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Understanding the ecological and evolutionary processes that drive host—
pathogen interactions is critical for combating epidemics and conserving
species. The Varroa destructor mite and deformed wing virus (DWV) are
two synergistic threats to Western honeybee (Apis mellifera) populations
across the globe. Distinct honeybee populations have been found to self-sus-
tain despite Varroa infestations, including colonies within the Arnot Forest
outside Ithaca, NY, USA. We hypothesized that in these bee populations,
DWYV has been selected to produce an avirulent infection phenotype,
allowing for the persistence of both host and disease-causing agents. To
investigate this, we assessed the titre of viruses in bees from the Arnot
Forest and managed apiaries, and assessed genomic variation and virulence
differences between DWV isolates. Across groups, we found viral abun-
dance was similar, but DWV genotypes were distinct. We also found that
infections with isolates from the Arnot Forest resulted in higher survival
and lower rates of symptomatic deformed wings, compared to analogous
isolates from managed colonies, providing preliminary evidence to support
the hypothesis of adaptive decreased viral virulence. Overall, this multi-level
investigation of virus genotype and phenotype indicates that host ecological
context can be a significant driver of viral evolution and host—pathogen
interactions in honeybees.

1. Introduction

Antagonistic relationships between disease-causing agents, such as pathogens
and parasites, and their hosts are driven by complex interactions modulated
by ecological and evolutionary processes [1,2]. Both biotic and abiotic factors
can influence disease outcomes and impose selective pressures on both host
and pathogen, shaping coevolutionary dynamics across different contexts [3].
Understanding how these reciprocal exchanges interplay at the genome level is
critical for combating epidemics, supporting agricultural systems and protecting
vulnerable species in a changing global climate [4,5].

Population declines in insects broadly, and, particularly, in some insect pol-
linator species have been increasingly documented in recent decades [6,7]. One
such pollinator species, the Western honeybee (Apis mellifera), while not demon-
strating overall population declines, has observed a marked increase in colony
mortality in recent years [8]. Research into honeybee colony mortality has ident-
ified multiple factors linked to declining bee health [9]. Some factors, as well as
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their synergistic interactions, include human-driven land-
scape changes (which reduce the availability and diversity
of the flowering plants bees depend on for food) [10], chronic
low-level pesticide exposure [11], climate change [12] and dis-
ease [13-15]. The dual epidemics of Varroa destructor mites
and deformed wing virus (DWV) are the primary stressors
driving global honeybee colony mortality, particularly
in temperate regions of the USA and Europe [16]. Varroa
destructor, an ectoparasite that reproduces on developing
bee pupae, expanded its host species from just the Eastern
honeybee, Apis cerana, to also the Western honeybee, A. mel-
lifera, in the last century [14]. The introduction of Varroa to
A. mellifera not only introduced a novel parasite with no
coevolved resistance, but also introduced a novel trans-
mission route to a historically benign, but now virulent,
global pathogen: DWV [17]. Both DWV and Varroa have suc-
cessfully spread to honeybee populations around the world
[18-20], synergistically undermining honeybee health at mul-
tiple levels [21,22].

Varroa-mediated DWV transmission leads to increased
titres, resulting in enhanced viral disease [21,23,24]. High
levels of DWV lead to deformed wings in adults, reduced
activity and ability to contribute to colony tasks and
increased adult mortality [25-27]. This increased mortality
leads to reduced colony survival, particularly in the winter
months [28-30]. DWV strain diversity and evolution add
further complexity to this system [31-33]; its two main
strains, deformed wing virus A (DWV-A) and deformed wing
virus B (DWV-B) as well as their recombinants [23,34], can
differ in relative virulence [35-37], their molecular dynamics
[38,39], ability to replicate in the Varroa vector [40] and epide-
miology, with DWV-B displacing the previously dominant
DWV-A across the globe [41].

Without management interventions to reduce levels of
Varroa, most colonies succumb to mite infestations and
associated viral infections within 2-3 years [19,4243].
Indeed, wild, unmanaged honeybee colonies were decimated
when Varroa was introduced to the USA and Europe in the
past decades [44,45]. Recently, though, distinct honeybee
populations across the globe have been found to self-sustain
and persist despite ubiquitous stressor exposure [14,46]. One
such mite-surviving population is located within the Arnot
Forest outside Ithaca, NY, USA. Historically, these isolated,
wild colonies located within the Arnot Forest have been
found to be genetically distinct from bees from nearby api-
aries [47]. While these bees persist without management,
they do not demonstrate slowed or reduced mite reproduc-
tion [48] common to other mite-surviving populations [49].
Studies have suggested that these wild colonies are smaller
in size than managed honeybee colonies, and more likely to
swarm (a process of colony reproduction by fission which
temporarily ceases brood production): both traits are associ-
ated with less brood in the colony and therefore fewer
opportunities for mites to reproduce [50]. Swarming behav-
iour was not previously found to be consistently associated
with decreased mites in honeybee colonies on the Island of
Gotland, Sweden [51]. Therefore, these traits may not be the
only factors that support the survival of wild honeybee
colonies in the presence of Varroa infestation.

