at providing a given
level of assurance of the platform. Part 2 of the CC defines a
list of Security Functional Requirements, which are referred to
as <CLASS>_<FAMILY>.

• Regarding key management, the USA National Institute of Stan-
dards and Technology (NIST) defines the FIPS 140-3 standard
for hardware security modules (HSM). This Federal Information
Processing Standard (FIPS) 140-3 lists security requirements. The
3rd revision (hence the ‘‘-3’’ suffix) is actually the same as the
international standard ISO/IEC 19790:2012.

• The Office of State Commercial Cryptography Administration
(OSCCA) is a Chinese administration organized in a similar man-
ner as NIST. Its resulting norm is referred to as GM/T 0008:2012.

• The European Telecommunications Standards Institute (ETSI) is
endowed with the capability to define European Norms (abridged
EN). In the IoT market, the ETSI has published the ‘‘Cyber Secu-
rity for Consumer Internet of Things: Baseline Requirements’’ as
ETSI EN 303 645 V2.1.1.

• Eventually, the European project ‘‘E-safety Vehicle Intrusion pro-
Tected Applications’’ (or EVITA, pertaining to the Seventh Frame-
work Program) defines de facto the normative requirements for
automotive HSMs.

It can be seen that only sensors matter in terms of safety. The reason
s that weak keys and leaky cryptography do not hinder systems’ safety
t all. Regarding cybersecurity, more requirements come into play.
ndeed, security requires safety, but calls for more caution, namely:

• secrecy of keys upon generation (when spawned by a PUF or a
TRNG) and upon use (in cryptographic algorithms exposed to
side-channel attacks);

• protection against perturbations, which can lead to cryptanaly-
sis [2]. The very same sensors as leveraged for achieving safety
goals can be reused verbatim in this respect.

n Table 1, the EFP acronym in FIPS standard line stands for ‘‘Environ-
ental Failure Protection’’ (see §4), whereas for CC, one has FCS_CKM
‘‘Cryptographic key generation’’, FPT_PHP = ‘‘Passive detection of

hysical attack’’, and FRU_FLT = ‘‘Fault tolerance’’. Notice that there
2

s currently no mature test suite for PUF.
Table 1
Mapping between certification schemes and applicable IPs to meet their safety/security
requirements.

Certif.
scheme

PUF/TRNG Masking Sensors

Safety
(IEC 61508,
ISO 26262)

N/A N/A A safety
mechanism
whose
‘‘diagnostic
coverage’’ shall
be measured by
tests

SESIP v1.1 N/A Level 3 onward Level 3 onward

Common
Criteria

FCS_CKM FPT_PHP FRU_FLT

NIST FIPS
140-3

Sensitive
Security
Parameter
Management

Module is
designed to
mitigate against
non-invasive
attacks specified
in Annex F.

Tamper
detection and
response
envelope. EFP.
Fault injection
mitigation.

OSCCA,
GM/T 0008

Same as above Same as above Same as above

ETSI EN
303 645

No universal
default
passwords

N/A N/A

EVITA Yes (D3.2) N/A N/A

Contributions. As mentioned earlier, in this paper, we DO NOT apply
conventional testing for which we need to deploy an ATPG to generate
patterns for the targeted fault model and apply these patterns to ensure
that the circuit output does not deviate from the expected output.
Rather we discuss the requirements that each of our targeted security
primitives (PUFs, TRNGs, Cryptographic Modules, and Digital Sensors)
should meet to ensure security and/or safety. In sum, in this paper, we
aim at providing a full overview of tests related to security chips (this
test is a non-functional test needed for each of the targeted primitives
to fulfill the application they were designed for). Such information is
usually only available in specialized publications, or even worse, is not
publicly discussed. Based on our results in [3], we detail the nature of
the tests for three classes of security functions, namely:

1. Functions managing the need for randomness, namely through
TRNGs (dynamic randomness) and PUFs (static randomness);

2. Leakage Analysis in cryptographic algorithms, whose resistance
to side-channel attacks shall be extensively proven;

3. Resistance of sensors against perturbation, via considering aging
into account.

We provide examples of experimental validation to show how these
tests apply in practice. Namely, we discuss differences in testing binary
and higher-order alphabet PUFs and illustrate our findings based on
measurement results taken from 180 FPGA boards. Also, we show that
side-channel attacks can extract secret keys if the netlist-level testing
reveals a vulnerability owing to spurious glitches whose activity dis-
closes clear (unmasked) information. Eventually, regarding the sensor,
we show on an FPGA platform how to calibrate a digital sensor, and
explain the impact of intra- and inter-die variability.

Scope of the paper. The paper covers a broad scope, as it aims at
addressing relevant aspects of security testing. Still, in addition to
the panorama, we offer some deep-dive into the addressed topics by
providing some novel contributions. Namely:

• Regarding PUFs, we introduce and discuss the innovate concept
of high-order alphabets;

• Regarding side-channel protection of cryptographic functions, we

illustrate how to spot glitches from a theoretical manner (in the
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netlist) and we confirm that it leads to real exploitation (in
practice);

• Regarding digital sensors, we show how to cope with aging, and
in addition we provide actual FPGA results.

Outline. The rest of the paper is structured as follows. The question
of entropy testing is tackled in Section 2. Also, in this section, an
example of high-alphabet PUF is introduced and analyzed. Testing
for harmfulness of glitches in side-channel protections is the topic of
Section 3. The validation of digital sensors across aging is discussed in
Section 4. Eventually, Section 5 concludes the paper. A technical proof
is relegated in Appendix A.

An orientation regarding the different security-related aspects cov-
ered throughout the paper is depicted in Fig. 1.

2. Evaluation of PUFs and TRNGs

Two kinds of randomness are necessary for secure devices: A secret
key requires randomness, which is stable over time. However, security
also relies on randomness which is fresh whenever sampled, e.g., for
nonces. These different kinds of randomness for the overall cryptosys-
tem are provided by security primitives such as PUFs and TRNGs. PUFs
extract static randomness from manufacturing variations. Dynamic ran-
domness, e.g., for nonces, stems from TRNGs whose randomness consist
in the digitization of noise. Nonetheless, in either case an attacker
should not be able to predict the random data. Therefore, the entropy of
PUFs and TRNGs is crucial for the security of a system, as it has been
shown in Fig. 1. To make this entropy usable as a key, reliability –
i.e., the property that always the same realization of a random number
is derived – is an important property for PUFs, too. However, evaluating
the reliability of PUFs is a separate issue that needs to be addressed
and out-of-scope in this work. An exemplary approach can be found
in [4]. Other PUF metrics, like Uniformity, Uniqueness, Bit-Alias [5,6]
are generally used in literature for testing PUFs regarding the quality
of their randomness and standardized test suits are used to test TRNGs.
However, such security-specific statistical tests ensuring a sufficient
quality of the randomness, and ultimately the correct functionality
of PUFs and TRNGs are hard to realize without infusing a backdoor,
since access to security relevant internal data must be provided at least
temporarily for testing. For TRNGs, test suites partly consist out of
complex tests and are thus not suitable for testing on a device. They
require offline testing. For PUFs, some metrics additionally require data
from multiple devices which also necessitates offline tests.

2.1. Fundamental differences in statistical properties

At first glance, PUFs and TRNGs both produce randomness. How-
ever, applying the same tests to them is problematic because their
randomness has several differences:

Source of Randomness: The most important difference between PUFs
and TRNGs is their basis for randomness. A PUF extracts randomness
from the variations in the manufacturing process which should stay
constant. For a TRNG, the randomness stems from noise. This disparity
is the foundation for more differences.

Amount of Data: Statistical tests require large amounts of data to
ensure a sufficient significance of the results. Disregarding latency,
TRNGs can output arbitrarily much random data because the noise
keeps changing over time. In contrast, PUFs can provide only a limited
amount of randomness since process variations are fixed after the pro-
duction of the chip. Hereby, the PUF primitive determines the amount
of data that can be extracted. Normally, PUFs as key storage output one
bit (e.g., SRAM PUF [7]) or only few bits (e.g. Loop PUF [8]) per PUF
instance, and a chip possesses a limited number of PUF instances2. As a
result, many devices are necessary to enable testing with enough data.

