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Abstract
The Late Neogene to Quaternary periods include several climate and tectonic events that brought
the surface ocean circulation system into its modern configuration. Characterizing how surface
conditions, namely temperature and salinity gradients, behaved in response to cooling and warm-
ing events has implications for understanding past atmospheric and biotic processes and how the
Earth system may respond to increased anthropogenic warming. One region that lacks long-term
geochemical records is the Tasman Sea, southwest Pacific Ocean. This region is characterized by a
major western boundary current and its extensional flow, which creates large temperature gradi-
ents within the basin. Prior geochemical analyses indicate this region warmed and cooled in
response to tectonic gateway closures. To build on these geochemical data sets and create a tran-
sect across the northern Tasman Sea, we use δ18O and δ13C measurements from the mixed-layer
planktic foraminifera species Trilobatus sacculifer to reconstruct surface ocean conditions from
the Middle Miocene to early Pleistocene (12–2.3 Ma) at International Ocean Discovery Program
Site U1506. We find that surface ocean conditions at the site oscillated through time, with some
major stepped changes in the isotopic values through the Miocene. Additional geochemical time
series developed in the future from more central and southern Tasman Sea sites will aid in under-
standing the development and behavior of such frontal boundary systems through the Neogene.

1. Introduction
The Late Neogene to Early Quaternary periods (~12–2.3 Ma) are a time of overall global cooling
punctuated by climatic shifts and tectonic gateway reconfigurations (Lisiecki and Raymo, 2005;
Westerhold et al., 2020). These events include the constriction of the Indonesian Throughflow
through the Neogene (reviewed in Kuhnt et al., 2004); the continued and stepwise cooling of
southern high latitudes (~14.6–9.0 Ma; Holbourn et al., 2013); the constriction and closure of the
Central American Seaway (critical threshold of closure ~4.8–4 Ma; Haug and Tiedemann, 1998;
Steph et al., 2010); the mid-Piacenzian Warm Period (3.2–2.9 Ma; e.g., Raymo et al., 1996; Pagani
et al., 2010; Martínez-Botí et al., 2015; O’Dea et al., 2016); and the initiation and growth of North-
ern Hemisphere glaciers (~3.6–2.4 Ma; Mudelsee and Raymo, 2005). These major Earth events led
to the surface ocean circulation system and sea surface temperature gradients that characterize
today’s ocean, especially in the midlatitudes (e.g., Lam et al., 2020, 2021; Sutherland et al., 2022;
Singh et al., 2023). Understanding how the surface ocean and temperature gradients responded to
such tectonic and climate changes and how they came into their modern configuration has impli-
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cations for understanding the ocean systems’ influence on atmospheric and biotic processes and 
how such systems may behave in the future under anthropogenic warming scenarios. The Tasman 
Sea in the southwest Pacific Ocean, an area dominated by a wide and drastic sea surface tempera-
ture gradient, is one region in which we can study the effects of changing climate and tectonic 
gateway closures on the surface ocean (Figure F1).

The South Pacific Tasman Sea surface ocean circulation system is dominated by the Eastern Aus-
tralia Current (EAC), the major western boundary current of the South Pacific Gyre system that 
transports heat and moisture (e.g., Sprintall et al., 1995), and it influences both regional weather 
(Sprintall et al., 1995) and climate patterns (e.g., Cai et al., 2005). This current flows along the east 
coast of Australia, where it detaches from the coast between 30° and 34°S and flows eastward. An 
allotment of the EAC continues southward, around Tasmania (Figure F1). This portion of the cur-
rent that flows eastward has traditionally been termed the Tasman Front, but recent publications 
indicate the eastward flow features are only apparent in time-averaged data (Oke et al., 2019a). 
Instead, where the EAC separates from the Australian coast, there is a complex field of eddies that 
feed flow from the Australian coast toward New Zealand (Oke et al., 2019a). Oke et al. (2019b) 
showed the Tasman Front is not a true frontal system and instead suggested calling the area the 
“EAC southern extension,” a term we have adopted here.

Oceanic frontal systems, such as the EAC southern extension, and sea surface temperature gradi-
ents in the Tasman Sea developed as a response to the opening of the Drake Passage and growth of 
Antarctic ice sheets during the Oligocene, leading to the establishment and intensification of the 
Antarctic Circumpolar Current (Nelson and Cooke, 2001; Pfuhl and McCave, 2005). Despite these 
findings, few long-term geochemical records have been published from the Tasman Sea to infer 
how the EAC southern extension responded to tectonic and climate events through the Neogene. 
Recently, Gastaldello et al. (2023) used stable isotopic analyses and benthic foraminiferal assem-
blages from International Ocean Discovery Program (IODP) Expedition 371 to characterize the 
Middle Miocene Biogenic Bloom in the Tasman Sea. They found that the event was complex with 
multiple phases. Karas et al. (2011) developed a paired δ18O and Mg/Ca record from the plank-
tonic foraminifera species Trilobatus sacculifer for Deep Sea Drilling Program (DSDP) Hole 590B 
(31.17°S, 163.49°E; Figure F1). Their data indicate the northern Tasman Sea experienced surface 
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Figure F1. Sea surface temperature and bathymetric map of the Tasman Sea, southwest Pacific Ocean. Black star = location 
of Site U1506, black circles = DSDP Site 588 and Hole 590B. Solid lines = permanent currents, dashed lines = transient cur-
rents and areas of eddy trains. Figure was made using GeoMapApp under a Creative Commons Attribution 4.0 International 
(CC BY 4.0) license. Inset: location map. SEC = South Equatorial Current, NCJ = North Caledonian Jet, SCJ = South Caledonia 
Jet. Approximate location of currents and eastward flow fields are from Oke et al. (2019b). 
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water cooling and freshening in response to the closure of the Central American Seaway. Warming 
of the northern Tasman Sea after ~3.8 Ma was triggered by a constricting Indonesian Through-
flow and intensification of the EAC (Karas et al., 2011). Hodell and Kennett (1986) created a stable 
isotopic curve for DSDP Site 588 (26.29°S, 161.38°E; Figure F1), located north of Hole 590B. Here, 
there is less variability in the δ18O signal, but their data also indicate cooling and/or freshening 
around ~4 Ma associated with the constriction of the Central American Seaway, followed by sur-
face water warming.