How is it possible for these feral bee populations to sur-
vive despite the presence of Varron and DWV? While there
is evidence for selection on the genome of the Arnot bee
populations [52], it does not seem to have resulted in

significant physiological resistance to mites [48]. It is possible [ 2 |

that, rather than selection on the honeybee or the parasitic
Varron mite, pathogens including viruses have undergone
rapid change to produce an avirulent infection phenotype,
allowing for persistence of both host and disease-causing
agents. Both mite-resistant populations on the Island of
Gotland, Sweden, as well as unmanaged feral bees in Penn-
sylvania, USA, have been shown to survive high DWV
infection levels [53,54]. In the Gotland bee populations,
DWV-B is rarely detected compared to DWV-A [54,55].
This survival, therefore, could be due to virus-tolerant bee
genotypes and/or adaptively avirulent virus populations.

It is predicted that in populations where a virus cannot
readily infect new hosts, i.e. where population size is small
or hosts (i.e. colonies) are far apart, highly virulent patho-
gens would be selected against, since infected hosts may
succumb to the virulent disease prior to transmission to
the next host [56-59]. Thus, less virulent viruses are expected
to have a selective advantage and persist because their hosts
would survive long enough to allow transmission [20,60].
While lower colony density in managed apiaries is not pre-
dicted to dramatically reduce disease prevalence, due to
predicted high transmissibility (i.e. basic reproduction
number, RO) of pathogens such as Nosema spp. and DWV
[61], these conditions may be met in the Arnot Forest, as
colonies here are smaller, more spread out and more apt to
swarm than colonies in most managed apiaries [47,48,50].
Additionally, if pathogen spread among wild colonies is pri-
marily by vertical transmission [17], at the individual level
(i.e. queen to egg), group level (i.e. from parent colony to
daughter colony) or after mating with infected drones, then
this might also select for decreased virulence [62,63]. Thus,
the viral populations circulating within these small, low-
density wild populations may have been selected for
reduced virulence, allowing them to persist despite lower
rates of transmission. Note, however, that increased horizon-
tal transmission (i.e. among unrelated colonies) is predicted
to select for increased virulence. Horizontal transmission
can occur when bees, Varron and/or virus-contaminated
materials (such as food stores) are moved between colonies
by beekeepers or by bees through robbing behaviours, or
possibly when bees from different colonies forage together
and share viruses on flowers, as long as hosts are healthy
enough to forage [14,64].

In this study, we investigated whether there is evidence
of decreased virulence of viruses found in a population of
dispersed, wild colonies compared to populations of
crowded, managed colonies. We first assessed the presence
and titre of major honeybee viruses in bees sampled from
the Arnot Forest, from managed apiaries in adjacent regions
in New York, and from apiaries in nearby Pennsylvania.
These viruses included DWYV, the primary virus transmitted
by Varroa, as well as black queen cell virus (BQCV), a
common bee virus not associated with Varroa transmission
[17]. From a subset of infected bees, we sequenced DWV
genomes and assessed nucleotide differences across these
populations to determine if virus isolates were distinct
across groups at the nucleotide level. Furthermore, we
assessed virulence differences of these DWYV isolates in
developing honeybees by conducting experimental infec-
tions and then measuring pupal and adult mortality as
well as other infection phenotypes. Overall, this multi-
level analysis of DWV provides initial evidence that
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Figure 1. Sampling locations of bees assessed for native DWV infection. (a) The total sites across New York (NY) and Pennsylvania (PA), with a closer view of sites in
NY (b) and PA (c). Within each group (distinguished by their point shapes), multiple sites were sampled. For both managed groups (NY and PA), the sites were

apiaries from which multiple colonies were sampled.

selection for decreased DWV virulence may play a role in
allowing isolated bee populations to persist despite being
parasitized by Varroa.

2. Methods

(a) Experimental design

The experiments presented in this study can be split into two
parts. Part 1 examines the prevalence and sequence identity of
viruses naturally infecting bees sampled from the Arnot Forest,
New York, and from managed apiaries in New York and Pennsyl-
vania. In Part 2, virus inocula isolated from the naturally infected
bees from Part 1 are used for experimental infections in develop-
ing honeybee pupae to assess potential infection differences
across isolates. Taken together, we are able to assess potential
differences in incidence, genotype and virulence across viral iso-
lates, focusing on DWV isolated from bees from managed
colonies versus the historically isolated Arnot Forest bees.