2 Please note that multi-challenge PUFs like Arbiter PUFs [9] or SUM
UFs [10] and their relatives are rarely used for key storage and are
otentially weak against machine learning [11].
3
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Fig. 1. Security IPs and threats targeting them.

Dimension of data: Whereas the bit-stream of a TRNG is
one-dimensional and from a single source, testing of PUFs has to
be along multiple dimensions: (i) For many PUFs, a combination of
multiple PUF instances on a device results in a key of the desired length.
Consequently, there are two dimensions to test — the unpredictability
of a single PUF instance at a specific position evaluated over several
devices and the relation of the PUF responses on a single device.
(ii) Oftentimes, PUF instances on a single device are structured in a
two-dimensional array. The findings in [12] show that the way of
concatenating the data row- or column-wise to get a stream of responses
has an impact on the test result. (iii) Some PUFs are configurable by
a challenge; in this case, the choice of the challenges adds another
dimension. (iv) In addition, so called higher-order alphabet (HoA) PUFs
output multiple symbols per challenge or position.

One approach to tackle the different dimensions in (i), (ii), and (iii)
is to understand the PUF not as one source outputting multiple bits, but
as a multi-bit source or as multiple one-bit sources. Beyond, HoA PUFs
need even more advanced techniques for testing as discussed below.

Impact of Noise: PUFs extract a constant randomness from noisy
data, whereas TRNGs generate fresh randomness from noisy data.
There are two aspects linked to that: (i) Testing a PUF means dealing
with samples from a joint distribution of manufacturing variations and
noise.3 (ii) The entropy of a PUF is restricted by the limited variations
in the manufacturing process and is effectively lowered by noise which
often imposes remediation means such as error correction4.

2.2. Properties to be tested

Because of the different nature of TRNGs and PUFs, the tests them-
selves have to evaluate distinct properties. TRNG tests can be divided
into two categories: Either, the test compares the TRNG output se-
quences to sequences of independent and identically distributed (iid)
numbers, i.e. ideal randomness. If they cannot be distinguished, the
TRNG is considered to be of a high quality. Or, a test estimates the
entropy of a TRNG output.

Similarly, a PUF test checks if a PUF response is random enough,
i.e., unpredictable. Due to the multiple dimensions of a PUF, this
unpredictability has to hold even if an attacker collects information
across any of the dimensions. Consequently, a PUF test has to cover
several aspects: PUF responses have to be free of bias or correlation

3 Potentially, more effects can also be part of this distribution, e.g., temper-
ture shifts, fluctuations in the supply voltage, or device parameters variation
wing to its aging.

4 Some PUFs, such as the Loop PUF [8], can achieve a required
ntropy/reliability by adapting the number of oscillations.
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effects, regardless of whether they are from different PUF instances on
the same device, for different challenges, or over more devices for a
fixed position.

In addition to statistically testing the unpredictability of a PUF,
noise effects have to be analyzed as well. The noise should be low
enough such that only a minimum amount of post-processing, e.g., in
the form of error corrections, is needed.

Lastly, the entropy is important for PUFs as well as for TRNGs.
Hereby once again, the entropy estimator has to incorporate the in-
tricacies of PUFs, such as their multiple dimensions.

2.3. Test methods for TRNGs

No test can prove randomness. Thus, the evaluation of a TRNG relies
on statistical test suites with multiple tests. Whenever a test is passed,
this strengthens the confidence in the overall output.

The NIST SP 800-22 standard [13] compares the TRNG output with
iid bits. 15 tests evaluate the input by looking for patterns under the
null hypothesis 𝐻0 that the tested RNG’s output sequence is random.
A test rejects this null hypothesis if its 𝑝 value is too low. The overall
test suite finally interprets the individual tests and gives a concluding
result.

The BSI AIS 31 standard [14] (as well as its current draft of an
update [15]) defines a second standardized test suite. It has nine tests
which in parts overlap with [13] and also analyze different criteria of
a TRNG’s output. Besides, it requires information about the structure
of the TRNG to enhance the overall test result.

There are also non-standardized tests such as TESTU01 [16] with
six test batteries which follow a similar concept as the standardized
ones. Also, e.g., in the BSI AIS 31 a model for the source of entropy is
required to substantiate the claim of true randomness.

Instead of comparing the observed randomness of the TRNG under
test with an ideal one, estimating the entropy is also possible such as
in the NIST SP 800-90B [17]. First, a user has to pick either the iid or
the non-iid track. Then the estimators evaluate the min-entropy. The
lowest value, finally is the output of the whole test.

2.4. Test methods for PUFs with binary responses

Unlike for TRNGs, for PUFs there is only one standard at the
moment: ISO/IEC 20897-2 [18] which evaluates randomness and re-
liability. Part of the test can be found in the standardized TRNG test
suite, and part of them is based on PUF-specific publications, e.g., [5,6].
It also applies the NIST SP 800-90B to estimate the entropy of a PUF.

Besides [18], research has proposed other methods. Overall, there
is a large amount of various qualitative PUF tests. Visualizing their
output can highlight issues of the underlying PUF, such as the Principal
Component Analysis (PCA) in [19], which can show gradients of the
process variations. In recent years, the general concept of testing has
improved by introducing statistics in the form of confidence intervals
or hypothesis testing (e.g., [20]). As an additional dimension, spatial
information can be integrated [21], which highlights the difference to
TRNG tests. Spatial information also enhances entropy estimation for
PUFs [22]. However, in some scenarios, not only the entropy in the
PUF is relevant, but also in the extracted key. The findings in [23]
demonstrate how this key entropy can be evaluated.

The tests discussed so far mainly focus on PUFs with binary re-
sponses, even if few are extendable to PUFs with responses from a
higher order alphabet. Therefore, next, we describe issues and solutions
for testing such HoA PUFs.

2.5. Test methods for HoA PUFs

Recently, higher-order alphabet PUFs (HoA-PUFs) have gained at-
tention [24–26]. Instead of deriving a single bit per PUF instance,
4
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Fig. 2. Histogram of symbol frequency of Loop PUF data. The expected symbol
frequency for each symbol is 540 [30].

challenge, and position on a device, HoA-PUFs provide symbols from
a higher-order alphabet, typically encoded as a bit sequence. For this
purpose, special quantization strategies, like equi-probable or equi-
distant quantization [27], are used. Such an approach can allow for
deriving more entropy per area and thus makes a PUF more efficient.
It was suggested, e.g., for a PUF-based secure enclosure [28]. However,
current testing strategies have to be adapted or different, and novel
ones are necessary in order to test such PUFs.

In [24], the author modifies the reliability and uniqueness as two
state-of-the-art binary metrics for HoA-PUFs. For these two metrics,
an adaption is possible because the Hamming distance of two PUF
responses is defined not only for binary data but also for HoA-PUF
responses. Compression based on Context Tree Weighting (CTW) can
also be extended from a binary to a higher-order alphabet setting
[22,29]. Even NIST SP 800-90B tests have the capability to handle
symbols from a higher-order alphabet. However, most tests for binary
PUFs are not applicable to HoA-PUFs, because they assume a binary
probability distribution.

Therefore [30] proposes new tests for statistically sound analysis
of bias effects5 of HoA-PUFs. Note that metrics for HoA-PUFs are also
applicable to binary data, but potentially have lower precision, because
the underlying mathematical approximations are less exact.

Summarizing the work in [30], we now illustrate current research
on finding suitable test schemes for HoA-PUFs. A Loop PUF [8], which
is a ring oscillator based PUF primitive with configurable delay stages,
serves as an example. Most commonly, a Loop PUF would (i) measure
frequencies of the same ring under always two specific configurations
by counting the number of periods within a fixed time and (ii) take the
sign bit of the counter difference as the binary response. In addition,
we emulate a HoA PUF, by mapping the counter difference after step
(i) to more than two intervals. This results in more than two distinct
response symbols. Fig. 2 depicts the measurement of data from 48 Loop
PUF instances on 180 BASYS 3 FPGAs implemented according to [31]
and quantized to 16 different symbols. For quantization, intervals were
selected so that on a normal distribution approximating the expected
counter differences’ distribution all symbols are equally likely. As a
consequence, the intervals do not have the same size; the intervals
toward the tails of the underlying probability distribution are larger
than the ones closer to the mean.