To better infer the behavior of the surface ocean conditions through time in the Tasman Sea, we 
have created a long-term stable isotopic time series (δ18O and δ13C) at a site located between Site 
588 and Hole 590B. We used the mixed-layer planktonic foraminiferal species T. sacculifer (Keller 
and Kennett, 1985) from IODP Site U1506 to construct a record from the Middle Miocene to ear-
liest Pleistocene (~12–2.33 Ma). Our results indicate that at Site U1506, sea surface conditions 
were variable throughout the study interval, likely as a result of tectonic gateway closures and cli-
mate shifts.

2. Materials and methods
A low-resolution (approximately one sample every ~49 ky) mixed-layer stable isotope record was 
constructed for Site U1506 (28.66°S, 161.74°E; 1494.9 m water depth). For this analysis, 195 10 cm3

bulk sediment samples were dried in an oven at 50°C for approximately 48 h. Bulk samples were 
weighed and then washed over a 63 μm screen with tap water. Sieved >63 μm residues were then 
transferred to an oven to dry at 50°C overnight. Once dry, the residues were weighed, vialed, and 
labeled.

To produce the stable isotopic (δ18O and δ13C) record for subtropical Site U1506, we picked four to 
six specimens of T. sacculifer (without the elongate sac-like final chamber) from each sample from 
the 355–425 μm size fraction (see ISOTOPE in Supplementary material). We conducted repli-
cates on 12 of the samples used in the study as an a priori test on within-sample variability (Table 
T1). Isotopic results are reported against Vienna Peedee Belemnite (VPDB) using the standard δ 
notation expressed in permil (‰). Stable isotopic measurements were made on a Finnigan Delta 
Plus XL ratio mass spectrometer coupled with a GasBench II automated sampler at the University 
of Massachusetts Amherst. Analytical precision was better than 0.08‰ for δ18O and 0.06‰ for 
δ13C (one standard deviation) based on tracking of uncorrected results for an in-house standard 
for Site U1506 samples.

Measurements were plotted against depth in the core (Figure F2) and on the age model developed 
using calcareous nannofossil biostratigraphy for Site U1506 (Sutherland et al., 2019), including 
the tuned age model for part of the section from Gastaldello et al. (2023) (Figure F3).

Table T1. Average isotopic value, range, and standard deviation for 12 replicate samples, Site U1506. Download table in 
CSV format.
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3. Results

3.1. Within-sample variability
A total of 12 replicate samples from Site U1506, representing 6% of the total samples, were run to 
determine within-sample variability (Table T1). Intrasample variability (difference within sam-
ples) for δ13C values ranges 0.05‰–0.41‰, and δ18O sample variability ranges 0.00‰–0.47‰.

3.1.1. Stable isotopic measurements
Throughout the study interval, sea surface temperature and/or salinity changed drastically (Fig-
ures F2, F3). From 12 to ~10.6 Ma, δ18O values quickly increase, whereas δ13C values remain 

Figure F2. Stable isotopic measurements using Trilobatus sacculifer from Site U1506. Core, core recovery, and core images 
are from Sutherland et al. (2019).
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Figure F3. Stable isotopic measurements using Trilobatus sacculifer from Site U1506 on the tuned age model of Gastaldello 
et al. (2023; 4.18–7.41 Ma; 71.80–222.80 m) and the shipboard biostratigraphic age model (Sutherland et al., 2019). LP = 
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steady around 2.25‰ but exhibit a slight decrease. From ~10.6 to ~8.5 Ma, δ18O values remain 
largely steady within the range of ~0.3‰–0.1‰. In the same interval, δ13C values exhibit a general 
decrease, generally around ~2.5‰, with intermittent increases to ~3.0‰ at ~10.5 and 8.8 Ma. The 
late Tortonian is characterized by decreasing δ18O values, from 0.1‰ at ~8.8 Ma to −0.6‰ at ~7.2 
Ma. Carbon isotope values exhibit a decrease from about 2.5‰ at ~8.8 Ma to ~2.0‰ at ~7.2 Ma. 
The Late Miocene Messinian Stage is characterized by δ18O values that increase and oscillate 
within the range of about −0.3‰ to 0.1‰ until 6.2 Ma. Within the same time interval (7.2–6.2 
Ma), δ13C values oscillate between ~2.5‰ and 2.0‰. The latest Miocene (6.2–5.3 Ma) is charac-
terized by another step decline in the δ18O record, with values decreasing and oscillating between 
approximately −0.5‰ and −0.1‰ and δ13C values oscillating around 2.5‰–1.6‰.

The stable isotopic records within the Pliocene are generally less variable than the Miocene, with 
no large and apparent stepwise increases or decreases in stable isotopic values. Generally, the δ18O 
values from the Early Pliocene to earliest Pleistocene range approximately −0.7‰–0.3‰, and the 
δ13C values range 2.5‰–1.0‰.

Because these samples are from a midlatitude site, seasonality has likely greatly influenced the sta-
ble isotopic values obtained from surface-dwelling planktonic foraminifera (e.g., Lam et al., 2021). 
Therefore, such abiotic factors should be considered when interpreting geochemical records such 
as those presented in this data report.
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