(b) Honeybee collections

Bees were collected from 13 sites across three different groups
(based on location and management): Arnot Forest (Arnot),
nearby New York Managed (NY) and Pennsylvania Managed
(PA) (figure 1; electronic supplementary material, table S1).
The Arnot collection sites were greater than 5 km from the closest
NY managed site, but some less than 0.5 km from the forest edge.
Honeybees often forage within 2.5 km but can forage up to 5 km
away from their colony [65]. No information regarding other
managed colonies that may have been kept within 5 km of the
forest edge, representing potential viral transmission opportu-
nities between managed and unmanaged Arnot forest bees, is
currently available. Collections were conducted between Septem-
ber and 14 October 2019, between 10.00 and 17.00 on sunny,
warm (approx. 18-24°C) days. Bees were captured using insect
nets and kept on dry ice in conical tubes. Bees from managed
colonies were collected from hive entrances, preferentially

selecting obvious foragers, indicated by pollen-filled corbiculae.
As it is technically challenging to locate wild colonies and collect
foragers at the entrances of their nests, the Arnot Forest bees were
collected while they were foraging on flowers. Upon returning
from the field, bees were placed at —80°C for long-term storage.

(c) Virus isolation

Viruses were isolated from individual bees as in [24]. Briefly, bees
were homogenized in 500 pl of 1x PBS using a Bead Ruptor Elite
(Omni International, Kennesaw, GA, USA) at 6.5ms ' for 45,
then centrifuged for 3 min at maximum speed (greater than
15 000xg). The supernatant was passed through a sterile 0.2 pm
syringe filter to separate viral particles from bee cells, and then
was stored at —80°C until RNA purification.

(d) Virus quantification by quantitative PCR

RNA was extracted from 30 pl of each virus inoculum using a
Direct-zol RNA Miniprep kit (Zymo Research, Irvine, CA,
USA) following the manufacturer’s protocol. cDNA was pre-
pared from 200 ng of RNA from each sample using a random
primer method via the High-Capacity cDNA Reverse Transcrip-
tion Kit with RNase Inhibitor (ThermoFisher Scientific, Waltham,
MA, USA) following the manufacturer’s protocol. cDNA was
diluted 1:20x prior to quantitative PCR (qPCR) reactions.
qPCR was conducted using PowerUp SYBR Green Master Mix
(ThermoFisher) as in [24]. Virus was considered ‘present’ in an
individual sample if the normalized mean Ct was less than 30.
Primers can be found in electronic supplementary material,
table S2, and data found in electronic supplementary material,
tables S3-59.

(e) Sequencing and analysis of a subset of isolates

As BQCV was in low abundance across our samples, we focused
on DWV for deep sequencing analysis. RNA extracts from a
subset of virus isolations with higher DWV levels were sub-
mitted to the Pennsylvania State Genomics Core Facility
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(University Park, PA, USA) for library preparation and sequen-
cing. Libraries were prepared from 28 samples and sequenced
on the Illumina Miseq platform, resulting in 150 nucleotide
paired-end stranded mRNA reads. Total reads per sample
ranged between 274942 and 753 035. Reads were assessed for
quality with FastQC (v.0.11.9) and quality trimmed with Trim-
momatic (v.0.39, option SLIDINGWINDOW:4:25) (electronic
supplementary material, table S10).

Consensus DWV-A and DWV-B genomes were built using
methods described in Ray ef al. [24]. Briefly, genomes were created
by aligning reads from each sample to DWV-A and -B reference
genomes from NCBI (Ref. NC_004830.2 and NC_006494.1) using
Hisat2 (v.2.1.0) [66]. Using bcftools (v.1.8) [67], variants were
called and the consensus fastq sequence files were generated,
and from the resulting fasta files, bases with qualities less than
20 were converted to Ns using seqtk (v.1.3-r106) [68]. DWV
levels were low in these samples (electronic supplementary
material, table S11), but full-length genomes could be constructed
for 10 samples. This resulted in 11 consensus genomes (one
sample, 13-1-E, was naturally co-infected with DWV-A and
DWV-B). Reads were also aligned to a third variant of DWYV,
variant C, as well as other common bee viruses. However, less
than 0.06% of reads within each sample aligned to DWV-C
(CENDO01000001.1), which could also be due to natural variation
in DWV-A and -B or alignment errors. Fewer than 0.35% of
reads within each sample aligned to other common bee viruses
in the USA (acute bee paralysis virus (NC_002548.1), BQCV
(NC_003784.1), chronic bee paralysis virus (NC_010711.1), Israeli
acute paralysis virus (NC_009025.1), Lake Sinai virus 2
(NC_035467.1), sacbrood virus (NC_002066.1)). These viruses
were not further examined within the sequence data.