Given such a data set, the underlying PUF can be checked for
sufficiently low bias using hypothesis testing.6 This is possible at first

5 Bias metrics evaluate if a symbol occurs more (or less) frequently than
xpected and thus target the unpredictability as a core property of a PUF.

6 Please note, that ‘‘sufficiently low bias’’ refers to a parameter choice by
he designer and implies that subsequent postprocessing of the PUF prevents
ny predictability issues of a PUF derived secret.
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glance by interpreting the HoA PUF output as a binary string or as HoA
symbols.

Assuming symbols from a higher order alphabet, the following
newly proposed tests in [30] evaluate this data: (i) Pearson’s Chi-
squared Test checks the null hypothesis that the measured data cor-
responds to the expected probability distribution of the counter dif-
ferences. (ii) The Multinomial Confidence Intervals compute the overall
confidence interval for all symbols at once. (iii) The Acceptable Intervals
define intervals for the amount of occurrences for each symbol. The
limits of the intervals depend on symbol probabilities and other test
parameters for which a user would define the PUF to have a sufficiently
high quality. If the measured symbol frequency all are within their
respective intervals, then a user can deduce a high quality from the
PUF.

For the sake of a comparison between binary bias test and HoA-
PUF bias tests in [30] , we now map the symbols in Fig. 2 to their
binary representation (e.g., symbol 5 would be 0101) and compute
the average Hamming weight of the corresponding binary data. The
resulting average Hamming weight per bit is 0.499 (also known as
bit-alias), which is very close to the ideal value of 0.5. Consequently,
the PUF might be considered to have no bias when applying a test for
binary data.

In comparison, the evaluation based on symbols and using the new
tests in [30] provides more precise statements about bias effects:
Given the data set, Pearson’s Chi-squared Test does not reject the null
hypothesis that symbols do not follow a uniform distribution. The
Multinomial Confidence Intervals contain the expected probability for
ach symbol, which also indicates a low bias. However, the min-
ntropy computed based on the received intervals is 3.76 bit (instead of
bit), which indicates a slight discrepancy from an ideal HoA-PUF. For

he Acceptable Intervals, recall that the 16 symbols are ideally uniformly
istributed occurring with probability 1

16 . As an example, we allow for
the PUF an offset from this ideal value by at most 1

80 , i.e., assuming
that some subsequent compression counters such a defect. If we try to
guarantee that the bias for each symbol is in such an interval of 1

16 ±
1
80

five out of 16 symbols – namely symbols 3, 4, 5, 6, 15 – fail the test,
.e., based on the test, we do not reject the null hypothesis that the
ymbol probabilities are outside of 1

16 ± 1
80 . So unlike the exemplary

test for binary data, such as the average Hamming weight which does
not detect any bias effects, the new tests for HoA-PUFs point to several
issues, highlighting the benefit of such tests.

2.6. Discussion of test strategies

This introduction to testing PUFs and TRNGs shows that testing
randomness adds another level of complexity to functional testing in
the security domain. The comparison illustrates that PUFs are even
harder to test than TRNGs. This and the novelty of PUFs mean that for
PUFs no well-established test suite exists today. Thus, further investi-
gation is needed to substantiate the recommendations in the existing
PUF standard with a complete set of tests like for TRNGs. In particular,
the example given for testing HoA PUFs shows the importance of
developing dedicated tests for specific usecases.

The randomness of PUFs and TRNGs constitutes one important part
of the overall security of a system and thus deserves dedicated testing
strategies. Yet there are additional aspects regarding the security (such
as SCA or FIA) of a system which also motivate security-specific testing.
These considerations are discussed in the following sections.

3. Assessment of SCA leakage in cryptographic circuits

3.1. Presentation of the problem

Cryptographic algorithms consume keys generated by TRNGs and
PUFs. They compute ciphertexts from plaintexts, or generate signatures
from hashes of messages. While they compute, they inadvertently leak
5

information on the key, as represented in Fig. 1. As a matter of fact,
the intermediate variables within the algorithm incur more or less
power consumption. Related to that, the electromagnetic field emitted
during the computation is also somehow dependent on the key. For
this reason, the RTL description of cryptographic algorithms often
leverages ‘‘random masking’’. This is an implementation style whereby
a random input is fed to the module, and mixed to the computa-
tion. Correct implementations ensure that key-dependent intermediate
variables (without mask) are turned into independent variables.

In this context of gate-level masking, not only every net must be
duly masked, but also the netlist must be protected against glitches.
A glitch is a difference in the evaluation of the netlist, which is likely
(or not) to happen, depending on the internal delays while executing
the netlist. In this section, we formalize the notions of perfect masking
(known since 2014) and perfect masking in the presence of glitches
(our contribution). Moreover, we propose efficient methods to verify
whether the properties are met. Such methods make up the announced
tests of masked logic in the presence of glitches.

3.2. Formalization of correct masking scheme

Let 𝑘 ≥ 1, and 𝐹 ∶ F3𝑘
2 → F2 a Boolean function of 3 variables, each

of 𝑘 bits.
The Boolean function 𝐹 models a net in a netlist, and:

• 𝑎 ∈ F𝑘
2 is the masked information,

• 𝑚𝑖 ∈ F𝑘
2 is the input random mask, and

• 𝑚𝑜 ∈ F𝑘
2 is the output random mask.

For example, the masking of a substitution box (also known as an S-
box, a permutation from 𝑘 bits, denoted 𝑆 ∶ F𝑘

2 → F𝑘
2) is (𝑎, 𝑚𝑖, 𝑚𝑜) ↦

𝑆(𝑎 ⊕ 𝑚𝑖)⊕𝑚𝑜. One coordination of this function is denoted by 𝐹 .
We aim to verify that 𝐹 protects the value of the sensitive infor-

ation 𝑥 = 𝑎 ⊕ 𝑚𝑖, leveraging either input mask 𝑚𝑖 or output mask
𝑜.

Notice that the masks are uniformly distributed, that is 𝑃 (𝑀𝑖 =
𝑖) = 2−𝑘, for all value 𝑚𝑖 ∈ F𝑘

2 , and similarly 𝑃 (𝑀𝑜 = 𝑚𝑜) = 2−𝑘,
or all 𝑚𝑜 ∈ F𝑘

2 .
In the sequel, to simplify the analysis, we focus on nets which are

alanced. We define two properties.

roperty 1 (Perfect Masking [32]). The function 𝐹 is perfectly masked if,
or all 𝑥 ∈ F𝑘

2 ,

(𝐹 (𝐴,𝑀𝑖,𝑀𝑜) = 1|𝑋 = 𝑥) =

(𝐹 (𝐴,𝑀𝑖,𝑀𝑜) = 0|𝑋 = 𝑥).

roperty 2 (Perfect Masking Against Glitches). The function 𝐹 is perfectly
asked against glitches if, for all 𝑥 ∈ F𝑘

2 , for all 𝛿 ∈ F3𝑘
2 ∖{0}, denoted

= (𝛿𝐴, 𝛿𝑀𝑖
, 𝛿𝑀𝑜

),

(𝐹 (𝐴⊕ 𝛿𝐴,𝑀𝑖 ⊕ 𝛿𝑀1
,𝑀𝑜 ⊕ 𝛿𝑀𝑜

)⊕ 𝐹 (𝐴,𝑀𝑖,𝑀𝑜) = 1|𝑋 = 𝑥) =

(𝐹 (𝐴⊕ 𝛿𝐴,𝑀𝑖 ⊕ 𝛿𝑀1
,𝑀𝑜 ⊕ 𝛿𝑀𝑜

)⊕ 𝐹 (𝐴,𝑀𝑖,𝑀𝑜) = 0|𝑋 = 𝑥).