For phylogenetic analyses, multisequence alignments of con-
sensus genomes and reference genomes (DWV-A reference
(NC_004830.2), DWV-B reference (NC_006494.1) and DWV-C
reference (CEND01000001.1)) were generated with Clustal
Omega using default settings (v.1.2.3). As the DWV-B genome
from isolate A-3 could not be assembled from the original
sequencing, the DWV-B genome constructed from the propa-
gated A-3 isolate from 2021 (see Experimental infection
samples and procedure) was included in its place in the align-
ment but not in the variant calling analysis. Multisequence
alignment was then imported into MEGAX (v.10.1.8) for maxi-
mum-likelihood tree construction using the Tamura—Nei
substitution model at the nucleotide level, and bootstrapped
using 1000 replicates [69]. Consensus genomes, as well as raw
sequence reads, can be found on the NCBI Genome and SRA
database (PRJNA922567 and PRJNA922218, genome accessions
OR497372-0OR497398). Variants within DWV-A and -B popu-
lations were called using bcftools and annotated using SNPeff
(v.5.0) [70] as in Ray et al. [24] (electronic supplementary
material, tables S12-S14).

(f) Experimental infection samples and procedure
Experimental infections were conducted from August to Septem-
ber 2021. Two different colonies (thus representing distinct
genotypes) from a Penn State University research apiary were
used. Prior to infection studies, colonies were assessed for viral
infection via qPCR (electronic supplementary material, figure S4
and table S26); there was no or very low indication of common
bee viruses. Both colonies were inspected weekly to confirm
health status (i.e. no obvious signs of viral disease, and a low
parasite load) and to confirm the presence of the original queen.
The DWYV isolates used in experimental infections can be
found in electronic supplementary material, table S15. To reach
a sufficiently high titre of viral genotypes to conduct these exper-
iments, inoculums were propagated in pupae collected from
a DWV-free (assessed via qPCR) colony [71]. Pupae at the

white-eyed stage (14 days post egg laying) were injected with n

the viral isolates, then collected on dry ice at 4 days post-injection
(4DPI). Virus was isolated from individual pupae [24], and
aliquoted to minimize the number of freeze-thaws. Isolates
were assessed for DWV quantity and co-infection of BQCV and
SBV. RNA from isolates was submitted for RNA sequencing
to confirm minimal DWV sequence variation after virus pro-
pagation (electronic supplementary material, figure S2).
Propagated virus inocula were normalized to two doses:
approximately 5x 10° genome equivalents per ul (high) and
approximately 5x 10° genome equivalents per ul (low). Virus
being actively used was kept at 4°C for no longer than 3 days.

Pupae at the white-eyed stage were used for experimental
infections. Any pupae that showed eye pigmentation (indicating
older than 14 days old), melanization (indicating injury during
collection) or Varroa within their cell were not used. Infections
were conducted in a UV sterilized hood to minimize contami-
nation by mould and other opportunistic microbes. One
microlitre of the propagated virus inoculum was injected using
a mouth aspirator with an attached 10 pl capillary tube pulled
into a needle. Needles were changed between inocula to avoid
contamination. To measure colony DWV levels and the effect
of the injection itself on DWYV levels, control bees (‘Control’,
collected from the colony but not manipulated further) and
PBS-injected bees (‘PBS-inject’, injected with the saline solution
used for the stock viral isolation) were included as controls.

Injected pupae were kept in 48-well plates that were placed in
a cabinet at 75% RH within an incubator at 34.5°C (Thermo
Science Nalgene Acrylic Desiccator Cabinet). Subsets of samples
were collected at 3 days post-injection (3DPI) to assess viral titres
via qPCR. Pupae were monitored daily for mortality, and when
nearing the time of eclosion (approx. 7DPI) they were monitored
every 8-12 h for successfully eclosed bees. ‘Successfully’ pupated
(also known as ‘eclosed’) bees surviving to adulthood were
identified as ones having high mobility, i.e. notable movements
around their respective wells (electronic supplementary material,
tables S16 and S17). Once eclosed, bees were removed from their
individual well with sterilized forceps, inspected for deformed
wings (electronic supplementary material, table S18), and
placed into Plexiglas cages (10 x 10 x 7 cm?), split by group (1-7
bees per cage, depending on eclosion rate), noting the time of
transfer. Cages were provided 30% sugar water and honey,
ad libitum, replenished daily as needed, and placed within an
incubator at 34.5°C and approximately 40-60% RH. Cages with
adult bees were monitored for survival daily, and bees that had
perished were removed (electronic supplementary material,
table 519).

(g) Virus quantifications from experimental infections
RNA was isolated from abdomens from 3DPI pupae collected
during the experimental infection experiments using the
RNeasy Mini Kit (Qiagen, Hilden, Germany) following manufac-
turers” protocol including a DNAse incubation step and
quantified using a Nanodrop. cDNA synthesis and qPCR were
conducted as described above. The raw and processed data
from the qPCR runs are contained in electronic supplementary
material, tables 520-526.

(h) Statistical analyses

Statistical analyses were conducted in R (v.3.6.3) using the ‘stats’
package [72]. Pearson’s x* test assessed frequency differences in
viral presence across groups (Arnot, NY and PA) and one-way
analysis of variance (ANOVA) compared viral loads of infected
individuals across groups. Differences in viral loads in exper-
imentally infected samples were assessed using two-way
ANOVA across isolate and dose (electronic supplementary
material, table S27). Pearson’s y> test assessed differences in
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Figure 2. Levels of DWV and BQCV infection across managed bees and Amot Forest bees. (a) The proportions of DWV-infected bees did not differ between the bees
collected from the Arnot Forest versus from managed colonies in NY and PA. (b) Viral loads of DWV-infected bees were similar across groups. (c) Rates of BQCV were
significantly lower in bees collected from the Amot Forest. (d) Of infected samples, BQCV titres within individuals from the Arnot Forest were significantly lower than
titres from bees collected from managed colonies. Bees were categorized as infected when normalized qPCR dCt was less than 30. The Y-axis is reversed in (b) and
(d), as lower ddCt values are indicative of a higher starting template in qPCR reactions.

pupation survival rates and rates of deformed wings across
isolates (electronic supplementary material, tables S$28-S30).
Kaplan—-Meier survival analysis was conducted using the ‘survi-
val’ (v.34.0) and ‘survminer’ (v.0.4.9) packages (electronic
supplementary material, table S31).

3. Results

(a) Deformed wing virus presence and loads do not
differ between Arnot Forest and managed bee
populations

Viruses were detected and quantified from individual bees
collected from the Arnot Forest and managed colonies in
New York (NY) and Pennsylvania (PA). All groups had
detectable levels of DWV and BQCV. Across groups, there
was no significant difference in the prevalence of DWYV,
with approximately 40-57% infection rate (Pearson’s y” test,
p-value =0.2061; figure 2a). When comparing viral loads
between infected individuals, there was no significant differ-
ence in the infection level across groups, with all groups
having a range of lowly and highly infected bees (one-way
ANOVA, p-value=0.353; figure 2b). Both master variants
(i.e. strains) DWV-A and DWV-B were found across groups
(electronic supplementary material, figure S1).

Compared to DWV prevalence, however, the incidence of
BQCYV was lower in the bees caught in the Arnot Forest (Pear-
son’s ;(2 test, BQCV p-value = 0.001; figure 2c), as were their
viral titres (one-way ANOVA, BQCV p-value < 0.001), relative

to the bees collected from managed colonies in NY and PA
(figure 2d).

(b) Evaluation of deformed wing virus genetic diversity

across isolates
Isolates with high levels of detectable DWV were subjected to
RNA sequencing to identify nucleotide variation across viral
genomes. Of the 28 sequenced samples, 10 had sufficient
numbers of reads aligning to DWYV to allow for the recon-
struction of full viral genomes, resulting in 3 DWV-A
sequences and 8 DWV-B sequences. These consensus gen-
omes clustered by master variant identity (i.e. DWV-A and
DWV-B) in phylogenetic analyses of whole genomes
(figure 3). In the two instances where we had multiple
DWV-B isolates collected from the same site (Site 7: A-7-1
and -2, Site 13: PA-13-1 and —2), the consensus genomes iso-
lated from the same site also clustered together; otherwise,
there is no obvious clustering at the level of geographical
location or by group (figure 3).

Isolates represented primarily by DWV-A show approxi-
mately 1.3-1.4% variation across the genome compared to the
DWV-A reference genome (NC_004830.2). All isolates had
some single nucleotide polymorphisms (SNPs) that were
unique to each isolate compared to the reference genome,
as well as some variation from the reference that were
shared across groups (figure 4; electronic supplementary
material, table S14). DWV-B isolates had about 0.7-0.8% vari-
ation compared to the DWV-B reference (NC_006494.1);
DWYV-B isolates also contained SNPs unique to each isolate,