It is proven in Appendix A that Properties 1 and 2 can be checked
fficiently based on computing Walsh transforms. These can be speeded
p with butterfly algorithms. Namely, the systematic and automatic
asking verification is carried out as shown in Alg. 1. The design is

lassified as secure if the two lists 𝑢 and 𝑔 are empty.

.3. Emblematic example

One challenge is, for instance, to verify each and every net from
anright’s masked S-Box [33] of AES. The netlist can be found in [34],
nd the function we consider is:

odule bSbox ( A, M, N, encrypt, Q );
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1

Algorithm 1: Masking verification method
input : Netlist
output: Lists of unmasked gates and of gates susceptible to glitching

unmasked value

1 𝑢 ← ∅,𝑔 ← ∅ // Unmasked / Glitching nets
2 for 𝐹 ∈ Netlist do // Traversal is chosen by the tester
3 for 𝑥 ∈ F𝑘

2 do
4 𝑤𝑢 ← 0
5 for 𝑚𝑖, 𝑚𝑜 ∈ F𝑘

2 do
6 𝑤𝑢 ← 𝑤𝑢 + (−1)𝐹 (𝑥⊕𝑚𝑖 ,𝑚𝑖 ,𝑚𝑜)

7 if 𝑤𝑢 ≠ 0 then // Verification of Prop. 1
leveraging Lem. 1

8 𝑢 ← 𝑢 ∪ {𝐹 }

9 for 𝛿 ∈ F3𝑘
2 ∖{0} do

10 𝑤𝑔 ← 0
11 for 𝑚𝑖, 𝑚𝑜 ∈ F𝑘

2 do
12 𝑤𝑔 ← 𝑤𝑔 + (−1)𝐹 ((𝑥⊕𝑚𝑖 ,𝑚𝑖 ,𝑚𝑜)⊕𝛿)⊕𝐹 (𝑥⊕𝑚𝑖 ,𝑚𝑖 ,𝑚𝑜)

13 if 𝑤𝑔 ≠ 0 then // Verification of Prop. 2
leveraging Cor. 2

14 𝑔 ← 𝑔 ∪ {𝐹 }

5 return 𝑢,𝑔

at line 234 (see Listing 1).
The masked information on 𝑘 = 8 bits is 𝐴, the input mask 𝑚𝑖 is 𝑀

and the output mask 𝑚𝑜 is 𝑁 . The signal 𝑒𝑛𝑐𝑟𝑦𝑝𝑡 selects whether the
S-Box is the direct or inverse function (SubBytes vs. InvSubBytes), and
the output is 𝑄. We shall test all 8 bits of 𝑄, and also all internal nets
within the netlist.

In this netlist, it is known that all nets are well masked, but also that
some nets are vulnerable to glitches. This has motivated to elaborate
more complex protections, such as threshold [35], glitch-free [36], or
glitch-immune [37] implementations. We recall the list 𝑔 of glitching
gates which disclose the secret here. They consist in the code below the
comment [sic]:

// YO! NEED TO DO SUMMATION BELOW IN SEQUENTIAL
ORDER FOR SECURITY !!!!

at lines 74, 96, 100, and 106 of the netlist [34] (see Listing 2).
Those lines can be spotted by our method by running Alg. 1. This

method is automatic and extends beyond the verification of S-boxes to
any masked combinational logic.

3.4. Validation of the methodology by attacks

In this section, we confirm that the glitch-based side-channel gener-
ated by Canright’s netlist is indeed exploitable by a first-order attack.
We recall that the leakage detection method (Alg. 1) returns an empty
list 𝑢 for unmasked nets, but finds some nets which leak unmasked
information (list 𝑔 is not empty). In this respect, we analyze the
Canright netlist code mapped on a SPARTAN6 XC6SLX75 FPGA target.
Mapping is obtained using ISE tool from within Xilinx Vivado toolchain.

First of all, digital simulation is carried out with Mentor Graphics
Modelsim, without considering timing in the signals (except the clock
signal). Synthetic traces are built by collecting, at each clock cycle, the
toggle count over all signals of the netlist. We perform a Correlation
Power Analysis (CPA), using as a model the ‘‘Hamming distance’’
between the netlist consecutive inputs. This leakage model indeed
reflects the switching of nets within the netlist. This CPA analysis is first
performed, and, without surprise, no leakage is reported. All combina-
tional signals are independent of the secret data, and the synthesizer
did not make any optimization that may unmask the secret data. This
is consistent with our constraints: we have forced the synthesizer to
6

Fig. 3. Correlation Power Analysis on the transiently unmasked variables identified
within Canright’s Sbox’s netlist.

keep all intermediate signals and the hierarchy of each module, using
the attribute ‘‘keep’’.

Second, we add the timing information to the netlist (namely, each
gate is annotated with a propagation time), and simulations are re-
run. Synthetic traces are regenerated by processing the simulation
waveforms as follows:

• a simulation step is selected (1 ps), and
• the trace value at each step is set to be the measured toggle count

within the past step.

Such traces do exhibit glitches. We subsequently replay the same CPA.
As shown in Fig. 3, the CPA succeeds in extracting the key, which
confirms that Alg. 1 does work. Namely, the working factor for the
attack is that the ‘‘Hamming distance’’ model is correlated with the
activity of nets belonging to list 𝑔 , when the simulation includes
propagation delays. Actually, only 75 traces are sufficient to recover the
secret key. This low value can be accounted by the fact the simulation is
noise-less. In practice, real measurements bear noise; hence successful
key extraction requires more traces.

To check this leakage on real-world traces, we acquired 200,000
electromagnetic captures on an actual FPGA target
(SPARTAN6 XC6SLX75 soldered on a SAKURA-G board [38]). We
then applied the Normalized Inter-Class Variance (NICV [39]) leakage
detection statistical tool using the unmasked Sbox input. The resulting
curve is shown in Fig. 4; it is clear that the NICV detects a leakage, as
there are significant spikes (localized in time, though, around samples
2300 ∼ 2500). This confirms the existence of a leakage. We note that a
correlation attack gives the same result, namely, the secret key can be
extracted.

4. Aging-aware digital sensor dimensioning to enhance reliability

Cryptographic devices are also vulnerable to fault injection attacks.
Referring to Fig. 1, adversaries may perturb the system via injecting
faults into the cryptographic devices through environmental changes
(or even via injecting targeted faults via laser illuminations) in order to
operate the device out of specifications to extract its secret information.
To detect such Fault Injection Attacks (FIAs), researchers frequently use
Digital Sensors (DS) as a countermeasure [3,40].

DSs are designed to detect clock/voltage glitches and temperature
attacks. Note that they cannot prevent them, but they can detect such
attacks and thus prevent leakage of secure data after such detection.
DSs are designed based on the designers’ preferable range of operation,
which covers the whole operating range of the targeted system. In
this way, the sensor can ensure system security and integrity even if
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Listing 1: S-Box definition, in Canright’s masked AES implementation.
[...]
/* find either Sbox or its inverse in GF(2^8), by Canright Algorithm

with MASKING: the input mask M and output mask N must be given */
module bSbox ( A, M, N, encrypt, Q );

input [7:0] A;
input [7:0] M;

[...]
Listing 2: S-Box implementation, in Canright’s masked AES implementation.
[...]
// YO! NEED TO DO SUMMATION BELOW IN SEQUENTIAL ORDER FOR SECURITY !!!!
/* optimize section below using NOR gates */

assign cst = { /* note: ~| syntax for NOR won’t compile */
~(a[1] | b[1]) ^ (~(af[2] & bf[2])) ,
~(af[2] | bf[2]) ^ (~(a[0] & b[0])) }

^ m2 ;
/* end of NOR optimization */

assign csa = cst ^ an ;
assign csb = csa ^ mb ;
assign cm = { /* this includes mask switch */

m[1] ^ nf[2] ,
mf[2] ^ n[0] }

^ mn ^ m2 ;
assign c = csb ^ cm ;
assign e = { /* inverse masked by n (lo input mask) */

c[0] ,
c[1] };

FAC_2 efac(e, ef);
GF_MULS_2 qmul(ef, af, q);
GF_MULS_2 emmul(ef, mf, em);

/* NOTE: to maintain masking, the output mask N must be added BEFORE
p, q are added to other terms */