G961£707 (06T § 20 'Y 2044 qdsi/jeuinol/biobuiysiigndAiaposiefo H



Downloaded from https://royalsocietypublishing.org/ on 17 June 2024

group
B Arnot

B PA

A-3-2021 B*

NY-10B
NY-9-1B*

DWV-B

DWV-A

NC 006494.1 DWV-B

|—A-G B*

|— NC 004830.2 DWV-A

o PA-13-1 A*
55 A-3 A*
i NY-9-2 A*

—_—m

0.020

CENDO01000001.1 DWV-C

Figure 3. Phylogeny of DWV-A and DWV-B from bees collected in the Arnot Forest and from managed colonies in NY and PA. Maximum-likelihood trees with 1000
bootstrap replicates were generated from each isolate’s consensus genome along with reference genomes for DWV-A, DWV-B and DWV-C (NC_004830.2,
NC_006494.1 and CEND01000001.1). Nodes are coloured by group. Stars indicate isolates used in experimental infections. As the DWV-B genome from isolate
A-3 could not be assembled from the original sequencing, the propagated DWV-B from 2021 is shown instead.
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Figure 4. Comparison of single nucleotide polymorphisms (SNPs) identified in DWV isolates. SNPs compared to the DWV-A (left) or DWV-B (right) reference
genomes were identified within individual isolates. Lists of SNPs found within each group (Armot, NY and PA) were then compared across groups to determine
which were unique to each group (e.g. ‘Aot Unique’), shared between two groups (e.g. ‘Arnot and NY’), or found across all groups (‘Shared’). Type of variant
(upstream or downstream of the DWV polyprotein coding region, or missense or synonymous variants within the coding region) is indicated by colour.

as well as shared within and across groups (figure 4;
electronic supplementary material, table S14).

Notably, there is one unique, non-redundant variant ident-
ified in all three Arnot Forest DWV-B isolates in this analysis:
Val896lle, resulting in a conservative amino acid change in the
putative capsid protein region of the DWV genome (electronic
supplementary material, figure S3). This variant was not
identified in any of the isolates from managed bees in this
analysis. Overall, SNPs were identified across all groups
across the genome, and any missense mutations in DWV-A
and DWV-B isolates tended to represent conservative amino
acid changes with respect to the reference genome, including

the Val896lle variant found in the Arnot isolates (electronic
supplementary material, tables 512-514).

(c) Infection phenotypes varied across deformed wing

virus isolates and between doses
Seven DWYV isolates, representing a DWV-A and DWV-B from
each group, were further assessed for phenotypic differences
through experimental infections: three isolates from Arnot
Forest samples, two isolates from NY (from Colony 2 at
Site 9) and two isolates from PA (from Colony 1 at Site 13).
White-eyed pupae were injected with high doses (approx.
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Figure 5. Disease symptoms varied across DWV isolates and dose. (a) Eclosion percentages were high and similar across groups. DWV-infected bees tended to eclose
faster than controls (b). Percentages of deformed wing bees varied across isolates (c) and survival percentages were generally higher (d) in bees exposed to Amot
Forest isolates relative to bees exposed to managed colony isolates. Samples sizes for eclosion (a) and deformed wing rates (c) can be found above each bar.

5 x 10° genome equivalents per ul) or low doses (approx. 5 x 10
genome equivalents per pl) of an isolate, or 1x PBS, as sham-
injection controls (PBS) and uninjected pupae as full controls
(Control). At 3DPI, subsets of pupae were collected to assess
infection titres. The remaining bees were allowed to further
develop, and assessed for infection phenotypes including:
eclosion rates, rates of symptomatic deformed wings and
adult survival through time.

Viral loads at 3DPI varied across DWV+ groups (two-way
ANOVA, p-value<0.001) and were generally higher than
Controls (electronic supplementary material, figure S4 and
table S27). DWV load was not significantly different across
dose or colony (two-way ANOVA, p-value=0.0716 and
0.234, respectively). Of these seven isolates, three were
found contaminated with other bee-infecting viruses: A-7-1
and NY-9-1 with high levels of BQCV, and NY-9-2 with
highly detectable paralysis virus (electronic supplementary
material, table S26).

Eclosion rates, i.e. pupal survival, were similarly high
(between 71% and 96%) across all groups and doses
(figure 5a; electronic supplementary material, table S28),
except for the three groups that had other contaminating
viruses, where pupation rates were low (between 0% and
12%) (electronic supplementary material, table S16); due
to low survival to adulthood, these three contaminated
groups were subsequently removed from further symptom

screening. This resulted in a pairwise-comparison of infection
dynamics for 4 DWV+ isolates: Arnot versus PA managed
DWYV-B (A-6 versus PA-13-2) and Arnot versus PA managed
mixed (i.e. DWV-A/DWV-B) (A-3 versus PA-13-1).

Interestingly, we saw more rapid pupation rates across
our 4 DWV+ groups compared to Controls (figure 5b; elec-
tronic supplementary material, table S29), as has been
reported previously [73].

Of bees that successfully pupated, those in the 4 DWV+
groups had higher rates of symptomatic deformed wings
compared to those that were in the Control group
(figure 5¢; electronic supplementary material, table S30). Gen-
erally, mixed groups had higher deformed wing rates
compared to DWV-B isolates (figure 5c).

Adult survival over time showed the most distinct disease
phenotypes across DWV+ groups (figure 5d; electronic
supplementary material, figure S5). In the high dose exper-
iments, all the DWV+ groups had significantly lower
survival than Controls (PBS and Control), but the Arnot
isolate samples consistently had better survival than their
managed isolate counterparts. In the low dose, samples
infected with isolate A-6 performed similarly to Controls,
while the other DWV+ groups again had significantly
worse survival than Controls, but were not significantly
different from one another
material, table S31).

(electronic  supplementary
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4. Discussion

We investigated whether adaptive decreased virulence of
DWYV may contribute to the ability of the feral honeybees
of the Arnot Forest to survive. No significant differences
were found between Arnot Forest and managed bees in
either their DWYV infection rates or their viral loads. However,
sequence analyses of DWV isolates revealed unique SNPs
associated with the viruses in the different groups of bees.
Furthermore, in experimental infections, we found differ-
ences—across multiple metrics of virulence—among bees
infected with different DWV isolates. Most notably, we
found that infections with DWV isolates collected from
Arnot Forest bees generally resulted in milder symptoms
and better survival compared to infections with DWYV iso-
lates collected from managed colonies. Overall, this study
provides initial evidence of relatively low virulence of
DWYV circulating within the Arnot Forest. This is a potential
mechanism for colony survival in this forest, despite Varroa
infestations and pathogen pressure.

By examining individuals, we were able to measure fine-
scale infection rates across all groups, and by examining
DWV-infected foragers, we began to evaluate which viral
genotypes may be circulating in the Arnot Forest. All three
groups had detectable DWV and BQCV, which shows that
the survival of the Arnot Forest bees is not due to a lack of
pathogen pressure. Lower levels of DWV infection might
explain the ability of Arnot Forest bees to persist without
management, but we found about the same DWV infection
rate (approx. 50%) in foragers across all three groups. An abil-
ity to suppress DWV titres might also be an adaptation
associated with survival, but we found no evidence of this,
as viral loads in infected individuals were similar across all
three groups, consistent with other studies comparing the
viral loads of workers in feral versus managed colonies
[53,74,75]. Our results suggest that the Arnot Forest bees are
instead able to tolerate high levels of infection, as do other
bees with mite-resistant genotypes that have demonstrated
DWYV tolerance [54,76-78].

The infection rates and titres of BQCV were lower in
Arnot Forest bees versus managed bees, though the rates
we found are still high (78.8% infected; figure 2c). BQCV is
not associated with vector transmission by Varroa [27].
BQCV is commonly found in honeybee colonies across the
globe [27,79,80], and usually is not associated with high
worker mortality [81]. Therefore, the relatively low infection
rates of BQCV may contribute somewhat to Arnot Forest
bee survival, but probably it is not the primary basis for
bees’ survival. BQCV is readily transferred between bees
foraging together in a patch of flowers [82], so it is not sur-
prising that it is found in wild colonies. BQCV rates
become high where there are high densities of honeybee colo-
nies [83,84]. Thus, the lower levels of BQCV in the Arnot
Forest bees may reflect reduced horizontal transmission
between foragers from managed and wild colonies, perhaps
due to relatively low densities of honeybee colonies within
the Arnot Forest [47,48,50].

The Arnot sites were greater than 5 km from the closest
NY managed site, but some less than 0.5 km from the forest
edge. While honeybees can forage up to 5km from their
hive, most bees forage less than 2.5 km from their colony
[65]. Thus, if there were managed bees kept near the forest
edge, there could have been an overlap of foragers between

managed and unmanaged colonies on these flowers. This
could explain why DWYV infection rates were similar across
groups, both due to viral transmission between managed
and unmanaged bees during co-foraging, as well as captur-
ing both managed and unmanaged foragers during our
collections. Though the BQCYV rates in our presumed Arnot
Forest bees were lower compared to the nearby NY apiaries,
indicative of a separate bee population, this may be an effect
of only the healthiest bees (also known as bees with the
lowest BQCV loads) being able to reach the resources
within the Forest. As there are no available maps of total
managed apiaries in that area, though, we cannot confirm
this transmission potential. Standardized collections at
Arnot Forest colony entrances, although technically challen-
ging, can help to better confirm the colony identity of all
bees in future studies.