// YO! NEED TO DO SUMMATION BELOW IN SEQUENTIAL ORDER FOR SECURITY !!!!
assign qsa = N[1:0] ^ an ; /* mask terms for q (lo output) */
assign qsb = qsa ^ em ; /* mask terms for q (lo output) */
assign qm = qsb ^ mn ; /* mask terms for q (lo output) */

// YO! NEED TO DO SUMMATION BELOW IN SEQUENTIAL ORDER FOR SECURITY !!!!
assign dm = m ^ n; /* mask adjustment */
assign d = e ^ dm; /* switch masks: n -> m (hi input mask) */
FAC_2 dfac(d, df);
GF_MULS_2 pmul(df, bf, p);
GF_MULS_2 dnmul(df, nf, dn);

// YO! NEED TO DO SUMMATION BELOW IN SEQUENTIAL ORDER FOR SECURITY !!!!
[...]
Fig. 4. NICV using the unmasked input of the Sbox.

the system is operated out-of-specification via raising an alarm. For
example, let us consider the operating range of voltage and temperature
as [1.0, 1.4] V and [0, 85] ◦C respectively for a cryptographic block. To
detect FIAs launched by change of temperature or by a voltage glitch,
the deployed DSs should be designed such that the range of operating
conditions they can cover is beyond the range in which the system
is supposed to operate properly, e.g., [0.65, 1.5] V and temperature
7

as [−10, 150] ◦C. Note that in practice during their lifetime, devices
experience aging-induced changes [41]. As DS are also aged over time,
the sensor outcome can be affected during the course of usage. This in
turn can introduce security concerns. Thereby as we will discuss below
the sensor should be designed such that even if it is aged, its outcome
(detecting the faults that affect the cryptographic block it is monitoring)
remains accurate. To do so, we need to test the sensor before fabrication
(test in its non-conventional form as mentioned earlier) in different
operating conditions and aging durations to decide about its dimensions
(number of flip-flops and buffers) for fabrication. Additionally, DSs
(like other circuits) encounter process variation during the manufac-
turing process. Given the impact of process variation, it is crucial to
calibrate the DSs after fabrication. Thus, we need to consider the impact
of process variation by testing the sensor outcome after fabrication, and
calibrate it accordingly. In this section, we present our DS dimensioning
algorithm and show its validity in real silicon more specifically in
FPGAs. We demonstrate the impact of process variation in the DS
outcome as well.

4.1. Introduction on digital sensor

To break a system by FIA, an adversary may perturb it. Thereby
detecting abnormal operating conditions, e.g., change of voltage, tem-
perature, or the frequency at which the system operates is of utmost
importance. To address such security and safety concerns, digital sen-
sors have been broadly deployed in recent years, and have replaced the
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Fig. 5. The architecture of the target digital sensor.

traditional analog counterparts. Indeed, being designed in full custom
layout [42], and accordingly vulnerability to removal attacks due to
their identifiability from the intractable sea of gates, the substantial
calibration cost, the high power consumption due to their always-on
status, and finally, the low failure rate detection due to dealing with
physical quantities separately (e.g., voltage alone, temperature alone)
make the analog sensors less attractive than the digital opponents [43].
Being part and parcel of the reactive arsenal, DSs must be tested, as they
must operate reliably in all corners.

A Digital Sensor (DS) can be realized by inserting a delay chain
in the target circuitry. The idea is to implicitly measure the time to
propagate a transition (a rising or falling edge) over such a path in
different operating conditions. In practice, the propagation time is
not really quantified; rather, it is checked if the transition manages
to propagate to the end of the delay chain at the considered fre-
quency [44]. Fig. 5 shows a sample DS sensor architecture in which
a chain of buffers realizes the critical path, and multiple D Flip-Flops
(DFFs) sample the delay of the transitions fed from signal 𝑎0, generated
by a Toggling DFF (TFF) at the beginning. Based on the operating
conditions, i.e., voltage and temperature, as well as clock frequency,
the setup time violation occurs in a different sampling DFF [45].
This sensor can be characterized using the so-called Average Flip-Flop
Number (𝐴𝐹𝑁) [40], that is extracted based on the flip-flop outputs in
each voltage and temperature combination, noted as (V,T) hereafter.
What follows discusses the AFN assessment in more detail.

In the sensor shown in Fig. 5, in each clock cycle 𝐶𝑖, when this
sensor is fed with 𝑎0, the first 𝐹𝑁𝑖 flip-flops are in phase 𝐴 (say
0 → 1 → 0), and the next flip-flops are in phase 𝐴̄ (say 1 → 0 → 1)
where 1 ≤ 𝑖 ≤ 𝑛1, 𝑛1 is the number of DFFs. Here 𝐹𝑁𝑖 denotes to the
index of the first DFF whose phase is different from its predecessors.
For example, the waveform in Fig. 6 shows the values of different DFFs
of the sensor of Fig. 5 with 𝑛0 = 9 leading buffers followed by 𝑛1 =
43 buffers and DFFs when operating under (V,T) = (1.2 V, 27 ◦C). In
this case 𝐹𝑁𝑖 is 31 in all clock cycles and accordingly 𝐴𝐹𝑁 which
is considered as the average of the 𝐹𝑁𝑖 values would be 31. Indeed
averaging 𝐹𝑁 values over a number of clock cycles is pursued to
reduce the effect of unwanted noise. In practice, the AFN value is found
to be an appropriate representative of the operating condition. Note
that for the conditions under which the circuit operates faster (lower
temperature and higher voltage) the AFN gets higher values, while the
AFN value is lower when the circuit operates slower.

Fig. 7 depicts the AFN values in different operating conditions for
the sensor shown in Fig. 5 with 9 leading buffers and 43 following
buffers and DFFs. Note that for the experiments presented in this
section, the sensors were implemented at the transistor level using
45 nm NANGATE technology [46]. As clearly shown, the AFN value
depends on both voltage and temperature altogether. As expected, the
impact of temperature increase can be compensated with the increase
of voltage and vice-versa. This can be observed in the trend of AFN
value change in different voltage and temperature combinations as
well, thus confirming the applicability of the AFN metric in sensing
8

Fig. 6. Waveforms of Fig. 5 in (V, T) = (1.2 V, 27 ◦C), where 𝑛0 = 9 and 𝑛1 = 43.

Fig. 7. Contour graphs depicting AFN values in different (V,T) conditions for the fresh
(age: 0) sensor shown in Fig. 5 where 𝑛0 = 9 and 𝑛1 = 43.

operating conditions. Indeed analog sensors miss this capability by
making decisions on raising alarms based on monitoring one physical
quantity at a time.

We benefit from the sensor’s AFN quantity for system’s failure detec-
tion, and to predict whether the system works properly or not based on
the operating conditions. To do so the sensor’s AFN value is compared
with a pre-defined threshold value determined based on the worst-case
condition in which the system is expected to work properly, and an
alarm is raised in cases that extracted AFN is lower than the threshold
value relates to the worst-case condition. We assume the worst-case
condition as (V,T) = (1.0 V, 85 ◦C) for the sensor we implemented here.
As Fig. 7 shows, the AFN in this condition is 17. Thus an alarm is raised
for the cases where 𝐴𝐹𝑁 < 17; shown in red in the figure depicting that
the circuit operates slower than expected, while the gray area shows
the conditions considered as safe. It is noteworthy to mention that this
threshold is tuned based on the application and user’s configuration.

Indeed chips are designed in different temperature grades (e.g., com-
mercial, industrial, military, etc.), i.e., a different range of temperatures
under which it is expected to work properly. Thereby to realize a sensor
(similar to the one shown in Fig. 5) that can cover the whole expected
range of operating conditions, it is required to have a well-defined
architecture in terms of the number of buffers and DFFs that the sensor
includes what we call the sensor dimension hereafter.

Note that although digital sensor’s data is sensitive, and protection
is needed to prevent side-channel analysis attacks using this data, such
data is not publicly available. From a system-level point of view, this
data is available to the system bus, typically addressed by privileged
instructions, and unless the privileges are escalated by the attacker, it
will not be possible to access such data from a digital sensor.