Both DWV-A and DWV-B genotypes were identified
across all three groups. Both master variants, and their
recombinants, are virulent [23,39,85], which shows that the
survival of the Arnot Forest bees is not due to the absence
of a particular master variant. At the genome level, consensus
genomes did have unique variation across the isolates from
the three different groups of colonies, which indicates that
there are indeed distinct DWV genotypes circulating in the
Arnot Forest. However, consensus DWV-B genomes from
the Arnot Forest did not fully cluster with one another, so
there does not appear to be an ‘Arnot Forest’ sequence var-
iant at the whole-genome level. Similarly, the DWV-A
populations in the isolated, mite-resistant colonies in
Sweden cluster in the 2009-2010 samples, but not in the
2015 sample [55,86]. Additional sampling over multiple
years may reveal more consistent patterns of DWV genotypes
within the Arnot Forest.

A small portion of identified SNPs is shared across all iso-
lates within their group, including a predicted missense
variant in the capsid region of the Arnot Forest DWV-B gen-
omes. Mutations in DWV capsid proteins may affect virus
cell entry or recognition by the host [87]. Given that this pre-
dicted variant results in an amino acid change within the
same functional group (valine to isoleucine), it is unclear
what effect this SNP may have, if any. Many of the missense
variants identified in these populations do not appear to pro-
duce a functional change, as no SNPs were identified in
putative functional regions and most amino acid substitutions
are still within similar functional groups. Nonetheless, sub-
consensus and synonymous variation can play important
roles in translational efficiency (e.g. codon bias) [88], RNA sec-
ondary structure [89] and pathogen fitness and adaptability
[90], and these may influence the viral dynamics of the
Arnot Forest isolates.

While this study presents the first evidence of individual
variation in virulence within DWV master variants, we were
limited to only assessing four viral isolates through adulthood:
two Arnot Forest isolates and two PA managed isolates. We
screened 184 individual bees with qPCR and identified 28
bees with relatively high levels of DWYV; of these samples,
only 10 bees had sufficiently high levels to allow for viral
genome assembly. Of these, seven isolates were propagated
for experimental infections. Only four of these isolates did
not have other viruses and thus could be used for analysis.
Thus, in future studies, a much larger sample set of bees
should be collected and evaluated, to ensure a larger
number of isolates representing different populations.
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Our results provide initial evidence of less virulent DWV
populations within bees of the Arnot Forest, or alternatively,
more virulent DWV populations in PA managed bees. The
isolate with the most distinct infection outcomes, A-6, was
also the most diverged DWV-B in the phylogenetic analysis.
It is not clear how infection would compare with more geneti-
cally similar genotypes, as the other DWV-B isolates we
assessed were co-infected, resulting in worsened disease.
Moreover, since the A-6 genotype is highly distinct from
both its counterpart in the experimental infections as well
as other Arnot DWV-B genotypes, it may, therefore, not be
representative of the sum of Arnot Forest viral population
dynamics, per se, and may represent instead a unique variant
within the DWV-B classification. To explore adaptive viral
avirulence as a mechanism whereby honeybee colonies
survive Varroa infestations, additional DWV genotypes,
from both within and beyond the Arnot Forest, need to be
assessed. This could help us to better understand phenotypic
variation in infection effectiveness within and across DWV
master variants.

The experimental infections reported here also provide
guidance for future studies in DWV virulence. Overall, the
pupation survival rates were comparable for DWV-infected
bees and control bees, which has been observed in other
studies [35,91]. However, the rates of deformed wings and
adult survival through time differed among DWV+ groups,
indicating the importance of measuring a panel of symptoms
during disease phenotyping. We did not find an Arnot Forest
isolate that was fully avirulent, although exposure to a low
dose of the Arnot Forest isolate A-6 resulted in adult bee sur-
vival that nearly matched that of controls. Samples infected
with co-infection isolates performed worse than samples
infected with DWV-B alone. BQCV has also been shown to
be highly virulent when injected directly into the haemo-
lymph of worker bees [92,93]. Furthermore, co-infection of
DWY variants can result in increased adult mortality through
time, which is consistent with our previous observations of
highly virulent DWV-A + DWV-B populations [24], and
may explain the low rates of DWV co-infection in the natu-
rally infected individuals across all groups (electronic
supplementary material, figure S1).

It is important to note that our study tested the impacts of
infection with different DWV isolates on honeybees derived
from managed stocks. It is possible that the Arnot Forest
bees and DWYV have co-evolved to be adapted to one another
[94], so there might be even lower virulence in experimental
infections of Arnot Forest bees with Arnot DWV isolates.
Indeed, honeybee host genotype has been an important
factor in DWV infection studies [73,78,95], and our study
further uncovers how DWV genotype, even within master
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