4.2. Digital sensor dimensioning

We have presented an algorithm for sensor dimensioning in our
prior work (Algorithm 1 in [40]), which determines the number of
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Fig. 8. Contour graphs depicting AFN values in different (V,T) conditions for the 4-
and 7- year old sensors shown in Fig. 5 where 𝑛0 = 9 and 𝑛1 = 43.

DFFs and buffers embedded in the sensor based on the ‘‘Best’’ and
the ‘‘Worst’’ Case conditions the circuit is supposed to work properly
(points 𝐴 and 𝐵 in Fig. 7 in our case). Here 𝐴 and 𝐵 are examples of
‘‘Best’’ and ‘‘Worst’’ case points. Note that, without loss of generality,
based on any range of operating conditions, we can dimension the
sensor (using Alg. 2) such that it detects the fault attacks accurately
in such a range. Deploying our prior algorithm (refer to [40] for more
details) for dimensioning the sensor in Fig. 5 realized using 45 nm
NANGATE technology while considering the ‘‘Best’’ and ‘‘Worst’’ con-
ditions as (1.0 V, 85 ◦C) and (1.4 V, −10 ◦C), respectively recommends
embedding 𝑛0 = 9 leading buffers followed by 𝑛1 = 43 buffers and
DFFs. Although such dimensioning fits the sensor’s expected operating
range well, it fails to consider aging effects occurring during the circuit
lifetime.

In practice, the electrical behavior of the transistors embedded
in the deployed DS (similar to other CMOS circuits) deviates from
the original one during the sensor lifetime. This deviation, so called
aging, results in the delay increase for the gates embedded in the
sensor. To show the necessity of considering aging degradation when
dimensioning the sensor, Figs. 8(a) and 8(b) depict the AFN evolution
for the same sensor after 4 and 7 years of aging, respectively. As
expected, the sensor circuitry becomes slower with aging, thus the AFN
value decreases over time for the same operating condition. This can be
observed as a shift of the red zone in Fig. 8(b) compared to Fig. 8(a)
and Fig. 7. Another important observation is the trend of AFN value
change in the aged sensors shown in Figs. 8(a) and 8(b) when operating
under high temperature and low voltage combinations. In these cases,
as the sensor becomes slower and slower with aging, the AFN value
may not be reliable, i.e., the sensor may need more DFFs to be able to
correctly sample the setup time violation occurring in the buffer chain.
To alleviate this problem, we improved the dimensioning algorithm
presented in [40] by considering aging effects. The new algorithm
is depicted below as Algorithm 2. As shown, the number of buffers
9

Algorithm 2: Aging Aware DS Dimensioning algorithm
input : Design kit for the target technology, desired clock period,

safety margin of K buffers
output: Sensor dimensions 𝑛0 and 𝑛1; values to be used for

architecturing the sensor aiming at failure detection during
run time

1 Build a netlist consisting of a DFF which samples its inverted output,
and feeding an infinite chain of buffers; each buffer feeds also a
separate flip-flop ;

2 Set the conditions to Non-Functional worst case (e.g., slow
process, high temperature, low voltage, maximum expected age) —
point, C in Fig. 7 ;

3 Determine the position (N) of first sampling inversion error by aging
simulation for maximum expected lifetime ;

4 Remove the Flip-flops connected to the first N buffers ;
5 Set the conditions to best case (e.g., fast process, low temperature,

high voltage, No age (i.e., age:0)) — point A in Fig. 7 ;
6 Determine the position (AFN_high) of first sampling inversion error ;
7 return (𝑛0 = N −𝐾, 𝑛1 = AFN_high − 𝑛0 +𝐾) ;

Fig. 9. Contour graphs depicting AFN values in different (V,T) conditions for the fresh
and 7-year old sensors shown in Fig. 5 where 𝑛0 = 4 and 𝑛1 = 48.

and DFFs is decided based on the ‘‘Best’’ operating condition (point
𝐴 when the sensor is fresh) along with the ‘‘Worst Non-Functional’’
condition (point 𝐶 for the L-year old sensor where 𝐿 is the expected
lifetime; 𝐿 is assumed to be 7 in this paper). Note that point 𝐶 denotes
the worst operating condition that the circuit may experience but is
beyond its range of proper operation. Dimensioning the sensor based
on the AFN value it experiences in point C results in a reliable and
accurate outcome over the course of usage. In other words, sensors’
results remain accurate even when aged.

Algorithm 2 shows how we dimension the DS by testing its outcome
(via monitoring its included flip-flops’ values) in different operating
conditions (voltage, temperature) and expected lifetime. In this algo-
rithm, we first consider a chain of infinite number of buffers each
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feeding a flip-flop and then trim the circuit based on the operating
conditions that the circuit may experience. By ‘‘aging’’ simulation of
this chain of buffers and flip-flops under the ‘‘Worst’’ case condition
that the circuit may experience (not necessarily working properly at
this condition; called ‘‘Worst Non-Functional’’ condition earlier) the
number of leading buffers is decided. Note that the ‘‘aging’’ simulation
is performed assuming the longest expected lifetime (e.g., 7 years under
a high aging stress). We use the HSpice MOSRA for aging simulations.
Then we decide about the number of following DFFs and buffers by
considering the ‘‘Best’’ case operating condition for the sensor. Note
that the calculations are done based on simulation using the same
technology libraries that will eventually realize the sensor. Thereby,
we consider a safety margin including ‘‘K’’ to account for process
variations.

Applying Alg. 2 to the sensor shown in Fig. 5 recommends embed-
ding 𝑛0 = 4 leading buffers followed by 𝑛1 = 48 buffers and DFFs. The
related contour graphs for the fresh (age:0) and the 7-year old sensors
with this dimension are shown in Fig. 9(a) and 9(b), respectively. As
illustrated, by considering the aging effects in Alg. 2, the trend of AFN
values is as expected even when the circuit is aged.

4.3. Validation on FPGA: Proof of concept

We validated the dimensioning algorithm of the digital sensor based
on the proposed algorithm on two SPARTAN6 XC6SLX75 FPGAs sol-
dered on a SAKURA-G board [38], with Xilinx ISE 14.7 software. The
goal is to investigate if calibration is needed after dimensioning the
sensor in the design phase when the sensor is implemented using the
same mask design to realize different chips (here on FPGA). In other
words, we opt to show the impact of process variation on the sensor
outcome.

4.3.1. FPGA implementation of digital sensors
To design a digital sensor on FPGA, a manual place and route is

employed. This is crucial as the sensor outcome relates to the delay of
the buffer chain included in the sensor thus having almost the same
delay between each buffer and its related DFF is required. As shown in
Fig. 5a digital sensor includes three basic components: A Toggling DFF
(TFF), a set of DFF, and a set of Buffers. In the first step of implementing
a digital sensor in FPGA, three different hard-macros (a circuit which
is already placed and routed on FPGA) need to be designed; a TFF for
generating 𝑎0 signal, a Buffer to be used in the initial chain, and a
Buffer-DFF to be used in sampling chain. Indeed, using a hard-macro
ensures that specific DFF and LUTs of each slice are used to realize one
buffer and its related flip-flop in the digital sensor; thereby following a
balanced place & route for the whole sensor. Then in the next step, by
instantiating a TFF hard-macros, 𝑛0 Buffer hard-macros, and 𝑛1 Buffer-
DFF hard-macros the hard-macro of the digital sensor is generated. This
hard-macro is called main hard-macro hereafter.

While designing the sensor, we followed the steps from Algorithm
2. In these experiments, we considered the voltage range from 0.8 V to
1.3 V and temperature as room temperature for our system (we do not
have temperature change in our FPGA experiments). For this range of
voltage, we needed 𝑛𝑜 = 7 leading buffers and 𝑛1 = 54 sampling DFFs
and related buffers. Note that this dimensioning is different from what
we showed for simulation results earlier, as the technology is different,
and also the range of operating conditions is different.

Fig. 10 shows the partial floor plan of our sensor. The TFF hard-
macro is shown in red, followed by the leading buffers depicted in
green. Each green slice implements one buffer realized via two back-
to-back inverters. In our implementation, all leading buffers are placed
such that we have the same routing from one buffer to the next; there-
fore, the same routing delays between each two consecutive buffers.
After implementing the leading buffer chain, the sampling chain is
inserted by using the Buffer-DFF hard-macros. The Buffer-DFF hard-
macro (a pair of blue slices) is implemented using two back-to-back
10
Fig. 10. Manual placement & routing of the digital sensor using the Xilinx ISE 14.7
FPGA Editor.

Fig. 11. On-chip implementation of Digital sensors in FPGA.

slices where the left slice includes the Buffer and the right one imple-
ments the related DFF. Similar to the leading buffers, in the sampling
chain, we make sure that each DFF-Buffer combination has the same
distance from the one it feeds; thus similar routing delays between
them. In our implementation, each sensor spans in local zones to ensure
that each component residing in each sensor experiences the same
power and clock variations. Note that different sensors may experience
a slightly different IR drop as located in different parts of the FPGA.

As devised in Alg. 2, we considered a safety margin (here 𝐾 = 4)
in our dimensioning to warrant that the DS works properly even in the
presence of process variations.

4.3.2. Intra-vs inter-die variation of digital sensor
To analyze the impact of both intra-die and inter-die variations on

the sensor outcome, we deployed 2 FPGAs and implemented 8 digital
sensors with identical main hard-macro in each as depicted in Fig. 11.
Note that we used the same bitstream to program both FPGAs, thus
the sensors are placed in the same locations in both FPGAs. As shown,
these 8 identical sensors are implemented in two columns and four rows
(the figure has been rotated for the sake of space). Here the 8 identical
sensors are implemented solely to demonstrate the impact of intra-
die process variation in our sensor outcome. Note that, the number of
sensors, and the location they are resided in a chip (to detect FIAs)
depend on the number of sensitive blocks we want to monitor and their
placement in the chip (refer to fig. 19 of [47]).
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Fig. 12. AFN for the 8 digital sensors implemented in two different FPGAs using the
same bitstream. All sensors in each FPGA were implemented via the same hard-macros.

Fig. 13. Inter-die variations of sensors’ AFN index in various voltages.

Fig. 12(a) shows the AFN index for each of the 8 implemented
sensors when running the sensor for 16 clock cycles under different
voltages, mainly in the range of 0.8 V to 1.3 V with steps of 0.05 V.
As expected, the AFN index increases in higher voltages. Another
observation that can be made from this figure is that sensors 1 to 4
mainly follow a similar voltage-induced AFN change, and sensors 5 to
8 follow another trend. However, for V = 1.1 V, the AFN is very similar
for all sensors. This is because FPGAs mainly experience low IR drop
variations when operating under their designed typical voltage. This
trend is slightly different for lower/higher voltages where the IR drop
induced changes can vary in different zones of FPGA. This can be the
reason for sensors 1 to 4 behaving similarly and different from sensors
5 to 8. Similar observations can be made for FPGA-2 (Fig. 12(b)).

Fig. 13 compares the variation of sensors’ AFN index in various
voltage quantities vis-a-vis for two sensors in each FPGA, in particular
Sensor-1 and Sensor-8. As depicted in both cases, FPGA-1 AFN Index is
higher than the FPGA-2. This is also true for the other 6 sensors (not
shown for the sake of space). This truly shows the deterministic trend
of inter-die process variations.

Fig. 14 shows the AFN index of all 8 sensors in each FPGA for
the voltage of 1.1 V. As depicted in this voltage, the maximum AFN
index variations among different sensors in FPGA-1 is 1 related to the
11
Fig. 14. Intra- and Inter-die variations of AFN Index in voltage of 1.1 V in 2 FPGAs.

Table 2
Average intra- and inter-process variation induced change of
AFN in different implemented sensors.

Category Intra Inter

FPGA-1 FPGA-2 FPGA-(1 & 2)

V∈[0.8 V, 1.3 V] 2.1 2.0 3.0
V = 1.1 V 0.3 0.5 2.3

difference of sensor-1 and sensor-8 (due to the intra-die variations).
This value is 1.3 for FPGA-2. This confirms the negligible impact of
intra-die process variations in the AFN index when operating at the
typical voltage of 1.1 V. Moreover, the maximum inter-die variation is
≈2.5 related to the difference of sensor-8 in FPGA-1 and FPGA-2 (the
same for sensor-3).

Table 2 assesses the effect of process variations in the sensors’
outcome in more detail. The results are shown for the voltage of 1.1 V
as well as the whole range of voltage we considered in this study. On
average, the AFN index changes 2.1 unit for FPGA-1 and 2.0 for FPGA-
2 when considering the whole voltage pane. However, the process
variation effect is very low for voltage 1.1 V, where on average intra-
die variation for AFN index is 0.3 for FPGA-1 and 0.5 for FPGA-2.
For inter-die process variation, these values are changed to 2.3 and
3.0 on average for the voltage of 1.1 V and the whole voltage range,
respectively.

The takeaway points from these experiments are that process varia-
tion effect on the sensor’s outcome is not high, thus we need a low-cost
calibration after the fabrication. Indeed the effect of process variation
on AFN index is low while the chip is designed with symmetric power
lines.

In addition, as discussed earlier, considering the safety margin 𝐾 in
sensor dimensioning (recall Algorithm 2) is highly crucial as without
such consideration, the process variation may result in an incorrect cap-
ture of AFN index in harsh environments (very high/low temperatures
or voltage). Finally, the results confirm that dimensioning algorithm
(Algorithm 2) is valid for the real-silicon implementation. Note that the
FPGA results were extracted for a new device, and we leave the impact
of aging on FPGA implementations of sensor for our future work. We
assume that ASIC follows the very same trend as FPGA regarding our
sensor dimensioning. We will implement the DS in ASIC to validate our
findings in our future project.

5. Conclusion

This paper demonstrates that security primitives require specific
tests to ensure a high level of security. Emblematic examples of prop-
erties to test are related to hostile environment and threats, e.g., ran-
domness quality, information leakage level, and aging mitigation. The
random variable generation, as provided by the TRNG for dynamic
variable, and PUF for device fingerprint, requires a validation by sta-
tistical tests to ensure a sufficiently large lower bound on the amount
of entropy. PUF requires more complex tests, as it can be biased by the
circuit layout and damaged by dynamic noise. The masking counter-
measure is an efficient method to protect hardware implementation of
cryptographic blocks against SCA. But it is necessary to avoid glitches



Microelectronics Reliability 147 (2023) 115055M.T.H. Anik et al.

t
i
P
g
s
C
W

D

A

a
A
C
b
g

A

W

L
𝐹

∀

P

a

P

S

P

N

𝑚

i

𝑚

W

𝑚

C

a

∑

𝑊

I

𝑊

C
𝐹

∀

P
O

P

𝐹

which can unmask the sensitive values. This paper proposes a netlist-
level test algorithm to automatically detect nets which could leak
secret information via glitches. The detection of FIA by DS requires an
accurate test to dimension the sensor(s). It is shown that it is important
to take into account the aging when dimensioning the DS, in order to
enhance the reliability of detection over time. All these tests have been
carried out and validated on real-silicon (FPGAs). They prove that the
proposed methodology is applicable to these three security primitives.
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ppendix A. Equivalent formulation of Properties 1 and 2

Property 1 expresses the security requirements in statistical terms.
e can reformulate it using Boolean functions:

emma 1 (Mathematical Formulation Of Property 1). Let 𝐹 ∶ F3𝑘
2 → F2.

satisfies Property 1 if and only if:

𝑥 ∈ F𝑘
2 ,

∑

𝑚𝑖∈F𝑘2

∑

𝑚𝑜∈F𝑘2

(−1)𝐹 (𝑥⊕𝑚𝑖 ,𝑚𝑖 ,𝑚𝑜) = 0.

roof.
The three random variables are 𝑀𝑖, 𝑀𝑜 and 𝑋. We know that 𝑀𝑖

nd 𝑀𝑜 are independent and uniformly distributed.
Notice that for a Boolean variable 𝑌 , P(𝑌 = 1) = 𝐸(𝑌 ).
Let one value of 𝑥. We have:

(𝐹 (𝑋 ⊕𝑀𝑖,𝑀𝑖,𝑀𝑜) = 1|𝑋 = 𝑥)

= P(𝐹 (𝑥 ⊕𝑀𝑖,𝑀𝑖,𝑀𝑜) = 1)

= 𝐸 (𝐹 (𝑥 ⊕𝑀 ,𝑀 ,𝑀 ))
12

𝑀𝑖 ,𝑀𝑜 𝑖 𝑖 𝑜 P
= 1
22𝑘

∑

𝑚𝑖 ,𝑚𝑜

𝐹 (𝑥 ⊕𝑀𝑖,𝑀𝑖,𝑀𝑜). (1)

ymmetrically,

(𝐹 (𝑋 ⊕𝑀𝑖,𝑀𝑖,𝑀𝑜) = 0|𝑋 = 𝑥)

= P(𝐹 (𝑥 ⊕𝑀𝑖,𝑀𝑖,𝑀𝑜) = 0)

= 𝐸𝑀𝑖 ,𝑀𝑜
(1 − 𝐹 (𝑥 ⊕𝑀𝑖,𝑀𝑖,𝑀𝑜))

= 1
22𝑘

∑

𝑚𝑖 ,𝑚𝑜

(1 − 𝐹 (𝑥 ⊕𝑀𝑖,𝑀𝑖,𝑀𝑜)). (2)

ow, (1) is equal to (2) if and only if (iff):
∑

𝑖 ,𝑚𝑜

𝐹 (𝑥 ⊕𝑀𝑖,𝑀𝑖,𝑀𝑜) =
∑

𝑚𝑖 ,𝑚𝑜

(1 − 𝐹 (𝑥 ⊕𝑀𝑖,𝑀𝑖,𝑀𝑜))

.e., iff
∑

𝑖 ,𝑚𝑜

(1 − 2𝐹 (𝑥 ⊕𝑀𝑖,𝑀𝑖,𝑀𝑜)) = 0.

e can note also that:
∑

𝑖 ,𝑚𝑜

1 − 2𝐹 (𝑥 ⊕𝑀𝑖,𝑀𝑖,𝑀𝑜) =
∑

𝑚𝑖 ,𝑚𝑜

(−1)𝐹 (𝑥⊕𝑀𝑖 ,𝑀𝑖 ,𝑀𝑜). □

orollary 1. Let us note 𝐹 as the sum of monomials 𝑓𝑗 .
𝐹 (𝑎, 𝑚𝑖, 𝑚𝑜) =

∑𝑝
𝑗=1 𝑓𝑗 (𝑎, 𝑚𝑖, 𝑚𝑜), since 𝑓𝑗 ∈ F2 then 𝐹 can be written

s
𝐹 (𝑎, 𝑚𝑖, 𝑚𝑜) =

∑𝑝
𝑗=1

1
2 (1 − (−1)𝑓𝑗 (𝑎,𝑚𝑖 ,𝑚𝑜)) = 1

2 (𝑝 −
∑𝑝

𝑗=1(−1)
𝑓𝑗 (𝑎,𝑚𝑖 ,𝑚𝑜))

and satisfies Property 1 iff
𝑝
∑

𝑗=1
(
∑

𝑚𝑖 ,𝑚𝑜

(−1)𝑓𝑗 (𝑎,𝑚𝑖 ,𝑚𝑜)) = 22𝑘(𝑝 − 1).

Proof. 𝐹 satisfies Property 1 iff ∑

𝑚𝑖 ,𝑚𝑜
𝐹 (𝑥 ⊕ 𝑚𝑖, 𝑚𝑖, 𝑚𝑜) = 22𝑘−1 i.e

𝑚𝑖 ,𝑚𝑜
(𝑝 −

∑𝑝
𝑗=1(−1)

𝑓𝑗 (𝑚𝑖 ,𝑚𝑜)) = 22𝑘. □

Remark 1. If 𝐹 satisfies Property 1 then the Walsh transformation of
𝐹 is null at zero: 𝑊𝐹 (0) = 0 where

𝐹 (𝑢, 𝑣,𝑤) =
∑

𝑎,𝑚𝑖 ,𝑚𝑜

(−1)𝑢⋅𝑎+𝑣⋅𝑚𝑖+𝑤⋅𝑚𝑜+𝐹 (𝑎,𝑚𝑖 ,𝑚𝑜).

ndeed,

𝐹 (0) = 𝑊𝐹 (0, 0, 0) =
∑

𝑎,𝑚𝑖 ,𝑚𝑜

(−1)𝐹 (𝑎,𝑚𝑖 ,𝑚𝑜)

=
∑

𝑎

∑

𝑚𝑖 ,𝑚𝑜

(−1)𝐹 (𝑎,𝑚𝑖 ,𝑚𝑜)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=0

= 0.

orollary 2 (Mathematical Formulation Of Property 2). Let 𝐹 ∶ F3𝑘
2 → F2.

satisfies Property 2 if and only if:

𝑥 ∈ F𝑘
2 ,∀𝛿 ∈ F3𝑘

2 ∖{0},
∑

𝑚𝑖∈F𝑘2

∑

𝑚𝑜∈F𝑘2

(−1)𝐹 ((𝑥⊕𝑚𝑖 ,𝑚𝑖 ,𝑚𝑜)⊕𝛿)⊕𝐹 (𝑥⊕𝑚𝑖 ,𝑚𝑖 ,𝑚𝑜) = 0.

roof. Pose 𝐺𝛿(𝐴,𝑀𝑖,𝑀𝑜) = 𝐹 ((𝑥 ⊕ 𝑚𝑖, 𝑚𝑖, 𝑚𝑜)⊕ 𝛿)⊕ 𝐹 (𝑥 ⊕ 𝑚𝑖, 𝑚𝑖, 𝑚𝑜)
ne has,

(𝐺𝛿(𝐴,𝑀𝑖,𝑀𝑜) = 1|𝑋 = 𝑥)

= P(𝐺𝛿(𝑋 ⊕𝑀𝑖,𝑀𝑖,𝑀𝑜) = 1|𝑋 = 𝑥)

= P(𝐺𝛿(𝑥 ⊕𝑀𝑖,𝑀𝑖,𝑀𝑜) = 1)

= 𝐸𝑀𝑖 ,𝑀𝑜
𝐺𝛿(𝑥 ⊕𝑀𝑖,𝑀𝑖,𝑀𝑜)

= 1
22𝑘

∑

𝑚𝑖 ,𝑚𝑜

𝐺𝛿(𝑥 ⊕𝑀𝑖,𝑀𝑖,𝑀𝑜).

satisfies Property 2 iff

(𝐺 (𝐴,𝑀 ,𝑀 ) = 1|𝑋 = 𝑥) =
𝛿 𝑖 𝑜
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i

𝑚

i

𝑚

P(𝐺𝛿(𝑋 +𝑀𝑖,𝑀𝑖,𝑀𝑜) = 1|𝑋 = 𝑥) = 1
2

iff
1
22𝑘

∑

𝑚𝑖 ,𝑚𝑜

𝐺𝛿(𝑥 ⊕𝑀𝑖,𝑀𝑖,𝑀𝑜) =
1
2

ff
∑

𝑖 ,𝑚𝑜

(
1 − (−1)𝐺𝛿 (𝑥⊕𝑀𝑖 ,𝑀𝑖 ,𝑀𝑜)

2
) = 22𝑘−1

ff
∑

𝑖 ,𝑚𝑜

( 1
2
) − 1

2
∑

𝑚𝑖 ,𝑚𝑜

(−1)𝐺𝛿 (𝑥⊕𝑀𝑖 ,𝑀𝑖 ,𝑀𝑜) = 22𝑘−1

that means
∑

𝑚𝑖 ,𝑚𝑜

(−1)𝐺𝛿 (𝑥⊕𝑀𝑖 ,𝑀𝑖 ,𝑀𝑜) = 0. □

Therefore, proving the security of masked cryptographic circuits in
the presence of glitches amounts to computing Walsh transforms.
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